

 University of Groningen

From elemantary user wishes and domain models to SQL-specifications
de Brock, Bert

Published in:
Business modeling and software design

DOI:
10.1007/978-3-030-79976-2_6

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
de Brock, B. (2021). From elemantary user wishes and domain models to SQL-specifications. In B.
Shishkov (Ed.), Business modeling and software design: 11th International Symposium, BMSD 2021, Sofia,
Bulgaria, July 5–7, 2021, Proceedings (pp. 97-117). (Lecture notes in business information processing; Vol.
422). Springer. https://doi.org/10.1007/978-3-030-79976-2_6

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://doi.org/10.1007/978-3-030-79976-2_6
https://research.rug.nl/en/publications/11793da7-bfe0-42e3-9d3c-24c6d5fba968
https://doi.org/10.1007/978-3-030-79976-2_6

From Elementary User Wishes and Domain
Models to SQL-Specifications

Bert de Brock(B)

Faculty of Economics and Business, University of Groningen,
PO Box 800, 9700 AV Groningen, The Netherlands

E.O.de.Brock@rug.nl

Abstract. In the development of (software) systems, new user wishes must usu-
ally be implemented very quickly. This poses a real challenge for system devel-
opment. This challenge led from waterfall to incremental, agile, and even con-
tinuous development. In this paper we treat the research question how to come
from elementary user wishes and simple domain models all the way to concrete
SQL-specifications in a quick, straightforward, and traceable way.

We will follow the classical distinction between the static part (i.e., the data
structures) and the dynamic part (i.e., the processes) of the system under devel-
opment. We also explain how these different aspects are coordinated. Moreover,
we will distinguish between the Problem Analysis part and the Software Design
part of system development. We introduce the notions of elementary User Wish
and textual System Sequence Description, which help us to start in an early phase
of development, to align our subsequent development steps, and to consider and
treat a sequence of SQL-executions as one whole.

Keywords: Model driven engineering · Business model · Software
development · Statics · Domain model · Conceptual data model · Database
model · Dynamics · User wish · User story · Use case · System sequence
description · MVC-pattern · (Stored) procedure

1 Introduction

Nowadays new user wishes must be implemented very quickly. Over the last decades,
their ‘time-to-market’ had to become shorter and shorter. This ‘need for speed’ poses a
real challenge and an increasing problem for system development. It led from waterfall
to incremental, agile, and even continuous development. Moreover, in the beginning of a
software project requirements are seldom clear, unambiguous, complete, etc. Therefore,
we treat the challenging research question how to come from elementary user wishes and
simple domain models all the way to concrete SQL-specifications in a quick, straight-
forward, and also traceable way [1, 2]. The essence of the answer to our question will
be: By stepwise clarification, stepwise refinement and stepwise specification. To speed
up development, the development steps should be carefully chosen and be well-aligned.

© Springer Nature Switzerland AG 2021
B. Shishkov (Ed.): BMSD 2021, LNBIP 422, pp. 97–117, 2021.
https://doi.org/10.1007/978-3-030-79976-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79976-2_6&domain=pdf
http://orcid.org/0000-0003-4400-0187
https://doi.org/10.1007/978-3-030-79976-2_6

98 B. de Brock

We follow the classical distinction between the static part and the dynamic part of the
system under development. The static part refers to the data structures and the dynamic
part to the processes. They can be considered as the two sides of the same coin.

To answer the old question ‘Should we be Data-oriented or Process-oriented?’: You
should do both, concurrently! The data structures and the processes must be (and stay)
mutually consistent. But the data structures are usually more stable than the processes.

Furthermore, wewill distinguish between theProblemAnalysis part and the Software
Design part of system development. The Problem Analysis part must be (and will be)
implementation-independent. In this paper, the Software Design part is geared towards
SQL. We will also explain how the different aspects are coordinated.

To search for other UC-based approaches, we studied the solid literature review [3]
and many of its cited papers. [3] constitutes a systematic literature review concentrating
onuse case specifications research. It thoroughly examined almost 120 papers on use case
specifications, including their strengths and weaknesses. In it, we could not find a similar
comprehensive and in-depth approach towards use case specifications with a concrete
design follow-up towards SQL, not even in the industry white paper [4] of the Oracle
corporation.Based on the papers [5–8], Tiwari et al. conclude in [3] that ‘unavailability of
formal representation of some natural language may result in confusion, difficulties and
varied opinions in understanding the user requirements’. There exist many papers about
automatic translation to SQL regarding individual queries that are well-formulated in
natural language [9]. However, our current paper is NOT limited to queries, NOT limited
to individual interactions, and NOT about already well-formulated interactions.

Regarding the applicability of our approach: The feasibility study [10] works out
in all detail a substantial part of Larman’s large and known Process Sale example [11].
That technical report gives a good impression of the applicability and scalability of our
approach in large, complex real-life situations. We also applied our approach to various
other kinds of examples, such as control systems, where the emphasis is on the processes
and less on the data structures [12]. And meanwhile we worked out (and taught our
students) several ‘common development patterns’. We successfully taught this approach
already to a fewhundred students,whoapplied to it various cases.Moreover, the approach
is based on more than 40 years of development experience of the author.

We will illustrate the steps in our development approach with a carefully designed
running example. Along the way, the running example will unfold step by step. We
work out everything in detail because, as you know, the devil is in the details. And this
especially holds when developing software.

The rest of the paper runs as follows: In Sect. 2 we give a general overview of the
development path. Section 3 treats the Problem Analysis regarding the Statics/Data-
structures and is implementation-independent. Section 4 subsequently treats the Soft-
ware Design regarding the Statics/Data-structures and is geared towards SQL. Section 5
treats the Problem Analysis regarding the Dynamics/Processes and is implementation-
independent. Section 6 treats the SoftwareDesign regarding theDynamics/Processes and
is geared towards SQL. The paper ends with an overview of its contributions (Sect. 7).

From Elementary User Wishes and Domain Models 99

2 Overview of Our Development Path

We start with a general overview of our development approach. As we recall, explain,
and illustrate in Sect. 3, for the static part of the system under development we can start
with a simple and small domain model. The domain model can start simple because it
might initially only contain concepts and their associations, (later) to be extended with
the properties of the concepts and the multiplicities of the associations. The domain
model can start small because it might initially contain only very few concepts and
their associations, and extended later with more concepts and associations, following an
incremental, agile, or continuous development.

To reach a full-fledged conceptual data model, each many-to-many association must
be transformed into a few many-to-one associations, references must be made explicit,
uniqueness properties must be added, and it must be indicated per property whether a
value is required or optional. Last but not least, the possible values per property must
be determined and there might be some remaining (integrity) constraints to be added as
well.

Oncewe have such a detailed conceptual datamodel, we can prepare to transform it to
an SQL-database. First, each reference to a concept is replaced by a uniqueness property
of that referenced concept. After that, the resulting data model leads in a straightforward
way to a default SQL-specification: First of all, a database is created. Then each concept
translates to a table and each property of a concept translates to an attribute in that
table, followed by ‘NOT NULL’ if a value is required for that property, else followed by
‘NULL’. Each uniqueness condition translates to a primary key constraint or a unique
constraint, each reference condition translates to a foreign key constraint, and other
remaining integrity constraints translate to check constraints. This is shownand explained
in detail in Sect. 4.

For the ‘dynamic’ part of the system under development we have to implement
(very) many user wishes. As we explain and illustrate in Sect. 5, each time we will take
an elementary User Wish (eUW) as a starting point, for example Register a Student or
Process a Sale. Such a User Wish will be further developed by stepwise clarification,
stepwise refinement, and stepwise specification: When we add the actor role and the
reason for the User Wish then we get the familiar notion of a User Story [13–15]. A
User Story is often formulated as ‘As a <actor role>, I want to <user wish> [so that
<reason>]’where the reason-part is optional.AUser Story (US) can beworked out into a
UseCase,which consists of aMain Success Scenario (MSS) and zero ormoreAlternative
Scenarios [16, 17]. A use case (UC) roughly corresponds to an elementary business
process in business process modelling [11, 18]. Up to this point in the development, this
all can be expressed by - and discussed with - the users in their own (natural) language.

100 B. de Brock

To integrate the different scenarios of a Use Case into one structure, we use a System
SequenceDescription (SSD). An SSD is a kind of stylisedUseCasewhich schematically
depicts the interactions between the primary actor (user), the system (as a black box), and
other actors (if any), including the messages between them. An SSD is usually drawn as
a (UML-)diagram, see [11], but we introduce and prefer a textual SSD (tSSD) instead.

In Sect. 6 we explain and illustrate how tSSDs can be transformed to SQL using
(stored) procedures in case of a Database Management System based on SQL [19, 20].

Now we give a bird’s-eye view of our development approach and the order of steps
we just sketched. We also indicate which ‘arrow’ (transformation) is treated in which
section:

Topic Problem Analysis → Software Design
Statics / Data structures
(System has to know)

Domain Models* → Conceptual Data Model → Database Model
§3 §4

Dynamics / Processes
(System has to do)

e UW → US → UC (= MSS + AS*) → tSSD → SQL-Procedures
 §5 §5 §5 §6

*: zero or more

3 From Simple Domain Models to Conceptual Data Model

Regarding the question what the system under development must ‘know’ (i.e., which
persistent data), an analyst often starts with developing a simple domain model. A
Domain Model is a visual representation of the concepts, their properties, and their
associations that might be relevant for the application to be developed (i.e., ‘as we
understood it until now’). The possible ingredients of a Domain Model are:

• concepts (a.k.a. conceptual classes),
• their relevant properties (a.k.a. their attributes), and
• their mutual associations (a.k.a. their relationships)

A Domain Model is usually drawn as a graph, consisting of nodes (for concepts,
optionally with their properties) and lines (for associations). Although there are other
popular ways to draw a domain model, e.g., using Entity-Relationship Diagrams [21],
the ingredients could look as follows:

Concept only Concept with properties Association between concepts

where the phrase xxx (usually a verb phrase or preposition) indicates the association,
the symbol indicates the reading direction, and m and n are multiplicities, usually ‘1’,
‘0..1’ (at most 1) or ‘*’ (0 or more, a.k.a. ‘many’).

From Elementary User Wishes and Domain Models 101

The ingredients of a Domain Model should be expressed in the terms as used in the
application domain concerned. An early domain model represents a kind of minimum
knowledge (‘whatweunderstooduntil now’) andgrowsover time, sketching/makingnew
versions. A series of simple, small domain models may help to structure the potentially
unstructured information as provided by the users. The properties of the concepts and
multiplicities of the associations need not be present in the Domain Model initially.

We will illustrate our development approach with a running example, which will be
developed step by step.

Example 1: A simple domain model

Our running example concerns a university
and is about courses, students, their exams,
and their grades. Courses can have exams.
Students can enrol for courses and for exams.
Students can get graded on an exam.
We at least need to know the name of each
student and of each course, the date of each
exam, and the grade after each grading.

This leads to the simple domain model
depicted on the right.

Amany-to-many association (i.e., an association with a ‘*’ on both sides) represents
a ‘hidden’ concept, about which we need to know more. For instance, with respect to
the m-to-m (many-to-many) association Student enrols for Course we must also know
which students enrolled for which courses. We can transform any m-to-m association
into two ‘many-to-1’ associations as follows, making the hidden concept explicit:

Transform into

For instance, if A = ‘Student’, xs = ‘enrols for’, and B = ‘Course’.
then we get C = ‘Enrolment’, α = ‘of’, and β = ‘for’.

102 B. de Brock

Example 2: The domain model with the hidden concepts made explicit

Example 1 has two
many-to-many associations.
After the two transformations
we have two new concepts,
Course Enrolment and
Exam Enrolment.

A student can only enrol for an
exam if (s)he was enrolled for
the corresponding course.
And a student can only get a
grade for an exam if (s)he was
enrolled for that exam.

These transformations and
extra ‘business constraints’ lead
to the domain model on the right.

A many-to-one association implicitly states that there is exactly

one B related to each A.

Going to a Conceptual Data Model, that B must be indicated in A.

We will indicate that as follows:

To emphasize the functional relationship, we replace the line by a

many-to-one arrow. Then we can also leave out the multiplicities:

Next, per concept we must know and indicate by which (combinations of) properties
each individual (a.k.a. ‘entry’) can be uniquely identified. We will indicate a uniqueness
constraint by a ‘!’ in front of the properties involved; i.e., within each concept the value
(combination) of the property(s) preceded by ‘!’ is unique. If there is another uniqueness
constraint within the same concept, we will use ‘%’ in front of those properties involved.

For each property we also have to know whether a value is required or optional. We
will put properties for which a value is optional between the brackets ‘[’ and ‘]’.

From Elementary User Wishes and Domain Models 103

Example 3: The references, uniqueness properties, and optionality made explicit

Example 2 has 6 many-to-one associations to be transformed. This leads to the next
model, next page on the left.

After further requirements analysis for our running example: A student is uniquely
identified by his/her student number, a course by its name but also by its course code,
an exam by the combination of the course and the exam date, a course enrolment by
the combination of the student and the course, an exam enrolment by the combination
of the underlying course enrolment and the exam, and a grading by the underlying
exam enrolment. Moreover, students might have a phone number. This all leads to
the second model below, on the right.

Further analysis is needed to find out for each property what its possible values are.
Finally, there might be some other constraints besides the ones already treated (i.e.,
uniqueness, references, optionality, and allowed values).

104 B. de Brock

Example 4: The possible values per property and remaining constraints

Per concept in Example 3, the elicited details of the possible values for its properties
are summed up below. The possible values for a property that refers to a concept
implicitly follow from the concept it refers to. Note that the property lists below
include all the info contained in the last graph in Example 3.

Student /*
! Student nr /* a natural number of 6 digits and divisible by 11 (for simple checks)

Name /* a string in the Latin alphabet

[Phone nr] /* a string of at most 20 characters (being a digit, ‘+’, ‘.’, or ‘ ’)

Course /*
! Name /* a string (in the Latin alphabet) of at most 50 characters
% Code /* a combination of exactly 9 letters and digits

Exam /*
! ^ Course /* the Course the Exam is for
! Date /* a date since the registration start (August 2010); maybe a future date

Course Enrolment /* Enrolment of a Student for a Course
! ^ Student /* the Student enrolled
! ^ Course /* the Course enrolled for

Exam Enrolment /* Enrolment for an Exam
! ^ Course Enrolment /* the underlying Course Enrolment
! ^ Exam /* the Exam enrolled for

Grading /*
! ^ Exam Enrolment /* the underlying Exam Enrolment

Grade /* a natural number between 0 and 10, those two numbers included

There are no other constraints in this example. But if Course Enrolment (CE) and
Exam Enrolment (EE) would have a date then we might have had the constraints
that CE-date ≤ EE-date and EE-date < Exam date.

From Simple Domain Models to a Conceptual Data Model: Summary.
So, to come from a domain model to a full conceptual data model, we do as follows:

1. Replace the m-to-m associations in the domain model by many-to-1 associations
2. Extend the concepts with the references that follow from the associations in the

(new) domain model
3. Add and indicate the properties following from the uniqueness discussions with the

user organization
4. Indicate for which properties a value is optional, according to the user organization
5. Indicate the possible values for each property, after consulting the user organization
6. Add remaining constraints (if there are) after asking the user organization

The first two steps are more or less of a ‘mechanical’ nature. However, in the next
steps (much) more requirements analysis is needed before you have a full conceptual
data model, because a domain model is far from complete...

From Elementary User Wishes and Domain Models 105

4 From Conceptual Data Model to SQL-Database

Once we have a detailed conceptual data model, it is pretty straightforward to transform
it to an SQL-database. First of all, each reference to a concept is replaced by a uniqueness
property of that referenced concept.

Example 5: References to a concept replaced by a suitable uniqueness property

In our running example, the concept Course has two uniqueness properties:
Name is unique and Code too.
We will use Code since it is
more fundamental/stable.

From top to bottom, we replace
‘^Student’ in Course
Enrolment by ‘Student nr’,
‘^Course’ in Course Enrolment
by ‘Course code’, ‘^Course’ in
Exam by ‘Course code’, the
combination ‘^ Course
Enrolment’ and ‘^ Exam’ in
Exam Enrolment by ‘Student
nr’, ‘Course code’, and ‘Exam
date’, and finally ‘^ Exam
Enrolment’ in Grading by
‘Student nr’, ‘Course code’,
and ‘Exam date’. This leads to
the data model on the right.

When each reference is replaced by a uniqueness property of the referenced concept,
the resulting data model leads in a natural way to a default SQL-specification:

• First, a declaration CREATE DATABASE <database name> is introduced
• Each concept translates to a table
• Eachproperty of a concept translates to anattribute in that tablewith the corresponding
data type followed by ‘NOT NULL’ if a value is required for that property, else
followed by ‘NULL’;

• the precise syntax of these data types might be implementation-dependent
• Each uniqueness condition translates to a primary key or a unique constraint
• Each reference condition translates to a foreign key constraint
• Each extra constraint translates to a check constraint
• Each constraint also must get a name in SQL
• Each space in a concept or property name has been replaced by ‘_’ to make it 1 word

We illustrate all this in Example 6. Often, a Database Management System (DBMS)
automatically creates default indexes on some well-chosen table attributes in order to
boost the performance of retrievals.

106 B. de Brock

Example 6: The resulting data specification in SQL

Applying the rules, the model as specified until now leads quite naturally to the
default SQL-code below. Constraint C1 expresses that Student_nr must consist of 6
digits, C2 that it must divisible by 11, C3 that Phone_nr must not contain a character
which is not a digit, ‘+’, ‘.’, or ‘ ’, and C4 that Code must not contain a character
which is not a letter or a digit.

CREATE DATABASE BMSD2021;

CREATE TABLE Student (
Student_nr INT NOT NULL, /* e.g. 123453 */
Name VARCHAR NOT NULL, /* e.g. John J. Smith */
Phone_nr VARCHAR(20) NULL, /* e.g. +31.6.1234.5678 */
CONSTRAINT C1 CHECK (100000 Student_nr AND Student_nr < 1000000),
CONSTRAINT C2 CHECK (Student_nr % 11 = 0),
CONSTRAINT C3 CHECK (Phone_nr NOT LIKE '%[!0-9+.]%'),
CONSTRAINT K1 PRIMARY KEY (Student_nr)

);

CREATE TABLE Course (
Name VARCHAR(50) NOT NULL, /* e.g. Requirements Analysis */
Code CHAR(9) NOT NULL, /* e.g. CS123BA02 */
CONSTRAINT C4 CHECK (Code NOT LIKE '%[!a-z0-9]%'),
CONSTRAINT K2 PRIMARY KEY (Code),
CONSTRAINT K3 UNIQUE (Name)

);

CREATE TABLE Exam (
Course_code CHAR(9) NOT NULL, /* e.g. CS123BA02 */
Date DATE NOT NULL, /* e.g. 2020-10-10 */
CONSTRAINT C5 CHECK ('2010-08-01' Date),
CONSTRAINT K4 PRIMARY KEY (Course_code, Date),
CONSTRAINT R1 FOREIGN KEY (Course_code) REFERENCES Course(Code)

);

CREATE TABLE Course_Enrolment (
Student_nr INT NOT NULL, /* e.g. 123453 */
Course_code CHAR(9) NOT NULL, /* e.g. CS123BA02 */
CONSTRAINT K5 PRIMARY KEY (Student_nr, Course_code),
CONSTRAINT R2 FOREIGN KEY (Student_nr) REFERENCES Student(Student_nr),
CONSTRAINT R3 FOREIGN KEY (Course_code) REFERENCES Course(Code)

);

CREATE TABLE Exam_Enrolment (
Student_nr INT NOT NULL, /* e.g. 123453 */
Course_code CHAR(9) NOT NULL, /* e.g. CS123BA02 */
Exam_date DATE NOT NULL, /* e.g. 2020-10-10 */
CONSTRAINT K6 PRIMARY KEY (Student_nr, Course_code, Exam_date),
CONSTRAINT R4 FOREIGN KEY (Student_nr, Course_code)

REFERENCES Course_Enrolment (Student_nr, Course_code),
CONSTRAINT R5 FOREIGN KEY (Course_code, Exam_date)

REFERENCES Exam(Course_code, Date)
);

CREATE TABLE Grading (
Student_nr INT NOT NULL, /* e.g. 123453 */
Course_code CHAR(9) NOT NULL, /* e.g. CS123BA02 */
Exam_date DATE NOT NULL, /* e.g. 2020-10-10 */
Grade TINYINT(3) NOT NULL, /* e.g. 7 */
CONSTRAINT C6 CHECK (0 <= Grade AND Grade <= 10),

CONSTRAINT K7 PRIMARY KEY (Student_nr, Course_code, Exam_date),
CONSTRAINT R6 FOREIGN KEY (Student_nr, Course_code, Exam_date)

REFERENCES Exam_Enrolment(Student_nr, Course_code, Exam_date)
);

Each of the two constraints C1 and C6 - each being a conjunction - could have been
split into two constraints (which would lead to more refined error messaging).

From Elementary User Wishes and Domain Models 107

5 From Elementary User Wish to SSD

Now we look at the ‘dynamic’ part of the system under development, i.e., the processes
the system must support. Usually, (very) many user wishes have to be implemented.
Informally, a User Wish (UW) is a ‘wish’, expressed in natural language, of a (future)
user which the system should be able to fulfil. A UW often consists of an action verb and
a noun (phrase). Examples of UWs in a university setting are Register a Student, Enroll
a Student for a Course, Update a Student Address, Enter a Grade. Other examples are
the following verb/noun-combinations:

Create/Retrieve/Update/Delete/Archive/Process/Handle a

Customer/Product/Order/Sale/Supplier/Employee/…

(Yes, indeed, the first 4 verbs are the well-known CRUD-operations.) We call such a
UW without parameters an elementary user wish (eUW). Each time we will take an
elementary User Wish as a starting point for development. Such a user wish will be
developed by stepwise clarification, stepwise refinement, and stepwise specification. A
parameterized user wish (pUW), another result of stepwise refinement, is an elementary
user wish extended with its relevant parameters, e.g., the wish to ‘Register a student with
a given name, address, gender, and maybe phone number’ (because you must specify
what to register of a student). However, the proper set of parameters might only become
clear (grow and change) during development.

When we add the actor role and the reason to a User Wish then we arrive at the
familiar notion of a User Story (US), often expressed as ‘As a <actor role>, I want to
<user wish> [so that <reason>]’ where the reason-part is optional [13]. A User Story
can be worked out into a Use Case (UC), which consists of a Main Success Scenario
(MSS) and zero or more Alternative Scenarios (AS); see [11, 16]. A Use Case roughly
corresponds to an elementary business process in business process modelling [11].

We now summarize the refinement steps up to now:
eUW → US → UC = MSS + AS*

Example 7: From User Wish via User Story to Use Case (= MSS + AS*)

We illustrate the refinement steps by working out the elementary User Wish Enter
a grade into a User Story and then into a Use Case with a Main Success Scenario
and four Alternative Scenarios in this case. Because data model and refinement
steps should be in line with each other, we must keep the data model in mind. Note
that those four ASs are in line with the Grading-part of the data model (see
Example 4).

eUW1: Enter a grade

108 B. de Brock

US1: As a lecturer, I want to Enter a grade so that the grade is officially registered

UC1: Enter a grade
Precondition: The user is authenticated as a lecturer and authorized for this UC.

MSS1:
1. The user asks the system to enter grade g for student s on exam e
2. The system tries to enter grade g for student s on exam e
3. The system informs the user about the result

Step 1 is the parameterized request, Step 2 the execution of the request, and
Step 3 the result of the execution.

We have the following Alternative Scenarios:

AS1.1: At Step 1: As long as the grade is not (syntactically) correct - i.e., not a
natural number between 0 and 10 - the user is asked to adapt it

AS1.2: At Step 2: If the student is unknown*
then the user is informed about that and ‘nothing’ happens

AS1.3: At Step 2: If the exam is unknown*
then the user is informed about that and ‘nothing’ happens

AS1.4: At Step 2: If student is known and exam is known but if the student is not
enrolled for the exam then the user is informed about it and ‘nothing’ happens

*: By ‘unknown’ we mean unknown to the system (not represented in the system)

Note that up to now, this all can be expressed by - and discussed with - the user in
its own (natural) language!

To integrate the different scenarios of a Use Case into 1 structure, we use a System
SequenceDescription (SSD). An SSD is a kind of stylisedUseCasewhich schematically
depicts the interactions between the primary actor (user), the system (as a black box),
and other actors (if any), including themessages between them. An SSD is usually drawn
as a (UML-)diagram, see [11]. However, we introduce textual SSDs (tSSDs) instead.

Our textual SSDs are meant as more formal representations of use cases, and used
as a follow-up of use cases towards SW design. They integrate the different scenarios of
a Use Case into one structure and have a formal syntax [22] and declarative semantics
[23].

UML-diagrams can also be positioned between (textual) use cases and the final
computer programs (which are also textual), but the UML-diagrams themselves are
graphical. According toUML (https://www.omg.org/spec/UML), the semantics ofUML
defines how the UML concepts are to be realized by computers. Its sections on semantics
are in fact explanations only. So, at best UML has some kind of operational seman-
tics - see [24] for instance - but no formal, declarative semantics. Operational seman-
tics is already looking forward to implementations, e.g., looking at execution models,
intermediate states, parallelization, etc. However, this should not be in the analysis part.

It is important to note that [25] contains rules to translate textual SSDs systemati-
cally to natural language (English) as well as to graphical SSDs (more or less UML-
diagrams). This can help to verify the integration result with the customer! Examples 9
and 10 will show such translation results.

https://www.omg.org/spec/UML

From Elementary User Wishes and Domain Models 109

In [22] a grammar for textual SSDs is proposed. We recall a part of that grammar
below. The terminals are written in bold. The nonterminal A stands for ‘atomic instruc-
tion’ (step), P for ‘actor’ (or ‘participant’), M for ‘message’, S for ‘instruction’ (or SSD),
C for ‘condition’, N for ‘instruction name’, and D for ‘definition’:

A ::= P ° P: M /* where ‘X ° Y: M’ means: ‘X sends M to Y’
P ::= System│User│…
S ::= A│S ; S│begin S end│if C then S [else S] end│while C do S end

│repeat S until C│do N
D ::= define N as S end

The construct ‘doN’ is known as an Include or aCall. We note that the values for the
nonterminals P, M, and N are application dependent (‘domain specific’), apart from the
values System and User for P. The values for P, M, and N will appear naturally during
the development of the specific application. The terminal System represents the system
under consideration.

For atomic instructions we can distinguish the following situations:

1. Actor ° System: i Elucidates the input messages the system can expect
2. System ° System: y Elucidates the transitions (or checks) the system should make
3. System ° Actor: o Elucidates the output messages the system should produce
4. Actor ° Actor2: x A step outside the system (might be helpful in understanding)

where Actor �= System and Actor2 �= System (but Actor and Actor2 might be the
same). We call step (a) an input step, (b) an internal step, (c) an output step, (d) an
external step.

A quite common interaction pattern is: A request, followed by an action, followed
by a result (message). In the above terminology: An input step, followed by an internal
step, followed by an output step.

The different scenarios of a Use Case can now be integrated into 1 structure by using
a textual SSD, as explained in [22] and illustrated in the next example. The refinement
steps until now can be summarized as follows:

eUW → US → UC = MSS + AS∗ → tSSD

110 B. de Brock

We recall that [25] has rules to translate textual SSDs systematically to natural
language.

From Elementary User Wishes and Domain Models 111

Example 9: Translating the tSSD to natural language

The rules from [25] to translate tSSDs to natural language (English) will result in:

Repeat
the User asks the System to enter grade g for student s on exam e.
The System does check whether g is correct. ⎤ 1
If g is not correct then ⎥

the System sends “The grade is not correct. Please adapt it” to the User end ⎥
until g is correct. ⎦
The System does check whether s is known. ⎤ 2
If s is not known then the System sends “Unknown student” to the User end. ⎦
The System does check whether e is known. ⎤ 3
If e is not known then the System sends “Unknown exam” to the User end. ⎦
If s is known and e is known ⎤ 4
then the System does check whether s is enrolled for e. ⎥

If s is not enrolled for e ⎥
then the System sends “Student is not enrolled for the exam” to the User ⎥
end ⎥

end. ⎦
If everything was okay /* The system should keep track of that
then the System does EnterGrade(g, s, e). /* The execution of the request

The System sends “Done” to the User /* The execution result in this case
end

We recall that we also have rules to translate textual SSDs systematically to graphical
SSDs.

112 B. de Brock

Example 10: Translating the textual SSD to a graphical SSD

The rules from [25] to translate textual SSDs to graphical SSDs will result in:

Summarizing tSSDs: A textual SSD schematically depicts the interactions between
the primary actor (user), the system (as a black box), and other actors (if any), including
themessages between them. A textual SSD integrates the different scenarios of a UC into
one structure. A tSSD is written in a kind of ‘structured natural language’ and already
exposes the final execution structure. Textual SSDs can be automatically translated back
to natural language (such as English) as well as to graphical SSDs (more or less UML-
diagrams), which is useful for verification purposes. Example 8 shows that a tSSD is
already close to concrete programming, although it still is implementation-independent.

6 From Textual SSD to SQL-Procedures

To separate the internal representations in a system from the ways information is inter-
changed with an external actor, a system can (conceptually) be split into an ‘interface’
and a ‘kernel’. The interface converts the input as received from an external actor into

From Elementary User Wishes and Domain Models 113

a proper call to the kernel (e.g., an OO-system or a relational DBMS) and it converts
the output from the kernel into a proper message to the external actor. So, then the
system is considered as a ‘grey box’ and no longer as a ‘black box’. This is related to
the MVC-pattern (Model-View-Controller) a well-known software design pattern. We
schematize it below. We indicate the Controller-, Model-, and View-part too:

Step Analysis Design MVC-part

Input step User ° System: A User ° Interface: A
Interface ° Kernel: A´

Controller part

Internal step System ° System: B Kernel ° Kernel: B´ Model part
Output step System ° User: C Kernel ° Interface: C´

Interface ° User: C
View part

Wegraphically illustrate these steps (in combination) by indicating how the analysis-
SSD below, a common analysis interaction pattern, transforms into the design-SSD next
to it.

⎤
⏐ Controller part
⎦
⎤ Model part
⎦
⎤ View part
⎦

Here A is an input message from the user, B expresses what the system must do,
and C is an output message to the user. In the second diagram, A′ is a call to the kernel,
B′ specifies the execution by the kernel, and C′ is the output from the kernel. So, the
interface converts A to A′ (Controller) and C′ to C (View). The interface can be seen as
a ‘front office’ and the kernel as a ‘back office’. The crux of the transformation is the
specification of B′.

If the kernel is an SQL-DBMS then A′ is an SQL-call, B′ represents the SQL-
execution, and C′ the SQL-output. Similarly if the kernel is an OO-system then B′
specifies an OO-execution (typically with get- and set-statements).

In order to make our SQL-design more resistant to all kinds of local SQL-dialects,
we will use stored procedures in SQL. Then every SQL-call A′ can be a procedure call,
i.e., the call of a (stored) procedure in SQL. An SQL-procedure might contain the typical
SQL-statements SELECT, INSERT, UPDATE, and DELETE, but also control-of-flow

114 B. de Brock

language and calls to (other) procedures. A stored procedure will be compiled and gets
an execution plan, which dramatically improves its performance.

In our next example we illustrate how a tSSD can be transformed into SQL.

Example 11: The resulting SQL-procedure needed for the textual SSD

The tSSD in Example 8 has only one input step, so we need only one procedure
(though that procedure might be called repeatedly). The tSSD starts with an input
step, followed by an internal check and maybe an output message. If the grade is not
(syntactically) correct then the procedure is called again (until the grade is correct),
and else the system continues with several internal checks, each maybe followed by
an output message. Finally, if everything is okay then the system does enter the grade
and informs the user about it via an output message.

Note that the resulting SQL-procedure below follows the structure of the tSSD. In
the SQL-procedure, @output is declared as a return parameter. We recall that an
exam is uniquely identified by the course and exam date.

CREATE PROCEDURE EnterGrade @g tinyint(3), @s int, @cc char(9),
@ed Date, @output varchar(50) OUTPUT AS

BEGIN /* Invariant: @output = ‘’ Everything is okay until now */
 SELECT @output = ‘’
 IF NOT (0 <= @g AND @g <= 10)
 THEN SELECT @output = ‘The grade is not correct.

Please adapt it. ’
 ELSE
 IF @s NOT IN (SELECT Student_nr FROM Student)
 THEN SELECT @output = ‘Unknown student. ’
 IF (@cc, @ed) NOT IN (SELECT Course_code, Date FROM Exam)
 THEN SELECT @output = @output + ‘Unknown exam. ’
 IF @output = ‘’
 THEN IF (@s, @cc, @ed) NOT IN (SELECT Student_nr,

 Course_code, Exam_date FROM Exam_Enrolment)
 THEN SELECT @output = ‘Student not enrolled for exam.’
 IF @output = ‘’ /* i.e., if everything was okay */
 THEN BEGIN INSERT INTO Grading VALUES(@s, @cc, @ed, @g)

 SELECT @output = ‘Done. ’
 END

END

On hindsight we overlooked the scenario that if ‘Everything was okay’ (i.e., known
student was indeed enrolled for known exam), the grade could have been in the system
already. But thanks to the uniqueness constraint K7 (see Example 6), the kernel would
have raised an error message (see position C′ in the diagram on the previous page).
Generally speaking, all the constraints specified in the declaration of the database will
guard the system’s contents, even if some scenarios are overlooked in some use cases.

7 Contributions

First, the introduction of the notion of elementary User Wish allowed us to start devel-
opment paths in an early phase of system development. The notion is concrete, simple
to understand, and well-discussable with the user organization.

From Elementary User Wishes and Domain Models 115

We recall that a Use Case consists of a Main Success Scenario plus zero or more
Alternative Scenarios, all being texts. In the end, they must be integrated into one (com-
puter) program, also being text. Then the question arises: What should come on the dots
below to integrate all the scenarios and to have aligned development steps?

(UC =) MSS + AS* (texts) ………….. Program (text)

We put textual SSDs in between (instead of, e.g., graphical SSDs such as a UML-
diagrams).

Then we get: (UC =) MSS + AS* (texts) tSSD (text) Program (text)

instead of: (UC =) MSS + AS* (texts) Program (text)

Several gSSDs (diagrams)

So, to solve the integration problem and the alignment challenge, we use the notion of
textual SSDs. They play a crucial role to obtain integration and alignment. Textual SSDs
are theoretically sound: They have a well-defined syntax [25] as well as a well-defined
semantics [23], as opposed tomany other ‘formalisms’ (such asUML-diagrams). Textual
SSDs can be automatically translated to natural language (e.g., English) and also to
well-formed graphical SSDs [25], for instance for verification purposes. So, in that case
we get the following feedback loops for verification:

User: eUW → US → UC (= MSS + AS*) → tSSD
⇐ ⇐ Text in Natural Language ⇐ ⇐ and

User: eUW → US → UC (= MSS + AS*) → tSSD
⇐ ⇐ ⇐ One graphical SSD ⇐ ⇐ ⇐

Because the grammar for tSSDs aligns with those for imperative and declarative
programming languages, tSSDs form a suitable basis for translations to (computer)
programs. Although implementations often use imperative (object-oriented) languages,
we considered translations to SQL, a declarative database language. Authors such as
Jacobson [17] and Cockburn [16] don’t go all the way to concrete code, as we do. We
made use of (stored) SQL-procedures, which are quite performant. It allowed us to treat
a sequence of executions as one whole, which is very helpful.

Our approach concurrently takes into account the static part (i.e., the data structures)
and the dynamic part (i.e., the processes) of the system to be developed.

By stepwise clarification, stepwise refinement, and stepwise specification, an aligned
straightforward development path for processes resulted:

User: eUW → US → UC = MSS + AS* (texts) → tSSD (text) → SQL-procedures (text)

116 B. de Brock

As a consequence of the straightforward transformations and the alignment, our
approach contributes to the (bi-directional) traceability of the generated artifacts as well
[1, 2, 25]. The approach also brings semi-automatic software generation closer. Our
contribution is not only in the individual steps, but also in their (new) combination, i.e.,
in the choice/ selection and the alignment of these steps.

References

1. Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability problem. In:
Requirements Engineering, pp. 94–101 (1994). http://discovery.ucl.ac.uk/749/1/2.2_rtprob.
pdf

2. Cleland-Huang, J., et al.: Software and Systems Traceability. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-1-4471-2239-5

3. Tiwari, S., Gupta, A.: A systematic literature review of use case specifications research. Inf.
Softw. Technol. 67, 128–158 (2015). https://www.sciencedirect.com/science/article/abs/pii/
S0950584915001081

4. Kettenis, J.: Getting started with use case modeling. White Paper, Oracle (2007). https://
www.oracle.com/technetwork/developer-tools/jdev/gettingstartedwithusecasemodeling-133
857.pdf

5. Fantechi, A., Gnesi, S., Lami, G., Maccari, A.: Applications of linguistic techniques for use
case analysis. Require. Eng. 8(3), 161–170 (2003)

6. Ilieva, M., Ormandjieva, O.: Automatic transition of natural language software requirements
specification into formal presentation. In: [26], pp. 392–397 (2005). https://doi.org/10.1007/
11428817_45

7. Savic,D., Antovic, I., Vlajic, S., Stanojevic, V.,Milic,M.: Language for use case specification.
In: Proceedings of the 34th IEEE Software Engineering Workshop, SEW, pp. 19–26 (2011)

8. Sinha, A., Paradkar, A., Kumanan, P., Boguraev, B.: A linguistic analysis engine for natural
language use case description and its application to dependability analysis in industrial use
cases. In: Proceedings of the IEEE/IFIP International Conference on Dependable Systems
Networks, DSN 2009, pp. 327–336 (2009)

9. Kim, H., So, B.-H., Han, W.-S., Lee, H.: Natural language to SQL: where are we today? Proc.
VLDB 13(10), 1737–1750 (2020)

10. de Brock, E.O.: Converting a non-trivial Use Case into an SSD: an exercise. SOM Research
Report 2018011, University of Groningen (2018)

11. Larman, C.: Applying UML and Patterns. Pearson Education, London (2005)
12. de Brock, E.O.: What to do when requirements are changing all the time? A control system

example. In: Shishkov,B. (ed.): International SymposiumonBusinessModeling andSoftware
Design (BMSD). LNBIP, pp. 317–329 (2021)

13. Lucassen, G., Dalpiaz, F., Werf, J.M.E.M.V.D., Brinkkemper, S.: The use and effectiveness
of user stories in practice. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS, vol. 9619,
pp. 205–222. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30282-9_14

14. Lucassen, G.G.: Understanding user stories. Ph.D. thesis, Utrecht University (2017). https://
dspace.library.uu.nl/handle/1874/356784

15. Cohn, M.: User Stories Applied: For Agile Software Development. Addison (2004). https://
www.pearson.com/us/higher-education/program/Cohn-User-Stories-Applied-For-Agile-Sof
tware-Development/PGM314163.html

16. Cockburn, A.: Writing Effective Use Cases. Addison Wesley (2001). https://www.infor.uva.
es/~mlaguna/is1/materiales/BookDraft1.pdf

http://discovery.ucl.ac.uk/749/1/2.2_rtprob.pdf
https://doi.org/10.1007/978-1-4471-2239-5
https://www.sciencedirect.com/science/article/abs/pii/S0950584915001081
https://www.oracle.com/technetwork/developer-tools/jdev/gettingstartedwithusecasemodeling-133857.pdf
https://doi.org/10.1007/11428817_45
https://doi.org/10.1007/978-3-319-30282-9_14
https://dspace.library.uu.nl/handle/1874/356784
https://www.pearson.com/us/higher-education/program/Cohn-User-Stories-Applied-For-Agile-Software-Development/PGM314163.html
https://www.infor.uva.es/~mlaguna/is1/materiales/BookDraft1.pdf

From Elementary User Wishes and Domain Models 117

17. Jacobson, I., et al.: Use case 2.0: the guide to succeeding with use cases. Jacobson Int. (2011).
https://www.ivarjacobson.com/publications/white-papers/use-case-ebook

18. Dumas, M., et al.: Fundamentals of Business Process Management. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-662-56509-4. https://www.springer.com/gp/book/978
3662565087

19. Ullman, J.D., et al.: Database Systems: The Complete Book. Pearson, London (2009)
20. Elmasri R., Navathe S.B.: Fundamentals of Database Systems. Pearson (2016). https://www.

pearson.com.au/products/D-G-Elmasri-Navathe/D-G-Elmasri-Ramez-Navathe-Shamkant-
B/Fundamentals-of-Database-Systems-Global-Edition/9781292097619?R=9781292097619

21. Chen, P.: The entity-relationship model - toward a unified view of data. ACMTrans. Database
Syst. 1(1), 9–36 (1976)

22. de Brock, E.O.: From business modeling to software design. In: [28], pp. 103–122 (2020).
https://doi.org/10.1007/978-3-030-52306-0_7

23. de Brock, E.O.: Declarative semantics of actions and instructions. In: [28], pp. 297–308
(2020). https://doi.org/10.1007/978-3-030-52306-0_20

24. Övergaard, G., Palmkvist, K.: A formal approach to use cases and their relationships. In:
Bézivin, J., Muller, P.A. (eds.) The Unified Modeling Language. «UML»’98: Beyond the
Notation. LNCS, vol. 1618, pp. 406–418. Springer, Berlin (1998).https://doi.org/10.1007/
978-3-540-48480-6_31

25. de Brock, E.O.: On System Sequence Descriptions. In [27] (2020)
26. Montoyo, A., Munoz, R., Mtais, E. (eds.): Natural Language Processing and Information

Systems. LNCS, vol. 3513, Springer, Heidelberg (2005)
27. Sabetzadeh, M., et al. (eds.): Joint Proceedings of REFSQ-2020 Workshops, Doctoral

Symposium, Live Studies Track, and Poster Track. Pisa, Italy (2020)
28. Shishkov, B. (ed.): International Symposium on Business Modeling and Software Design

(BMSD). Lecture Notes in Business Information Processing, vol. 391 (2020)

https://www.ivarjacobson.com/publications/white-papers/use-case-ebook
https://doi.org/10.1007/978-3-662-56509-4
https://www.springer.com/gp/book/9783662565087
https://www.pearson.com.au/products/D-G-Elmasri-Navathe/D-G-Elmasri-Ramez-Navathe-Shamkant-B/Fundamentals-of-Database-Systems-Global-Edition/9781292097619%3FR%3D9781292097619
https://doi.org/10.1007/978-3-030-52306-0_7
https://doi.org/10.1007/978-3-030-52306-0_20
https://doi.org/10.1007/978-3-540-48480-6_31

	From Elementary User Wishes and Domain Models to SQL-Specifications
	1 Introduction
	2 Overview of Our Development Path
	3 From Simple Domain Models to Conceptual Data Model
	4 From Conceptual Data Model to SQL-Database
	5 From Elementary User Wish to SSD
	6 From Textual SSD to SQL-Procedures
	7 Contributions
	References

