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On the one-shot data-driven verification of dissipativity of LTI systems
with general quadratic supply rate function

Té4bitha E. Rosa! and Bayu Jayawardhana!

Abstract—Based on a one-shot input-output set of data
from an LTI system, we present a verification method of
dissipativity property based on a general quadratic supply-
rate function. We show the applicability of our approach for
identifying suitable general quadratic supply-rate function in
two numerical examples, one regarding the estimation of Lo-
gains and one where we verify the dissipativity of a mass-spring-
damper system.

Index Terms— Dissipativity analysis, data-driven systems,
linear systems.

I. INTRODUCTION

The use of model-based control design has dominated the
landscape of control systems in the previous century. In this
case, the (actuator, plant and sensor) systems dynamics are
described as state equations or transfer functions based on
the underlying first principle models and systems identifi-
cation methods. Subsequently, they are used to design the
controllers in order to meet a number of control specifica-
tions, including, stability and robustness of the closed-loop
system. For the latter, the notion of dissipative systems has
played a key-role in defining the concept of L,-stability and
H o robust control [1].

The rise of system-of-systems, where cyber-physical sys-
tems are interconnected with each other, has resulted in com-
plex systems that are hard-to-model. While they can produce
a large number of data through the network of sensors in
the systems, the lack of computationally tractable model has
limited the applicability of the big data for control design and
for guaranteeing stability and robustness. Correspondingly,
the data-driven input-output characterization of such complex
systems, which can be suitable for control design purposes,
has received a renewed interest in recent years. In this paper,
we are interested in the particular data-driven characteriza-
tion of LTT systems, namely, the dissipativity property which
has been instrumental in the development of model-based
H oo TObust control design.

The dissipative systems concept has been studied since the
>70s with the seminal works of Jan Willems [2], and Hill and
Moylan [3], [4]. In these works, the dissipative systems can
be described based on their input-output behaviours, as well
as, on the state space realization. The study of dissipative
systems was motivated by physical systems where energy
functions can be defined for such systems that satisfy energy
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conservation laws. In other words, the rate change of the
energy functions, the so-called storage functions, are upper
bounded by the power or work done to the systems which
are commonly referred to as the supply-rate functions.

In systems theory, the specific structure of supply-rate
functions can be used to determine the stability property
of the dissipative systems. When the supply-rate function is
given by the product of input and output, the corresponding
dissipative systems are called passive systems. It includes the
well-studied Euler-Lagrange and port-Hamiltonian systems
where the input is given by the generalized forces and the
output is given by the generalized velocity. For dissipative
systems with supply-rate functions given by —k||y||* + ||u||?,
where k£ > 0, u is the input and y is the output, they are called
Ly-stable systems with the Lo-gain of k. The associated
dissipative inequality is also used in robust control design. A
larger class of dissipative systems is defined by the supply-
rate functions [y” w7 | L SQT f{] [¥] with symmetric matrices
@ and R, which are known as the QS R-dissipative sys-
tems [3]. Other non-standard supply-rate functions include
counterclockwise systems/negative imaginary systems with
supply-rate function (g,u) [5], [6] and clockwise systems
with supply-rate function (y, %) [7]. In fact, via behavioural
framework, it has been shown that all linear systems can be
characterized through a specific form of quadratic supply-
rate functions that involves the input wu, output y and all its
derivatives (up to the order of the systems) [8].

Correspondingly, we investigate in this paper the charac-
terization of such general supply-rate function for discrete-
time LTI systems, particularly, based only on one-shot of
input-output data, e.g., a segment of any given input-output
trajectory. Such data-driven characterization can be of prac-
tical use when we do not have a complete model/state-space
knowledge. The availability of such information can further
be used to determine the stability of feedback interconnection
of complex cyber-physical systems, for instance.

In recent literature on data-driven identification and con-
trol, the concept of persistency of excitation [9], which
is also known as the Willems’ fundamental lemma, plays
an important role to obtain the set of behaviours and to
subsequently use them for characterising various discrete-
time systems properties. Based on such concept, several data-
driven approaches were proposed in the literature, where
most of them refer to model identification and/or control,
we refer interested readers to, for instance, [10], [11], [12].

A number of methods have been proposed recently to
verify the dissipativity of data-driven linear time invariant

1291

Authorized licensed use limited to: University of Groningen. Downloaded on August 18,2022 at 07:05:21 UTC from IEEE Xplore. Restrictions apply.



(LTD) systems have been proposed, such as, [13], [14].
In [13], the authors propose a method in the behavioural
framework to verify the dissipativity of an LTI system using a
quadratic differential supply function that was investigated in
[8]. The approach in [13] results in a dissipative verification
algorithm based on solving a non-convex indefinite quadratic
program. In [14], the authors recast the problem in [13] into a
convex problem using the standard Q.S R-dissipative supply
function. The approach has been shown to work well for
several practical applications in [14].

Inspired by [14], we extend the work of [14] by con-
sidering a general quadratic supply-rate function that can
capture the behaviour of all linear systems a la [8] in
the continuous-time case. More precisely, we propose a
data-driven method based on one-shot input-output data for
testing the dissipativity with respect to such general quadratic
supply-rate functions. It provides us a mean to identify the
admissible form of general quadratic supply-rate function
which can potentially be used to help finding an admissi-
ble storage function, as well as, to determine the stability
of interconnected data-driven systems, beyond the standard
passivity interconnection. We illustrate our method using
two different examples. In the first one, we consider stable
LTI systems (with bounded £,-gain) where we validate and
compare our approach in verifying the Lo-stability of the
systems with respect to that presented in [14]. In the second
one, we consider a typical mass-spring-damper system and
verify if our conditions hold knowing that the system is
already dissipative with respect to a known supply function.

Notation: The set of vectors (matrices) of order n (n X m)
with real entries is represented by R™ (R™*™), for integer
entries the equivalent is represented by Z™ (Z™*"). Similar
notation is applied to denote a vector (matrix) with zero and
ones by 0™ and 1™ (or 0"*"™ and 1™*™), respectively. The
n X n identity matrix is denoted by I™. Additionally, we
use a subscript + or — to denote sets with only positive or
negative, respectively, for instance, Z, (Z_) that denotes a
set of positive (negative) integers. For matrices or vectors,
the symbol " denotes the transpose. A positive (or negative)
symmetric matrix P is denoted by P > 0 (or P < 0).
The space of discrete signals that are square summable is
defined by /3(R*®). Given e € (2(R®), we denote {e}! =
{e(i),...,e(j)}, we define its stacked vector by

AT1T
e@N .
Throughout the paper, we use them interchangeably when-
ever it is clear from the context.

A Hankel matrix with L € Z, block rows of a finite
sequence ejg r_1] is given by

€ij] = [e(i)T e(i+1)T

B )

e e e — L+

Hy(e) = : : :
e(L—1) e(L—2) e(T = 1)

2

Definition 1 ([15], [9]). A measured trajectory e[, j47-1, € :
Z — R™ is persistently exciting of order L if rank(Hp(e)) =
nL.

Lemma 1 (Finsler’s Lemma [16]). If there exist w € R",
Q € R™" B € R™ ™" with rank(B) < n, and B is a
basis for the null space of B, that is, BB+ =0, then all the
following conditions are equivalent

D w'Qw<0, Vw#0 : Bw=0,

2) B+ QB <0,

3) ueR : Q—uB"B <O,

4) IX eR™™ : Q4+ XB+B'XT <.

II. PROBLEM FORMULATION

Consider the following causal discrete-time linear time-
invariant (LTI) system

z(k+1) = Az(k) + Bu(k),
PN y(k) = Cz(k) + Du(k), (3)
x(0) = xg

where z(k) € R™ is the state vector, u(k) € R™ is the
control input and y(k) € RP is the output. We assume
that the state space matrices are unknown, however, we
do have access to the input and output information for
all k = 0,...,Ty, where T} is any arbitrary given time.
Following the works of Willems [2] and Hill and Moylan
[4], system (3) is assumed to be dissipative with respect to
a supply rate w(y(k), u(k)) as defined below. The manifest
variable of ¥ is denoted by z(k) = [y(k)" wu(k)'].

Definition 2 (Dissipativity [17]). System (3) is said to be
dissipative with respect to a supply rate w(y(k),u(k)) if

there exists a storage function V : R™ — Ry with V(0) =0
such that
k
V(a(k+1)) = V(2(0) < > w(y(i),u@) @
i=0

or equivalently,
V(z(k+1)) = V(z(k))) < w(y(k), u(k)) (5)

holds along all possible trajectories of (3) for all k > 0,
o € R™ and u € l5(R™).

In the context of model-based, we have several methods
that can be used to both verify if the system is dissipative
with respect to a certain supply rate and to find such supply
rate [4], [17], [18]. One particular approach that has been
extensively studied in literature is the Q.S R-dissipativity [4].
System (3) is said to be QS R-dissipative with respect to a
supply rate

=:P

where Q = QT e RP*P, R=R" € R™*™ and S € RP¥™,
if there exists a storage function V : R™ — Ry with V(0) =
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0 such that (4) and (5) holds along all possible trajectories
of ¥ for all k > 0, g € R™ and u € £5(R™).

As we are interested in investigating the dissipativity of
data-driven linear systems, which are defined solely based on
the available measurement data y and u, the above definition
is no longer suitable as we may not have access to the
state variables. As introduced in [13], another approach to
verify the Q.S R-dissipativity of a data-driven linear system
satisfying (3) is simply by evaluating the following inequality

w(u(k),y(k)) =0, )
k=0
where the supply function is given by (6) and its initial
state is taken to be zero xg = 0. When non-zero initial
conditions are considered, then the lower-bound in (7) will
be a negative-definite function of x( [2]. Furthermore, the
data-driven system (3) is said to be L-QS R-dissipative if

h
L

w(u(k),y(k)) =0 (®)
0

x>
Il

holds for all trajectories (u[o, -1}, Y[o,z—1)) With w as in (6)
and zp = 0. This last approach has also been explored
in [14], in the state-space framework, where the authors
introduce an approach to verify the L-Q.SR-dissipativity
properties of a data-driven system as in (3) using only
one batch of data. Additionally, the paper [14] introduces
the notion of (L — v)-QS R-dissipativity properties which
we explore throughout our main results. For the sake of
completeness, let us define this as follows. For a given
n < v < L, the system (3) is said to be (L — v)-QSR-
dissipative if
L—1—v

S wu(k), (k) = 0 ©)
k=0

holds for all trajectories (ujo,1,—,—1], ¥[o,,—v—1]) With w as
in (6) and zo = 0.

An important assumption for satisfying (8) is that given the
input of the measured trajectories being persistently exciting,
we can obtain other admissible trajectories of the system
using a single shot of data [15], [9], [10], [11], [13], [14].
This concept is presented formally in the following lemma.

Lemma 2. Consider a vector z(k) = [y(k)" u(k)—'—]—r and
a measured trajectory zjo 7—_1] with u(k) being persistently
exciting of order L+mn. Then, a set of data given by zj 1,1
is a trajectory of X if and only if there exists a vector o €

RT=L4Y such that
Hp(2)a = Z. (10)

As presented in [11], we have that (10) is equivalent to

T—L
Z[0,L—1] = E QG R[i, L—14i]
=0

It means that if the input of the system is persistently excited,
we can obtain a complete set of trajectories through a linear

combination of the initial set of measured data considering
time shifts. The proof of Lemma 2 has been explored in
several works in both contexts of state-space and behavioral
systems [15], [9], [13], [10].

Regarding the supply function, in this paper, we are
interested to study a case similar to [13], where we assume
a supply-rate function that include the time differences of
the measured data'. Particularly, we consider the following
general supply-rate function

I
(1=
e |
= s
o
+ +
~. .
S—
—_
*4
g
<
||
<
o
+ ot
<
SN— N
| I

w(u(k),y(k))

> 2k +1i) 02k + )

i,j=0

where each ®;; is a QSR matrix as given before in (6) that
describes the relation between a pair of measurement data
z(k + 1) and z(k + j). Furthermore, we consider

Do Do
Do

with ®;; = <I>iTj for all 4,57 = {0,...,N}. In the follow-
ing, ¥ is said to be N-QSR dissipative if the dissipative
inequality (7) holds with the supply-rate be given by (11)
for the given N. In the same manner, it is (L, N)-QSR (or
(L,v, N)-QSR) dissipative if (8) (or correspondingly, (9))
holds with the supply-rate be given by (11) for the given L,
N (and v), respectively.

NN

III. MAIN RESULTS

In this section, we present our main results. In the follow-
ing theorem, we introduce a method to verify the (L, N)- and
(L,v, N)-QSR-dissipativity of an LTI system with respect
to a general QSR form as in (11).

Theorem 1. Let z(k) = [y(k)" u(k)T]T and suppose that
2(0,7+N—1] is a given measured trajectory of ¥ in (3). Then
the following statements hold.
i) System (3) is (L,v, N)-QSR dissipative if ujo 74 N—1]
is persistently exciting of order L + N +n and

trace(U, ' HL(Z2)T® HL(Z)UL) >0 (12)

where ®;, = I, QP y, the data contained in 2[0,T+N—1]
is rearranged in the form of Ziorp_1 with Z(k) =
[2(k)T z(k—i—N)T}T, and considering U, =
(UHL(Z))* where

U= [Upx 0mFp)vx(mip)(Lo)(N+1)]
Ux = I @ (12 glmtp)x(mip)N) 1

for some v < L.
ii) Additionally, if the inequality (12) holds for any n <
v < L, then system (3) is (L, N)-QS R-dissipative.

INote that in the continuous-time domain, this is equivalent to consider
the derivatives of the inputs and outputs in the supply function.

1293

Authorized licensed use limited to: University of Groningen. Downloaded on August 18,2022 at 07:05:21 UTC from IEEE Xplore. Restrictions apply.



Proof: Suppose that the hypotheses in Theorem 1i) hold
where we have up 74 n_1) being persistently exciting of
order L+ N +n and there exists v < L such that (12) holds.
From Definition 1 and from Lemma 2, we know that if « is
persistently exciting, then for a given trajectory zjg r4n—1]
of system X, we have that

Hyyn(2)a =2 (14)

with z = Zg4n_1 for some o € RI7LTL as
shown in Lemma 2. In the same way, if the last state-
ment holds, then, considering Zjor_1 where Z(k) =

[2(k)T z(k + N)T]T, we have that

Hi(Z)a=2Z (15)

with Z = Z|o 1y}, also holds for the same v € RT~L+1
as in (14). Note that Zjg ;1) is a rearranging and stacking
of the elements in z = Z|g, 14 y_1). Therefore the matrices
H;n(2) and Hp(Z) share the same rank.

By definition in the theorem, U, is a null space of
UHL(Z), e.g., UHL(Z)U, = 0 holds. This fact together
with (15) implies that UH(Z)a = 0, for any o € RT~E+1
that satisfies (15) with zero initial condition 2|y , 1} = 0 (due
to the only non-zero element of identity in U as in (13)).
Therefore, from Finsler’s lemma, the inequality in (12) is
equivalent to

trace(a' Hp(Z2)"®nHL(2)a) > 0,

for all o as before (which results in admissible trajectories
with zero initial conditions). Consequently, we have

L-1 L-1 N
STZ(k)TOZ(k) =D > Ek+i) ik +5) > 0.
k=0 k=01,j=0
(16)
Equivalently, we have

L—-1
Y Z(k)TOZ(k)=ZT®NZ >0,
k=0

for all trajectories Zjo,r_14n] With initial conditions
Z[o,u—1) = 0. By evaluating the (L, v, N)-QS R-dissipativity
in (9) and using the above inequality, it follows that
L—-1-v

Z(k+i)"®Z(k+j) =
0

h
L

Z(k+i)T®Z(k+7) >0
0

>
Il
>
Il

a7
holds for any trajectory Z[o,r,—14n—,] With initial conditions
Zo = 0 and for any trajectory Zjo,r_14n] With initial
conditions Z[g,—1j—o = 0. This proves the (L, v, N)-QSR-
dissipativity of 3.
Additionally, if (17) holds for any n < v < L then
the (L, N)-dissipativity follows immediately from the
definitions in (8) and (9). O

Let us make a few remarks on the design choice of v,
L and T'. From Theorem 1, we can observe (from the way
of using U to constrain the admissible trajectories with zero

initial conditions) that v must be greater or equal to the order
of the system in (3), which is n. However, in practice, this
information may not be obtained a priori. As stated in [14,
Remark 1], the parameter v can be used as an upper bound
of the order of the system. With regards to L, similar as
before, the value must be greater than v in order to have
well-defined formulation in Theorem 1. Correspondingly, L
can be chosen arbitrarily larger than v. Finally, the choice of
T is of utmost importance and comes from the requirement
of u being persistently excited of order L + N + n. In order
to verify the latter, we can choose the value of 7" such that
the matrix Hp nyn(u) for ug pyn—_q) is full row rank, that
isT>(L+n)(m+1)+Nm—1.

Note that the requirement of u being persistently exciting
of order L + N + n is only mentioned in the statement (i)
of Theorem 1. Therefore, the fulfilment of this condition
and (12) are not sufficient to guarantee that statement (ii)
also holds. For the latter, as we mention in the proof of
Theorem 1 above, we construct U; = (UHL(Z))t such
that we generate all admissible trajectories zZ with zero initial
conditions. For that, we have that the null space of UH[,(Z)
must exist for all v, L and T'. One way to guarantee that is
by defining T that depends on the dimension of UH[,(Z),
eg. T > v(m+ p)+ L — 1 should hold for all choices
of v and L. In order to remove the dependency on v, we
can use the upper bound of the choices of v where n <
v < L. Therefore, if we choose T such that T > L(m +
p+ 1) — 1, we guarantee that the null space of UH(Z)
exists for any choice of L and v. Correspondingly, if we
verify Theorem 1 using some choice of L and v, and T
such that the latter bound holds, then we guarantee the L-
QS R-dissipativity without having to check the conditions for
all v (n <v < L).

IV. EXAMPLES

In this section, we present numerical simulations for
checking the general dissipativity based on our data-driven
test. For the setup, we use the software Matlab (R2020a)
with the help of a Windows 10 Enterprise LTSC computer,
Intel Core i7-5600 (2.60 GHz), 16.0 GB RAM.

A. Lo-gain

In this example we consider the case of searching for a
minimal bound for the £,-gain of discrete-time systems with
the aim to illustrate the applicability of the technique and also
a comparison with the method described in [14]. With the
help of the Matlab function drss and using rng (0), we
randomly generate 200 stable systems of order 4 and outputs
and inputs equal to 2. Using these systems, we generate
trajectories of size T’y = 500 admitting a normally distributed
input with standard deviation of 10 and mean zero and zero
initial conditions of size 1.

We search for the minimal upper bound ~ for the Lo-
gain of the system such that ||y|| < +2||ul|z holds for all
trajectories z, 7, —1] With z[g ) = 0. This is the equivalent to
search for the minimal ~ such that the system is (L, v, N)-
dissipative with respect to a QSR supply function of the
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form (6) with
_ |~ 0
v [ 0 VQIm] ’
from which we see that N = 0.

For this example, we arbitrarily assume L = 30 and
v = {5,28}. We assume snapshots of size ' = (L+n)(m+
1) — 1 = 101 for verifying Theorem 1 and Theorem 2
of [14]. Note that by using the trajectories of size the
requirements for the persistency of excitation of the input
holds. Additionally, this snapshot does not need to contain
the initial conditions, it can be removed from any point of
the trajectory. In our case, we assume this snapshot to start
from point 50 of the generated trajectories. Regarding the
search itself, we consider a simple bisection algorithm with
a tolerance equal to 0.001 and limit of iterations equal to
50. For Theorem 1, we simply need to verify if the bounds
tested infer on the non-negativeness of the trace in (12).
For applying Theorem 2 of [14], we need to verify the
non-negativeness of the matrix of its main inequality. As
recommended in [14], we verify if the minimum real part of
the eigenvalues of such matrix is positive or slightly negative,
to which we allow a tolerance of —1x 1078, Additionally, we
present the optimal value of the Lo-gain obtained using the
command norm (sys, inf) of Matlab and the information
on the models of the generated systems.

In Figure 1 we present the different values of « obtained
using the methods describe in Theorem 1 and [14, Theorem
2] (RBKA) with v = {5,28}. Additionally, we also present
the theoretical L£o-gain obtained using the model information
for each system. From this figure, we can see that the values

600

true L,-gain
RBKA, v =5
RBKA, v =28
Theorem 1, v =5
Theorem 1, v = 28

500

400 [

=] s
¥ A
% 300 F 8 p
@ P
~ y.
6 .
>y |
200 F 4 |
|
: |
100 |- 0
0 50 100 150 200
0 . . N --f’"/ |
0 20 40 60 80 100 120 140 160 180 200

Systems

Fig. 1. The plot of the estimated and theoretical L2-gain of 200 stable
systems using the methods in Theorem 1 and [14, Theorem 2] (RBKA).

obtained for the L1-gains using [14, Theorem 2] for several
systems are closer to the theoretical Lo gains, which, as
mentioned in [14], shows the applicability of the method
for the estimation of the L5-gains. On the other hand, we
see that the proposed approach as given in Theorem 1
yields to lower estimate of the L,-gains, as a trade-off to

the simplification in the verification of dissipativity. This is
expected given that the computational effort in solving (12)
(which corresponds to verifying whether the trace of a matrix
is greater than zero) is lower than solving the conditions
put forward in [14, Theorem 2] (which requires verification
of the non-negativeness of a matrix). Additionally, note the
difference on the results when applying the different values
of v. When this value is low, the obtained gains are closer to
the true values, however, for a higher v, the estimate becomes
less accurate. Note also that, for two systems the method
in [14] is not able to find solutions for » = 5, which could
be caused by the complexity of the problem.

B. Mass-spring-damper
In this example we consider a typical mass-spring-damper

system based on the results shown in Example 6.4 from [§]
and which is given by the following difference equation

ylk+2) +ylk+ 1)+ y(k) = u(k). (18)

For this mechanical system, we can construct explicitly the
storage function. For that purpose, as in [8], we consider the
following storage function

V(k)=y*(k+ 1)+ (k). (19)

It follows that

V(k+1) = V(k) =u*(k) — 2y(k)u(k) — 2y(k + 1)u(k)
+2y(k)y(k +1) +y(k + 1) =2 wi (y(k), u(k)),

where the supply function w; takes the form of 1-QSR
dissipative supply function as in (11) with

Qoo = [(1) ﬂ, Q1o = [01 01:|7 Py = [(1) 8]

Given this prior knowledge on the system, we perform two
main tests. The first one is taken to show that the system is
indeed not QSR dissipative with a common supply rate as
in [14], but it is instead 1-QSR dissipative with respect to
a general supply rate w;. The second test is performed to
show that the system is (L, 1)-Q.S R-dissipative in the sense
of Theorem 1.

In order to perform the tests, we generate 1000 different
samples each with 300 discrete-time points (e.g., Ty = 300),
where we consider zero initial conditions of size 2 for
both the output and input signals. We assume a normally
distributed input with a standard deviation of 10 and mean
Zero.

As mentioned before, in the first part of this example we
want to verify if the system is QQ.SR dissipative with respect
to the general supply rate w; and to the supply rate of the
form of w; with only the terms depending on k, that is,

wa(y(k), u(k)) = u? (k) — 2y(k)u(k).

Thus, we verify if

(20)
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with w; and ws, holds for all the obtained trajectories. In
Figure 2, we can observe the values of the left side of (20)
obtained for each sample considering the general supply
function wy and ws.
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Fig. 2. Comparison between the different supply functions

As one can see in Figure 2, we have that (20) holds
considering the general supply function w; for all the
samples tested, while considering the supply rate in wo,
we cannot guarantee that (7) always holds. This shows that
indeed the system is not dissipative when considering only
the terms depending on k in the supply function, but instead,
it is dissipative with respect to a general quadratic supply
function.

For the second part of this example, we verify the (L, 1)-
QS R-dissipativity of system (18) with different values of v,
L and T'. Taking, for instance, L = (n+1,...,10), we can
test whether Theorem 1 holds for all or some n < v < L
considering snapshots of length T" from all 1000 trajectories.
As for the previous example, we assume this snapshot to start
from point 50 of the trajectories. Also, we consider two cases
for the choice of T', one with respect to condition of the input
being persistently exciting (77 = (L+n)(m+1)+ Nm—1
with N = 1) and another considering that we guarantee
that UH,(Z) has a null space (T = (m +p+ 1)L — 1).
Using such choices, we have that Theorem 1 holds for all
choices of L, v and T'. Therefore, using such choices of
parameters we can show that, for the values of L tested, the
system is (L, 1)-Q.S R-dissipative with respect to the supply
function wy, which is already expected given that the system
is dissipative with respect to the supply function w;. Note
that considering 77, we are able to obtain U, = (UH(Z))*+
for all choices of L and v, showing that for this system the
choice of T" based only on the persistency of excitation of u
condition is sufficient to test the dissipativity of the system
using Theorem 1. However, for different systems, verifying
only this condition can lead to not enough data such that we
do not obtain U .

V. CONCLUSIONS

We proposed a method to verify the dissipativity of
discrete-time LTI systems with respect to a quadratic general
QSR supply function using only one shot of data. With
this new formulation, we are able to verify the general
dissipativity that applies to any LTI systems as studied before
in the context of behavioural framework [8].

We presented two examples to show the potential of our
method, and also to illustrate the reasoning for the choices
of the required parameters to solve our main results.
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