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ORIGINAL ARTICLE
Feasibility of Deep Learning-Guided Attenuation and
Scatter Correction of Whole-Body 68Ga-PSMA PET Studies

in the Image Domain

Samaneh Mostafapour, MSc,* Faeze Gholamiankhah, MSc,† Habibollah Dadgar, MSc,‡

Hossein Arabi, PhD,§ and Habib Zaidi, PhD§||¶**
Objective: This study evaluates the feasibility of direct scatter and attenua-
tion correction of whole-body 68Ga-PSMA PET images in the image do-
main using deep learning.
Methods:Whole-body 68Ga-PSMA PET images of 399 subjects were used
to train a residual deep learning model, taking PET non–attenuation-corrected
images (PET-nonAC) as input and CT-based attenuation-corrected PET im-
ages (PET-CTAC) as target (reference). Forty-six whole-body 68Ga-PSMA
PET images were used as an independent validation dataset. For validation,
synthetic deep learning–based attenuation-corrected PET images were
assessed considering the corresponding PET-CTAC images as reference.
The evaluation metrics included the mean absolute error (MAE) of the
SUV, peak signal-to-noise ratio, and structural similarity index (SSIM) in
the whole body, as well as in different regions of the body, namely, head
and neck, chest, and abdomen and pelvis.
Results: The deep learning–guided direct attenuation and scatter correction
produced images of comparable visual quality to PET-CTAC images. It
achieved anMAE, relative error (RE%), SSIM, and peak signal-to-noise ra-
tio of 0.91 ± 0.29 (SUV), −2.46% ± 10.10%, 0.973 ± 0.034, and
48.171 ± 2.964, respectively, within whole-body images of the independent
external validation dataset. The largest RE% was observed in the head and
neck region (−5.62% ± 11.73%), although this region exhibited the highest
value of SSIM metric (0.982 ± 0.024). The MAE (SUV) and RE% within
the different regions of the body were less than 2.0% and 6%, respectively,
indicating acceptable performance of the deep learning model.
Conclusions: This work demonstrated the feasibility of direct attenuation
and scatter correction of whole-body 68Ga-PSMA PET images in the image
domain using deep learning with clinically tolerable errors. The technique
has the potential of performing attenuation correction on stand-alone PET
or PET/MRI systems.
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P rostate cancer is one of the most frequently diagnosedmalignan-
cies and the leading cause of death in men. It has been shown

that the major cause of death in the United States in 2020 was lung,
prostate, and colorectal cancer.1 Prostate biopsy is commonly per-
formed for definite confirmation of prostate cancer occurrence.
However, this procedure is invasive. Noninvasive strategies are
needed for early detection, accurate localization, staging, and treat-
ment monitoring. Diagnostic procedures providing information re-
garding prostate-specific antigen, Gleason score, and lymph node
invasion are often performed. Recent advances in medical imaging
technologies, including PET, enabled noninvasive functional imaging
of prostate cancer.2,3 Hybrid imaging using PETwith dedicated mo-
lecular imaging probes combined with anatomical CT or MRI is
regarded as an efficient modality for the diagnosis of the prostate
cancer. In this regard, 68Ga-labeled prostate-specific membrane
antigen (PSMA) PET radiotracer has shown promising potential
for timely diagnosis, staging, and therapy assessment of prostate
cancer.4–6

In PET, the interaction of annihilation photons with biologi-
cal tissues causes significant signal loss, resulting in deterioration
of image quality, poor contrast, and quantitative bias. Therefore, at-
tenuation and scatter correction (AC) is crucial for reliable, repro-
ducible, and accurate quantitative PET imaging.7 In hybrid PET/
CT imaging, information about the attenuation properties of biolog-
ical tissues and other objects and accessories present in the field of
view, such as the scanner bed, is readily provided by CT images
coded in Hounsfield units to create patient-specific PETattenuation
maps. However, in hybrid PET/MRI, proton density and tissue re-
laxation times from MRI scans do not directly translate to photon
attenuation coefficients. Hence, in the past decade, MRI-guided
AC in PET/MRI systems has remained a challenging task, leading
tovarious generic approaches to tackle this problem.8–11 These include
segmentation-,12 atlas-,13 emission-,14 and artificial intelligence–
based15,16 AC approaches.

Segmentation-based methods classify the input MRI scans
into major tissue classes to create a PETACmap through the assign-
ment of predefined attenuation coefficients to each tissue class.17,18

Atlas-based methods rely on the prior knowledge extracted from
coregistered MRI and CT atlas image pairs to predict a synthetic CT of
the target MRI scan.19,20 However, these MRI-guided AC approaches
are prone to remarkable errors due to the presence of anatomic ab-
normalities, intra-atlas misregistration, tissue misclassification,
body truncation, image artifacts, noise, and inhomogeneity in
MRI scans.16,21,22

The incorporation of time-of-flight information into the max-
imum likelihood reconstruction of attenuation and activity map
method (MLAA) enabled the prediction of patient-specific AC
www.nuclearmed.com 609
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maps from the PET emission data. This method often suffers from
high noise levels, activity-attenuation cross-talk, and quantitative
uncertainty of the estimated attenuation coefficients.23 To address
these limitations, deep learning approaches were exploited to gener-
ate accurate synthetic CT images from the preliminary estimated
AC maps using the MLAA method in whole-body 18F-FDG PET
imaging.24

The extraordinary processing power and the versatility of
deep learning approaches have created a paradigm shift in the field
of MRI-guided or transmissionless PET AC.25,26 These include
novel frameworks to transform MRI to CT images in an end-to-
end fashion,27–29 estimation of patient-specific attenuation correc-
tion factors from time-of-flight sinogram bins,30 estimation of AC
maps or synthetic CT images from non-AC PET images,31 and syn-
thetic CT image prediction from preliminary MLAA-based estima-
tion of PET AC maps.32 Moreover, direct attenuation and scatter
correction in the image domain have been investigated in
18F-FDG PET brain imaging33,34 and whole-body imaging.35,36

This approach is of special interest because it does not require the
availability of concurrent anatomical (CT or MRI) images. More
importantly, it enables to correct for motion artifacts induced by
mismatches between emission and transmission data.15,35 This ap-
proach was evaluated for multiple radiotracers in brain PET imag-
ing.37 Yet, in whole-body PET imaging, direct attenuation and
scatter correction have only been assessed for 18F-FDG.

In this work, we set out to examine the accuracy of the direct
attenuation and scatter correction in the image domain for the
whole-body 68Ga-PSMA PET imaging using a residual deep neural
network. A deep learningmodel is trained to predict attenuation and
scatter-corrected (PET-AC) 68Ga-PSMA PET images directly from
the corresponding non–attenuation-corrected ones in an end-to-end
fashion. No anatomical images are used within the training of the
model. CT-based attenuation and scatter-corrected (PET-CTAC) im-
ages are considered as standard of reference to evaluate the perfor-
mance of the deep learning model.

PATIENTS AND METHODS

PET/CT Data Acquisition
A retrospective sample of 445 patients who underwent 68Ga-

PSMA PET/CTexaminations between March 2015 and April 2020
was included in this study protocol. PET/CT examinations were
performed on a Biograph 6 Truepoint (Siemens Healthcare) PET/
CT scanner.
FIGURE 1. Architecture of ResNet network implemented in the N
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The patients were injected with 185 ± 21 MBq (2 MBq/kg)
activity of 68Ga-PSMA. Prior to PET acquisition, a low-dose CT
scan was performed for attenuation correction 1 hour postinjection.
CT imageswere acquiredwith the following parameters: tube poten-
tial of 110 kVp, tube current of 52 mAs, computed tomography dose
index_volume of 3.96mGy, dose length product of 453 mGy� cm,
rotation time of 0.6 second, slice thickness of 4 mm, matrix size
of 512� 512, and a voxel size of 1.36� 1.36� 3 mm3. CT-based
PET attenuation and scatter-corrected (PET-CTAC) and non–
attenuation-corrected PET images (PET-nonAC) were recon-
structed using the ordinary Poisson ordered subsets expectation
maximization algorithm with 2 iterations, 8 subsets, and a 5-mm
postreconstruction Gaussian filter. The final reconstructed matrix
size was 168 � 168 with a pixel size of 4.07 � 4.07 � 3 mm3.

Network Architecture
To predict PET-CTAC from PET-nonAC images in an end-to-

end fashion without employing anatomical images, a ResNet model
implemented in the NiftyNet platform was utilized. NiftyNet is an
open-source pipeline built upon TensorFlow for the realization of
deep learning models. The NiftyNet infrastructure consists of
state-of-the-art convolutional neural network architectures that can
be rapidly retrieved and optimized for different medical image anal-
ysis applications, including segmentation, regression, and image
synthesis.38

The ResNet architecture39 depicted in Figure 1 consists of 20
convolutional layers wherein each layer is composed of an
element-wise rectified linear unit (ReLU) and a batch normalization
layer. Every 2 convolutional layers are linked together by residual
connections to build residual blocks. In the first seven3� 3� 3-voxel
convolution kernel layers, a 3 � 3 � 3-voxel kernel is used to en-
code low-level features, such as edges and corners from the input
image. For extracting midlevel and high-level features, the kernel
is dilated by factors of 2 and 4 in the following 7 and 6 layers, re-
spectively. Because this residual network retains the spatial resolu-
tion of the input images throughout the network, the output of the
final layer, which is a fully connected softmax layer, has a dimen-
sion equal to that of the input image.39

Implementation Details
Prior to the training of the model, the voxel values of all PET

images were converted to SUV to reduce the dynamic range of im-
age intensities. Furthermore, the intensities of PET images were
scaled down using empirical factors of 8 and 3 for PET-CTAC
iftyNet platform used in this work.39

© 2021 Wolters Kluwer Health, Inc. All rights reserved.
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and PET-nonAC images, respectively. Subsequently, all images
were cropped into a matrix size of 72 � 136 voxels to eliminate ir-
relevant background air and reduce the computational burden.

To train the ResNet model, pairs of PET-nonAC and
PET-CTAC images were considered as input and output of the
ResNet model, respectively. Of the 445 68Ga-PSMA whole-body
PET studies included in this study, 399 subjects were randomly se-
lected for training and 46 subjects for validation (external validation
dataset) of the model. The training was performed using a
2-dimensional spatial window equal to 72 � 136 voxels wherein
each pair of PET-CTAC and PET-nonAC 2D transaxial slices was
considered as a single training sample. The following parameters
were set for the training of the ResNet model: learning rate = 0.001,
optimizer = Adam, loss function = L2 loss, decay = 0.0001, batch
size = 45, sample per volume = 1, and queue length = 300. To check
potential overfitting, 5% of the training dataset was dedicated to the
evaluation of the modelwithin the training. Insignificant differences
were observed between the evaluation and training losses (errors),
which indicates no risk of overfitting. The training of the ResNet
was almost completed in 4 epochs as the training loss reached its
plateau.

Evaluation Strategy
To evaluate the performance of attenuation and scatter correc-

tion in the image domain, deep learning–based attenuation-corrected
PET images (PET-DLAC) were compared with reference PET-CTAC
images for the 46 patients consisting the external test dataset. All
PET images were segmented into 3 regions including head and
neck, chest, and abdomen and pelvis for region-based analysis.
The quality and the quantitative accuracy of the synthesized
68Ga-PSMA whole-body PET images were assessed over the
whole-body area, as well as the different segmented regions using
voxel-wise mean error (ME) (Eq. 1), mean absolute error (MAE)
(Eq. 2), mean square error (MSE) (Eq. 3), root mean square error
(RMSE) (Eq. 4), and relative error (RE%) (Eq. 5) calculated be-
tween PET-CTAC and PET-DLAC images:

ME ¼ 1
V

XV
i¼1

PETDLAC ið Þ− PETCTAC ið Þð Þ ð1Þ

MAE ¼ 1
V

XV
i¼1

PETDLAC ið Þ− PETCTAC ið Þj j ð2Þ

MSE ¼ 1
V

XV
i¼1

PETDLAC ið Þ− PETCTAC ið Þð Þ2 ð3Þ
FIGURE 2. Representative coronal views of (A) CT, (B) PET-nonAC
bias map calculated as PET-DLAC – PET-CTAC.
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
V

XV
i¼1

PETDLAC ið Þ− PETCTAC ið Þð Þ2
vuut ð4Þ

RE %ð Þ ¼ 1
V

XV
i¼1

PETDLAC ið Þ− PETCTAC ið Þ
PETCTAC

� 100 ð5Þ

Here, V indicates the total number of voxels in the volume of inter-
est, whereas i stands for the corresponding ith voxel in PET-DLAC
and PET-CTAC images.

Furthermore, the peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) were calculated between the pre-
dicted PET-DLAC and PET-CTAC images using Eqs. 6 and 7,
respectively.

PSNR ¼ 10 log
I2

MSE

� �
ð6Þ

SSIM ¼ 2μCTACμDLAC þ K1ð Þ 2δCTAC;DLAC þ K2

� �
μ2CTAC þ μ2DLAC þ K1

� �
δ2CTAC þ δ2DLAC þ K2

� � ð7Þ

In Eq. 6, I represents the maximum intensity value of
PET-CTAC or PET-DLAC, whereas MSE stands for the MSE. In
Eq. 7, μCTAC and μDLAC denote the mean value of PET-CTAC and
PET-DLAC images, respectively. δCTAC and δDLAC are the vari-
ances of PET-CTAC and PET-DLAC images, whereas δCTAC, DLAC
indicates their covariance. The parameters K1 = (k1I)

2 and K2 = (k2I)
2

with constants k1 = 0.01 and k2 = 0.02 were introduced to avoid divi-
sion by very small values.

Moreover, the voxel-wise distribution of tracer uptake corre-
lation between PET-DLAC and reference PET-CTAC images was
evaluated using joint histogram analysis (with Pearson correlation)
within an SUV range of 0.1 to 18 in 200 bins.

RESULTS
Representative coronal views of PET-nonAC, PET-CTAC,

and PET-DLAC images, along with the corresponding CT image,
are illustrated in Figure 2. Moreover, the bias map calculated be-
tween PET-DLAC and reference PET-CTAC images (exhibiting
the absolute overestimation/underestimation of the activity concen-
tration) is shown in Figure 2E. Visual inspection revealed good
agreement in terms of image quality, texture, and structural similar-
ity between PET-DLAC and PET-CTAC images.

Table 1 summarizes themean and SD of the quantitative met-
rics, including ME, MAE, MSE, RMSE, RE, PSNR, and SSIM,
, (C) PET-CTAC, (D) PET-DLAC images, and (E) the difference
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TABLE 1. Statistical Analysis of Image Quality Metrics (ME, MAE, MSE, RE, PSNR, SSIM) Calculated Within the Different Regions
of the Body in PET-DLAC Images With Respect to Reference PET-CTAC Images

Regions ME (SUV) MAE (SUV) MSE RMSE (SUV) RE% PSNR SSIM

Head and neck 0.06 ± 0.21 0.67 ± 0.15 0.032 ± 0.019 0.172 ± 0.047 −5.63 ± 11.73 44.4 ± 2.56 0.982 ± 0.024
Chest −0.15 ± 0.30 0.75 ± 0.24 0.031 ± 0.042 0.160 ± 0.072 −1.89 ± 10.91 30.55 ± 5.77 0.947 ± 0.067
Abdomen and pelvis −0.36 ± 0.56 1.17 ± 0.40 0.177 ± 0.168 0.393 ± 0.148 −2.18 ± 12.36 45.91 ± 2.79 0.969 ± 0.040
Whole body −0.11 ± 0.42 0.91 ± 0.29 0.108 ± 0.109 0.304 ± 0.123 −2.47 ± 10.10 48.17 ± 2.96 0.973 ± 0.034

Mostafapour et al Clinical Nuclear Medicine • Volume 46, Number 8, August 2021
calculated between SUV images of PET-CTAC and PET-DLAC im-
ages across the 46 patients of the external validation dataset. The
quantitative metrics are reported separately for the whole-body
and the different regions of the body. Overall, the chest, head and
neck, whole-body, and abdomen and pelvis regions ranked from
the highest to lowest in terms of ME, MAE, and RMSE metrics.
The DLAC method led to relatively small errors within the head
and neck and chest regions. However, larger errors were observed
within the abdomen and pelvis region. The ME, MAE, and RMSE
values in the abdomen and pelvis regionwere −0.36 ± 0.056 (SUV),
1.17 ± 0.040 (SUV), and 0.177 ± 0.168 (SUV), respectively. The
RE% revealed underestimation of SUV in the head and neck
(−5.63% ± 11.73%), chest (−1.89% ± 10.91%), abdomen and pel-
vis (−2.18% ± 12.36%), and whole-body (−2.47% ± 10.10%)
FIGURE 3. Coronal views of (A) CT, (B) PET-nonAC, (C) PET-CTAC
PET-DLAC − PET-CTAC for a clinical study presenting with a malig
through the lung lesion on the 3 PET images.

612 www.nuclearmed.com
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regions. The smallest REs were observed within the chest region.
The DLAC resulted in PSNR of 44.36 ± 2.56, 30.55 ± 5.77,
45.91 ± 2.79, and 48.17 ± 2.96, and SSIM of 0.982 ± 0.024,
0.947 ± 0.067, 0.969 ± 0.040, and 0.973 ± 0.034 in the head
and neck, chest, abdomen and pelvis, and whole-body regions,
respectively.

Figure 3 depicts coronal views of CT, PET-nonAC, PET-
CTAC, and PET-DLAC images, along with a horizontal profile
drawn through a malignant lesion located in the right lung on
PET-nonAC, PET-CTAC, and PET-DLAC images. The profile of
PET-DLAC agrees well with that of PET-CTAC in both high and
low activity concentration areas of the right lung.

Figure 4 shows separately box plots of ME, MAE, SSIM,
MSE, RMSE, PSNR, and REmetrics calculated within the different
, (D) PET-DLAC, and (E) the difference bias map calculated as
nant lesion in the right lung. (F) Horizontal profiles drawn

© 2021 Wolters Kluwer Health, Inc. All rights reserved.
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body regions. The highest MAE was observed in the abdomen and
pelvis region, having the largest SD and outliers compared with
other regions.

Furthermore, a voxel-wise assessment of the activity concen-
tration was performed through joint histogram analysis of
PET-DLAC versus reference PET-CTAC images. Figure 5 illus-
trates the high SUV correlation and voxel-wise similarity between
the 2 attenuation correction methods with a correlation coefficient
of R2 = 0.99 and slope of 0.99.
FIGURE 4. Comparison of (A) ME, (B) MAE, (C) SSIM, (D) MSE,
calculated in PET-DLAC images (against reference PET-CTAC) wit
interquartile range (IQR), minimum (Q1 − 1.5 � IQR), first quarti
(Q3 + 1.5 � IQR), and outliers.

© 2021 Wolters Kluwer Health, Inc. All rights reserved.
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DISCUSSION
The aim of this study was to assess the feasibility of direct at-

tenuation and scatter correction of whole-body 68Ga-PSMA PET
studies in the image domain without using anatomical information.
The deep learning–based attenuation and scatter correction model
was evaluated on 46 subjects constituting the external validation
dataset. Taking PET-CTAC images as reference, well-established
quantitative metrics, including ME, MAE, and RE%, were com-
puted to evaluate the performance of the proposed deep learning
(E) RMSE, (F) peak signal to noise ratio (PSNR), and (G) RE%
hin the different body regions. The box plots display the
le (Q1), median, third quartile (Q3), maximum
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FIGURE 5. Joint histogram analysis of the voxel-wise SUV
correlation between PET-DLAC and reference PET-CTAC
images.

Mostafapour et al Clinical Nuclear Medicine • Volume 46, Number 8, August 2021
model. This study used a relatively large cohort of patients with
normal/realistic anatomical and pathological variations for the train-
ing and evaluation of the deep learning model to guarantee a clini-
cally relevant assessment of this AC framework.

MRI-guided attenuation correctionmethods face a number of
challenges, including the lack of direct relationship between MRI
intensities and linear attenuation coefficients of biological tissues,
internal organs motion due to involuntary movement such as respi-
ration, body truncation artifacts owing to the limited transaxial field
of view ofMRI, metal-induced artifacts,16 and increased acquisition
time due to the use of dedicated MRI pulse sequences (such as ul-
trashort echo-time and zero echo-time) for bone segmentation.29,40

Regarding the fact that AC in the image domain relies solely on PET
emission data, the mismatches betweenMRI- or CT-derived AC maps
and PETemission data (due to body truncation or respiratory motion)
would not affect the accuracy of PETAC.15,30,35 Deep learning tech-
niques exhibited promising potential for the generation of AC
maps fromMRI scans compared with other approaches, including
segmentation-based, atlas-based, and joint emission and transmis-
sion reconstruction approaches.8,24 Nevertheless, MRI-guided
AC approaches (deep learning–, segmentation-, or atlas-based
methods) are generally vulnerable to mismatches between PET
emission data and anatomical information, which might result in
gross PET quantification bias.16,41

A previously proposed MRI-based AC method, combining
atlas and pattern-recognition techniques, led to a mean RE% of
7.7% ± 8.4% calculated over the whole body in 18F-FDG PET imag-
ing, with the maximum errors being observed in the lung region.42

Hwang et al24 used the activity and attenuation maps estimated
through the MLAA algorithm to train a deep learning model to gen-
erate patient-specific AC maps (or synthetic CTs). This approach is
also in principle immune to mismatches between PET emission and
anatomical data. Yet, the algorithm is computationally demanding.

Dong et al15 extracted 3-dimensional patches from PET-nonAC
and PET-CTAC images to train a CycleGAN architecture to model the
impact of the attenuation and scatter in 18F-FDG PET imaging. They
614 www.nuclearmed.com
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achieved an RE of 0.62% ± 1.26% over the whole body for
18F-FDG. In 18F-FDG brain imaging, a deep learning–based model
was proposed by Yang et al33 for an end-to-end conversion of
PET-nonAC to PET-CTAC images using 35 clinical studies. They
achieved an average SUV difference of 0.20 ± 0.92 calculated over
116 anatomical brain regions. Likewise, Shiri et al35 employed a
ResNet model to estimate PET attenuation-corrected from
non-AC images in whole-body 18F-FDG imaging. The model train-
ing was performed in 2- and 3-dimensional modes wherein the
2-dimensional model (slice-by-slice training) exhibited superior
performance with the highest mean RE% of 15.16% ± 3.96% ob-
served in the abdomen region. They trained the model using 1,000
whole-body PET scans and concluded that AC in the image domain
is capable of accounting for patient’s bulk and respiratory motions.

To the best of our knowledge, this is the first study dealing
with attenuation correction of 68Ga-PSMAwhole-body PET scans
in the image domain. Hence, the results obtained in this work are
not directly comparable to those of other similar studies. Neverthe-
less, the magnitude of errors and the absolute SUV differences ob-
served in this study indicate that this approach would enable the
synthesis of whole-body 68Ga-PSMA PET images with clinically
tolerable errors.

The largest errors were observed in the abdomen and pelvis
region, which is mostly due to the extremely large activity concen-
tration in the bladder and suboptimal scatter correction in some clin-
ical studies. The halo artifacts caused by imperfect scatter
correction43 were observed in some reference PET-CTAC images,
which led to noticeably large errors in the synthesized PET-DLAC
images. It should be noted that because only a small portion of
the training dataset was corrupted with the halo artifact, the DLAC
modelwas virtually insensitive to this artifact. As such, the manifes-
tation of the halo artifact in the resulting PET-DLAC images was
much less prominent compared with PET-CTAC images.

A major limitation of this work is the lack of clinical assess-
ment of the proposed AC method. A systematic clinical evaluation
of the synthesized PET images, for instance, in terms of visual im-
age quality, lesion detectability, conspicuity, and clinical diagnosis
or disease grading is warranted for a comprehensive evaluation of
this approach. Moreover, a study of the impact of image artifacts
and comparison to other MRI-guided and/or deep learning–based
methods would give useful insight into the overall performance of
this approach.

CONCLUSIONS
The present study demonstrated the feasibility of attenuation

and scatter correction of whole-body 68Ga-PSMA PET studies in
the image domain without the use of anatomical imaging. The deep
learning–based AC model exhibited excellent agreement between
PET-DLAC and reference PET-CTAC images with a maximum
mean SUV difference of 1.17 ± 0.40 and RE% of less than 6%.
In this regard, the proposed deep learning model could be used
in PET/MRI and stand-alone PET-only whole-body 68Ga-PSMA
PET imaging.
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