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Abstract: SGLT2 inhibitors (SGLT2i) block renal glucose reabsorption. Due to the unexpected
beneficial observations in type 2 diabetic patients potentially related to increased natriuresis, SGLT2i
are also studied for heart failure treatment. This study aimed to identify genetic variants mimicking
SGLT2i to further our understanding of the potential underlying biological mechanisms. Using the
UK Biobank resource, we identified 264 SNPs located in the SLC5A2 gene or within 25kb of the 5′

and 3′ flanking regions, of which 91 had minor allele frequencies >1%. Twenty-seven SNPs were
associated with glycated hemoglobin (HbA1c) after Bonferroni correction in participants without
diabetes, while none of the SNPs were associated with sodium excretion. We investigated whether
these variants had a directionally consistent effect on sodium excretion, HbA1c levels, and SLC5A2
expression. None of the variants met these criteria. Likewise, we identified no common missense
variants, and although four SNPs could be defined as 5′ or 3′ prime untranslated region variants of
which rs45612043 was predicted to be deleterious, these SNPs were not annotated to SLC5A2. In
conclusion, no genetic variant was found mimicking SGLT2i based on their location near SLC5A2
and their association with sodium excretion or HbA1c and SLC5A2 expression or function.

Keywords: SGLT2 inhibitor; heart failure; UK Biobank; genetic variants

1. Introduction

Sodium-glucose co-transporter-2 (SGLT2) is the primary transporter in the proximal
tubule of the kidney [1] and reabsorbs over 90% of the glucose from the glomerular
filtrate [2]. SGLT2 is encoded by the SLC5A2 gene, which is located on chromosome 16
(16p11.2) [3].

SGLT2 inhibitors (SGLT2i) block renal glucose reabsorption, resulting in increased
urinary glucose excretion, but also between a 30% and 60% increase in urinary sodium
excretion [4], and blood glucose reduction [5]. Originally used for the treatment of type 2
diabetes (T2D), SGLT2i was the first anti-diabetic drug shown to reduce the risk of hospi-
talization for heart failure (HF) in these patients [6]. HF is a complex clinical syndrome in
which the heart is unable to pump a sufficient amount of blood for the body’s requirements
and is caused by a structural or functional impairment of the contractility or filling of
the ventricles. HF is a major cause of cardiovascular morbidity and mortality worldwide,
leading to a heavy economic burden on society [7]. A recent study reported that the use of
SGLT2i was associated with a lower risk of worsening HF or death from a cardiovascular
cause among patients with HF with a reduced ejection fraction, regardless of their diabetic
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status [8]. SGLT2i is relatively new as a treatment for HF, and little is known of its mecha-
nism of action on HF or its possible side effects. Therefore, finding genetic variants that
mimic SGLT2i may contribute to understanding the mechanisms underlying HF treatment
with SGLT2i.

This study aimed to identify genetic variants which mimic SGLT2i and use these to
investigate the possible causal links with HF and other biomarkers and diseases to scan for
potential side effects (Figure 1).
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2. Materials and Methods
2.1. UK Biobank Study Population

The UK Biobank population and study design have been described in detail previ-
ously [9]. Briefly, the UK Biobank is a large prospective cohort study, including more than
500,000 participants aged between 40–69 years old that were included between 2006 and
2010 [10]. All participants provided informed consent.

2.2. Genotyping and Imputation in the UK Biobank

The genotyping and imputation procedures in the UK Biobank have been described
in detail previously [11]. Briefly, participants were genotyped using either the custom UK
Biobank AxiomTM or UK Biobank Lung Exome Variant Evaluation (UK BiLEVE) AxiomTM

from Affymetrix. These arrays, respectively, include 820,967 and 807,411 single nucleotide
polymorphisms (SNPs), insertion and deletion markers with >95% shared contents [11].
Genotyping, quality control before imputation, and imputation based on merged UK10K
and 1000 Genomes phase 3 panels were performed by the Wellcome Trust Center for
Human Genetics.

2.3. Candidate SNP Selection

To identify genetic variants mimicking SGLT2i, we applied several methods. First, we
selected variants in or near the SLC5A2 gene in the UK Biobank and tested their associations
with the urinary sodium/creatinine ratio (UNa/Cr) and predicted 24 h urinary sodium
excretion in all individuals, and with glycated hemoglobin (HbA1c) in participants without
diabetes. Diabetes was defined by having type I, type II, or gestational diabetes or taking
anti-diabetic drugs at the time of inclusion in the UK Biobank. The effects of variants on
gene expression were obtained from the TransplantLines cohort, NephQTL, and eQTLGen
data resources. Independent variants with directionally consistent effects on SLC5A2 gene
expression and UNa/Cr, 24 h urinary sodium excretion, or HbA1c, were considered SGLT2i-
mimicking genetic variants. That is, allelic variants associated with lower SLC5A2 gene
expression were expected to lead to less effective sodium or glucose reabsorption resulting
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in higher urinary sodium or lower HbA1c levels and vice versa. Finally, we assessed the
functional impact of the genetic variants through the Ensembl Variant Effect Predictor (VEP)
tool (human species, GRCh37.p13)and the Combined Annotation Dependent Depletion
(CADD) tool (GRCh37-v1.6).

2.4. SGLT2i Variants Based on Position

Using the UK Biobank resource, we extracted all of the genetic variants with minor
allele frequencies (MAFs) ≥ 0.01 from the SLC5A2 gene locus and 25 kb of the 5′ and 3′

flanking region (chromosome 16, hg19 positions 31,469,439-31,527,091). Since HbA1c values
reflect long-term glycemic status over a period of two to three months [12], and beneficial
effects of SGLT2i may be related to increased natriuresis, these genetic variants were then
tested against HbA1c (mmol/mol), UNa/Cr (mg/g), and predicted 24 h urinary sodium
excretion (mg/day) in the UK Biobank using linear regression models, including values
within mean ± 5SD separately. The concentration of urinary sodium was obtained from
a random spot urine sample, details about measurements could be found elsewhere [13].
Considering the effects of urinary dilution [14], the UNa/Cr was used to minimize the
inaccuracy associated with spot urine collections. We also use predicted 24 h urinary
sodium excretion that was estimated from age, weight, height, and the concentration values
of urinary sodium and creatinine by using the sex-specific [15] Kawasaki equation [16].
Variants were considered more likely to be potential SGLT2i variants if they were associated
with a change in sodium and/or HbA1c and therefore prioritized as candidates for genetic
variants. HbA1c was measured by High-Performance Liquid Chromatography analysis on
a Bio-Rad Variant II Turbo analyzer [17].

2.5. SLC5A2 eQTL Analyses

The TransplantLines [18] cohort and the online NephQTL [19] and eQTLGen [20] data
resources were used to explore the effect of the genetic variants on SLC5A2 gene expression.

TransplantLines includes kidney samples of 188 European donors and is potentially a
viable resource, considering SLC5A2 is almost exclusively expressed in kidney tissue [21].
TransplantLines is a prospective cohort study of organ donors and recipients, including
all different types of solid organ transplant recipients and organ donors [18]. Kidney
samples were taken from living donors (n = 35), donated after brain death (n = 104)
or non-heart-beating death (n = 49). Written informed consent was obtained from all
living donors prior to inclusion, and the TransplantLines study protocol was approved
by the Institutional Research Board of the University Medical Center Groningen (METc
2014/077). eQTL analysis was performed as follows: Samples were genotyped on the
Illumina CytoSNP 12 v2 array [22] and imputed on the Michigan Server [23] to the Haplo-
type Reference Consortium [24] dataset. Whole-genome gene expression was assayed by
Illumina HumanHT-12 v4 Expression BeadChips [25]. Expression and genotype data were
available for 328 biopsies of healthy kidneys obtained from 188 donors, the analyses have
been described elsewhere [22,26].

We used data from the NephQTL resource as a second independent eQTL resource
to identify other variants that explain gene expression variance of SLC5A2 or to validate
genetic variants from TransplantLines. The NephQTL resource is a database of cis-eQTLs
of the glomerular and tubulointerstitial tissues. Kidney samples were obtained from
187 participants in the Nephrotic Syndrome Study Network (NEPTUNE), a prospective
and longitudinal cohort [19]. We used the data generated from tubulointerstitial tissues,
which included 166 participants, as SLC5A2 is mainly expressed on the apical membrane
of the epithelial cells of the proximal tubule [27]. SLC5A2 gene expression in various
tissues are shown in Supplementary Figure S1. Information regarding the population
and methods in NephQTL have been described in detail previously [19], in which cis-
eQTL analysis was performed by using MatrixEQTL [19], and Affymetrix 2.1 ST chips [28]
were used to generate gene expression data from microdissected tubulointerstitial tissues.
Informed consent was acquired from all of the participants, and all procedures were
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performed according to the ethical standards of the institutional review boards overseeing
the NEPTUNE study [19].

Finally, as a third independent resource, we used expression data from the eQTLGen
database. The eQTLGen database includes data on 19,960 genes expressed on autosomal
chromosomes in 31,684 blood samples from 37 cohorts [20]. The levels of gene expression
were profiled by Illumina, Affymetrix U291, Affymetrix HuEx v1.0 ST expression arrays,
and by RNA-seq [20]. More information about the eQTLGen resource can be found in more
detail elsewhere [20]. We used the cis-eQTL data from eQTLGen to check the effect of SNPs
found in the UK Biobank on SLC5A2 gene expression in blood.

2.6. Functional Impact of SLC5A2 Variants

We used the Ensembl [29] VEP tool to assess the functional impact of variants selected
from the UK Biobank. More details about VEP can be found elsewhere [30]. The Combined
Annotation Dependent Depletion (CADD) tool (GRCh37-v1.6) is one of the most widely
used tools for predicting the deleteriousness of human genetic variation, and a CADD
PHRED-scaled score of an SNP greater than 12.37 was considered pathogenic [31].

2.7. Exclusion Criteria

Participants were excluded if there was a mismatch between genetic and reported
sex or if they had high missingness, excess heterozygosity (n = 1341). Participants were
furthermore excluded due to familial relatedness, nonwhite British descent, lack of genetic
data (n = 157,119), or missed data on any of the covariates (n = 26,793) (Figure 2).
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2.8. Statistical Analysis

Linear regression analyses were performed to investigate the association between the
genetic variants and UNa/Cr, predicted 24 h urinary sodium excretion, or HbA1c. If a
genetic variant was found to mimic SGLT2i, linear regression analyses were performed
to investigate the association between the genetic variant and the related continuous
traits of cardiovascular diseases (CVDs), and logistic regression analyses were performed
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to study the association between the genetic variant and HF in the UK Biobank. All
regression analyses were adjusted for age at inclusion, sex, genotyping chip, and the first
30 genetic principal components. All regression analyses were performed using STATA
version 16. A regional association plot between the tested SNPs and HbA1c was created
using LocusZoom [32]. We set the two-sided α at 0.05 and applied Bonferroni correction to
account for multiple testing.

3. Results
3.1. Population Characteristics

A total of 317,241 individuals of European ancestry participating in the UK Biobank
were included in this study (Figure 2). Of the included participants, 53.49% (n = 169,688)
were female and the average age (SD) was 57.39 (8.0) years at the initial assessment visit.
Detailed baseline characteristics for the UK Biobank participants are shown in Table 1.

Table 1. Baseline Characteristics of All Included UK Biobank Participants.

Characteristics Mean (SD)/n (%)

Age (years) 57.39 (7.99)
Female 169,688 (53.49%)

BMI (kg/m2) 27.39 (4.73)
Diastolic blood pressure (mm Hg) 82.15 (8.54) *
Systolic blood pressure (mm Hg) 133.75 (17.95) *

Resting heart rate 69.32 (11.24) **
HbA1c (mmol/mol) 35.93 (6.45)

LDL (mmol/L) 3.57 (0.87) #
HDL (mmol/L) 1.45 (0.38) ##

Urinary sodium/creatinine ratio (mg/g) 2145.87 (1198.64)
Predicted 24 h urinary sodium excretion (mg/day) 1894.40 (563.79)

Heart failure 9850 (3.1%)
Hypertension 117,196 (36.97%) *

Diabetes 27,204 (8.58%)
Continuous variables are presented as mean ± SD and binary variables as percentages, BMI = Body mass index,
SD = Standard Deviation, LDL = Low density lipoprotein, HDL = High density lipoprotein. * 237 of 317,241
participants missed data on blood pressure. ** 186 of 317,241 participants missed data on resting heart rate.
# 14,699 of 317,241 participants missed data on LDL, ## 39,943 of 317,241 participants missed data on HDL.

3.2. SLC5A2 Variants in UK Biobank

A total of 264 genetic variants available in the UK Biobank were located in the SLC5A2
gene or within 25 kb of the 5′ and 3′ flanking regions. A total of 91 SNPs met the MAF
threshold of >1% (Supplementary Table S1). These 91 SNPs were first tested against
UNa/Cr and predicted 24 h urinary sodium excretion, 43 of them associated with UNa/Cr
(p < 0.05, n = 316,923, Supplementary Table S2) and 44 with predicted 24 h urinary sodium
excretion (p < 0.05, n = 317,241, Supplementary Table S3), but none of them remained
significant after Bonferroni correction (p < [0.05/(91 [number of SNPs] × 3 [number of
traits])] = 1.83 × 10−4). Then we tested for HbA1c, and Figure 3 depicts the association
of these 91 SNPs with HbA1c. A total of 27 SNPs were significantly associated with
HbA1c after Bonferroni correction (p < [0.05/(91 × 3) = ] 1.83 × 10−4, n = 289,803) in
non-diabetic individuals (Table 2), and linkage disequilibrium between the variants is
shown in Supplementary Figure S2. The strongest variant, rs45612043, was genome-wide
significant (MAF = 0.043, p = 2.22 × 10−11). We took forward these 27 genetic variants
as potential candidates for genetic variants to mimic SGLT2i and performed lookups
in three eQTL resources to investigate if they truly explain variance in gene expression
values of the SLC5A2 gene with directionally consistent effects on both HbA1c and SLC5A2
gene expression.
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Table 2. SNPs Significantly Associated with HbA1c in UK Biobank.

SNP CHR EFAL NEFAL MAF
(Minor Allele) β SE p

rs45612043 16 C A 0.043 (C) −0.147 0.022 2.22 × 10−11

rs9924771 16 G A 0.348 (A) −0.049 0.010 6.53 × 10−7

rs111510548 16 C T 0.098 (C) −0.075 0.015 7.58 × 10−7

rs1251169601 16 C CAAAAAAAAAAAA 0.410 (C) 0.046 0.010 2.72 × 10−6

rs11374860 16 TG T 0.279 (TG) −0.046 0.010 7.80 × 10−6

rs11865835 16 C T 0.290 (C) −0.045 0.010 1.09 × 10−5

rs8062314 16 A C 0.290 (A) −0.045 0.010 1.11 × 10−5

rs6565235 16 T C 0.290 (T) −0.045 0.010 1.20 × 10−5

rs6565236 16 T A 0.278 (T) −0.044 0.010 1.23 × 10−5

rs9926717 16 G A 0.292 (G) −0.044 0.010 1.40 × 10−5

rs144413428 16 A G 0.015 (A) 0.159 0.037 1.47 × 10−5

rs13337037 16 A G 0.275 (A) −0.044 0.010 1.56 × 10−5

rs7188278 16 T C 0.290 (T) −0.044 0.010 1.56 × 10−5

rs3934739 16 T C 0.277 (T) −0.044 0.010 1.56 × 10−5

rs11150626 16 C T 0.278 (C) −0.043 0.010 2.06 × 10−5

rs9934336 16 A G 0.277 (A) −0.043 0.010 2.11 × 10−5

rs34081766 16 A C 0.277 (A) −0.043 0.010 2.27 × 10−5

rs13143 16 T C 0.278 (T) −0.043 0.010 2.27 × 10−5

rs9927250 16 G A 0.220 (A) −0.044 0.011 6.61 × 10−5

rs8057207 16 T C 0.357 (T) −0.037 0.010 8.26 × 10−5

rs112853480 16 C T 0.016 (C) 0.148 0.038 8.71 × 10−5

rs10685036 16 TTA T 0.359 (TTA) −0.037 0.010 1.10 × 10−4

rs8057401 16 T C 0.356 (T) −0.037 0.010 1.14 × 10−4

rs9935222 16 A C 0.354 (A) −0.037 0.010 1.19 × 10−4

rs3116150 16 A G 0.235 (A) 0.041 0.011 1.24 × 10−4

rs4536493 16 G A 0.312 (A) −0.037 0.010 1.65 × 10−4

rs117800443 16 A G 0.066 (A) 0.070 0.019 1.80 × 10−4

Abbreviations: CHR = Chromosome, EFAL = Effect allele, NEFAL = Non-effect allele, MAF = Minor allele frequency, SE = standard error.
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3.3. Effects on Gene Expression

Three eQTL resources were queried to identify SNPs associated with SLC5A2 gene
expression. The first resource was the TransplantLines study, which included data on 188
European kidney donors, with a mean (SD) age of 46.4 (14.6) years. Over half (n = 98,
52.13%) of the donors were female. A total of 23 out of the 27 SNPs which were associ-
ated with HbA1c after Bonferroni correction in the UK Biobank could be found in the
TransplantLines resource. Of these, 19 SNPs had a directionally consistent effect on both
SLC5A2 gene expression and HbA1c, but the associations with gene expression were not
statistically significant (Figure 4A, Supplementary Table S4).
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Figure 4. Effects of SNPs on HbA1c and SLC5A2 gene expression. Schemes follow another format. X-axis: Betas for HbA1c
(mmol/mol) from the UK Biobank. Y-axis: (A) Estimates for SLC5A2 gene expression in the TransplantLines cohort, (B)
Betas for SLC5A2 gene expression in the NephQTL resource, (C) Z-scores for SLC5A2 gene expression in the eQTLGen
consortium.

The NephQTL resource included 166 subjects with tubulointerstitial data, with a
median (interquartile range) age of 36 (17–56) years and less than half (n = 51, 30%) of the
subjects were female. In this resource, 24 of the 27 candidate SNPs could be found. Two
SNPs, rs3116150 and rs9924771, had directionally consistent effects on both SLC5A2 gene
expression and HbA1c, but effects on gene expression did not reach statistical significance
(Figure 4B, Supplementary Table S5).

In the eQTLGen consortium, which consists of 31,684 blood samples from 37 datasets
that were all preprocessed and analyzed in a standardized way, a total of 24 out of the 27
candidate genetic variants were available. Of these, only rs45612043 and rs112853480 were
associated with a directionally consistent lower effect on HbA1c and gene expression. Their
association with gene expression was, however, not statistically significant (Figure 4C,
Supplementary Table S6).

3.4. Functional Impact

The 27 potential genetic variant candidates were subsequently examined using the
VEP tool to identify protein-coding variants. None of the genetic variants were annotated
as a missense variant. We did find four 5′ or 3′ prime untranslated region (UTR) variants
(Table 3) of which one (rs45612043) was predicted to be deleterious by the CADD PHRED
scaled score, but these were annotated to the ARMC5 or TGFB1I1 genes and not to SLC5A2.
The CADD score for all SNPs significantly associated with HbA1c in UK Biobank is shown
in Supplementary Table S7.
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Table 3. 3′ and 5′ Prime UTR Variants within 25kb of SLC5A2 Gene Region.

SNP CHR Locus Allele Consequence Symbol CADD Score

rs9926717 16 31,471,378 G 3′ prime UTR variant,
NMD transcript variant ARMC5 8.528

rs111510548 16 31,476,695 C 3′ prime UTR variant ARMC5 4.538
rs45612043 16 31,484,598 C 5′ prime UTR variant TGFB1I1 12.790 *

rs13143 16 31,489,033 T 3′ prime UTR variant,
NMD transcript variant TGFB1I1 6.091

Abbreviations: CHR = Chromosome, UTR= Untranslated region, NMD= Nonsense-mediated mRNA decay, * predicted to be pathogenic if
higher than 12.37.

4. Discussion

SGLT2i have been demonstrated to reduce cardiovascular events in HF patients, espe-
cially hospitalization for HF, compared to placebos [33]. The results of a recent large clinical
trial (n = 3730) showed that SGLT2i was associated with a significantly lowered risk of HF
hospitalization and cardiovascular death (hazard ratio = 0.75 (95% CI 0.65–0.86); p < 0.001)
in HF patients with or without diabetes [34]. In addition, SGLT2i was associated with a
slower annual decline rate of the estimated glomerular filtration rate (−0.55 vs. −2.28 mL
per minute per 1.73 m2 of body surface area per year, p < 0.001), accompanied by a lower
risk of serious renal outcomes [35]. The underlying mechanisms of SGLT2i treatment for
HF possibly include decreased blood pressure, inflammation, increased cardiac energy
metabolism, erythropoiesis, and adverse cardiac remodeling [36]. However, this is still a
point of debate. In this study, we aimed to identify genetic variants mimicking SGLT2i
to allow the investigation of the potential mechanisms underlying the effect of SGLT2i
on HF and to test for potential side effects of SGLT2i. We evaluated 91 SNPs within 25kb
of the SLC5A2 gene region that were available in the UK Biobank dataset and estimated
the strength of their association with sodium or HbA1c to prioritize them as candidates
for genetic variants by strengthening the biological plausibility for the potential SGLT2i
variants [37]. Although glycaemic control is reported to be unlikely to be related to the
benefits of SGLT2i on CVD [38], decreasing blood glucose is still the main characteristic
of SGLT2i. This may have been less evident in our population, however, as the mean
(SD) HbA1c value in the present study was 35.93 (6.45) (mmol/mol), while none of the
SGLT2i clinical trials with CVD outcomes recruited patients with HbA1c < 48 mmol/mol
(< 6.5%) [39].

Previous studies suggested SLC5A2 genetic variants were associated with urinary
glucose excretion [40], glucose homeostasis [41], and diabetes [42]. One study (n = 2229)
selected six common SNPs with MAFs ≥0.05 to cover the SLC5A2 gene region and 2 kb of
the 3′ flanking regions based on 1000 Genomes Project data. Of the six SNPs, rs11646054
was excluded as it resisted multiplex assay design for MassARRAY and TaqMan assay
design for allelic discrimination. Rs3116149 was excluded because it was monomorphic in
all patients, leaving rs9934336, rs9924771, rs3813008, and rs3116150 for further analyses.
The association between these four variants with HbA1c was assessed but yielded no
significant associations [43]. Three of the SNPs (rs9934336, rs3813008, rs3116150) were
also selected by a study with 1684 individuals to cover all variants with MAFs ≥ 0.05
and pairwise r2 ≥ 0.8 within the SLC5A2 gene, 2 kb of the 5′ flanking region, and 1 kb
of the 3′ flanking region [42]. Unlike the first study, they found one SNP, rs9934336,
that was associated with HbA1c (p = 0.023). These three SNPs were also later tested
in a study with 907 individuals [41], where rs9934336 was again found to be nominally
associated with several glycaemic markers (p < 0.05). Whether HbA1c was among the
tested glycaemic markers was, however, not reported. The HbA1c lowering effect of the
A allele of rs9934336 was confirmed in our study (β = −0.043 [SE 0.010]; p = 2.11 × 10−5).
Unlike the previous studies, we found rs3116150 was associated with changes in HbA1c,
also after Bonferroni correction. Rs11646054, rs3116149, and rs3018008 were also tested
but were not associated with HbA1c in the UK Biobank. Finally, a recent genome-wide
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association study reported the association between rs13337037 and glycosuria (OR per
effect allele = 1.42 (95% CI 1.30–1.56); p = 1.97 × 10−13) [44]. Although one of the main
effects of SGLT2i is an increased urinary glucose excretion [37], rs13337037, which was also
identified in proximity to SLC5A2 and associated with HbA1c in the current study, did not
meet further criteria to be considered a potential SGLT2i variant.

Compared to previous studies, we explored a larger genetic region for a possible
SGLT2i-mimicking genetic variant and adopted a more lenient MAF threshold, considering
the large sample size of the UK Biobank. We adopted stringent criteria to prioritize genetic
variants as valid instrumental variables by testing for a directionally consistent effect on
HbA1c and SLC5A2 gene expression. Despite querying three independent eQTL data
repositories, the VEP tool as well as the CADD tool to identify variants with functional
effects, we found no variants fulfilling these criteria. Only rs45612043, the SNP with the
strongest association with HbA1c in our study (p = 2.22 × 10−11), was predicted to be
deleterious by the CADD PHRED scaled score, but it was annotated to TGFB1I1 which is
involved in cell proliferation [45].

Since previous studies exploring the effect of the genetic variants in the SLC5A2 gene
on protein function or gene expression are lacking [43], no data from other literature
on the association of the SNPs with SLC5A2 are available. Larger and more detailed
studies on kidney tissue expression of SLC5A2 could facilitate the discovery of variants that
biologically mimic SGLT2i. This will enable future studies to use these genetic variants as
instrumental variables in Mendelian randomization studies and thereby provide potentially
novel biological insights into the mechanisms underlying SGLT2i.

The major strengths of this study are the double-positive control for selecting potential
instrumental variables for SGLT2i, which consisted of testing concordant directional effects
of the SNPs on SLC5A2 gene expression and UNa/Cr, predicted urinary sodium excretion
or HbA1c in more than 290,000 individuals, as well as the use of multiple resources to
investigate the biological consequences of the genetic variants. The 27 SNPs that were
significantly associated with HbA1c in this large cohort of non-diabetic individuals might
be interesting variants to follow up in future pharmacogenomics studies investigating their
effects on the efficacy of SGLT2i in HF treatment. There are also limitations. Firstly, the spot
urine sample was collected at the end of a 2-h visit [46] rather than in the morning, and the
participant’s diet before urine collection was not recorded by the UK Biobank. Furthermore,
24 h urinary sodium excretion was estimated based on the spot urine sample rather than
collecting 24 h urine samples. Second, although all associations were tested in individuals
without diabetes in order to exclude potential effects induced by glycaemic dysregulation
or anti-diabetic drugs, there may be individuals with undiagnosed diabetes or individuals
who are treated and diagnosed in outpatient settings but did not report this at visits to the
UK Biobank assessment centre. This could introduce some ascertainment bias, but such
classification errors are likely biased towards the null and would rather underestimate than
overestimate the observed effects. The third limitation of our study is that, ideally, given
the function of SGLT2, our analyses should have been performed on urinary glucose levels
or excretion rates but these phenotypes were not measured in the UK Biobank. Instead,
we used HbA1c levels as a surrogate, but the range of HbA1c values in the UK Biobank
is largely within the normal range potentially limiting the sensitivity of our search for a
functional variant mimicking the effect of SGLT2 inhibitor treatment. The fourth limitation
is that the analyses of these genetic variants tested against HbA1c were performed only in
individuals of white British descent, which may limit its generalizability to other racial or
ethnic groups. Finally, the limited sample size of the kidney eQTL datasets we used in this
study may have limited the power to detect associations. The analyses could be repeated
when larger eQTL data resources are available.

5. Conclusions

In conclusion, we performed a large-scale search within 25kb of the SLC5A2 gene
locus, but did not identify a genetic variant that could be used as an SGLT2i-mimicking
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genetic variant based on their association with UNa/Cr, predicted 24 h urinary sodium
excretion, or HbA1c, and their association with SLC5A2 gene expression or impact on
protein function.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12081174/s1. Figure S1: SLC5A2 gene expression in various tissues, Figure S2: Genetic
correlation of the 25 SNPs which significantly associated with HbA1c in UK Biobank, Table S1:
SNPs located in the SLC5A2 gene or within 25 kb of the 5′ and 3′ flanking regions (only SNPs with
MAFs > 1% were included), Table S2: The association between SNPs and urinary sodium/creatinine
ratio (mg/g) in the UK Biobank, Table S3: The association between SNPs and predicted 24 h urinary
sodium excretion (mg/day) in the UK Biobank, Table S4: Effects of SNPs on HbA1c and SLC5A2
gene expression in the TransplantLines cohort, Table S5: Effects of SNPs on HbA1c and SLC5A2
gene expression in the NephQTL resource, Table S6: Effects of SNPs on HbA1c and SLC5A2 gene
expression in the eQTLGen consortium, Table S7: CADD score for SNPs significantly associated with
HbA1c in UK Biobank.
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I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381,
1995–2008. [CrossRef]

9. UK Biobank. UK Biobank: Protocol for a Large-Scale Prospective Epidemiological Resource; UK Biobank: Manchester, UK, 2007.
10. Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al.

Genome-wide genetic data on ~500,000 UK Biobank participants. bioRxiv 2017, 166298.
11. Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al.

The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [CrossRef]
12. Weykamp, C. HbA1c: A review of analytical and clinical aspects. Ann. Lab Med. 2013, 33, 393–400. [CrossRef]
13. Zanetti, D.; Bergman, H.; Burgess, S.; Assimes, T.L.; Bhalla, V.; Ingelsson, E. Urinary Albumin, Sodium, and Potassium and

Cardiovascular Outcomes in the UK Biobank: Observational and Mendelian Randomization Analyses. Hypertension 2020, 75,
714–722. [CrossRef]

14. Ahn, J.; Lee, J.H.; Lee, J.; Baek, J.Y.; Song, E.; Oh, H.S.; Kim, M.; Park, S.; Jeon, M.J.; Kim, T.Y.; et al. Association between urinary
sodium levels and iodine status in Korea. Korean J. Internal Med. 2020, 35, 392–399. [CrossRef] [PubMed]

15. Kawasaki, T.; Uezono, K.; Itoh, K.; Ueno, M. Prediction of 24-hour urinary creatinine excretion from age, body weight and height
of an individual and its application. [Nihon koshu eisei zasshi] Jpn. J. Publ. Health 1991, 38, 567–574.

16. Kawasaki, T.; Itoh, K.; Uezono, K.; Sasaki, H. A simple method for estimating 24 h urinary sodium and potassium excretion from
second morning voiding urine specimen in adults. Clin. Exp. Pharmacol. Physiol. 1993, 20, 7–14. [CrossRef] [PubMed]

17. UK Biobank. UK Biobank Biomarker Enhancement Project-Companion Document to Accompany HbA1c Biomarker Data; UK Biobank:
Manchester, UK, 2018.

18. Eisenga, M.F.; Gomes-Neto, A.W.; van Londen, M.; Ziengs, A.L.; Douwes, R.M.; Stam, S.P.; Oste, M.C.J.; Knobbe, T.J.; Hessels, N.R.;
Buunk, A.M.; et al. Rationale and design of TransplantLines: A prospective cohort study and biobank of solid organ transplant
recipients. BMJ Open 2018, 8, e024502. [CrossRef] [PubMed]

19. Gillies, C.E.; Putler, R.; Menon, R.; Otto, E.; Yasutake, K.; Nair, V.; Hoover, P.; Lieb, D.; Li, S.; Eddy, S.; et al. An eQTL Landscape of
Kidney Tissue in Human Nephrotic Syndrome. Am. J. Hum. Genet 2018, 103, 232–244. [CrossRef]

20. Võsa, U.; Claringbould, A.; Westra, H.-J.; Bonder, M.J.; Deelen, P.; Zeng, B.; Kirsten, H.; Saha, A.; Kreuzhuber, R.; Kasela, S.; et al.
Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis. bioRxiv 2018, 447367.

21. Butler, J.; Hamo, C.E.; Filippatos, G.; Pocock, S.J.; Bernstein, R.A.; Brueckmann, M.; Cheung, A.K.; George, J.T.; Green, J.B.;
Januzzi, J.L.; et al. The potential role and rationale for treatment of heart failure with sodium-glucose co-transporter 2 inhibitors.
Eur. J. Heart Fail. 2017, 19, 1390–1400. [CrossRef]

22. Morris, A.P.; Le, T.H.; Wu, H.; Akbarov, A.; van der Most, P.J.; Hemani, G.; Smith, G.D.; Mahajan, A.; Gaulton, K.J.; Nad-
karni, G.N.; et al. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific
disease aetiologies. Nat. Commun. 2019, 10, 29. [CrossRef]

23. Das, S.; Forer, L.; Schonherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-
generation genotype imputation service and methods. Nat. Gen. 2016, 48, 1284–1287. [CrossRef]

24. McCarthy, S.; Das, S.; Kretzschmar, W.; Delaneau, O.; Wood, A.R.; Teumer, A.; Kang, H.M.; Fuchsberger, C.; Danecek, P.;
Sharp, K.; et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 2016, 48, 1279–1283. [CrossRef]

25. Wozniak, M.B.; Le Calvez-Kelm, F.; Abedi-Ardekani, B.; Byrnes, G.; Durand, G.; Carreira, C.; Michelon, J.; Janout, V.; Holcatova, I.;
Foretova, L.; et al. Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in
the United States. PLoS ONE 2013, 8, e57886. [CrossRef]

26. Wain, L.V.; Vaez, A.; Jansen, R.; Joehanes, R.; van der Most, P.J.; Erzurumluoglu, A.M.; O’Reilly, P.F.; Cabrera, C.P.; Warren, H.R.;
Rose, L.M.; et al. Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data
Sets From Blood and the Kidney. Hypertension 2017, 70, e4–e9. [CrossRef] [PubMed]

27. Ghezzi, C.; Loo, D.D.F.; Wright, E.M. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 2018, 61,
2087–2097. [CrossRef] [PubMed]

28. Cohen, C.D.; Frach, K.; Schlondorff, D.; Kretzler, M. Quantitative gene expression analysis in renal biopsies: A novel protocol for
a high-throughput multicenter application. Kidney Int. 2002, 61, 133–140. [CrossRef]

29. Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Ben-
nett, R.; et al. Ensembl 2020. Nucl. Acids Res. 2019, 48, D682–D688. [CrossRef] [PubMed]

30. Hunt, S.E.; McLaren, W.; Gil, L.; Thormann, A.; Schuilenburg, H.; Sheppard, D.; Parton, A.; Armean, I.M.; Trevanion, S.J.;
Flicek, P.; et al. Ensembl variation resources. Database 2018, 2018, bay119. [CrossRef] [PubMed]

http://doi.org/10.1186/s12933-020-01071-y
http://doi.org/10.1056/NEJMoa1504720
http://www.ncbi.nlm.nih.gov/pubmed/26378978
http://doi.org/10.1016/j.amjmed.2019.02.018
http://doi.org/10.1056/NEJMoa1911303
http://doi.org/10.1038/s41586-018-0579-z
http://doi.org/10.3343/alm.2013.33.6.393
http://doi.org/10.1161/HYPERTENSIONAHA.119.14028
http://doi.org/10.3904/kjim.2017.375
http://www.ncbi.nlm.nih.gov/pubmed/29768912
http://doi.org/10.1111/j.1440-1681.1993.tb01496.x
http://www.ncbi.nlm.nih.gov/pubmed/8432042
http://doi.org/10.1136/bmjopen-2018-024502
http://www.ncbi.nlm.nih.gov/pubmed/30598488
http://doi.org/10.1016/j.ajhg.2018.07.004
http://doi.org/10.1002/ejhf.933
http://doi.org/10.1038/s41467-018-07867-7
http://doi.org/10.1038/ng.3656
http://doi.org/10.1038/ng.3643
http://doi.org/10.1371/journal.pone.0057886
http://doi.org/10.1161/HYPERTENSIONAHA.117.09438
http://www.ncbi.nlm.nih.gov/pubmed/28739976
http://doi.org/10.1007/s00125-018-4656-5
http://www.ncbi.nlm.nih.gov/pubmed/30132032
http://doi.org/10.1046/j.1523-1755.2002.00113.x
http://doi.org/10.1093/nar/gkz966
http://www.ncbi.nlm.nih.gov/pubmed/31691826
http://doi.org/10.1093/database/bay119
http://www.ncbi.nlm.nih.gov/pubmed/30576484


Genes 2021, 12, 1174 13 of 13

31. Amendola, L.M.; Dorschner, M.O.; Robertson, P.D.; Salama, J.S.; Hart, R.; Shirts, B.H.; Murray, M.L.; Tokita, M.J.; Gallego, C.J.;
Kim, D.S.; et al. Actionable exomic incidental findings in 6503 participants: Challenges of variant classification. Genom. Res. 2015,
25, 305–315. [CrossRef]

32. Pruim, R.J.; Welch, R.P.; Sanna, S.; Teslovich, T.M.; Chines, P.S.; Gliedt, T.P.; Boehnke, M.; Abecasis, G.R.; Willer, C.J. LocusZoom:
Regional visualization of genome-wide association scan results. Bioinformatics 2010, 26, 2336–2337. [CrossRef]

33. Verma, S.; McMurray, J.J.V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia
2018, 61, 2108–2117. [CrossRef] [PubMed]

34. Rosano, G.; Quek, D.; Martínez, F. Sodium-Glucose Co-transporter 2 Inhibitors in Heart Failure: Recent Data and Implications for
Practice. Card. Fail. Rev. 2020, 6, e31. [CrossRef] [PubMed]

35. Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al.
Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [CrossRef]
[PubMed]

36. Lopaschuk, G.D.; Verma, S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A
State-of-the-Art Review. JACC. Basic Transl. Sci. 2020, 5, 632–644. [CrossRef] [PubMed]

37. Scheen, A.J. Reduction in HbA1c with SGLT2 inhibitors vs. DPP-4 inhibitors as add-ons to metformin monotherapy according to
baseline HbA1c: A systematic review of randomized controlled trials. Diabetes Metabol. 2020, 46, 186–196. [CrossRef]

38. Cowie, M.R.; Fisher, M. SGLT2 inhibitors: Mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol.
2020, 17, 761–772. [CrossRef]

39. Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’Alessio, D.A.; Davies, M.J. 2019 update to:
Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and
the European Association for the Study of Diabetes (EASD). Diabetologia 2020, 63, 221–228. [CrossRef] [PubMed]

40. Monobe, K.; Noso, S.; Babaya, N.; Hiromine, Y.; Taketomo, Y.; Niwano, F.; Yoshida, S.; Yasutake, S.; Minohara, T.; Kawabata, Y.; et al.
Clinical and genetic determinants of urinary glucose excretion in patients with diabetes mellitus. J. Diabetes Investig. 2020.
[CrossRef]

41. Enigk, U.; Breitfeld, J.; Schleinitz, D.; Dietrich, K.; Halbritter, J.; Fischer-Rosinsky, A.; Enigk, B.; Muller, I.; Spranger, J.; Pfeif-
fer, A.; et al. Role of genetic variation in the human sodium-glucose cotransporter 2 gene (SGLT2) in glucose homeostasis.
Pharmacogenomics 2011, 12, 1119–1126. [CrossRef]

42. Drexel, H.; Leiherer, A.; Saely, C.H.; Brandtner, E.M.; Geiger, K.; Vonbank, A.; Fraunberger, P.; Muendlein, A. Are SGLT2
polymorphisms linked to diabetes mellitus and cardiovascular disease? Prospective study and meta-analysis. Biosci. Rep. 2019,
39. [CrossRef]

43. Zimdahl, H.; Haupt, A.; Brendel, M.; Bour, L.; Machicao, F.; Salsali, A.; Broedl, U.C.; Woerle, H.J.; Haring, H.U.; Staiger, H.
Influence of common polymorphisms in the SLC5A2 gene on metabolic traits in subjects at increased risk of diabetes and on
response to empagliflozin treatment in patients with diabetes. Pharmacogenet. Genom. 2017, 27, 135–142. [CrossRef] [PubMed]

44. Lee, M.A.; McMahon, G.; Karhunen, V.; Wade, K.H.; Corbin, L.J.; Hughes, D.A.; Smith, G.D.; Lawlor, D.A.; Jarvelin, M.R.;
Timpson, N.J. Common variation at 16p11.2 is associated with glycosuria in pregnancy: Findings from a genome-wide association
study in European women. Hum. Mol. Genet. 2020, 29, 2098–2106. [CrossRef] [PubMed]

45. Li, S.; Wu, X.; Pei, Y.; Wang, W.; Zheng, K.; Qiu, E.; Zhang, X. PTHR1 May Be Involved in Progression of Osteosarcoma by
Regulating miR-124-3p-AR-Tgfb1i1, miR-27a-3p-PPARG-Abca1, and miR-103/590-3p-AXIN2 Axes. DNA Cell Biol. 2019, 38,
1323–1337. [CrossRef] [PubMed]

46. Elliott, P.; Muller, D.C.; Schneider-Luftman, D.; Pazoki, R.; Evangelou, E.; Dehghan, A.; Neal, B.; Tzoulaki, I. Estimated 24-Hour
Urinary Sodium Excretion and Incident Cardiovascular Disease and Mortality Among 398 628 Individuals in UK Biobank.
Hypertension 2020, 76, 683–691. [CrossRef]

47. Law, P.J.; Timofeeva, M.; Fernandez-Rozadilla, C.; Broderick, P.; Studd, J.; Fernandez-Tajes, J.; Farrington, S.; Svinti, V.; Palles, C.;
Orlando, G.; et al. Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nat. Commun. 2019, 10, 2154.
[CrossRef] [PubMed]

http://doi.org/10.1101/gr.183483.114
http://doi.org/10.1093/bioinformatics/btq419
http://doi.org/10.1007/s00125-018-4670-7
http://www.ncbi.nlm.nih.gov/pubmed/30132036
http://doi.org/10.15420/cfr.2020.23
http://www.ncbi.nlm.nih.gov/pubmed/33294215
http://doi.org/10.1056/NEJMoa2022190
http://www.ncbi.nlm.nih.gov/pubmed/32865377
http://doi.org/10.1016/j.jacbts.2020.02.004
http://www.ncbi.nlm.nih.gov/pubmed/32613148
http://doi.org/10.1016/j.diabet.2020.01.002
http://doi.org/10.1038/s41569-020-0406-8
http://doi.org/10.1007/s00125-019-05039-w
http://www.ncbi.nlm.nih.gov/pubmed/31853556
http://doi.org/10.1111/jdi.13417
http://doi.org/10.2217/pgs.11.69
http://doi.org/10.1042/BSR20190299
http://doi.org/10.1097/FPC.0000000000000268
http://www.ncbi.nlm.nih.gov/pubmed/28134748
http://doi.org/10.1093/hmg/ddaa054
http://www.ncbi.nlm.nih.gov/pubmed/32227112
http://doi.org/10.1089/dna.2019.4880
http://www.ncbi.nlm.nih.gov/pubmed/31536386
http://doi.org/10.1161/HYPERTENSIONAHA.119.14302
http://doi.org/10.1038/s41467-019-09775-w
http://www.ncbi.nlm.nih.gov/pubmed/31089142

	Introduction 
	Materials and Methods 
	UK Biobank Study Population 
	Genotyping and Imputation in the UK Biobank 
	Candidate SNP Selection 
	SGLT2i Variants Based on Position 
	SLC5A2 eQTL Analyses 
	Functional Impact of SLC5A2 Variants 
	Exclusion Criteria 
	Statistical Analysis 

	Results 
	Population Characteristics 
	SLC5A2 Variants in UK Biobank 
	Effects on Gene Expression 
	Functional Impact 

	Discussion 
	Conclusions 
	References

