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Purpose of review

Matrix metalloproteinases (MMPs) are a family of over 20 zinc-dependent proteases with different
biological and pathological activities, and many have been implicated in several diseases. Although
nonselective MMP inhibitors are known to induce serious side-effects, targeting individual MMPs may offer
a safer therapeutic potential for several diseases. Hence, we provide a concise overview on MMP-12,
given its association with pulmonary diseases, including asthma, chronic obstructive pulmonary disease
(COPD), idiopathic pulmonary fibrosis, and other progressive pulmonary fibrosis (PPF), which may also

occur in coronavirus disease 2019.

Recent findings

In asthma, COPD, and PPF, increased MMP-12 levels have been associated with inflammation and/or
structural changes within the lungs and negatively correlated with functional parameters. Increased
pulmonary MMP-12 levels and MMP-12 gene expression have been related to disease severity in asthma
and COPD. Targeting MMP-12 showed potential in animal models of pulmonary diseases but human data

are still very scarce.

Summary

Although there may be a potential role of MMP-12 in asthma, COPD and PPF, several pathophysiological
aspects await elucidation. Targeting MMP-12 may provide further insights infto MMP-12 related
mechanisms and how this translates into clinical outcomes; this warrants further research.

Keywords

asthma, chronic obstructive pulmonary disease, coronavirus disease 2019, matrix metalloproteinase 12,
matrix metalloproteinase-12 inhibitor, pulmonary fibrosis

INTRODUCTION

Matrix metalloproteinases (MMPs) belong to a
family of at least 20 zinc-dependent endopepti-
dases (proteases) with distinct, though partly over-
lapping, activities across several physiological
and pathophysiological processes [1-3]. These
bioactivities include immune and inflammatory
responses [4,5], as well as degradation of compo-
nents of the extracellular matrix (ECM) (e.g., elas-
tin and fibrin) [6], tissue repair and remodeling,
cell proliferation [7], and cell migration [8]. The
activity of MMPs is delicately regulated by several
transcriptional and posttranslational mechanisms.
Upon release and activation, MMP activity is
modulated by endogenous inhibitors within the
extracellular compartment: tissue inhibitors of
metalloproteinases (TIMPs) and «2-macroglobulin
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KEY POINTS

o MMPs are bioactive proteases implicated in a large
variety of physiological processes and in
several diseases.

e Several MMPs have been included in the
pathophysiology of experimental lung disease in
animals; these activities and properties may differ
in humans.

o In humans, MMP-12 has been associated with several
aspects of chronic pulmonary diseases, including
asthma, COPD, IPF, and progressive pulmonary fibrosis
of different cause (e.g., COVID-19); however, its
precise role in the underlying disease mechanisms is
not fully understood.

e Targeted inhibition should help to unravel the role of
MMP-12 (and other MMPs) in the mechanisms
underlying chronic pulmonary diseases.

[1]. In healthy state, MMP activity within the lungs
remains limited, whereas in pulmonary disease
several environmental triggers (pathogens, toxins,
several mediators including growth factors and
cytokines) can elicit MMP release from different
cell types, and may thus cause an imbalance
between MMPs and their endogenous inhibitors
(the so-called protease/antiprotease imbalance),
resulting in inflammation and remodeling (fibro-
sis) within the lungs [9,10].

Based on these properties and in line with ample
evidence, MMPs have been implicated in the patho-
physiology of several pulmonary diseases including
asthma [11], chronic obstructive pulmonary disease
(COPD) [12], idiopathic pulmonary fibrosis (IPF)
[13""], lung cancer [14] and lung injury [15] [e.g.,
as encountered in acute respiratory distress syn-
drome (ARDS) of any origin including severe coro-
navirus disease 2019 (COVID-19) [16™]]. As a
consequence, targeting different MMPs has been
undertaken in animal disease models showing anti-
inflammatory effects as well as modulating activity
on several aspects of the remodeling process within
the lungs [2,17]. So far, less data are available from
human in-vivo studies, although interest in MMPs
in the context of pulmonary medicine is currently
increasing.

In this review, we discuss data underscoring a
role of MMP-12 in pulmonary diseases associated
with aspects of (chronic) inflammation and remod-
eling, thatis, asthma, COPD, IPF, and other progres-
sive pulmonary fibrosis (PPF), including possible
sequelae of COVID-19, as well as its potential as a
therapeutic target for these diseases.

1070-5287 Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved.

MATRIX METALLOPROTEINASE-12 IN
CHRONIC INFLAMMATORY AND FIBROTIC
PULMONARY DISEASE

Evidence from animal data and human
studies

Previously referred to as macrophage elastase, MMP-
12 has been mainly detected in alveolar macro-
phages, whereas it is also produced by bronchial
epithelial cells and airway smooth muscle cells.
MMP-12 is a 54-kDa preproenzyme, which is proc-
essed into a 45-kDa and subsequently into a 22-kDa
active form [18]. Experimental and clinical studies
have implicated MMP-12 in the pathophysiology of
several chronic inflammatory diseases including
pulmonary diseases (esp., COPD, asthma, IPF, and
PPF) [19-21], skin diseases such as cutaneous gran-
ulomas and psoriasis [22,23], arthritis [24], cancer
[25-27], vascular diseases such as atherosclerosis
[28], aneurysm [29,30], and neurological conditions
including spinal cord injury [31], multiple sclerosis
[32], intracerebral hemorrhage [33], and ischemic
stroke [34].

In COPD, MMP-12 is markedly expressed by
alveolar macrophages and represents the major elas-
tolytic enzyme released by these cells [35]. Conse-
quently, MMP-12 has been implicated in the
pathophysiology of (cigarette-induced) chronic
lung injury [36], particularly in emphysema and
small airways disease, features of COPD and/or more
severe asthma [37,38]. Indeed, MMP-12 is known to
degrade elastin, a protein vital for the elastic recoil of
the small airways, which may clarify its involvement
in the mentioned pathophysiological features in
persistent asthma and COPD [9]. Moreover, MMP-
12 (or mixed MMP-9/12) inhibitors showed disease-
modifying effects in mouse models of COPD [35,39].
Recent evidence from mouse models pointed
toward an involvement of MMPs (including MMP-
12) in the pathophysiology of obese asthma [40].
Although in animal models, MMP-12 undeniably
shows proinflammatory activities, for example by
recruiting neutrophils, it is unclear if similar prop-
erties and mechanisms equally apply in humans,
where MMP-12 seems to switch off neutrophils by
CXC chemokines inactivation [37].

In a large European case-control study of COPD,
an MMP-12 gene variant was related to more severe
disease, whereas no such associations were found for
MMP-1 or MMP-9 [41]. In another COPD study,
sputum MMP-12 levels and activity were directly
associated with the extent of emphysema docu-
mented on CT scan [42]. In addition, increased
MMP-12 levels were detected in the sputum from
currently smoking and ex-smoking patients with
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clinically stable COPD (GOLD I[/II), whereas in
asymptomatic, current, and former smokers, spu-
tum MMP-12 levels were within a similar range
as in nonsmoking healthy controls [38]. Similarly,
increased levels of the degradation products of elas-
tin, such as desmosine, were measured in the urine
of patients with COPD and correlated with the rate
of decline in lung function [43]. More recently, in a
mixed study (combining animal and human data),
Doyle et al. [44™] confirmed the relationship
between the presence of eosinophils and airspace
enlargement consistent with emphysema in a type2
mouse model. Additionally, they showed that eosin-
ophil-derived IL-13 promoted MMP-12 production
in macrophages in vitro. These findings were consis-
tent with their further observations of increased
MMP-12 levels in the sputa of patients with chronic
inflammatory airway disease with sputum eosino-
philia and emphysema, which negatively correlated
with forced expiratory volume in 1s [44™].

A multidimensional endotyping study of six
different clusters of patients with severe asthma,
showed an association between sputum MMP-1,
MMP-3, MMP-8, and MMP-12 levels with severity
of disease and positively correlated with sputum ILS
levels but negatively correlated with sputum IL-13
levels [45]. A study on gene polymorphisms showed
association between an MMP-12 gene variant and
susceptibility to asthma and disease severity in a
Japanese population [46]. In another study includ-
ing preclinical experiments and observations in
asthmatic children and young adults, an association
was found between the presence of an MMP-12 gene
variant and disease severity [47]. Additionally, in an
animal model of allergic asthma, that is, in Ascaris-
sensitized sheep, they showed that MMP-12 inhibi-
tion was able to reduce both the early and late
airway responses to inhaled allergen [47].

In pulmonary fibrotic disease, such as IPF and
progressive pulmonary fibrosis (PPF) of different
cause (e.g., as seen in COVID-19), the role of
MMP-12 has not yet been fully established and
current research shows contradictory data [48,49].
However, increased MMP-12 levels have been
detected in bronchoalveolar lavage (BAL) fluid of
IPF patients as well as in the serum of patients with
systemic sclerosis and lung involvement. This could
point toward a direct role of MMP-12 in the patho-
genesis of pulmonary fibrosis, probably via activa-
tion of the TGF-B1 signaling pathway [50,51].
Alternatively, MMP-12 may also play a regulatory
role in pulmonary fibrosis, downregulating the
fibroproliferation, as in the study of Hu et al. [52]
MMP-12 deficient mice exhibited significantly
enhanced bleomycin-induced pulmonary fibrosis
relative to that in wild-type mice as evaluated by

56 www.co-pulmonarymedicine.com

analysis of collagen deposition, myofibroblast dif-
ferentiation, and histopathology.

MMP-12 can also serve as a biomarker of severity
of pulmonary fibrosis not only in IPF but for
instance also in PPF as seen in systemic scleroderma.
The higher the serum or BAL levels of MMP-12, the
more advanced the fibrosis on radiologic imaging
and the worse is the lung function [50,51].

MATRIX METALLOPROTEINASE-12 IN
CORONAVIRUS DISEASE 2019-RELATED
PATHWAYS

In the past year, the world was facing a global
pandemic of the infection with the novel coronavi-
rus SARS-CoV-2 (severe acute respiratory syndrome
caused by coronavirus 2) causing the COVID-19.
The increasing number of COVID-19 patients with
various clinical manifestations and disease out-
comes shaped our understanding of the disease
pathophysiology and underlying mechanisms as
well as the longer term sequelae which closely relate
to the changes inflicted to several components of
the immune system and other organs [53,54], espe-
cially the lungs [55,56]. COVID-19 is associated with
several changes in the immune system parameters,
especially in the T-cell compartment and down-
stream components often reflected in a typical lab-
oratory pattern characterized by lymphopenia and
eosinopenia [57]. Whether these changes are the
consequence of COVID-19 or reflect the susceptibil-
ity to this infection is still under debate, as well as
the prognostic and diagnostic value of these
changes in relation to COVID-19 outcome [58,59].

The extent of lung involvement and damage
play a crucial role in the prognosis and postinfec-
tious stages of COVID-19 patients. In advanced
stages of the disease, a severe acute lung injury
(ALI) with ARDS develop as a result of the cytokine
storm with subsequent pulmonary vascular leakage,
accumulation of interstitial fluid and parenchymal
lung damage often accompanied by thromboem-
bolic events [60]. Several authors describe associa-
tions of SARS-CoV-2 infection with extensive
inflammation, hypoxia, oxidative stress, mitochon-
drial dysfunction, DNA damage, and lung coagul-
opathy promoting endothelial dysfunction and
microthrombosis [61]. Upon invasion into the respi-
ratory epithelium, the virus induces the activation
of several signaling cascades resulting in the release
of several proinflammatory cytokines and mediators
resulting in ALI. The subsequent activation of alve-
olar macrophages and neutrophils is followed by the
release of reactive oxygen species, secondary medi-
ators and proteases, including MMPs. MMPs are
involved in ECM remodeling and tissue fibrosis
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[10], typical features of severe COVID-19 pneumo-
nia and post-COVID-19 pulmonary sequelae [62].
Despite scarce data linking MMPs directly to
COVID-19, several reports exist on the involvement
of MMPs in the pathophysiological sequelae during
ALI and ARDS [63] (Fig. 1). Therefore, and based on
their extensive properties within the processes
involved in COVID-19 pneumonia and post-
COVID-19 pulmonary fibrosis, it can be postulated
that some MMPs would qualify as potential thera-
peutic targets for (post)COVID-19 [16"*] (Fig. 1). In
this context and as an example, MMP-12 is involved

in the breakdown of extra cellular matrix (by prote-
olysis of elastin) and has been associated with the
development of the emphysema and fibrosis in
certain pulmonary conditions [10,49,64]. Neutro-
philia and activation of neutrophils are typical fea-
tures of COVID-19. It seems that neutrophils are
essential for the exacerbation of the immune
response and hyperactivity and neutrophil extracel-
lular traps formation plays a critical role in the
development of the cytokine storm, sepsis, and
COVID-19-related multiorgan failure [65]. Indeed,
several inducers of MMP-12 gene expression and
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secretion have been previously identified, for exam-
ple, IL-1B, IL-6, 1L-13 [66,67] which also have been
associated with COVID-19 [68]. In addition to the
MMP-12-mediated elastin proteolysis, pneumonia-
induced extrahepatic vitamin K depletion contrib-
utes to the accelerated elastic fiber damage [69].
Among the cytokines studied in connection with
several lung diseases, IL-13 seems of special impor-
tance. Currently, only few data are available on
the relationship between IL-13 and COVID-19.
Although Huang et al. [70] did not find any differ-
ences in IL-13 plasma levels between COVID-19
patients with or without need for ICU admission,
a proportional association between IL-13 plasma
concentration and SARS-CoV-2 was reported by
another research group [71]. Interleukin-13 is
increased during COVID-19 and predicts the need
for mechanical lung ventilation [72]. Moreover, IL-
13-dependent release of MMP-12 was shown to be
essential for the development of airway eosinophilia
[66] and together with the IL-4/13 contributes to the
development of emphysema [44"]. Apart from
MMP-12, other MMPs may be involved in COVID-
19-associated pathways and features — e.g. MMP-3
[73] or MMP-9 [74,75].

Despite the possible role of MMP-12 in COVID-
19-associated lung damage and subsequent pulmo-
nary fibrosis, some controversial aspects regarding
its antiinflammatory and antiviral effects have been
reported. In an animal model of wound healing of
the cornea, MMP-12 inhibited corneal inflamma-
tion and neovascularization after injury by down-
regulation of CCL2 and C-C chemokine receptor
type 2 expression [76]. In another animal study,
Marchant et al. showed that following viral infec-
tion, macrophages secrete MMP-12, which regulates
the antiviral immunity via increased secretion of
interferon alpha (IFN-«). Subsequently, MMP-12 has
been shown to degrade extracellular I[FN-a resolving
the inflammation [77] and hence might act as a
beneficial antiinflammatory agent under certain
conditions. Therefore, the role of MMP-12 in the
pathophysiology of COVID-19 as well as its poten-
tial as a therapeutic target in this infection could be
double-edged and requires scrutinized research.

MATRIX METALLOPROTEINASE-12
INHIBITORS: INTERVENTIONS IN CLINICAL
STUDIES OF PULMONARY DISEASES

Although a promising therapeutic target for chronic
inflammatory airway disease, such as COPD and
asthma, only a few clinical studies have been pub-
lished on MMP-12 inhibitors.

In a multicenter, placebo-controlled study, Mag-
nussen ef al. [78] evaluated the safety and efficacy of

58 www.co-pulmonarymedicine.com

an oral mixed MMP-9/MMP-12 inhibitor (AZD1236;
75mg bis in die for 6 weeks) on top of concomitant
COPD-pharmacotherapy in 74 COPD (GOLDII/III)
patients. Apart from safety and tolerability, efficacy
was assessed as a secondary parameter and included
several clinical outcome measures: that is, symp-
toms (Clinical COPD Questionnaire score), rescue
medication use, lung function measurements, 6-
min walk test, body-mass index, airflow Obstruc-
tion, Dyspnea, and Exercise — index, as well as
several biomarkers: that is, C-reactive protein, white
blood cell differentials, IL-6, serum amyloid A, IL-8,
TNF-q, and plasma and urine desmosine. After six
weeks, no difference in any of the efficacy parame-
ters was found between AZD1236 and placebo.

Similarly, an associated biomarker study by Dahl
et al. [79] with the same MMP-12 inhibitor adminis-
tered at the same dosing regime and treatment
duration to patients with similar COPD character-
istics as in the previous study [78], yielded overall
negative findings, although a (statistically nonsig-
nificant) reduction in urinary desmosine excretion
and in sputum and blood lymphocytes were
observed after 6 weeks of treatment with AZD1236
compared with placebo.

The major drawbacks of both studies consist the
relatively short duration of treatment (6 weeks) in
patients with initially stable disease and the fact that
the drug effects were evaluated on top of concurrent
controller medications. In the study by Magnussen
et al. [78], one patient (out of 74 included) experi-
enced a serious adverse event — otherwise, at the
dose and dosing regimen given, the drug was overall
safe and tolerable [79].

To the best of our knowledge, no published
data exist in the open domain on MMP-12 inhib-
itors in patients with asthma or in pulmonary
fibrosis. In clinicaltrials.gov, currently, only one
phase Ila proof-of-concept study with an MMP-12
inhibitor intervention in asthma is being
reported (NCT03858686), whereas no studies in
COPD or pulmonary fibrosis are mentioned in
this database.

SUMMARY AND FUTURE PERSPECTIVES/
CONCLUSION

Matrix metalloproteinases (MMPs) are bioactive
proteases with distinct physiological and patholog-
ical properties and activities and consequently
implicated in several diseases. MMP-12 has been
associated with proinflammatory and tissue-remod-
eling pathways underlying chronic pulmonary dis-
eases, including asthma, COPD, IPF, and progressive
pulmonary fibrosis (PPF) of different cause (e.g.,
COVID-19).
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Although animal data clearly point toward an
important role of MMP-12 within the inflammatory
and tissue remodeling pathways in the respiratory
system, in humans, its role in the pathophysiology
of chronic pulmonary diseases is not fully clarified.
Furthermore, initial clinical studies with an MMP-12
inhibitor failed to show efficacy partly caused by
several logistical drawbacks. In the future, selective
and potent MMP-inhibitors could help to unravel
the role of individual MMPs, including MMP-12, in
the pathophysiology and treatment of specific pul-
monary diseases.
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