

 University of Groningen

What to do when requirements are changing all the time?
de Brock, Bert

Published in:
Business modeling and software design

DOI:
10.1007/978-3-030-79976-2_20

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
de Brock, B. (2021). What to do when requirements are changing all the time? A control example. In B.
Shishkov (Ed.), Business modeling and software design: 11th International Symposium, BMSD 2021, Sofia,
Bulgaria, July 5–7, 2021, Proceedings (pp. 317-329). (Lecture notes in business information processing;
Vol. 422). Springer. https://doi.org/10.1007/978-3-030-79976-2_20

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://doi.org/10.1007/978-3-030-79976-2_20
https://research.rug.nl/en/publications/a656fef5-6a0b-49c9-a2f0-a18d92aa8716
https://doi.org/10.1007/978-3-030-79976-2_20

What to Do When Requirements Are Changing
All the Time?

A Control System Example

Bert de Brock(B)

Faculty of Economics and Business, University of Groningen, PO Box 800,
9700 Groningen, AV, The Netherlands

E.O.de.Brock@rug.nl

Abstract. In our earlier work we sketched an approach to developing software
systems. The goal of this paper is to further illustrate the applicability and use of
that approach. Via the practical example of the development of a control system,
we illustrate the applicability of our approach to another type of system (other
than the usual information system) and the manoeuvrability (‘agility’) of our
textual System Sequence Descriptions. We discuss how to deal with situations
where requirements are changing all the time (‘agility’ during requirements anal-
yses). We also want to sketch the mental process of going from a simple, naïve
software solution towards various more subtle ones, probably inspired/ guided by
brainstorms with customers. In this case, it even ends up in a generic system (so,
not for one particular user organization only).

Keywords: Changing requirements · Agility · Textual System Sequence
Description · Controller · Controlled system · Generic system · System scope

1 Introduction

When the requirements change all the time, the question is: How to deal with all those
changes concretely in practical situations? We will zoom in on that problem. In order to
really understand the problems when requirements are changing all the time and how to
master them, we have to show the nitty-gritty details as well, because managing them in
such constantly changing circumstances makes it all so difficult. The manoeuvrability
of our textual System Sequence Descriptions (tSSDs) turns out to be very helpful when
the requirements are changing all the time (‘agility’ of our textual SSDs).

This paper is also meant to illustrate and work out the mental process of going from
a simple, naïve solution towards various more subtle ones, probably inspired/guided by
brainstorms with the customer (‘agility’ during requirements analysis).

In our earlier work we sketched an approach to developing software systems [1, 2].
Comparisons to otherwork are alreadymade in [2], in this volume.But the used examples
might suggest that the approach applies to ‘information systems’ only: There was little
to no interaction with other systems in those examples. So the question arose whether
our approach is applicable to other types of systems as well, e.g., control systems. Yes,
it is, as we will explain and show in this ‘companion’ paper.

© Springer Nature Switzerland AG 2021
B. Shishkov (Ed.): BMSD 2021, LNBIP 422, pp. 317–329, 2021.
https://doi.org/10.1007/978-3-030-79976-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79976-2_20&domain=pdf
http://orcid.org/0000-0003-4400-0187
https://doi.org/10.1007/978-3-030-79976-2_20

318 B. de Brock

A control system (controller for short) is a system that has to manage the behaviour
of other systems. So, a controller typically has (much) interaction with other systems.
Our running example concerns thermostats, being classic examples of control systems.
The running example also illustrates the phenomenon that the data structures of a system
are usually more stable than the processes that system has to support.

With this paper we also want to discuss and illustrate the ‘scope issue’: What should
be inside and what outside the scope of the system? Finally, we want to illustrate the
development of a generic system, not a system for one particular user organization only.

The rest of the paper is organized as follows. Section 2 presents the preliminaries
needed for understanding the rest. Section 3 gives an initial, simple, concrete description
of our running development example. Section 4 introduces more than ten extensions,
variants, and/or alternative options (except Sect. 4.3, which zooms in on the data needed).
Section 5 gives an overview and the paper ends with a contribution section. For the
reader’s convenience, the Appendix shows the finally resulting textual SSDs.

2 Preliminaries

In [1] a grammar for textual SSDs is proposed. It is similar to the grammar for a pro-
gramming language, except for the atomic instructions. We recall a part of that grammar
below. The terminals are written in bold. The nonterminal A stands for ‘atomic instruc-
tion’ (or step), P for ‘actor’ (or participant), M for ‘message’, S for ‘instruction’ (or
SSD), C for ‘condition’, N for ‘instruction name’, and D for ‘definition’:

A ::= P P: M /* where ‘X Y: M’ means: ‘X sends M to Y’
S ::= A│S ; S│S , S│begin S end│if C then S endif│for each <set element> do S end

│do N
D ::= define N as S end

where ‘s1; s2’ means ‘first do s1, then do s2’, ‘s1, s2’ means ‘do s1 and s2, in any order’.
The construct ‘do N’ is known as an Include or a Call. Definitions can be parameterized
(see Sects. 4.7 and 4.8 for examples). The values for nonterminals P, C, M, and N are
application dependent (‘domain specific’) and will appear naturally during the develop-
ment of the specific application. We will sometimes use the terminal System for P to
represent the system under consideration.

In order to avoid ambiguity, we use the binding rule that ‘,’ binds stronger than ‘;’.
We can break through this standard reading by using the ‘brackets’ begin … end.

What to Do When Requirements Are Changing All the Time? 319

For atomic instructions we can distinguish the following four situations:

(a) Actor System: i Indicates the input messages the system can expect
(b) System System: y Indicates the transitions (or checks) the system should make
(c) System Actor: o Indicates the output messages the system should produce
(d) Actor Actor2: x A step outside the system (maybe useful for understanding)

where Actor �= System and Actor2 �= System (but Actor and Actor2 might be the same).
If the participant before and after the ‘ ’ are the same, the atomic instruction indicates
what that participant has to do himself/herself/itself. We call step (a) an input step, (b)
an internal step, (c) an output step, and (d) an external step.

The question arosewhether our approachwith textual SSDs onlyworks in the context
of ‘information systems’ or also in the context of control systems, for instance. In an
‘information system’ it is not uncommon that during a session (or Use Case) there is
one fixed actor (role) interacting with the system. In other words, a ‘dialogue’ (bilateral
conversation) between the actor and the system only.

A control system (controller for short) is a system that has to manage the behaviour
of other systems, often triggered by signals coming from outside. A controller typically
has (many) interactions with other systems, both on the input side as well as on the
output side. In the context of controllers, typical atomic interactions are:

Controller Sensor: Request
Sensor Controller: Signal
Controller Controlled System: Command
Controlled System Controller: Feedback

A sensor might send a signal to the controller all by itself, without a previous request.
The interaction steps shown in a picture (with several sensors and controlled systems)
(Fig. 1):

Fig. 1. Typical atomic interactions with a controller

320 B. de Brock

3 Initial Description of the Running Development Case

Suppose we have a building with several rooms (e.g., an office or a school). Rooms
have sensors for measuring the temperature (‘temp.’ for short) and might also have
heatings and air conditioners (aircos). The systems to be controlled in this example are
the heatings and aircos. The system to be developed (simply called ‘the system’) must
be able to receive temp. measurements from the sensors and, when needed, start or stop
the heatings or aircos in that room. (So the system is a type of ‘distributed thermostat’.)

To be more precise, the heating(s) in a room must be started when the temp. in that
room drops below 19 °C and must be stopped when that room temp. comes above 21 °C
and, similarly, the airco(s) in a room must be started when that room temp. comes above
25 °C and must be stopped when that room temp. drops below 23 °C. In that case, a
simple (even naïve) version of the main Use Case, Handle Measurement, might be:

1. A sensor sends a measured temperature to the system.
2. If that temp. is below 19 °C then the system starts the heating(s) in that room.
3. If that temp. is above 21 °C then the system stops the heating(s) in that room.
4. If that temp. is below 23 °C then the system stops the airco(s) in that room.
5. If that temp. is above 25 °C then the system starts the airco(s) in that room.

So, for any measured temp. one or even two of the steps 2–5 apply, as depicted
below:

Heatings: Step 2: Start ¦ ¦ Step 3: Stop
Aircos: Step 4: Stop ¦ ¦ Step 5: Start

19°C 21°C 23°C 25°C

We note that in this example the sensors are not considered part of the system to be
developed. In other words, they are outside the scope of the system.

In Sect. 4 we introducemany extensions, variants, and/or alternative options. Usually
we first try to formulate them for controllers in general and then make it more specific
for our distributed thermostat.

4 Subsequent Extensions, Variants, and Alternative Options

4.1 No Unnecessary Commands

If upon receipt of a measurement, a controlled system (CS for short) is already in the
desirable state then the controller does not need to send a command to that CS anymore.
Expressed in the form of a Use Case:

1. A sensor sends a signal/measurement to the controller.
2. If that signal might call for action and the relevant CS is in undesirable state

then the system sends the proper command to that CS.

What to Do When Requirements Are Changing All the Time? 321

And schematically in the form of a textual SSD:

1. Sensor Controller: Signal;
2. if signal might call for action and CS is in undesirable state

then Controller Controlled System: Command endif

We note that the combination of Step 1 and Step 2 constitutes a so-called ECA-rule
for our controller (Event, Condition,Action):Triggering Event; if Condition then Action.
Expressed as a textual SSD:

1. X System: Signal ; /* Triggering Event
2. if Condition then System Y: Command endif /* if Condition then Action

The idea of no unnecessary commands leads to the next version of Handle
Measurement for our distributed thermostat from Sect. 3. In the form of a Use Case:

1. A sensor sends a measured temperature to the controller.
2. If that temperature is below 19 °C and heating(s) in that room are ‘Off’

then the controller starts those heating(s).
3. Similarly, if above 21 °C and heating(s) are ‘On’ then stop those heating(s).
4. Similarly, if below 23 °C and airco(s) are ‘On’ then stop those airco(s).
5. Similarly, if above 25 °C and airco(s) are ‘Off’ then start those airco(s).

And schematically in the form of a textual SSD (using variables instead of pronouns):

1. Sensor x Controller: Temperature t ;
2. if t < 19 °C then for each heating h in the room of x that is ‘Off’

do Controller h: ‘On!’ end endif ,
3. if t > 21 °C then for each heating h in the room of x that is ‘On’

do Controller h: ‘Off!’ end endif ,
4. if t < 23 °C then for each airco a in the room of x that is ‘On’

do Controller a: ‘Off!’ end endif ,
5. if t > 25 °C then for each airco a in the room of x that is ‘Off’

do Controller a: ‘On!’ end endif

The commas between steps 2, 3, 4, and 5 say that those steps can be done in any
order.

4.2 Constants Should Become ‘Adjustable’

System requirements might contain constants which, as might turn out only later, should
be adjustable. That means that those constants should be replaced by (system) variables.

322 B. de Brock

4.2.1 Variable Thresholds

As presented now, the concrete threshold temperatures (19, 21, 23, and 25 °C) might
end up ‘hard-coded’ in the thermostat, our control system under development. However,
as a new user requirement, these thresholds should become adjustable. Therefore we
introduce the four variables Hmin, Hmax, Amin, and Amax representing the minimum
and maximum thresholds for the heatings and aircos, respectively. We also add the
condition that Hmin ≤ Hmax < Amin ≤ Amax.

In Step 2 of the most recent textual SSD, t < 19 °C must be replaced by t < Hmin;
similarly, t> 21 °C by t> Hmax in Step 3, t< 23 °C by t< Amin in Step 4, and finally
t > 25 °C by t > Amax in Step 5. The temperatures 19, 21, 23, and 25 °C could serve
as default values upon installation.

4.2.2 Variable Thresholds Per Room

On hindsight, not all rooms do need the same threshold temperatures. E.g., a corridor
might have a minimum threshold of 17 °C instead of 19 °C. Now we need these four
threshold values per room, each with the condition that Hmin≤Hmax<Amin≤Amax.
The advantage is that the thresholds can now be set per room.

4.2.3 Variable Thresholds Per Room Type

That the thresholds must be set per room turned out to be a disadvantage in case of large
buildings. Another variant is that the thresholds only depend on the type of room (e.g.,
classroom, gym hall, corridor, etc.), not on the individual room. In that case we need
those four threshold values per room type, now of course with the condition per room
type that Hmin ≤ Hmax<Amin ≤ Amax. The advantage is that the thresholds can now
be set uniformly for all rooms of the same type.

4.3 Which Data Does the Controller Need?

It is time to see which data (structure) the controller needs. In general, the controller
needs to ‘know’ the configuration: the sensors, the controlled systems, and their state.

4.3.1 Configuration Data and State Data

In our running example: The thermostat needs to ‘know’ the sensors, the heatings, the
aircos, their states, the rooms they are in, and the type of rooms (see Sect. 4.2).

Concretely: Suppose that each sensor has a unique sensor ID (SID), each heating
has a unique heating ID (HID), each airco has a unique airco ID (AID), each room
has a unique room ID (RID), and each room type has a unique room type ID (RTID).
Furthermore, the controller needs to know the state of each heating and of each airco.
Moreover, the controller needs to know the room of each sensor, heating, and airco. The
controller also needs to know the room type of each room. And, in case of Sect. 4.2.3,
the controller needs to know those four thresholds for each room type and also needs to
know the condition Hmin ≤ Hmax < Amin ≤ Amax per room type.

What to Do When Requirements Are Changing All the Time? 323

For Sect. 4.2.3 this leads to the following concepts and attributes (where we indicate
the identifiers by a ‘!’ in front and the referencing attributes by a ‘ˆ’ in front):

Sensor: ! SID, ^ RID
Heating: ! HID, ^ RID, State (‘On’ or ‘Off’)
Airco: ! AID, ^ RID, State (‘On’ or ‘Off’)
Room: ! RID, ^ RTID
Room Type: ! RTID, Hmin, Hmax, Amin, Amax

Fig. 2. Overview of needed data

with the condition per room type that
Hmin ≤ Hmax < Amin ≤ Amax (Fig. 2).

4.3.2 Keeping the Data Up-to-Date

The controller must keep its data up-to-date. So,
when it changes the state of a controlled system,
the controller has to update that state in its own
registration as well. E.g., with variable thresholds
per room type, Step 5 in the tSSD in Sect. 4.1 now
becomes (with the update step underlined):

if t > Amax of the type of room sensor x is in
then for each airco a in the room of x that is
‘Off’

do Controller a: ‘On!’ ;
Controller Controller: Register a as ‘On’

end
endif

4.3.3 Remembering the Measurements Too?

Controllers handle an incoming measurement by taking the appropriate actions. After
that, the system can ‘forget’ that measurement. But, after all, the user organization
(and the producers/installers of the controlled systems) wanted to be able to look at the
past measurements. In that case, the incoming measurements must be remembered too,
together with a timestamp. Then we need one more concept, say ‘Measurement’.

For our running example this implies the following attributes for ‘Measurement’
(where the underlined combination SID, Timestamp is uniquely identifying):

Measurement: SID, Timestamp, RID, Temperature.

We did not indicate SID or RID as referencing attributes because they might refer to
‘old’ sensors or rooms that do not exist anymore.

Our main use caseHandle Measurement now gets an extra step: Step 1 is replaced by

1. A sensor sends a measured temperature plus timestamp to the controller.
2. The controller stores the info of the sensor, its room,measured temp., and timestamp.

324 B. de Brock

And schematically, as a textual SSD (where rx indicates the room sensor x is in):

1. Sensor x Controller: Temperature t plus timestamp s;
2. Controller Controller: Store sensor x, room rx, temperature t, and timestamp s

4.4 External Data Store

The measurements could be stored inside the system under development or in a separate
external system (making the architecture less monolithic).

There could be several reasons for that:

– the organization/installer/producer already developed a system for that
or has a system filled with measurement data with which ‘our’ data must be combined

– the measurement data must be integrated with other external data (e.g., weather data)
– the controller gets overloaded in case of heavy trend analyses on its measurement data

Whatever the reasons are, in this way we move more towards a micro-service archi-
tecture (https://www.guru99.com/microservices-tutorial.html). The new Step 2 would
become:

2. Controller External system: Store sensor x, room rx, temp. t, and timestamp s

4.5 Simple Sensors Cannot Provide a Timestamp

In the example until now, it was the sensor that provided the timestamp (the time of
measurement). If the sensors are so simple that they cannot provide a timestamp, the
system itself could add a timestamp (say, the time of receipt) by using its internal clock.
In that case, the first two steps in the use case become:

1. A sensor sends a measured temperature to the controller.
2. The controller stores the sensor info, its room, measured temp., and time of receipt.

And schematically, as a textual SSD (where s′ is the time of receipt):

1. Sensor x Controller: Temperature t;
2. Controller Controller: Store sensor x, room rx, temperature t, and timestamp s′

So, now the timestamp pops up in the second step, provided by the controller itself.
In case of an external data store, the second occurrence of ‘Controller’ in the second

step can be replaced by ‘External system’ (cf. Sect. 4.4).

4.6 Synchronous Feedback from a Controlled System

It turned out to be a flaw that the controller adapts the registered state of a controlled
system as soon as it issued such a command to that controlled system, without knowing

https://www.guru99.com/microservices-tutorial.html

What to Do When Requirements Are Changing All the Time? 325

whether the intended state actually changed. An extension/improvement/option is that
the controlled system gives feedback about its status to the controller. Only then, the
controller would change the registered state of that controlled system. In that case, the
last four steps in the tSSD in Sect. 4.1 must be adapted. E.g., with variable thresholds
per room type, Step 5 in the tSSD now becomes (with the new parts underlined):

if t > Amax of the type of room sensor x is in
then for each airco a in the room of x that is ‘Off’

do Controller a: ‘On!’ ;
a Controller: NewState(a) ;
Controller Controller: Register NewState(a) as the new state of a end

endif

4.7 Asynchronous Feedback from a Controlled System

Often it takes a (tiny) while before a controlled system gives feedback. Meanwhile, the
controller has to do other things as well… So, another option is that the controller does
not wait for an answer and only adapts the registered state once the status feedback from
the controlled system comes in. That leads to another UC, say HandleStatusFeedback:

1. A controlled system sends its status to the controller.
2. The controller adapts the registered status of that controlled system accordingly.

And the corresponding tSSD, cast in the form of a parameterized definition:

define HandleStatusFeedback(y) as
y Controller: State(y) ;
Controller Controller: Register State(y) as the state of y

end

The last four steps in the main UC (Handle Measurement) should be without these
two instructions now. Step 3, for instance, now becomes:

if t < Hmin of the type of room where sensor x is in
then for each heating h in the room of x in state ‘Off’

do Controller h: ‘On!’ end
endif

Wenote that it is easy to go back from the asynchronous to the synchronous situation,
since we can just call HandleStatusFeedback within this most recent version of Step 3:

if t < Hmin of the type of room where sensor x is in
then for each heating h in the room of x in state ‘Off’

do Controller h: ‘On!’ ;
do HandleStatusFeedback(h)

end
endif

326 B. de Brock

4.8 Scheduled or Even Dynamic Threshold Changes

The user organization subsequently indicated that it is useful to have lower threshold
temperatures for the heatings at night than during daytime. For example, in an office
say 21 °C from nine till five from Monday till Friday, and 15 °C during the other time
periods. And such schedules can be much more subtle, of course. It could be a wish that
the controller changes the thresholds automatically in such cases. This could be realized
if the controller ‘knows’ the schedule and has an internal clock. Then the question came
up: Which type of schedules for threshold changes should be possible? E.g., based on
the combination of weekday and time during the day only (as in the example above)?
And thereafter the (internal) discussion in the organization advanced even more: Ideally,
threshold changes might be determined dynamically, e.g., based on external conditions
or events. For instance, in order to have a temp. of 21 °C at 9:00, it might be necessary
to start the heatings (much) earlier, but how much earlier can depend on the inside
temperature at hand, the outside temperature, the size (and isolation) of the room to
be warmed, etc. Gradually the question arose whether the controller itself should know
the schedule or that an (intelligent) external system should trigger the system with new
threshold temperatures at the right moments. This idea was partly inspired by the rise of
systems such as Homey (https://homey.app/en-gb/) where its users can constitute all type
of rules to turn down (or off) the thermostat. This option is more flexible and, moreover,
that external system could easily be replaced by a more subtle/advanced/ sophisticated
one (provided that it keeps the same type of interface-mechanism with our controller).
Where the development started with a concrete controller, by now they are thinking of a
generic COTS-system (Commercial off-the-shelf) to be sold on the market, not meant
for one particular customer anymore…

We will work out this generic option. So in other words, the scheduling/scheduler
will be considered outside the scope of the system under development.

In conclusion, an external system - but also a human being - should be able to trigger
our system with new threshold temperatures. We will use the term ‘thresholder’ here
(instead of ‘user’). For a change, we suppose that the threshold adaptions are on the
level of individual rooms, not on the level of room types. So, Sect. 4.2.2 applies, not
Sect. 4.2.3. Consequently, the attributes Hmin, Hmax, Amin, and Amax move from
Room Type to Room in the model in Sect. 4.3.1, now with the condition per room that
Hmin ≤ Hmax < Amin ≤ Amax. The use case AdaptThreshold could run as follows:

1. A thresholder sends a (new) value for a threshold of a certain room to the controller.
2. The controller adapts the value for that threshold for that room.
3. The controller asks the sensor in that room for the current temperature.

The UC does not need to continue any further here, because once the controller gets
the temp. from the sensor, the ‘old’ UC Handle Measurement starts and the controlled
systems will be commanded accordingly if necessary, based on the new threshold value.

Note that there are four types of thresholds per room:Hmin,Hmax,Amin, andAmax.
With A ∈ {Hmin, Hmax, Amin, Amax}, we define a parameterized AdaptThreshold:

https://homey.app/en-gb/

What to Do When Requirements Are Changing All the Time? 327

define AdaptThreshold(A, r, t) as
Thresholder Controller: Update threshold A in room r to temperature t ;
Controller Controller: Update threshold A in room r to temperature t ;
for each sensor x in room r do Controller x: SendTemperature end

end

As explained before, hereafter the controller will receive the temperature from the
sensor(s), then Handle Measurement starts and the controlled systems will be started or
stopped accordingly (if necessary).

If threshold adaptions were on the level of room types, as in Sect. 4.2.3, then we
should have to change ‘in room r’ by ‘for room type r’ in the first two steps of the tSSD
and by ‘in a room of type r’ in the last step of the tSSD.

5 Interactions Overview: Our Controller and Its Environment

We end with a general overview of the typical interactions between our controller and its
environment. Instead of the earlier terms ‘External System’ or ‘External Data Store’ we
use ‘Data Store’ because it might or might not be part of the system to be developed. The
variables x and y in the overview indicate that there can be several such actors (Fig. 3):

Fig. 3. The typical interactions between our controller and its environment
(This figure is not meant as a sequence diagram)

6 Contribution

As promised in the abstract, the paper discussed and illustrated the following topics:

– When system requirements are changing all the time: How to deal with that? As
illustrated throughout the paper, by usually writing down only the (small) differences
with a previous solution, and not writing out the new situation completely. Writing

328 B. de Brock

out the situation completely might be done once you have a good overview - that is
why Sect. 4.3 came so late – or, contrarily, when you lost your overview.

– The (mental) process of going from a simple, naïve software solution towards various
more subtle ones, probably inspired/guided by brainstormswith customers, was richly
illustrated by the (>10) extensions, variants, and/or alternative options we introduced

– What should be inside and what outside the system scope? The scope issue was
illustrated by the Data Store issue and the scheduling/scheduler discussion

– The development started with a concrete controller but ended with a generic COTS-
system, not meant for one particular customer anymore (Sect. 4.8)

– Agility during requirements analyses was shown over and over again with all those
extensions, variants, and/or alternative options we discussed

– The feasibility of our approach to another type of system, a control system, was
illustrated throughout the paper

– The manoeuvrability (‘agility’) of our textual SSDs was shown during the many
discussions of all types of variants (‘textual SSDs in operation’)

Acknowledgment. The author wants to thank Wilco Wijbrandi from TNO Research for the
fruitful discussions we had about the many possible variants concerning thermostats.

Appendix: The Resulting Textual SSDs

The tSSD HandleMeasurement below is the version with variable thresholds per
room type (Sect. 4.2.3), sensors that provide a timestamp (Sect. 4.3.3), a data store
for registering measurements (Sect. 4.4), synchronous feedback from the heatings
(Sect. 4.6), and asynchronous feedback from the air conditioners (Sect. 4.7). The tSSD
HandleStatusFeedback originates from Sect. 4.7 and the tSSD AdaptThreshold from
Sect. 4.8. (Blue underlined words serve as links too.)

https://www.tno.nl/en/

What to Do When Requirements Are Changing All the Time? 329

define HandleMeasurement(x, t, s) as
o Sensor x Controller: Temperature t plus timestamp s ;
o Controller Data Store: Store sensor x, room rx, temperature t, and timestamp s ,
o if t < Hmin of the type of room sensor x is in

then for each heating h in the room of x that is ‘Off’
do Controller h: ‘On!’ ;

do HandleStatusFeedback(h)
end

endif ,
o if t > Hmax of the type of room sensor x is in

then for each heating h in the room of x that is ‘On’
do Controller h: ‘Off!’ ;

do HandleStatusFeedback(h)
end

endif ,
o if t < Amin of the type of room sensor x is in

then for each airco a in the room of x that is ‘On’
do Controller a: ‘Off!’ end

endif ,
o if t > Amax of the type of room sensor x is in

then for each airco a in the room of x that is ‘Off’
do Controller a: ‘On!’ end

endif
end

define HandleStatusFeedback(y) as
y Controller: State(y) ;
Controller Controller: Register State(y) as the state of y

end

define AdaptThreshold(A, r, t) as
Thresholder Controller: Update threshold A in room r to temperature t ;
Controller Controller: Update threshold A in room r to temperature t ;
for each sensor x in room r do Controller x: SendTemperature end

end

References

1. De Brock, E.O.: On system sequence descriptions. In: M. Sabetzadeh, et al. (eds.) Joint
Proceedings of REFSQ-2020 Workshops, etc. Pisa, Italy (2020)

2. De Brock, E.O.: From Elementary user wishes and domain models to SQL-specifications. In:
Shishkov, B. (eds.) Business Modeling and Software Design. BMSD 2021. Lecture Notes in
Business Inf. Processing, vol. 422, pp. 97–117. Springer, Cham (2021)

	What to Do When Requirements Are Changing All the Time?
	1 Introduction
	2 Preliminaries
	3 Initial Description of the Running Development Case
	4 Subsequent Extensions, Variants, and Alternative Options
	4.1 No Unnecessary Commands
	4.2 Constants Should Become ‘Adjustable’
	4.3 Which Data Does the Controller Need?
	4.4 External Data Store
	4.5 Simple Sensors Cannot Provide a Timestamp
	4.6 Synchronous Feedback from a Controlled System
	4.7 Asynchronous Feedback from a Controlled System
	4.8 Scheduled or Even Dynamic Threshold Changes

	5 Interactions Overview: Our Controller and Its Environment
	6 Contribution
	Appendix: The Resulting Textual SSDs
	References

