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a b s t r a c t

Motivation can counteract the effects of mental fatigue. However, the underlying mechanism by which
motivation affects performance in mentally fatiguing tasks is obscure.

In this paper, we propose goal competition as a paradigm to understand the role of motivation and
built three models of mental fatigue studies to demonstrate the mechanism in a cognitive architecture
named PRIMs. Each of these studies explored the impact of reward and mental fatigue on performance.
Overall, performance decreased in nonreward conditions but remained stable in reward conditions.

The comparisons between our models and empirical data showed that our models were able to
capture human performance. We managed to model changes in performance levels by adjusting the
value of the main task goals, which controls the competition with distractions. In all the tasks modeled,
the best model fits were obtained by a linear decrease in goal activation, suggesting this is a general
pattern. We discuss possible mechanisms for activation decrease, and the potential of goal competition
to model motivation.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In this paper, we present a cognitive modeling approach to
elp clarify the underlying mechanisms of how mental fatigue
ffects task performance. While mental fatigue is a common
henomenon, its mechanisms are not yet fully understood.
Mental fatigue typically occurs when doing a highly de-

anding task for a long time (Boksem, Meijman, & Lorist, 2006;
erlambang, Cnossen, & Taatgen, 2021; Hockey, 2011; van der
inden, Frese, & Meijman, 2003). In most cases, performing such
task increases the subjective feeling of tiredness over time

Krupp, Larocca, Muir Nash, & Steinberg, 1989; Müller, & Apps,
019), while performance levels typically decline (Craig, & Klein,
019; Qi et al., 2019; Warm, Parasuraman, & Matthews, 2008;
essely, Hotopf, & Sharpe, 1998). For instance, a student’s atten-

ion level may drop after reading a book for 60 min, or a driver
ay lose focus after driving a car for many hours. However, not
ll prolonged tasks cause mental fatigue. For example, a worker
an maintain his/her performance in the evening to get overtime
ayments.
Many factors determine the effects of mental fatigue, and one

f those is motivation (Kurzban, Duckworth, Kable, & Myers,
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nc-nd/4.0/).
2013). Motivation drives individuals to stay engaged with a par-
ticular activity (Wigfield, Eccles, Schiefele, Roeser, & Davis-Kean,
2006), so that when motivated to do a particular task, individuals
will maintain their performance levels, but when no longer moti-
vated, performance levels may drop (Boksem, & Tops, 2008; Earle,
Hockey, Earle, & Clough, 2015). It has been suggested that as
fatigue or task duration increases, people are less willing to stay
engaged with the task (i.e., less motivated to continue performing
the task), possibly because the perceived future benefits of the
current actions decrease (Hockey, 2011, 2013), which in turn
impairs performance (Boksem & Tops, 2008; Kurzban et al., 2013;
Müller & Apps, 2019).

Direct experimental evidence for the role of motivation in
mental fatigue comes from different sources. For example, Her-
lambang, Taatgen, and Cnossen (2019) performed a study where
participants performed a working memory task for 2.5 h. Two
types of conditions were alternated: reward and nonreward, and
their results showed that task performance levels remained stable
in the reward conditions but declined in the nonreward condi-
tions over time. In a study by Hopstaken, van der Linden, Bakker,
and Kompier (2015), participants performed a 2-h working mem-
ory experiment and were offered a shortening of the experiment
duration in case of good performance in the last block. After a
decline in performance over the course of the experiment, the
performance level in the last block returned to the initial level.
Similarly, a study in which participants were offered monetary
rewards in the last block showed the same pattern (Boksem et al.,

2006).
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1.1. Fatigue and motivation

Although fatigue and motivation are related (Herlambang
t al., 2019; Hockey, 2011; Kurzban et al., 2013), it is not clear
hat the mechanism is by which motivation affects performance
hile fatigued. Motivation is often described as the subjective
ssessment of cost and benefits, where tasks (or actions within
asks) that offer more benefits at lower costs will be prioritized
ver others that offer less benefits and/or are more costly (Chong
t al., 2017; Kurzban et al., 2013).
Benefits of tasks may come in the form of rewards, i.e., a form

f extrinsic motivation (e.g., monetary rewards; Boksem et al.,
006; Herlambang et al., 2019; Hopstaken et al., 2015; van der
inden, 2011), or from the joy of performing the task itself, i.e., in-
rinsic motivation (Di Domenico, & Ryan, 2017; Herlambang et al.,
021; Ryan, & Deci, 2000). The costs of maintaining performance
ver time and stay engaged with the task is perceived as effort
Hockey, 2011).

Hockey (2011, 2013) suggests that when performing a task,
here is a constant cost/benefit analysis of alternative actions,
nd as a task progresses, the willingness to continue doing un-
ewarding activities may drop, especially in tasks that are not
njoyed, also because the perceived probability of future success
ay decrease over time. This may lead to a search for more

ewarding activities and even quitting the task altogether. In his
otivational control theory, Hockey (2011) claims that each com-
eting goal has an activation value and is controlled by an ‘‘effort
onitor’’. He suggests that the active goal needs to be maintained
y investing more effort into that goal and suppressing other
oals. Otherwise, if the initial goal has lost its activation, another
oal will replace it and become the new active goal.
A study identifying the neural mechanism of mental fatigue

y Müller and Apps (2019) in which they incorporated both
europhysiological and neuroimaging research suggests that the
ubjective value of performing a task, which resembles Hockey’s
ctivation value, is influenced by the amount of a reward, the
xpected effort needed to obtain the reward, and the feeling
f fatigue. They proposed a notion that the higher the reward,
he higher the subjective value of the task; however, when the
xpected effort to obtain the reward becomes higher, which also
ncreases when the feeling of fatigue develops, the subjective
alue of the task becomes lower. Moreover, the study suggests
hat the process of evaluating the costs–benefits of a task mainly
ccurs in the dorsal anterior cingulate cortex (dACC), anterior
nsula (AI), and dorsolateral prefrontal cortex (DLPFC).

In an effort to clarify the underlying mechanisms of the ef-
ects of fatigue and motivation on task performance, we took a
odeling approach. We built cognitive models to simulate the

esults of three different mental fatigue studies; each of these
tudies explored the impact of reward and mental fatigue on
erformance. In our models, we incorporated Hockey’s approach
nd the notion of Müller & Apps that as the feeling of fatigue in-
reases, the subjective value of a task gradually decreases. Hence,
ndividuals become less motivated to invest more effort into the
ask. More specifically, we quantified task motivation as the level
f activation of the goal of the main task, which represents the
ubjective value of the task—motivation is described as the result
f cost–benefits evaluation of performing the task (Chong et al.,
017; Kurzban et al., 2013; Müller & Apps, 2019). Therefore, as
he feeling of fatigue develops and decreases task motivation,
ther tasks may have a higher goal activation than the current
ask, so that over time, other tasks may be given preference.

Before describing our modeling attempts, we will first give an
verview of the PRIMs architecture in which our modeling was
one and describe the further assumptions behind our modeling
ental fatigue as a competition between goals.
2

1.2. PRIMs cognitive architecture

PRIMs is a cognitive architecture (Taatgen, 2013) based on
ACT-R (Anderson et al., 2004) and works similarly. It consists of
several modules: a visual module, declarative memory, working
memory, manual modules, and, most importantly for our pur-
poses, the task control module, which holds the current goals.
The modules communicate with each other in a workspace to
which information from the modules is transferred by so-called
operators (see Fig. 1). Each of the modules has a section within
the workspace called a buffer. A module can place information in
a buffer, for example, the visual module can place the currently
attended visual stimulus in the buffer, or an operator can post
an action in a buffer, for example, a partial pattern that the
declarative memory module has to complete, or an action that
the motor system has to carry out.

An operator in PRIMs consists of an if-else statement, that
is, the condition (the left-hand side) and the action (the right-
hand side), which is similar to a production in ACT-R. In this way,
operators determine how information in the workspace is used
by copying information from one module to the next. Different
from ACT-R, operators in PRIMs have an activation value. This
activation value is influenced by information that is already in
the buffers (i.e., in the workspace in Fig. 1). The buffer contents
spread activation to operators, and the operator with the highest
activation is selected, determining the next action. Typically, task
goals, which are represented in the task control buffer, have the
strongest impact on this selection process, but a very salient
perceptual input (or other buffer contents that are strongly as-
sociated with certain operators) can trigger operators that are
unrelated to the current goal.

1.2.1. Activation values in PRIMs
As with ACT-R, PRIMs has a declarative memory that repre-

sents facts to support a task. However, the declarative memory
in PRIMs also represents procedural knowledge in the form of
operators, which means that both declarative and procedural
knowledge are handled in the same way.

Each item in the declarative memory, namely a chunk, has an
activation value, which is a summation of base-level activation
and spreading activation. Base-level activation represents the
history of a chunk, whereas spreading activation represents the
context of the current task. Together, these two activations con-
trol how chunks are selected and determine the time it takes to
process (i.e., to retrieve) the chunks. The chunk with the highest
activation value will be selected. When the activation value is
below a retrieval threshold, the chunk cannot be retrieved.

The formula to calculate the activation value of a particular
chunk is

Ai = Bi +

buffers∑
k

slots∑
j

SjiWk +

goals∑
k

SkiAk + noise (1)

where Ai denotes the activation value of a chunk i, Bi is its
base-level activation, Sji represents the strength association from
source j to chunk i, and Wk represents the amount of activation
from each buffer. There are two components of spreading activa-
tion in the formula. The double summation (i.e., the first spread-
ing activation) sums the activation from k number of buffers in
the workspace and j number of chunks in the buffer k.

The second summation in Eq. (1) is novel. Ski represents the
spreading activation from k number of active goals in the model.
Normally, the amount of spreading from buffers only depends on
the strength of the association, but in this paper, we assume that
activation of task goals (Ak) also plays a role in the amount of
activation spreading to the chunks.
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Fig. 1. The PRIMs model that comprises five modules, Reprinted from ‘‘The Nature and Transfer of Cognitive Skills’’, by Taatgen (2013), Psychological Review, 120, p.
43. Copyright by American Psychological Association. Reprinted with permission.
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Among those chunks’ values that are above the retrieval
hreshold, the probability of retrieving chunk i over others is

(Ai) =
eAi/t∑
j e

Aj/t
(2)

where t is equal to
√
2s in which the coefficient s represents the

ariance of the noise component in Eq. (1).

.2.2. Modeling fatigue and motivation decline in PRIMs
The assumption in this paper is that the decrease in task

erformance in mental fatigue is the result of a reduction in
ask motivation. In our model, this is reflected in a reduction
n activation of the task goal over time. We also assume that
t any moment in time, there may be other activities that seem
ore beneficial, so that a decrease in the task goal activation also

ncreases the probability that an operator for a different task is
elected.
As an example of the kind of competition, let us look at the

ituation in which a task goal to perform a working memory task
as to compete with watching a cat video playing on the same
omputer screen. Suppose the task goal has an activation of 1.0
Agoal = 1.0) and is associated with an operator X that carries
ut the next step with an association strength of 1.5 (Sgoal,X =

.5). Assuming a base-level activation (Bi) of zero, and no further
associations, this means that operator X, according to Eq. (1),
has an activation of 1.5. Now let us assume that the video is in
the visual field (e.g., Wvision = 1.0), and spreads activation to
an operator Y that wants to watch the video (Svideo,Y = 1.0).
According to (1), the activation of operator Y is 1.0. Using Eq.
(2), we can calculate the probability of watching the video, for
example, if we assume a noise parameter of t = 0.1, we can
alculate that P(Y) = 0.007, which means that the probability is
ery small. However, if Agoal starts to decrease, which we associate
ith a drop in motivation, for example Agoal = 0.8, the probability

of watching the video increases, in this example to 0.135, so
that over time the video starts to win the competition with the
working memory task and the person will start watching the

video rather than doing the main task.

3

As time progresses, individuals may experience an increase in
the feeling of fatigue that reduces the subjective value of the main
task, i.e., task motivation (Müller & Apps, 2019) or goal activation
(Agoal) in our models. Consequently, goal activation is discounted
by the feeling of fatigue. The perceived reward from doing the
task (extrinsically or intrinsically) maintains the goal activation
from declining. Therefore, the relationship between the perceived
reward (P), the feeling of fatigue (F), and goal activation (Agoal) at
any given time (t) is

Agoal(t) = min(1 ∨ (P(t) − F(t))), (3)

here the maximum value of goal activation is 1, and the value
f P(t) − F(t) cannot be lower than zero. The goal activation value
f one means that the model mainly focuses its attention on the
ain goal.
Goal activation at time t is determined by the minimum value

etween the value of one and the subtraction result at time t
etween P and F. Essentially, goal activation is the net value
etween the perceived reward and the perceived fatigue.
The value P is influenced by previous perceived rewards. For

xample, when the previous incentive at t − 1 is perceived as
ore valuable than the recent one at t, then the value Pt is smaller

han Pt−1. In contrast, the value of Pt is higher if the reward at t
s perceived as more valuable than the previous one at t − 1.

The value F increases as time progresses with no rest breaks.
owever, when an individual takes an opportunity to take a total
reak, the F value may decrease, slowing down the decrease of
he Agoal (see Helton, & Russell, 2017).

.2.3. Further considerations
While we use the activation of the task goals to simulate the

evel of motivation, it is useful to realize that goals and motiva-
ion, even though they are closely related, are not the same. Goals
an be identified as the onset of all behaviors (Powers, 1973)
nd represent the expected behavior and the desired end-state
Hockey, 2013), whereas motivation is what energizes individuals
o pursue a particular goal (Wigfield et al., 2006). A goal gives
irection, while motivation drives human behaviors towards that
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goal. For example, the goal is to obtain a certain position at work,
while the motivation is to earn a higher salary for that position.
Another example of a goal is a university student who wants to
be successful in life financially while being motivated because of
poverty.

Although the term goal can be broad, e.g., goals in life, financial
oals, and any other goals, in this paper, we narrow down the
ontext of goals to be task specific. The purpose of a goal is to
erve as an active mental representation that maintains focus on
he task, activating knowledge that can help perform the task, and
uarding it from distraction.
It is evident that motivation affects the ability to stay focused

n a task and not be distracted by internal or external distractions
Herlambang et al., 2019). In the case of external distractions,
ask-unrelated stimuli may shift attention away from the main
ask, while internal distractions may manifest itself in the form
f mind-wandering (Huijser, van Vugt, & Taatgen, 2018).
For our modeling efforts, however, such distractions needed

dditional assumptions. In PRIMs, operators are defined in the
ontext of a task goal, but clearly, not all behaviors related to
istraction can be directly linked to a goal: Watching a cat video
laying on the screen is not necessarily a goal, but more an ex-
ernal distraction (stimulus) that attracts attention. It is similarly
ifficult to imagine mind wandering (e.g., thinking about what
o have for lunch) as a task goal. However, for the purpose of
he modeling, we did decide to model such distractions as if
hey had a task goal but not as an active goal, so that fatigue,
r rather, the decline in motivation over time, represents an
ncreasing competition between (future) goals: the active goal
f doing the main task and of attending distracting external or
nternal information, where the distracting goal can replace the
ctive one (see Hockey, 2011).
In this paper, we test the notion of goal competition by build-

ng cognitive models to reproduce the results of three mental
atigue studies that directly manipulated the level of motivation:
vowel task (Herlambang et al., 2019), a monitoring task (Bok-
em et al., 2006), and an N-back task (Hopstaken et al., 2015),
ith each experiment having its own experimental conditions
nd characteristics. Therefore, if each of our models is able to
imulate the behavioral data in each of these studies, we gain
onfidence that the notion of goal competition may reveal the
nderlying mechanism of how motivation can counteract the
ffects of mental fatigue.

. Building the cognitive models

In a PRIMs model, several components are specified: the name
f a task, the operators to do the task, the facts in declarative
emory needed in the task, and a script that runs the model (sim-
lates both the environment and the task). When defining a task,
he modeler can initialize a number of parameters affecting the
ime certain operations take: a threshold that determines when
nformation is forgotten, the amount of noise in selecting items
rom memory, and parameters that specify how fast chunks in
emory decay. Some parameters have default values, but others
ave to be fitted in each particular task model. In our modeling
fforts, we took care to minimize the amount of parameter fitting.
To build a model, first, we determined which task-specific

perators were required to do the task, and then fitted the model
arameters to match nonfatigued behavior. Second, for each ex-
erimental block, we estimated the goal activation value for the
ain task to match the performance level of the model using
arameters in Eq. (3).
In all models built, there was only one goal active at a time

Hockey, 2013): the goal for the main task. Distractions, both
xternal and internal, were not active goals in our models and
ere designed to compete with the main goal over time.
4

To verify our models,1 we compared the results of our models
ith empirical data in each experiment. A model fits empirical
ata if it follows the data, meaning that the model is able to sim-
late the behavior of human participants. To quantify how well
ur models fit empirical data, we performed Pearson’s correlation
nalysis and calculated the root mean square error (RMSE) in
ach measure (Gunzelmann, Moore, Gluck, Van Dongen, & Dinges,
011) in R (version 4.0.2).

.1. Vowel task

The vowel task was adapted from the mental fatigue study of
erlambang et al. (2019). In this task, participants were asked to
ount, memorize, and calculate a number of vowels continuously
or 2.5 h. The task consisted of 14 blocks alternating between
onreward conditions (odd blocks) and reward conditions (even
locks). In the reward conditions, participants received monetary
ewards for good performance.

A sequence of distracting videos was displayed continuously in
he top right of the screen as a distractor for participants. In addi-
ion, participants’ focus of attention (eye movements) and heart
ate variability were measured continuously. The mid-frequency
and of heart rate variability was calculated to estimate partic-
pants’ mental effort during the experiment in each block (Aas-
an, Mulder, & Mulder, 1987).
Their results showed that although participants reported feel-

ng more fatigued over time, their performance and attention
evels remained stable in the reward conditions but not in the
onreward conditions: Participants were less distracted and
howed better performance levels in reward blocks by investing
ore mental effort in these blocks.
Our model consisted of two main groups of operators: task-

pecific for performing the main task and attention-shifting for
isual distractions. Inside an operator, there are some conditions
nd action statements known as production rules.
We modeled several measures from the study: response time

RT), accuracy, visual distraction frequency (VDF), and the power
n the mid-frequency (MF) band of heart rate variability (HRV). To
ee how well our models fit the experimental data, we performed
earson’s correlation analysis in each of these measures in R
version 4.0.2).

.1.1. Modeling distraction
In the study, participants were more susceptible to distrac-

ions over time in the nonreward conditions. We modeled distrac-
ions by creating three operators. The first and second operators
ook the action of shifting attention to the distracting video. The
hird operator returned the attention of the model back to the
ain task.
More specifically, the first operator compared two particular

lots in the visual field: the one slot representing the main task,
nd one slot representing the video distraction. If the main task
lot was not empty, and the distraction slot filled, the operator
ould trigger a shift in attention to the video distraction, mirror-

ng a situation in which the main task required visual perception
t that moment. The second operator would trigger a shift of
ttention to the video on a retrieval failure, mirroring a situation
n which the main task encountered a problem. The third operator
ould return its attention to the main task if the model shifted

ts attention to the video distraction. Note that these operators
lways had to compete with task-specific operators; therefore,
hey were never guaranteed to be used, even if their conditions
ere satisfied.

1 The code of each model can be found in the supplementary materials.
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We tuned the spreading activation of the visual input to the
irst distraction operator to be .8 in all blocks. The maximum
alue of the activation of the main task goal was 1.0, which
ecreased over time in nonreward conditions due to participants’
ncrease in the feeling of fatigue over time. Therefore, the model
as prone to a higher number of distractions in the nonreward
onditions when the activation values of being distracted were
igher than the activation values of doing the main task, and the
umber of distractions increased over time.

.1.2. Modeling mid-frequency power of heart rate variability
The mid-frequency (MF) power of heart rate variability (HRV)

eflects cognitive effort (Aasman et al., 1987). A higher value in
he MF power means that participants invested less cognitive
ffort and vice versa. In the model, there is no direct analog of
ental effort. Therefore, we created a mapping between the MF
ower in the task by taking the total number of production rules
un by the model as a measure of mental effort.

In the model, the number of task-specific operators exceeds
he number of attention-shifting operators, and so did the num-
er of production rules, meaning that performing the task re-
uires more operations and was more demanding than being
istracted. During simulation, the task-specific operators were
sed more frequently in the reward conditions; therefore, the to-
al number of production rules operated in the reward conditions
as higher than in the nonreward conditions.
To create a mapping, we calculated the total number of pro-

uction rules (both task-specific and attention-shifting operators)
perated in each block and named it the operator firing frequency
OFF). In the model, a higher number of the OFF represents a
ower value of MF power, i.e., higher effort in participants. Since
he MF power in the study was normalized, we also normalized
he OFF as a division between the frequency of that block with
he total frequency of all blocks.

.1.3. Running the model
To run the model, we used a separate script in each line in

RIMs. First, we ran the model in the practice session so that the
odel could learn how to do the task. We then ran the model
nce for all blocks, where the odd blocks were the nonreward
onditions, and even blocks were the reward conditions. Overall,
e ran the model 100 times to simulate a total of 100 participants

n the experiment.

.1.4. Results

.1.4.1 Response time The model shows response times with a
attern that is similar to the empirical data (see Fig. 2). In the first
our blocks, the model learns the task and is not yet affected by
decrease in motivation in the nonreward conditions (although
articipants already are). Later, it begins to differ in the two
onditions with reaction times being faster in reward blocks than
n nonreward blocks. In the model, the slower response times are
ue to an increasing in distraction frequency.

.1.4.2 Accuracy For accuracy, the model mirrors the experimen-
al data really well (see Fig. 3). In the first three blocks, the
odel learns how to do the task properly, just like the human
articipants. Starting from block four, the model maintains its
erformance in the reward blocks, but decreases linearly in the
onreward blocks. In the model, performance decreases because
ehearsal operators increasingly lose the competition from the
istraction operators.

.1.4.3 Visual distraction frequency In the model, the visual dis-
raction frequency (VDF) was the number of eye movements to
he video distractor per block. The model mirrors the VDF from
he experiment (see Fig. 4). In reward blocks, the model maintains
ts focus doing the main task, whereas in nonreward blocks it was

ncreasingly distracted by the video.

5

Fig. 2. Comparison of response times between the experiment and the model.
Response times of the study are indicated by a dotted line, whereas those of the
model are indicated by a solid line. The x-axis shows blocks, where odd blocks
are the nonreward conditions. The y-axis shows the unit in seconds.

Fig. 3. Comparison of accuracy between the experiment and the model. Accu-
racy of the study is indicated by a dotted line, whereas accuracy of the model is
indicated by a straight line. The x-axis shows blocks, where odd blocks are the
nonreward conditions. The y-axis shows the proportion of correct responses.

2.1.4.4 Mid-frequency power The operator firing frequency (OFF)
reflects howmany times operators in the model perform (i.e., fire)
the main task, which was meant to simulate mental effort to
perform a particular task. Higher values of MF power indicate
lower effort, whereas lower values indicate the opposite. For
the OFF, higher values indicate more operations, whereas lower
values are the other way around.

The OFF mirrors the MF power (see Fig. 5). Starting from block
four, the firing frequency remains stable in the reward blocks,
indicating that the model kept constantly firing in these blocks.
On the other hand, in the nonreward blocks, firing becomes less
frequent, indicating that all required operators to run the main
task in the model were used less frequently, and the pace of
the model to run the task slowed down, which is similar to an
increase in the MF power indicating less effort.
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Fig. 4. Comparison of visual distraction frequency (VDF) between the experi-
ment and the model. The VDF of the study is indicated by a dotted line, whereas
the VDF of the model is indicated by a solid line. The x-axis shows blocks, where
odd blocks are the nonreward conditions. The y-axis shows the eye movements
towards the distracting video.

Table 1
The results of the correlation analysis of the vowel task between the
experimental data and the model.
Measure r RMSE p 95% confidence interval

Lower
limit

Upper
limit

Response time 0.534 0.186 <.05 0.005 0.829
Accuracy 0.896 0.052 <.001 0.697 0.967
Visual distraction
frequency

0.958 97.356 <.001 0.971 0.978

Mid-frequency power −0.861 0.218 <.001 −0.955 −0.611

2.1.5 Correlation analysis
Table 1 shows the results of the correlation analysis between

he experimental data and the model. All measures show signif-
cant results, suggesting that the comparison between the data
nd the model in each measure shows a good fit. The correlation
core between the mid-frequency power of data and the firing
requency of the model shows a negative correlation, suggesting
hat the firing frequency reflects the mid-frequency power in a
ifferent direction.

.1.6 Model performance in the vowel task
Performance levels decreased in nonreward blocks but re-

ained stable in reward blocks. The decrease in performance was
aused by the competition between task-specific and attention-
hifting operators that decelerated the overall process, mainly in
he nonreward blocks. Since the model became slow and had a
imited time to respond, the model did not manage to perform the
ask in time, thus making more incorrect responses in nonreward
locks. Furthermore, every time the model committed a retrieval
rror due to its slow performance, it would decide to shift its
ttention to the distracting video. When it occurred within a
rial, the model was guaranteed to fail in that trial because it
equired full attention to perform the task successfully. As a
esult, the model watched the distracting video more often in
he nonreward blocks. It was possible that the model wrongly
etrieved a chunk from the declarative memory due to noise,
hich occurred relatively rare.
When the goal activation of the main task decreased over

ime, our model would produce more errors performing the main
6

Fig. 5. Comparison between the MF power of the study and the operator firing
frequency (OFF) of the model. The MF power of the study is indicated by a dotted
line, whereas the OFF of the model is indicated by a solid line. Both x-axes show
blocks, where odd blocks are the nonreward conditions. Both y-axes show the
normalized unit of each measure.

task. The decrease of goal activation was due to an increase
in the participants’ feeling of fatigue, which was reported by
Herlambang and colleagues in their study. However, in the study,
participants’ performance levels dropped mainly in nonreward
blocks but not in reward blocks. As with the empirical data, the
performance levels of our model did not drop in reward blocks.
This was due to participants perception of reward in nonreward
blocks that was lower than in reward blocks, which caused the
goal activation to drop faster in nonreward blocks (see Eq. (3)).
In reward blocks, the goal activation increased because of the
reward stimulus, which improved performance levels in these
blocks.

2.2 Monitoring task

Boksem et al. (2006) performed a mental fatigue experiment
that offered monetary rewards to participants for good perfor-
mance in the last block. In this task, they asked participants to
memorize and monitor two pairs of stimuli for 2 h and 20 min.
These pairs were the same throughout the experiment. The first



M.B. Herlambang, N.A. Taatgen and F. Cnossen Journal of Mathematical Psychology 102 (2021) 102540

1
l
t
b

n
f
(
p
i

v
r
a
i
t
a
v
o
l
f

2

a
o
m
t
m
i
t

g
e
o
m
u
n
o

pair was a left arrow with the letter H, and the second was a
right arrow with the letter S. Participants were asked to press a
button with a left-hand finger if the letter appeared was an H,
and a right-hand finger if it was an S. While the letter was being
presented, there was a fixation point in the center of the screen.
The appearance and the location of the letters (in the left side or
right side of the screen) were randomized.

A trial started with an arrow cue appearing in the screen for
50 ms with a probability of .8. If a right arrow appeared, then the
etter S would appear in the screen, and if the left arrow appeared,
he letter H would appear. Next, the main screen would remain
lank for 1 s.
The experiment was divided into seven blocks: six blocks of

o reward and one last block with reward. Each block lasted
or 20 min. In this experiment, there was no explicit distractor
i.e., like the video in the vowel task). Their results showed that
erformance levels dropped from the first to the sixth block but
ncreased again in the last block.

To model goal competition, we decreased the goal activation
alue of the main task from the first to the sixth block and
eturned the value back to the initial value in the last block. We
ssumed that participants were distracted by their own thoughts
n the form of mind-wandering. This means that operators for
he main task competed with operators for the mind-wandering
ction during simulation. As a result, when the goal activation
alue of the main task becomes lower over time, the probability
f any operators for the main task to be operated also becomes
ower, resulting in lower performance levels in the course of the
irst six blocks.

.2.1 Modeling mind-wandering
To model mind-wandering, we used a set of operators that

re similar to visual distraction but were now targeted at mem-
ry. These operators are identical to a set of operators used to
odel mind wandering by Huijser et al. (2018). The first opera-

or checked whether the declarative memory buffer was empty,
eaning that nothing was retrieved from declarative memory. If

t was empty, the operator would retrieve an episodic chunk from
he declarative memory that was not related to the task.

After successfully carrying out the first operator, it could trig-
er a second operator that would elaborate on the retrieved
pisode by performing further retrievals. A condition for that
perator is that the working memory buffer is empty. Therefore,
ind wandering is very short if working memory is already in
se by the main task, but relatively long if working memory is
ot occupied. The eight episodic chunks that were used by this
perator were: wandering, breakfast, cycling, lecture, coffee, lunch,

exam, and nothing, representing a few activities in real life. The
model would quit mind-wandering if another operator from the
main task with a higher activation value won the competition.

2.2.2 Running the model
We ran the model 100 times to simulate an experiment with

100 participants. We first ran the model once to train the model,
and then ran the task seven times, simulating six blocks of non-
reward and one block of reward condition.

2.2.3 Results
2.2.3.1 Response time The model mirrors the experimental data
(see Fig. 6). From the first to the sixth block, RTs slightly become
slower but then become faster in the last block.

2.2.3.2 Error rate Fig. 7 shows that the error rates in the model
mirror the data. From the first to the sixth block, error rates
increase but then drop in the last block.
7

Fig. 6. Comparison of response times between the experiment and the model.
Response times of the study are indicated by a dotted line, whereas those of
the model are indicated by a solid line. The x-axis shows blocks, where the last
block is the reward condition. The y-axis shows the unit in seconds.

Fig. 7. Comparison of error rates between the experiment and the model. Error
rates of the study are indicated by a dotted line, whereas those of the model
are indicated by a solid line. The x-axis shows blocks, where the last block is
the reward condition. The y-axis shows the proportion of the error rate.

Table 2
The results of the correlation analysis of the monitoring task between the
experimental data and the model.
Measure r RMSE p 95% confidence interval

Lower limit Upper limit

Response time 0.975 0.021 <.001 0.836 0.996
Error 0.664 0.012 .103 −0.177 0.944

2.2.4 Correlation analysis
Table 2 shows that the correlation of the response time mea-

sure between the experimental data and the model was signifi-
cant. Even though the error measure of the model and the data
show a positive correlation, the correlation was not significant.

2.2.5 Model performance in the monitoring task
The model produced more errors when goal activation de-

creased. This occurred due to an increase in the feeling of fatigue
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over time, especially in the first six blocks—although Boksem and
colleagues did not report the subjective fatigue in their study,
we assumed it to increase linearly over time. As a result, perfor-
mance levels decreased from the first to the sixth block but in-
creased in the last block due to the reward stimulus in this block;
the perceived reward increased the goal activation of the main
task.

As goal activation decreases while the feeling of fatigue in-
reases, the decrease in performance was mainly caused by the
ompetition between task-specific and mind-wandering opera-
ors, causing interference with the retrieval process. That is, the
odel had difficulties retrieving chunks from the declarative
emory, resulting in incorrect responses in the first six blocks
ver time. On the other hand, the model had a high chance
f retrieving chunks successfully in the last block, which was
nfluenced by the reward stimulus, resulting in a higher goal
ctivation value and therefore improved performance.

.3 N-back task

Hopstaken et al. (2015) performed a mental fatigue study
n which participants performed the 2-back task for two hours.
hey divided the experiment into seven blocks consisting of six
locks of nonreward and one last block with reward: They offered
articipants a shorter duration depending on their performance
n the last block; while in reality, the actual duration of the last
lock was the same as the previous six blocks.
As in the monitoring task, we assumed that the decline in

erformance that occurred in the first six blocks were due to
ind wandering increasing over time. In the model, we let goal
ctivation of doing the task decrease over time.
In this task, we modeled the two measures the authors re-

orted: hit rate and false alarm. A hit is a condition where there
s a target, and participants press a button; whereas a miss is
hen there is a target, and participants do not press the button.
hit rate is the ratio between the number of hits with the

umber of hits plus the number of misses. A false alarm is a
ondition where there is no target, and participants press a button
onetheless; whereas a correct rejection is when there is no
arget, and participants do not press a button. A false alarm rate
s the ratio between the number of false alarms with the number
f false alarms plus correct rejections.

.3.1 Modeling mind-wandering
We used the same mechanism to model mind-wandering as

n the monitoring task. In addition, we used the same chunks in
he declarative memory for mind-wandering.

.3.2 Running the model
We ran the model 100 times to simulate 100 participants in

he real experiment. We started with one time of the practice ses-
ion in each simulation for the model to learn the task. Afterward,
e ran the task six times for the nonreward blocks, and once for
he reward block.

.3.3 Results

.3.3.1 Hit rate The model moderately mirrors the experimental
ata (see Fig. 8). In the second block, the hit rates slightly in-
rease, but drop in the third and the fourth block. In the reward
lock, the hit rate reaches its peak level.

.3.3.2 False alarm The model mirrors the experimental data (see
ig. 9). In the first six blocks, false alarms increase moderately, but
ecrease in the last block (i.e., the reward condition).
8

Fig. 8. Comparison of hit rates between the experiment and the model. Hit
rates of the study are indicated by a dotted line, whereas those of the model
are indicated by a solid line. The x-axis shows blocks, where the last block is
the reward condition. The y-axis shows the proportion of the hit rate.

Fig. 9. Comparison of false alarms between the experiment and the model. False
alarms of the study are indicated by a dotted line, whereas those of the model
are indicated by a solid line. The x-axis shows blocks, where the last block is
the reward condition. The y-axis shows the proportion of the false alarm.

Table 3
The results of the correlation analysis of the N-back task between the
experimental data and the model.
Measure r RMSE p 95% confidence interval

Lower limit Upper limit

Hit rate 0.257 0.071 .577 −0.615 0.846
False alarm 0.831 0.009 <.05 0.208 0.974

2.3.4 Correlation analysis
Table 3 shows that the correlation of the false-alarm measure

between the empirical data and the model was significant. Al-
though the visual comparison of the hit-rate measure between
the empirical data and the model seems to be a good fit, the
correlation of the hit-rate measure was not significant.

2.3.5 Model performance in the N-back task
As with the monitoring task, the decrease in performance in

the N-back task from the first to the sixth block was affected by
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Fig. 10. The adjustments of goal activation values of nonreward blocks in all
asks. Each adjustment is represented by a different line respectively. The x-axis
hows the cumulative duration of the nonreward block of each task, and the
-axis shows activation values.

decrease in goal activation. The decrease of goal activation was
nfluenced by an increase in the feeling of fatigue, which was
eported by Hosptaken and colleagues in their study.

As goal activation decreases over time in the first six blocks,
he task-specific operators started losing competition with the
ind-wandering operators, causing interference with rehearsal.
ince the model rehearsed less information from working mem-
ry over time, the model produced incorrect responses in these
locks. In contrast, the model managed to rehearse the necessary
nformation to perform the task successfully in the last block,
hich was influenced by the reward stimulus. Since the goal
ctivation increased in the last block, it helped improve the
erformance of the model.

.4 Goal activation values adjustment

Fig. 10 shows goal activation values of nonreward blocks in all
asks. The vowel task had seven nonreward blocks, whereas the
onitoring and N-back tasks had six.
In Eq. (3), the goal activation of the main task (Agoal) is de-

ermined by the perceived reward from doing the task (P) and
he perceived feeling of fatigue (F ). Since participants did not
eceive any reward in nonreward blocks, the values of Agoal in
hese blocks were smaller than in reward blocks. However, the
ecrease of the Agoal did not occur similarly in all tasks.
The perceived reward at any given time is influenced by the

revious perceived reward. Therefore, the slope of the Agoal in
he vowel task was not as steep as the remaining two tasks
ecause the blocks in the vowel task were alternated: nonreward
onditions in odd blocks and reward conditions in even blocks.
n the other hand, the slopes of the Agoal in the monitoring
nd the N-back tasks were steep because the perceived reward
rom doing the tasks degraded over time; as time progresses,
erforming the tasks became less interesting. Furthermore, the
erceived fatigue increased over time, which reduced the Agoal

much further.
We were able to fit the data from all experiments with a

linear decline in goal activation values. For all experiments, goal
activation values of reward blocks were kept constant (i.e., an
activation value of one).
9

3 Discussion

We hypothesize that goal competition is one of the key factors
to understand the underlying mechanism of motivation in mental
fatigue. A key aspect of this hypothesis is that the decrease in
performance is not due to a decrease in the capacity of the
cognitive system (e.g., lower working memory capacity, slower
motor system, less reliable long-term memory) but by a decrease
in the ratio of cognitive ‘‘cycles’’ spent on the task as opposed to
distractions. We have modeled this by a decrease in the activation
of the goal, which represents the level of motivation, which
indirectly affects performance (Hockey, 2011).

To test our hypothesis, we built three models of mental fa-
tigue experiments: the vowel task (Herlambang et al., 2019),
the monitoring task (Boksem et al., 2006), and the N-back task
(Hopstaken et al., 2015). All tasks consisted of two types of condi-
tions: nonreward and reward. In these tasks, human performance
levels decreased in the nonreward conditions but increased or
remained stable in the reward conditions. All models were built
in PRIMs (Taatgen, 2013), where we manipulated the activation
values of the task goal to simulate goal competition, resulting in
performance level changes.

Comparing our models with the empirical data showed that
our models were able to capture human performance: The de-
crease in goal activation value over time resulted in a decrease
in performance levels. In the same fashion, an increase in goal
activation value in reward conditions caused performance levels
to increase.

With regards to modeling, a modeler can tune some param-
eters to obtain a good fit. However, overdoing such parameter
tuning may lead to overfitting, which makes the models difficult
to generalize and does not represent the empirical data. In this
study, therefore, we avoid overdoing the parameter tuning. A
number of key findings will be discussed below.

3.1 Goal activation and performance

To lower performance in the nonreward conditions in all tasks,
we decreased task goal activation values over time. The goal
activation values in our models represent the subjective value of
performing the tasks, with a high subjective value corresponds
to a high level of motivation. The reduction of goal activation
was due to an increase in the feeling of fatigue (see Müller &
Apps, 2019) and a continuous decrease in the perceived reward
from doing the tasks. In reward conditions, we increased goal ac-
tivation values because of the reward stimulus in these blocks. A
higher goal activation value of a task means that the information
of that task is more available; hence, the task has more priority
to be executed, which will result in better task performance
(see Kurzban et al., 2013), for example, in faster response times.
However, reducing goal activation values solely was not adequate
to lower performance levels. The models required another com-
peting goal to implement goal competition. As a result, we were
able to fit our models with empirical data.

What our modeling efforts suggest is that over time, while
the activation value of the main active goal is decreasing, which
is due to an increase in the feeling of fatigue and a decrease
in the perceived reward (see Eq. (3)), another future goal of an
activity/stimulus, for example, a distraction, may start winning
the competition with the main task, when the activation value
of the distraction exceeds that of the main goal (i.e., it strongly
attracts the individual), in which case the individual may start
paying attention to the distraction. The distraction can become
the new active goal, and the individual may forget the main
goal, or choose to pay attention to both, but this will sacrifice
performance.
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In the end, when the individual is exhausted, weary, and does
ot perceive any future benefits from performing the task or from
ny competing activities, the individual can stop doing the task
ompletely; the goal activation of the main task goes near zero.
n this situation, the feeling of fatigue serves as a signal, (i.e., an
daptive function) for the individual to reappraise the calculation
f future costs and benefits, i.e., the subjective value of the task,
ooking for a more sensible activity with short-term benefits, such
s resting (see Hockey, 2013).

.2 Operator firing and effort

Our models correspond to the motivational control theory
f fatigue proposed by Hockey (2013). In the theory, there is a
odule called effort monitor that gives a signal to allocate effort

hat later improves/maintains performance. Afterward, the signal
ill be forwarded to a module named goal regulation that will
ecide whether to maintain a particular task or to choose another
ctivity. As an empirical support, the study of Müller and Apps
2019) suggested that the reappraisal of the costs and benefits
f a task that later helps individuals allocate effort occurs in the
orsal anterior cingulate cortex (dACC), anterior insula (AI), and
orsolateral prefrontal cortex (DLPFC).
In our models, when a goal is chosen, the operators of that goal

ill fire. More specifically, the more active a goal is, the higher
he number of operator firings associated with that goal will be.
his number is similar to effort: Individuals also have to invest
ore effort to maintain performance.
In the vowel task, we demonstrated that the number of firings

i.e., the operator firing frequency [OFF]) corresponds to the MF
ower of HRV, which has been used as an indicator of effort
Aasman et al., 1987). A lower value of MF power reflects higher
ffort, which in our model was associated with a higher number
f firings. Moreover, a higher value of MF power was followed
y a lower number of operator firings. Therefore, with regards to
odeling, the number of firings has the potential to be used as
n indicator of mental effort to do a particular task.

.3 Goal competition, motivation, and resources

By using goal competition as a mechanism, we were able
o simulate human behaviors in three different mental fatigue
tudies. Our models primarily support the motivation account of
ental fatigue, that performance can be maintained over time
hen motivated but decreases when demotivated (Kurzban et al.,
013; van der Linden, 2011). Nevertheless, our models can also be
onsistent with the resource theory of mental fatigue but with a
aveat.
The resource theory suggests that a decline in performance

s caused by a mechanism called resource depletion and the
ifficulty to allocate resources (Warm et al., 2008). In addition,
est can help to improve performance by recovering those re-
ources (Helton & Russell, 2017). With regard to our models, the
ecrease in goal activation may reflect resource depletion. While
he resource is depleting, performance will deteriorate.

However, adopting the resource theory to explain our models
equires a critical assumption and a restriction. The recovery of
esources must be a fast process and can be done even while still
oing the task at a lower level of effort regardless of the duration
f the experiments. In addition, in our cognitive architecture used,
.e., PRIMs, the working memory module is designed not to be
epletable, because if the working memory module were changed
o be depletable, the whole behavior of the model would be un-
table and might not give the same results. Therefore, depletable
esources as an important aspect in the resource theory is not

pplicable in the cognitive architecture that we used.

10
Therefore, in this paper, we preferred to model mental fatigue
as a result of a decrease in motivation over time, mainly because
it does not require such further assumptions. In motivation ac-
count, the main control is centered in a mechanism called effort
monitor that decides which goal to be focused on Hockey (2013).

3.4 Comparison with other models

There are two other studies trying to explain the effects
of mental fatigue using computational models. First, Jongman
(1998) explored mental fatigue as a problem of cognitive con-
trol. To lower performance levels, Jongman manipulated a global
parameter in ACT-R named source activation. A lower value of
source activation implies that the chance of retrieving relevant
information to perform a task is low, which represents a low level
of cognitive control. Furthermore, the study assumed that func-
tion of cognitive control is depletable. As with the present study,
Jongman also incorporated motivation to explain the effects of
mental fatigue by manipulating the value of goal activation.
The study proposed that ones who are motivated will choose
a strategy that maximizes the chance of success over others.
However, Jongman did not implement the manipulation of goal
activation in the study.

Second, Gunzelmann et al. (2011) modeled mental fatigue as a
sleep deprivation phenomenon. To lower performance levels and
simulate a sleep-deprived condition, they manipulated the global
parameter G, which represents the goal value, in ACT-R. They
proposed that the reduction in the G value represents the changes
in the wakefulness level, which caused a delay in the production
cycles of their model. In addition, similar to what we perform in
this study, they compared their model with an empirical study of
Doran, Van Dongen, and Dinges (2001). Even though their com-
parison showed a good fit, they did not incorporate motivation
such as extrinsic rewards in the study.

We were aware that Gunzelmann and colleagues were able to
demonstrate a good fit between their model and the empirical
data. Nevertheless, a situation in which an individual is sleep
deprived for an approximated duration of 88 h, which how their
model was based on, is not an ordinary situation in the workplace.
Their model may support the account of sleep deprivation as a
factor in mental fatigue (Åkerstedt et al., 2004) but may not be
sufficient to explain the effects of motivation on mental fatigue.

Both studies suggest that computational model can help ex-
plain the mechanism of mental fatigue. However, we argue that
mental fatigue is not a problem of resource depletion but more of
a motivation phenomenon, which we illustrated it in our models.

In summary, we have demonstrated that a lower performance
level when an individual is mentally fatigued is mainly due to
motivation, and goal competition is a possible mechanism to ex-
plain the phenomenon. Goal competition is a continuous process
that compares several future goals, and when the main task goal
is perceived to be less valuable, another competing goal may
start winning the competition, causing the individual to invest
less mental effort in the main task and start investing in the
competing goal.

3.5 Limitation, challenge, and future research

In this paper, we show that the goal activation helps us
understand how motivation affects performance in mental fa-
tigue. However, solely adjusting goal activation levels may not
be enough to model changes in performance. There are many
parameters in PRIMs that can affect performance. Therefore, it
is challenging if we want to build a model of another task using
the same parameters.
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Our models are still limited to these tasks. Although adjusting
oal activation values as a way to model mental fatigue showed
ood results for the experiments we modeled, it is possible that
his does not directly generalize to other studies.

To build a robust and comprehensive theory of mental fatigue,
or future research, more studies need to investigate relationships
etween goal activation, cost–benefit calculations, and perfor-
ance. In addition, future research needs to investigate what

he mechanism is behind the decrease in goal activation values.
oreover, it is beneficial to test the predictions of our models

n new experiments, for example, to see whether our models’
redictions also hold in studies with no rewards.
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