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a b s t r a c t

In this paper a decentralized approach to the platooning problem with nonlinear spacing policies is
considered. A predecessor–follower control structure is presented in which a vehicle is responsible for
tracking of a desired spacing policy with respect to its predecessor, regardless of the control action of
the latter. From the perspective of geometric control theory, we state necessary and sufficient condi-
tions for the existence of decentralized controllers that guarantee tracking and asymptotic stabilization
of a general nonlinear spacing policy. Moreover, all nonlinear spacing policies for which there exists a
decentralized state feedback controller that achieves asymptotic tracking are characterized. It is shown
that string stability is a consequence of the choice of spacing policy and sufficient conditions for a
spacing policy to imply string stability are given. As an example, we fully characterize all state feedback
controllers that achieve the control goals for a given nonlinear spacing policy, guaranteeing asymptotic
tracking for a heterogeneous platoon. The results are illustrated through simulations.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Vehicle platooning amounts to the formation of closely-spaced
roups of vehicles and has the potential to increase road safety,
mprove traffic flow, and reduce fuel consumption, see the
verviews [1–4]. Consequently, the automatic control of vehicles
or platooning has been studied extensively, e.g., [5–9].

A key element in such control strategies for vehicle platooning
s the specification of the desired distance between successive ve-
icles, known as the spacing policy. Well-known examples are the
onstant spacing policy [10], where a constant distance between
ehicles is desired, and the constant headway spacing policy [11,
2], where the desired spacing is dependent on the velocity of the
ollower vehicle. These popular spacing policies have in common
hat they are linear, i.e., the desired inter-vehicle distance is a
linear function of the states of two successive vehicles. In this
paper we focus on the design of vehicle controllers for nonlinear
pacing policies to form a more general class of control strategies
or platooning.

Although there is a very rich literature on nonlinear spacing
olicies as models of human driving behavior, see, e.g., [13,14]
or early results and [15] for an overview, their use as desired
nter-vehicle distance for automated vehicles has received less
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167-6911/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
attention. An exception is [16], where it is motivated that non-
linear spacing policies can reduce nominal inter-vehicle spacings
as well as transient errors. Similarly, [17] proposes a nonlinear
spacing policy aimed at increasing traffic flow capacity, see also
[18]. Control for general nonlinear spacing policies is considered
in [19]. For alternatives to linear spacing policies based on desired
time delays between vehicles, see [20,21].

Motivated by these potential advantages of nonlinear spacing
policies in vehicle platooning, this paper considers the decentral-
ized platoon control for general nonlinear spacing policies. The
main contributions are the following.

First, as a motivating example, we show that a spacing policy
that is quadratic in the velocity of the following vehicle can
be used to enforce a lower bound on the acceleration of the
follower vehicle. When well-designed, such nonlinear spacing
policy guarantees that no collisions occur even in case of limited
braking capacity. This is of particular relevance in heterogeneous
vehicle platoons, e.g., for heavy-duty vehicles with distinct vehicle
properties.

Second, we develop an approach for decentralized control
of platoons using a predecessor–follower control structure. Fol-
lowing an idea from [22], the follower vehicle is responsible
for maintaining the desired spacing policy with respect to its
predecessor, regardless of the control actions of this predecessor.
This robustness approach towards decentralized control allows
for considering heterogeneous platoons.

Third, using tools from nonlinear geometric control theory,
[23,24], we characterize all nonlinear spacing policies for which
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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decentralized controller can be synthesized. This is achieved by
mploying necessary and sufficient conditions for the existence
f a controller for a given nonlinear spacing policy. Such a decen-
ralized controller is given explicitly and is inherently nonlinear.
ere, we note that the use of nonlinear controllers for platoon
ontrol has also been considered in, e.g., [25,26], although popular
inear spacing policies are generally considered in these works.

Fourth, for a class of nonlinear spacing policies, we show
hat string stability can be guaranteed. String stability, e.g.,
21,27–29], is a crucial performance criterion in vehicle platoons
s it guarantees the attenuation of perturbations propagating
hrough the platoon. In this paper it will be shown that, due to the
ecentralized control design, string stability is not a consequence
f the choice of controller, but rather a property of the spacing
olicy.
The remainder of this paper is organized as follows. Section 2

rovides a motivational example of a nonlinear spacing policy
efore Section 3 provides a detailed problem statement. The main
esults are stated in Section 4. Since the results are build on
onlinear geometric control theory, a brief review is given in
ppendix A. Section 5 illustrates the results and conclusions are
tated in Section 6.

. A motivation for nonlinear spacing policies

Consider a platoon of N + 1 vehicles with the dynamics

ṡi = vi,

v̇i = ai,
τiȧi = −ai + ui,

(1)

or i ∈ {0, 1, . . . ,N}. Here, si, vi, and ai (all in R) are the longitu-
inal position, velocity and acceleration of vehicle i, respectively.
he control input ui ∈ R can be regarded as the desired ac-

celeration. The time constant τi > 0 represents the engine
ynamics and are not necessarily identical for each vehicle. Hence
heterogeneous platoon is considered. This extends the model

lightly compared to the models used in e.g., [6,30]. We also note
that (1) could be the result of applying feedback linearization to
a nonlinear model, see [6]. For the remainder of this paper, the
state of vehicle i is denoted by ξi =

[
si vi ai

]⊤
∈ R3 and the

full state of the platoon is collected as ξ =
[
ξ⊤

0 · · · ξ⊤

N

]⊤
∈

R3(N+1).
The distance between vehicle i and its predecessor with index

i − 1 is denoted as

∆i = si−1 − si, . (2)

The desired or reference inter-vehicle distance is defined as a
function ∆ref

i : R4
→ R of (vi−1, ai−1, vi, ai). This function is

usually referred to as the spacing policy. The spacing error zi :

R6
→ R is then naturally defined by

zi = ∆i −∆ref
i . (3)

Common examples of linear spacing policies are the constant
spacing policy, where ∆ref

i = d0, e.g., [10], for some standstill
distance d0 ∈ R, and the constant headway spacing policy given
by

∆ref
i = d0 + λvi, (4)

with λ > 0, e.g., [11,12].
In the case of a linear spacing policy, e.g., (4), ensuring perfect

tracking (i.e., ∆i = ∆ref
i for all t) might require an acceleration or

deceleration which is undesirable in practice. In the case of e.g.,
an emergency stop, the acceleration ai(t) might need to subceed
a certain bound i.e., ai(t) < āi for some āi < 0 in order to

maintain perfect tracking. However, it might be preferable that

2

Fig. 1. Simulation of the velocity profile of a two-vehicle model (7) when
perfect tracking is achieved for spacing policies (4) and (5), corresponding to the
subscripts ch and nh respectively, time constants τ1 = τ0 = 1, time headway

= 2, and, γ = 0.1.

Fig. 2. Simulation of the acceleration profile of a two-vehicle model (7) when
perfect tracking is achieved for spacing policies (4) and (5), for the parameters
as in Fig. 1.

the acceleration of a following vehicle remains above āi, i.e. āi ⩽
ai(t) for all t .

The problem described above can be overcome by a nonlinear
spacing policy, for example the nonlinear headway spacing policy
defined for λ > 0 by

∆ref
i = d0 + λvi + γ v2i . (5)

Note that (4) is recovered from (5) in the case γ = 0. In the
case of perfect tracking it follows that ∆̇i − ∆̇i

ref
= 0 for all t as

well. Assuming that the platoon drives with a positive velocity,
this then leads to

ai(t) = v̇i(t) =
−vi(t) + vi−1(t)
(λ+ 2γ vi(t))

⩾
−vi(t)
2γ vi(t)

=
1

−2γ
.

Hence choosing γ = −
1
2 ā

−1
i guarantees ai(t) ⩾ āi for all t .

Furthermore, by choosing d0 and λ appropriately such that∆ref
i >

, collisions are guaranteed to be avoided in the case of perfect
racking.

Figs. 1 and 2 show a simulation comparison between the
onlinear headway and constant headway spacing policies in the
ase of perfect tracking (i.e., ∆i = ∆ref

i for all t).
Fig. 2 illustrates that the acceleration a1(t) subceeds the value

ā1 when the constant headway spacing policy is tracked perfectly.
However, Fig. 2 also shows that a nonlinear spacing policy, such
as given by (5), ensures a safe emergency distance and enforces
the acceleration to be greater than ā1, even when the nomi-
nal spacing (i.e., the inter-vehicle distance at a given nominal
velocity) is the same as for the constant headway policy.

This example shows that nonlinear spacing policies potentially
increase safety and it motivates the investigation of controller
design for nonlinear spacing policies. In this paper the focus is on
decentralized controller design. It will be shown that in the case
of the nonlinear headway spacing policy it is possible to design
a decentralized (nonlinear) controller that achieves asymptotic
tracking. More generally, this paper characterizes all nonlinear
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pacing policies that can be asymptotically tracked by means of
decentralized controller.

. Problem statement

As mentioned in the previous section, a decentralized approach
towards controller design is pursued, in which a vehicle i is
responsible for achieving the desired spacing with respect to its
predecessor i − 1 using only local measurements (i.e., vehicle i
has access to measurements on the state of its own and its pre-
decessor). Moreover, the aim is to design the control for vehicle
i such that it is robust with respect to the input of vehicle i − 1.
In that case, while vehicle i maintains the desired inter-vehicle
distance with respect to its predecessor, the latter remains free to
choose its control input ui−1 to achieve its own control objectives
(e.g., tracking of a desired spacing policy with respect to vehicle
i− 2). Given this approach, which is similar to the control design
in [22], it is sufficient to design a controller for two consecutive
vehicles. Hence we consider a platoon consisting of only two
vehicles (i.e., N = 1). The state of this platoon is given by

x = [ξ⊤

0 ξ⊤

1 ]
⊤

= [s0 v0 a0 s1 v1 a1]⊤

= [x1 · · · x6]⊤
(6)

with the corresponding dynamics

ẋ(t) = Ax(t) + Bu1(t) + Eu0(t), (7)

where

A =

[
A0 0
0 A1

]
, B =

[
0
B1

]
, E =

[
B0
0

]
. (8)

Here, Ai and Bi follow directly from (1) and are given by

Ai =

⎡⎣0 1 0
0 0 1
0 0 −τ−1

i

⎤⎦ , Bi =

⎡⎣ 0
0
τ−1
i

⎤⎦ . (9)

ote that the spacing error, can be compactly written as a non-
inear output of (7) as

(t) = h(x(t)). (10)

ere we omit the index of z for the sake of notation, as will be
one for ∆ and ∆ref as well.
As an example, using (2) and (5), it is readily observed that the

nonlinear headway spacing policy leads to

h(x) = x1 − x4 − λx5 − γ x25 − d0. (11)

For analytical purpose it is assumed in the remainder of the
aper that ∆ref(0) = 0. This assumption is without loss of gener-
lity, since ∆ref can be regarded as an affine shift of a nominal

spacing policy ∆̃ref, i.e., ∆ref
= ∆̃ref

− ∆̃ref(0). Simultaneously
regarding s1 as a deviation of a nominal position s̃1, i.e., s1 =

˜1 + ∆̃ref(0), and defining s0 = s̃0 and ∆̃ = s̃0 − s̃1 then yields

(t) = ∆̃(t) − ∆̃ref(t) = ∆(t) −∆ref(t).

his change of coordinates does not alter the model (7) due to
he linearity of the dynamics, since ∆̃ref(0) is constant and hence
˙1 = ˙̃s1. This shows that the consideration of ∆ref, with ∆ref(0) =

is indeed without loss of generality, given a proper change of
oordinates. It is noted that in these coordinates x(t) = 0 and
(t) = 0 do not imply a collision of vehicles, but guarantee a
afe standstill distance ∆̃ref(0) and perfect tracking of the nominal
pacing policy ∆̃ref respectively.
The control objective of tracking and asymptotic stabilization

f a given spacing policy can now be defined as follows.
 t

3

efinition 1. Consider the platoon (7) and a spacing policy ∆ref

satisfying ∆ref(0, 0, 0, 0) = 0. Then, a controller u1 = α(x)+β(x)ν
is said to

(i) track the spacing policy if for any u0(·) and with x(0) = 0,
it holds that z(t) = 0 for all t ⩾ 0;

(ii) asymptotically stabilize the spacing policy if for any u0(·),
x(0) ∈ R6, it holds that limt→∞ z(t) = 0;

(iii) achieve string stability if for any u0(·) and with x(0) = 0,
the following holds for all T > 0:∫ T

0
|v1(t)|2 dt ⩽

∫ T

0
|v0(t)|2 dt. (12)

The definition of string stability in (12) ensures disturbance
attenuation in vi when disturbances propagate through the pla-
toon. This definition in terms of the velocities is in line with the
classical literature on string stability e.g., [27,31]. Although in [27]
string stability is defined in terms of the positions si and si−1, this
efinition is equivalent to the definition in terms of the velocities
iven the model (1). Definitions in terms of the spacing error are
lso not uncommon, e.g., [11,16], though it is recognized in e.g.,
29,32] that the definition in terms of the velocities is relevant as
ell.
Definition 1 leads to the following control problem.

roblem 1. Given (7) and spacing error (10) resulting from
he spacing policy ∆ref, find a (nonlinear) state feedback u1 =

(x) + β(x)ν such that the closed-loop system

(t) = Ax(t) + B
(
α(x(t)) + β(x(t))ν(t)

)
+ Eu0(t), (13)

atisfies the following properties for any u0(·):

(i) x(0) = 0 implies z(t) = 0 for all t ⩾ 0;
(ii) for all x(0) ∈ R6, it holds that limt→∞ z(t) = 0.

Clearly, properties (i) and (ii) in Problem 1 correspond to the
bjectives of tracking and asymptotic stabilization of the spacing
olicy as in items (i) and (ii) in Definition 1.
Even though there is no requirement on string stability in

roblem 1, it will be shown that if property (i) is guaranteed,
roperty (iii) is a consequence of the choice of ∆ref rather than
f the controller.
Before addressing Problem 1 in Section 4, it is noted that

roperties (i) and (ii) can be regarded as a disturbance decoupling
roblem with asymptotic stability. These are classical problems
n nonlinear geometric control theory, of which a brief review is
iven in the Appendix.

emark 2. As this problem fits within the framework of nonlin-
ar geometric control theory, one could also assume a nonlinear
ehicle model that is affine in the input, i.e., of the form

˙ = f (x) + g(x)u.

owever, as the vehicle model (1) is most commonly used in the
iterature on platooning, it is adopted in this paper as well.

. Decentralized nonlinear state feedback

.1. General nonlinear spacing policies

Before designing a controller for tracking of the nonlinear
eadway spacing policy (11), we will first present a general
esult. We characterize all spacing policies for which part (i) of
roblem 1 can be solved and then show that, for these spacing
olicies, solvability of the second part of Problem 1 is implied by

he first part. To that extent we introduce the following concepts
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f nonlinear geometric control theory, which are crucial in the
emainder of the section.

For a function h : R6
→ R and a smooth vector field f : R6

→

R6 the Lie derivative or total derivative of h along f is given by

Lf h(x) =
∂h
∂x

(x)f (x) (14)

Note that Lf h : R6
→ R. The repeated Lie derivative is then

iteratively given by

Lkf h(x) = Lf Lk−1
f h(x), k = 1, 2, . . . (15)

here L0f h(x) = h(x). Given the definition of a Lie derivative, one
can define the following relation between the input u1 of (7) and
the output (10).

Definition 3. The smallest integer ρ such that

LBL
ρ−1
Ax h(x)

is different from the zero-function, is called the relative degree of
the system (7) with output (11).

A more extended, yet brief review of nonlinear geometric
control theory that is required for the proofs of the results is given
in Appendix A.

In the remainder of the paper, we will omit the dependence
on x of all functions and vector fields for the sake of notational
convenience. Furthermore, all conditions are assumed to hold
globally, i.e., f (x) = 0 and f (x) ̸= 0 means f (x) = 0 for all
x ∈ R6 and f (x) is not the zero-function, respectively, unless
stated otherwise.

Theorem 4. Consider the dynamics in (7) with the spacing er-
ror (3). Then, part (i) of Problem 1 has a solution if and only if

∂∆ref

∂a0
= 0 (16)

and the following implication holds

∂∆ref

∂a1
= 0 H⇒

∂∆ref

∂v0
= 0 and

∂∆ref

∂v1
̸= 0. (17)

roof. The proof is given in Appendix B. □

emark 5. Condition (17) in Theorem 4 corresponds to two
ossible values of the relative degree ρ. Indeed, in the case that
∂∆ref

∂a1
̸= 0, it follows from the proof of Theorem 4 that LBh(x) ̸= 0

nd ρ = 1. Alternatively, if ∂∆ref

∂a1
= 0, but ∂∆ref

∂v1
̸= 0 then

BLAxh(x) ̸= 0 and hence ρ = 2.

emark 6. In the case of ρ = 1 it holds that

∂∆ref

∂v0
=
∂∆ref

∂a0
=
∂∆ref

∂a1
= 0.

Consequently, ∆ref
= ψ(v1), i.e., the spacing policy is a function

depending on the velocity of the follower vehicle only.

The conditions (16)–(17) allow for an insightful interpretation.
Namely, (16) states that the spacing policy should be independent
of the acceleration of the predecessor, where we note that this
is the state on which the control input u0 acts. Similarly, (17)
requires that the spacing policy is independent of the velocity of
the predecessor if information on the acceleration of the follower
is not included.

The following result states that the conditions of Theorem 4
are sufficient to also solve part (ii) of Problem 1.
4

Theorem 7. Consider the dynamics in (7) and let ∆ref be the
spacing policy. If part (i) of Problem 1 can be solved, then part (i)
and part (ii) can be solved simultaneously.

Proof. The proof is given in Appendix C. □

As a consequence of feedback linearization, we can state the
ext result, which characterizes all inputs that achieve perfect
racking.

orollary 8. Consider the dynamics in (7). Let ∆ref be a spacing
olicy and ρ be the relative degree. Perfect tracking is achieved if
nd only if for some function φ(·) with the property that z(t) = 0
or all t ⩾ 0 implies φ(t) = 0 for all t ⩾ 0, the control u1(t) is of the
orm

1(t) = (LBL
ρ−1
Ax h(x))−1(φ(t) − LρAxh(x(t))). (18)

roof. Suppose perfect tracking is achieved by u1(·). Then z(t) =

for all t ⩾ 0 implies ż(t) = 0 and z̈(t) = 0 for all t ⩾ 0.
mitting the time dependence, this means that in the case ρ = 1,
.e., LBh(x) ̸= 0, we have that

˙(t) =
∂h
∂x

ẋ =
∂h
∂x

(Ax + Bu1 + Gu0)

= LAxh(x) + LBh(x)u1

= 0.

ow consider the case ρ = 2, i.e., LBLAxh(x) ̸= 0. Then we obtain

¨(t) = L2Axh(x) + LBLAxh(x)u1 = 0.

onsequently u1(t) = (LBL
ρ−1
Ax h(x))−1(φ(t) − LρAxh(x(t))) where

(t) = ż(t) = 0 implies φ(t) = 0.
Conversely, it is readily verified that if u1(·) is of the form (18)

erfect tracking is achieved. □

Corollary 8 allows for a straightforward characterization of
general class of controllers that achieve perfect tracking and

tabilization of the spacing error. However, as Problem 1 requires,
e will confine ourselves to state-feedback controller of the form
1 = α(x) + β(x)ν.

orollary 9. Consider the dynamics in (7) and let the spacing error
10) satisfy the conditions of Theorem 4. Then in the case ρ = 1,
roblem 1 is solved by

1 = (LBh)−1 (φ1(z) − LAxh) , (19)

here φ1(z) is such that the origin is a globally asymptotically stable
quilibrium of the differential equation ż = φ1(z). In the case ρ = 2,
roblem 1 is solved by

1 = (LBLAxh)−1 (
φ2(z, ż) − L2Axh

)
, (20)

here φ2(z, ż) is such that the origin is a globally asymptotically
table equilibrium of z̈ = φ2(z, ż).

xample 10. A simple (linear) function which globally asymptoti-
ally stabilizes the origin of ż = φ1(z) is the function φ1(z) = −θz
or some θ > 0. Similarly φ2(z, ż) = −θ1z − θ2ż is a typical
xample of a function that globally asymptotically stabilizes the
rigin of z̈ = φ2(z, ż) if θ1, θ2 > 0.

emark 11. The convergence (to zero) of the spacing error
= h(x) is determined by the choice of φρ , as follows from

C.2). Hence, the function φρ can be designed to achieve desired
ehavior. For example, if an additional vehicle is attached to the
latoon, but it is far behind, the (relatively large) spacing error
an be reduced with mild control action, e.g., a controller ensuring
bounded acceleration ai(t) for all t . On the other hand, if the
pacing error is very small, due to a disturbance in ∆i, more
ggressive control action is desirable due to safety reasons.
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.2. Internal dynamics and zero dynamics

By construction, the controllers of Corollary 8 achieve input–
utput linearization with respect to the output z = h(x) and a
irtual input v that is chosen as v = φ2(z, ż) in case ρ = 2. In

this section we study the remaining internal dynamics.
To identify the relevant remaining internal dynamics, we note

that the lead vehicle cannot be controlled and we are only inter-
ested in the behavior of the follower vehicle with respect to this
lead vehicle. To make this more explicit, consider the case ρ = 2
and the change of coordinates⎡⎢⎢⎢⎢⎢⎣
s0
v0
a0
z
ż
ζ

⎤⎥⎥⎥⎥⎥⎦ = S(x) =

⎡⎢⎢⎢⎢⎢⎣
x1
x2
x3
h(x)

LAxh(x)
λ(x)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
s0
v0
a0

s0 − s1 − ψ(v1)
v0 − v1 −

∂ψ

∂v1
(v1)a1

λ(x)

⎤⎥⎥⎥⎥⎥⎦ ,

where we have used that necessarily ∆ref
= ψ(v0) for some ψ ,

see Remark 6. Now, the remaining dynamics with state ζ should
be chosen such that (1) the function S is invertible (i.e., S is a
oordinate transformation) and (2) it is relevant for describing
ehicle-following behavior.
Clearly, the choice

= λ(x) = v0 − v1, (21)

atisfies these two criteria. Its dynamics is readily obtained from
7) and (10) as

˙ = a0 − a1 = −

(
∂ψ

∂v1
(v1)

)−1 (
ζ − ż

)
+ a0, (22)

eading to the zero dynamics

˙ = a0 − a1 = −

(
∂ψ

∂v1
(v1)

)−1

ζ + a0. (23)

ow, we immediately obtain the following result.

emma 12. Consider the spacing policy ∆ref
= ψ(v1) and assume

that there exists δ > 0 such that
∂ψ

∂v1
(v1) ⩾ δ (24)

or all v1. Then, the zero dynamics (23) is input-to-state stable with
espect to the input a0.

Hence, under the condition of Lemma 12, the state ζ = v0−v1
emains bounded if the predecessor vehicle acceleration a0 is
ounded, thus leading to desirable vehicle-following behavior.
A similar, but more involved analysis can be done for the case

= 1. It can be shown that

1 = λ1(x) = v0 − v1, ζ2 = λ2(x) = a0 − a1, (25)

ield valid and relevant internal states. The controller as in (19)
eads to the following internal dynamics

ζ̇1 = ζ2

∂∆ref

∂a1
ζ̇2 = φ0(z) − ζ1 −

∂∆ref

∂v1
ζ2 +

1
τ0

∂∆ref

∂a1
u0

+

(
∂∆ref

∂v0
+
∂∆ref

∂v1
−

1
τ0

∂∆ref

∂a1

)
a0

(26)

his yields a second order nonlinear differential equation, of
hich the stability properties are heavily dependent on the spe-
ific choice of spacing policy ∆ref. Hence we restrict attention to
5

the special case that the partial derivatives of ∆ref are constant,
.e.,

∂∆ref

∂v0
= hv0 ,

∂∆ref

∂v1
= hv1 ,

∂∆ref

∂va1
= ha1 ,

for some constants hv0 , hv1 and ha0 ̸= 0. For this case, and for
= 0, the zero dynamics are given by

ζ̇1 = ζ2

ha1 ζ̇2 = −ζ1 − hv1ζ2 +
1
τ0

ha1u0

+

(
hv0 + hv1 −

1
τ0

ha1

)
a0.

(27)

his leads to the following result.

emma 13. Consider the platoon (7) with the linear spacing policy
ref(v0, a0, v1, a1) = hv0v0 +hv1v1 +ha1a1. Then the zero dynamics

27) is input-to-state stable with respect to the inputs u0 and a0 if
nd only if hv1 > 0 and ha1 > 0.

roof. As the internal dynamics (27) is linear, input-to-state
tability is equivalent to asymptotic stability of the autonomous
ystem[
ζ̇1

ha1 ζ̇2

]
=

[
ζ2

−ζ1 − hv1ζ2

]
(28)

his is the case if and only if hv1 > 0 and ha1 > 0. □

emark 14. It can be shown that ζ̃1 = s0−s1 and ζ̃2 = v0−v1 are
alid internal states as well for the case ρ = 1. These alternative
nternal states have dynamics given by
˙̃
ζ1 = ζ̃2

˙̃
ζ2 = a0 − a1.

(29)

As ∂∆ref

∂a1
̸= 0, it follows from the implicit function theorem and

the relation z = s0 − s1 −ψ(v0, v1, a1) that there exists a function
(·) such that a1 = Γ (v0, z, ζ1, ζ2). Input-to-state stability of (29)
an be studied further in the case that Γ (·) can be written down
xplicitly or is known to have a specific structure for a given
pacing policy. However, further investigation of spacing policies
hat result in ISS of (29) is beyond the scope of this paper.

.3. Controller design and string stability

In the following we will show that for a properly chosen
ref, string stability is induced via property (i) of Problem 1 and

herefore is not a property of the controller. This is formalized in
he next proposition.

roposition 15. Consider the platoon dynamics (7) with spacing
olicy ∆ref. If there exists a controller u1(·) that achieves perfect
racking and results in string stable behavior, then any controller
hat achieves perfect tracking results in string stable behavior.

roof. If the controllers u1(·) and ũ1(·) achieve perfect tracking,
hen z(t) = 0 for all t ⩾ 0. By Corollary 8 this implies φ(t) =
˜ (t) = 0 and hence u1(t) = ũ1(t). Consequently, in the case
f perfect tracking, the dynamics of vehicle i is independent
f the choice of input. Hence, if u1(·) results in string stable
ehavior, v1(t) establishes this as well. Since u1(·) and ũ1(·) were
hosen arbitrarily, it follows that if there exists one controller
chieving perfect tracking and results in string stable behavior,
or any controller that achieves perfect tracking string stability is
mplied. □
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Thus, in the case that a controller solves Problem 1, string
stability is induced by properties of the spacing policy. This means
that all spacing policies for which there exists a decentralized
controller u(·) satisfying the control objective as in Definition 1,
are those spacing polices that satisfy the conditions of Theorem 4
and induce string stability.

Determining which spacing policies, regardless whether they
satisfy the conditions of Theorem 4, will result in string stability
in the case of perfect tracking is in general difficult. However,
for some special cases it is possible to state sufficient conditions.
Consider for example spacing policies of the form

∆ref
= ψ(v1), (30)

or some differentiable function ψ(·), i.e., the spacing policy is a
function of v1 only. Such spacing policies satisfy the conditions
of Theorem 4 as long as dψ

dv1
̸= 0 for all v1, e.g., when ψ(v1) is a

strictly monotone function of v1. In that case Problem 1 is solvable
for ∆ref in (30) and we can state the following result.

Theorem 16. Consider the platoon (7) with the nonlinear spacing
policy (30). Let the controller achieve perfect tracking. If dψ

dv1
(v1) ⩾

> 0 for all v1, we have for x(0) = 0 that
T

0
|v1(t)|2 dt ⩽

∫ T

0
|v0(t)|2 dt,

or all T ⩾ 0.

roof. Since x(0) = 0 we have that z(t) = 0 for all t ⩾ 0 by
nvariance of D∗, as the controller solves Problem 1. Therefore it
ollows that ż(t) = −v1 + v0 −

dψ
dv1
v̇1 = 0 for all t ⩾ 0, which

eans that

˙1 =
−v1 + v0

dψ
dv1

.

onsidering the storage function V (v1) = εv21 , we obtain

V̇ (v1) = ε
−2v21+2v0v1

dψ
dv1

⩽ ε
−v21+v20

dψ
dv1

⩽ −v21 + v20,

where the final inequality follows from the fact that dψ
dv1

⩾ ε > 0.
hus, we obtain

(v1(T )) − V (v1(0)) ⩽ −

∫ T

0
v21(t) dt +

∫ T

0
v20(t) dt.

Then, by noting that V (v1(T )) ⩾ 0 by definition of V and v1(0) =

0 due to x(0) = 0, the result (12) follows after rearranging
terms. □

In the case that the spacing policy is also dependent on the
acceleration a1 of the follower vehicle, one could try to obtain
similar results. Following the lines of the proof of Theorem 16
we see that if ∆ref(v1, a1) is perfectly tracked, the spacing error
z(t) = 0 for all t ⩾ 0 and hence

ż(t) = −v1 + v0 −
∂∆ref

∂v1
v̇1 −

∂∆ref

∂a1
v̈1 = 0, (31)

or all t ⩾ 0. In Eq. (31) a time-varying second order differential
equation can be recognized. In the case that the spacing policy is
linear in v1 and a1, Eq. (31) yields a time invariant second order
ransfer function and we obtain the following result of which the
roof can be found in [22].

heorem 17. Consider the platoon (7) with a spacing policy
ref(v1, a1), i.e., depending on v1 and a1 only. Let ∂∆ref

∂v1
= hv > 0

and ∂∆ref

∂a1
= ha > 0, for some constants hv, ha. Let the controller

be of the form (20). Then, the platoon is string stable if and only if
hv ⩾

√
2ha.
6

4.4. Example: nonlinear headway spacing policy

Returning to the nonlinear headway spacing policy (11), we
have that this spacing policy satisfies the conditions of Theorem 4.
This leads to the following corollary.

Corollary 18. Given the dynamics in (7) with the nonlinear
headway spacing policy (5). Then Problem 1 is solvable.

Proof. The nonlinear headway spacing policy leads to the spacing
error (11). As ∂h

∂x6
̸= 0 in this case, we have ρ = 2 and obtain

D∗
= ker(span{dh, dLAxh})

= ker
[

−1 0 0 1 −(h+2γ x5) 0
0 −1 0 0 1+2γ x6 −(h+2γ x5)

]
.

t is clear that E ∈ D∗, such that, by Problem 1, there does indeed
xist a feedback that solves the disturbance decoupling problem
n Problem 1. It is easily verified that a controller of the form (20)
ith, for example φ2(z, ż) = −θ1z−θ2ż, where θ1, θ2 > 0 satisfies
he conditions of Corollary 9 and hence solves Problem 1. □

The next result shows that any controller that renders D∗

nvariant guarantees the string stability property as in the third
tem in Definition 1.

orollary 19. Consider the platoon (7) with the nonlinear spacing
olicy (5). Let the controller be of the form (20). Then for all trajec-
ories x(·) for which λ+ 2γ v1(t) ⩾ ε > 0 for all t ⩾ 0, we have for
(0) = 0 that for all T ⩾ 0,
T

0
|v1(t)|2 dt ⩽

∫ T

0
|v0(t)|2 dt.

roof. The proof follows immediately by noting that the condi-
ions of Theorem 16 are satisfied. □

Combining the results of Corollaries 18 and 19 yields that we
an track the nonlinear headway spacing policy asymptotically
ith a decentralized controller while guaranteeing string stabil-

ty. Moreover, Corollary 9 states that this controller is not unique.
s a consequence, suitable controllers can be designed, depending
n additional requirements or control objectives.

. Illustrative simulation results

To illustrate the results obtained in the previous section, a
onlinear state feedback controller (20) is designed for the non-
inear headway spacing policy, with the function φ2(z, ż) = −z−

ż. A simulation of the two vehicle model (7), with this controller
s given in Fig. 3. As parameters, the time constants τi are chosen
andomly from the interval [0.6, 1.4], the time headway h = 1.5,
1 = 0.1 and x⊤

0 = [ −100 2 −0 17 0 ]. Furthermore, the input of
he leading vehicle was chosen as u0(t) = 1 for t ∈ [25, 28]
nd u(t) = 0 otherwise. It is observed that asymptotic tracking
f the spacing policy is achieved. Moreover, the spacing error is
naffected by the acceleration of the predecessor vehicle and the
onditions of Problem 1 are satisfied.
Fig. 4 shows a comparison of two choices of functions φ2, φ̃2.

he spacing error z is stabilized using the function φ2(z, ż) =

tanh(z) − 2 sinh(ż), whereas z̃ is stabilized using φ̃2(z, ż) =

z − 2ż. We see that for larger spacing errors, the convergence
f z is slower, whereas for small errors the convergence is almost
dentical. This shows exactly what is claimed in Remark 11, i.e.,
epending on the desired behavior in the case of relatively large
r small spacing errors a controller can be designed.
Fig. 5 depicts the behavior of a platoon of six vehicles using

he same nonlinear state feedback controllers and illustrates the
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Fig. 3. Simulation of the two-vehicle model (7) for i = 1, time constants τi ,
∈ {0, 1} chosen randomly from the interval [0.6, 1.4], time headway h = 1.5,
1 = 0.1, and initial conditions x⊤(0) = [ −100 20 0 0 17 0 ]. The input to the lead
ehicle is given as u0(t) = 1 when t ∈ [25, 28] and u0(t) = 0 otherwise.

Fig. 4. A simulation of the spacing error z and z̃ with different initial conditions.
he error z is stabilized with the function φ2(z, ż) = − tanh(z) − 2 sinh(ż),
hereas z̃ is stabilized with φ̃2(z, ż) = −z − 2ż.

Fig. 5. Simulation of a platoon of six vehicles with time constants τi , i ∈

0, . . . , 5} chosen randomly from the interval [0.6, 1.4], time headway h = 1.5,
i chosen randomly from [−0.1, 0.1], and equilibrium initial conditions with
i(0) = 0, i ∈ {1, . . . , 5}. The input to the lead vehicle is given as u0(t) = 10 for
∈ [0, 1], u0(t) = −10 for t ∈ [1, 2], and u0(t) = 0 otherwise.

tring stability property, as guaranteed by Theorem 16. For this
latoon the τi, i ∈ {0, 5} were again chosen arbitrarily from
he interval [0.6, 1.4], γi was similarly chosen randomly from
−0.1, 0.1] and the time headway remained h = 1.5. Further-
ore, the input to the lead vehicle was chosen as u0(t) = 10 for
∈ [0, 1] and u0(t) = −10 for t ∈ [1, 2] and u0(t) = 0 otherwise.

. Conclusion

In this paper we considered nonlinear spacing policies for
ehicle platoons, motivated by their potential in improving safety.
ll spacing policies that can be asymptotically tracked with a
ecentralized nonlinear state feedback controller are character-
zed. It was observed that given a spacing policy which can be
symptotically tracked, the controller that achieves this tracking
s not unique. Furthermore, it was shown that in this framework
or decentralized controller synthesis, string stability is a conse-
uence of the choice of spacing policy. The results are illustrated
hrough simulations and two different controllers are compared.
7

Future work will focus on characterizing all spacing policies
hich guarantee string stability in the case of perfect tracking.
nother direction of research will be the investigation of the
xistence of dynamic output feedback controllers that achieve
symptotic tracking for nonlinear spacing policies.
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ppendix A. Review of geometric control theory

In the following, we consider the non-linear system

ẋ = f (x) + g(x)u + e(x)w,
z = h(x),

(A.1)

here x = (x1, . . . , xn) are local coordinates for a smooth mani-
oldM , u is the input, f , g and e are smooth vector fields onM , z is
he output, h is a function onM andw is an unknown disturbance.
hroughout this paper, we have that M = R6 and h : M → R, u
s a scalar input and w a scalar disturbance. Recall the following
efinitions of nonlinear control theory from [23,24,33].
Recall the definition of the Lie derivative of a function h(x)

long the vector field f (x) and the repeated Lie derivative in (14)
nd (15) respectively. Furthermore, recall the definition of the
elative degree given in Definition 3.

The differential of h at x ∈ M is given by the one-form

h(x) =

[
∂ f
∂x1

(x)... ∂ f
∂xn

(x)
]
.

or any two smooth vector fields f and g on M we can define a
ew vector field denoted as [f , g] and called the Lie bracket, which
s defined as

f , g](x) =
∂g
∂x

(x)f (x) −
∂ f
∂x

(x)g(x).

The following definition formalizes when an output is invari-
ant under some disturbance, i.e., not affected by it. This concept
is also known as output invariance.

Definition 20. Consider the system (A.1). The output z is called
invariant under w if for all x0, u and w,

z(t, x0, u, w) = z(t, x0, u, 0), ∀t ⩾ 0,

where z(·, x0, u, w) is the solution to (A.1) for initial condition x0,
input u and disturbance w.

In order to state results on output invariance the notion of
(involutive) distributions is introduced.

Definition 21. Let d1, . . . , dk be smooth vector fields on a
smooth manifold M . Let D(x) = span{d1(x), . . . , dk(x)} be a vector
space at x ∈ M . Then the collection of all vector spaces D(x) for
x ∈ M is called a distribution D, generated by D(x). A distribution
D is called involutive, if [di, dj] ∈ D whenever di and dj are vector
fields in D.
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The dual object of a distribution is a codistribution, of which
the definition equals Definition 21 if the smooth vector fields
d1, . . . , dk are replaced by smooth one-forms σ1, . . . , σk. For a
codistribution we can define the following.

Definition 22. The kernel of a smooth codistribution P , denoted
ker P is defined as the smooth distribution generated by

(ker P)(x) = span
{
d(x)

⏐⏐⏐⏐d is a vector field s.t.
σ (d) = 0 for all σ ∈ P

}
.

The concept of invariant subspaces in linear control theory can
be extended to the nonlinear case.

Definition 23. A smooth distribution D on M is invariant for the
onlinear system (A.1) if

f ,D] ⊂ D, [g,D] ⊂ D,

where [ · ,D] ⊂ D if [ · , d] ∈ D for all vector fields d ∈ D.

Similarly, we introduce the concept of controlled invariant
distributions, which is the nonlinear generalization of a controlled
invariant subspace.

Definition 24. A smooth distribution D on M is called controlled
invariant if there exists a feedback u = α(x)+β(x)ν such that for
f̃ (x) = f (x) + g(x)α(x) and g̃(x) = g(x)β(x)

[f̃ ,D] ⊂ D, [g̃,D] ⊂ D.

Lemma 25. Let G be the distribution generated by G(x) =

span{g(x)}. A smooth distribution D on M is controlled invariant if
and only if

[f ,D] ⊂ D + G, [g,D] ⊂ D + G.

The concepts introduced so far contribute to solving the fol-
lowing problem [23, Problem 7.7].

Problem 2 (Disturbance Decoupling Problem (DDP)). Consider the
nonlinear system (A.1). Find a nonlinear state feedback u = α(x)+
β(x)ν such that in the feedback modified dynamics

ẋ = f (x) + g(x)α(x) + g(x)β(x)ν + e(x)w

is invariant under w.

Under certain conditions this problem can be solved, which
are stated by the following proposition, where ker dh is the codis-
tribution, generated by (ker dh)(x).

Proposition 26 (Proposition 7.8 [23]). The DDP is solvable for the
system (A.1) if and only if there exists a constant dimensional
involutive distribution D, which is controlled invariant and satisfies

e ∈ D ⊂ ker dh. (A.2)

Proposition 26 gives conditions for global solvability of the
DDP. To see this, note that in the case that the distribution D in
Proposition 26 is generated by D(x), the condition in (A.2) could
be rewritten as

e(x) ∈ D(x) ⊂ ker dh(x), ∀x ∈ M.

The next result tells us that we only need to find the maximal
distribution that satisfies (A.2).

Lemma 27 (Corollary 7.12 [23]). There exists a unique involutive
distribution D∗

⊂ ker dh that is controlled invariant and which
contains all controlled invariant distributions in ker dh.

In the case of a single-input single-output system the distri-
bution D∗

⊂ ker dh can be computed straightforwardly.
8

Theorem 28 (Theorem 7.21 [23]). Consider (A.1) with e(x) = 0. Let
ρ < ∞ be the relative degree. Then the distribution D∗

⊂ ker dh is
given by

D∗
= ker(span{dh, dLf h, . . . , dL

ρ−1
f h}). (A.3)

Furthermore, the feedback u = α(x) + β(x)ν with α(x) =

−(LgL
ρ−1
f h)−1Lρf h(x) and β(x) = (LgL

ρ−1
f h(x))−1 renders D∗ invari-

nt.

ppendix B. Proof of Theorem 4

roof. Necessity Observe that the system (7) is of the form (A.1)
ith f (x) = Ax, g(x) = B, and e(x) = E, such that Problem 1,
art (i), is equivalent to the DDP in Problem 2. Consequently, by
roposition 26 and Theorem 28, we have that E ∈ D∗

⊂ ker dh,
here D∗ is given by (A.3).
A direct computation of dh gives

h =

[
∂h
∂x1

∂h
∂x2

∂h
∂x3

∂h
∂x4

∂h
∂x5

∂h
∂x6

]
.

Since E ∈ ker dh, it is necessary that ∂h
∂x3

= 0. Note that this
implies

∂h
∂x3

=
∂∆

∂x3
−
∂∆ref

∂x3
= −

∂∆ref

∂a0
= 0,

which proves (16).
Next, assume that ∂h

∂x6
= 0 in addition to ∂h

∂x3
= 0. Then,

Bh = 0 and ρ in Theorem 28 satisfies ρ ⩾ 2, such that D∗
⊂

er(span{dh, dLAxh}). To evaluate this, we compute

Axh =
∂h
∂x1

x2 +
∂h
∂x2

x3 +
∂h
∂x4

x5 +
∂h
∂x5

x6,

and, consequently,

dLAxh =
[
∂LAxh
∂x1

∂LAxh
∂x2

∂h
∂x2

∂LAxh
∂x4

∂LAxh
∂x5

∂h
∂x5

]
.

As E ∈ D∗, this leads to ∂h
∂x2

= 0, proving

∂h
∂x2

=
∂∆

∂x2
−
∂∆ref

∂x2
= −

∂∆ref

∂v0
= 0.

To finalize the proof of (17), let ∂h
∂x5

= 0, or equivalently
∂∆ref

∂v1
= 0, with the aim of establishing a contradiction. Then,

following a similar reasoning as before, we have ρ ⩾ 3 and
D ⊂ ker(span{dh, dLAxh, dL2Axh}. We obtain

2
Axh =

∂LAxh
∂x1

x2 +
∂h
∂x1

x3 +
∂LAxh
∂x4

x5 +
∂h
∂x4

x6.

and

dL2Axh =

[
∂L2Axh
∂x1

∂LAxh
∂x1

∂h
∂x1

∂L2Axh
∂x4

∂LAxh
∂x4

∂h
∂x6

]
,

uch that E ∈ D∗ implies ∂h
∂x1

= 0. However,

∂h
∂x1

=
∂∆

∂s0
= 1,

which leads to a contradiction.
Sufficiency. It can be verified by direct computation that spac-

ing errors satisfying the conditions are such that E ∈ D∗
⊂

er dh, where D∗ satisfied (A.3). The result then follows from
Proposition 26. More explicitly, we note that ∂h

∂x6
̸= 0 implies that

ρ = 1, in which case it can be verified that (16) is sufficient to
prove E ∈ D∗. Similarly, ∂h

∂x6
= 0 and ∂h

∂x5
̸= 0 give ρ = 2 and the

implications (16) and (17) guarantee E ∈ D∗. □
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ppendix C. Proof of Theorem 7

roof. Building on the proof of Theorem 4, we have that part (i)
f Problem 1 implies that E ∈ D∗, with D∗ the maximum

controlled invariant distribution in ker dh as in (A.3). By
Theorem 28, the controller u1 = α(x)+β(x)ν renders D∗ invariant,
where α(x) = −(LBL

ρ−1
Ax h)−1LρAxh, β(x) = (LBL

ρ−1
Ax h)−1 and ρ is the

smallest integer such that LBL
ρ−1
Ax h ̸= 0. Furthermore, α and β are

such that [Ax + Bα(x),D∗
] ⊆ D∗ and [Bβ(x),D∗

] ⊆ D∗.
We will proceed by considering various cases separately.
First, consider the case ρ = 1. It follows from input–output

linearization that

ż = ν. (C.1)

Substituting ν = φ1(z), where φ1(z) globally asymptotically
stabilizes the origin of the dynamics ż = φ1(z) yields property (ii)
of Problem 1. It remains to show that property (i) is not violated
by φ1(z).

To that extent, we consider dj ∈ D∗ and compute

[Bβ(x)ν, dj] = ν[Bβ(x), dj] + Bβ(x)
∂φ1

∂z
∂h
∂x

dj

= ν[Bβ(x), dj] ∈ D∗,

here we have used that ∂h
∂x dj = 0 as dj ∈ D∗

⊂ ker dh. Hence,
1 = α(x) + β(x)φ1(z) renders D∗ invariant and both properties
i) and (ii) are guaranteed.

Next, consider the case ρ = 2. Following a similar reason-
ing as before, substituting ν = φ2(z, ż) where φ1(z, ż) globally
asymptotically stabilizes the origin of

d
dt

[
z
ż

]
=

[
ż

L2Axh(x) + (LBLAxh)u

]
=

[
ż

φ2(z, ż)

]
. (C.2)

Property (i) is again proven by noting that

[Bβ(x)ν, dj]

= ν[Bβ(x), dj] − Bβ(x)
(
∂φ2

∂z
∂h
∂x

+
∂φ2

∂ ż
∂ ḣ
∂x

)
dj

= ν[Bβ(x), dj] ∈ D∗.

o obtain the latter, we have used ḣ = LAxh and D∗
= ker

span{dh, dLAxh}). □
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