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g r a p h i c a l a b s t r a c t
� The dynamic binning allows accurate
reconstruction of extracted ion chro-
matogram and improve peak picking
and quantification in XCMS.

� The peak detection mass tolerance
set by dynamic binning method is
proportional to mz2 for FTICR, to
mz1:5 for Orbitrap, to mz for Q-TOF
and is a constant for Quadrupole
mass analyzers.

� The dynamic binning method im-
proves the performance of peak
detection and quantification in
XCMS.

� XCMS upgraded with dynamic
binning and Progenesis perform
similarly well to identify compounds
with differential concentration levels
and shows better performance
compared to mzMine.

� Aggregate LC-MS map improve
quantification of peaks with low
variance but results in artifacts for
ones with high variance.
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a b s t r a c t

Liquid chromatography-mass spectrometry (LC-MS)-based lipidomics generates large datasets that need
to be interpreted using high-performance data pre-processing tools such as XCMS, mzMine, and Pro-
genesis. These pre-processing tools rely heavily on accurate peak detection, which depends on proper
setting of the peak detection mass tolerance (PDMT). The PDMT is usually set with a fixed value in either
ppm or Da units. However, this fixed value may result in duplicates or missed peak detection and
y-mass spectrometry (tandem mass spectrometry); PDMT, peak detection mass tolerance; EIC, extracted ion chro-
on; FWHM, full width at half maximum; Q-TOF, quadrupole time-of-flight; FTICR, Fourier-transform ion cyclotron
CV, coefficient of variation.
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inaccurate peak quantification. To improve the accuracy of peak detection, we developed the dynamic
binning method, which considers peak broadening described by the physics of ion separation and sets

the PDMT dynamically in function of m/z. In our method, the PDMT is proportional to
�
m
z

�2
for Fourier-

transform ion cyclotron resonance (FTICR), to
�
m
z

�1:5
for Orbitrap and to m/z for Quadrupole time-of-

flight (Q-TOF), and is a constant for Quadrupole mass analyzer. The dynamic binning method was
implemented in XCMS [1,2], and the adopted source code is available in GitHub at https://github.com/
xiaodfeng/DynamicXCMS. We have compared the performance of the XCMS implemented dynamic
binning with different popular lipidomics pre-processing tools to find differential compounds. We
generated set samples with 43 lipid internal standards that were differentially spiked to aliquots of one
human plasma lipid sample using Orbitrap LC-MS/MS. The performance of various pipelines using
matched parameter sets was quantified by a quality score system that reflects the ability of a pre-
processing pipeline to detect differential peaks spiked at various concentrations. The quality score
indicated that our dynamic binning method improves the quantification performance of XCMS
(maximum p-value 9.8$10�3 of two-sample Wilcoxon test) over its original implementation. We also
showed that the XCMS with dynamic binning found differential spiked-in lipids better or with similar
performance as mzMine and Progenesis do.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In lipidomics, liquid chromatography-mass spectrometry (LC-
MS) is commonly used for quantitative profiling because LC has a
high separation efficiency and MS has a large measurement range
and high specificity and sensitivity [3,4]. A typical LC-MS experi-
ment generates a large amount of complex data that need accurate
quantitative processing and powerful identification approaches to
identify thousands of lipid species present in complex biological
samples. Consequently, accurate data processing has become a
major challenge in lipidomics [5].

Significant effort has been made to develop LC-MS(/MS) data
processing tools. These include commercial tools such as Pro-
genesis [6] developed by Nonlinear Dynamics and open-source
tools such as mzMine [7,8], mzMine ADAP [9], XCMS [1,2], MS-
DIAL [10,11], KniMet [12], OpenMS [13], metaX [14], LipidMatch
[15], and MetaboAnalystR; [16]. In addition, online tools like XCMS
online [17], MetaboAnalyst [18], PiMP my metabolome [19], and
Workflow4Metabolomics [20] have also been developed.

These data processing tools typically contain the following
processing modules [21]: transformation of data (such as resam-
pling and smoothing), detection of peaks, correction of retention
time, grouping of peaks across different samples, filling in missing
data, annotation of isotope peak clusters with potential metabolite
identity (represented by CAMERA [22]), normalization of quantifi-
cation values, and differential statistical analysis with univariate
and multivariate methods or other types of statistical analysis
(Fig. A1). Among them, peak detection is one of the most critical
steps in LC-MS(/MS) data pre-processing. Thus, it is crucial to define
an algorithm that can distinguish between irrelevant signals from
chemical or electronic noise and the compound's actual signal. The
compound's signal is usually represented as a 2-dimensional
Gaussian peak (Fig. A1b). Several peaks corresponding to different
stable isotopes of the compound form an isotope cluster (Fig. A1d).

Algorithms based on extracted ion chromatogram (EIC) peak
detection typically consist of EIC construction and chromatographic
peak detection in the constructed EICs. XCMS [1] was developed in
2006 to facilitate LC-MS data pre-processing and is one of the most
widely used tool for peak detection in metabolomics LC-MS data-
sets [2,23]. It includes three EIC-based peak detection algorithms
suitable for LC-MS(/MS) pre-processing: matchedFilter, centWave
[24], and massifquant [25]. Among them, centWave is the most
2

frequently used peak detection algorithm.
Despite intensive efforts to develop and benchmark accurate

peak detection, the peak detection and quantification performance
of many algorithms is not sufficient for accurate quantification and
often leads to detection of compounds not present in the sample
[23] (i.e., false positives) or to miss (generally low abundant)
existing compounds [26] (false negatives) in LC-MS(/MS) data.
False-positive and false-negative results and inaccurate quantifi-
cation may be due to incorrect parameterization of the algorithm.
Setting a proper mass tolerance is essential for EIC construction
(i.e., binning) used for peak detection. Although there are guide-
lines for setting the proper mass tolerance [21], the recommended
mass tolerance is not always suitable for specific instrumental
settings and a specificm/z range. For example, a range of 5e15 ppm
for Orbitrap data generates a too broad EIC, which may mix signals
from multiple compounds. The mass range (and peak width in m/z
dimension) generally increases in function ofm/zwhen using high-
resolution mass analyzers such as TOF, FTICR, and Orbitrap in-
struments. Thus, Mayers et al. recommended using Dalton (Da) as
unit for mass tolerance instead of parts per million (ppm) as the
mass range variation is smaller with Da unit [27]. However, even if
the mass tolerance is specified in Da, improperly setting a fixed
mass tolerance may still cause duplicates or missed peak detection
and inaccurate peak quantification. To address this problem, we
dynamically adjusted the mass tolerance to construct EICs that
improve the peak detection performance of centWave [28]. In the
original centWave algorithm, mass tolerance is set in ppm and in-
creases proportionally withm/z. This relationship is optimal for the
TOF mass analyzer but not for the Orbitrap mass analyzer, in which
the peak width and m/z in mass spectra are proportional to

Ref.
�
m
z

�1:5
[29]. Our dynamic binning method of constructing EICs

takes into account the correct
�
m
z

�1:5
proportional peak broadening

in m/z for Orbitrap data in the peak detection step, leading to more
precise quantification.

LC-MS(/MS) pre-processing workflows differ in algorithmic
design and involve many parameters. Determining the correct pa-
rameters for peak detection during data analysis can be difficult.
Lipidomic LC-MS(/MS) data pre-processing workflows and
parameter sets need to be objectively evaluated to compare the
performance of various pipelines [23,30]. In 2012, Hoekman et al.
[31] introduced a scoring method that compares the performances

https://github.com/xiaodfeng/DynamicXCMS
https://github.com/xiaodfeng/DynamicXCMS
http://creativecommons.org/licenses/by/4.0/
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of different quantitative LC-MS/MS pre-processing workflows. The
score quantifies the capacity of a pre-processing pipeline, with a
given set of parameters, to detect differentially spiked compounds
in a sample with the same composition (i.e., from the same aliquot
of one background sample). In this dataset, the spiked compounds
are not present in the background sample. We extended this
scoring system to determine the distribution of scores, which al-
lows pipeline performance to be compared using a non-parametric
significance test. In this study, we used this modified scoring
strategy to compare the performance of centWave peak picking
with fixed and dynamic EIC construction tolerance in XCMS, as well
as mzMine and Progenesis. Finally, we compared the performance
of these LC-MS pre-processing workflows after optimizing each
workflow's parameters to make them as comparable as possible,
despite their algorithmic differences.
2. Theory

Fig. A1 shows the most critical aspects of the peak detection
process, which consists of the following steps: EIC construction,
peak detection, isotope pattern identification, adduct ion, isomer,
and feature detection.
2.1. Setting proper mass tolerance for accurate EIC construction

Peak detection provides crucial information required for accu-
rate compound identification and quantification, and accurate EIC
construction is fundamental for accurate peak detection. Setting
the mass tolerance properly is essential for selecting the ions of one
isotope of a compound that forms the EIC. Fig. 1 shows how mass
tolerance is related to the width of the selected rectangle. Although
there is a detailed guideline for setting the proper mass tolerance in
XCMS [21], the mass tolerance is highly dependent on the m/z and
the type of mass analyzer. As shown in Fig. 1, compound 1 is located
at a high m/z of 1428.1220 Da, which has a large mass peak width,
around 0.025594 Da (18.0 ppm), while compound 2 is located at a
lowm/z of 376.3950 Da, which has a smaller mass peak width (and
uncertainty) around 0.003462 Da (9.2 ppm). Thus, a low mass
tolerance valuemay not be sufficient to cover the uncertainty of ion
m/z fluctuation in higher m/z. As a result, intensity ions may be
Fig. 1. Scheme showing the main aspects of the dynamic binning method demonstrating th
m/z. (A) Scatter plot of detected peaks, with retention time in the x-axis and m/z in the y-a
around 0.025594 Da (18.0 ppm). (C) Compound 2 is situated at a low m/z of 376.3950 Da,

3

missing from peaks and peak quantity may be underestimated,
leading to peak splitting. If a larger mass tolerance value is selected,
close mass traces can merge in lower m/z, leading to missing peaks
and incorrect quantitative values for mixed peaks. Typically, this
uncertainty (or variability) may result from two sources: mass
fluctuation (MF) and mass dispersion (MD). MF is the fluctuation of
the peak maxima in the mass spectrum, which can be observed
between different subsequent MS1 mass spectra. Fig. A2 and A.3
show that MF exists in both low and high m/z. This is sometimes
called mass accuracy by the vendor. For a well-calibrated Orbitrap,
the MF should be less than 1 ppm at 200 Da [32]. MD can be esti-
mated according to the relationship between the mass peak width

in m/z and m/z. MD is proportional to
�
m
z

�2
for FTICR, to

�
m
z

�1:5
for

Orbitrap and to m/z for Q-TOF, and is a constant value for Quad-
rupole [29].

This uncertainty is dependent on the m/z, so a fixed mass
tolerance value for peak detection may result in peak merging and/
or failure to detect peaks at a specificm/z range. An alternative is to
use a dynamic mass tolerance according to the uncertainty of ac-
quired ions. Thus, the peak detectionmass tolerance (PDMT) should
be set as a function of the MF (usually defined in ppm) andMD. The
PDMT in Da (PDMTDa) can be calculated by

PDMTDa ¼ MDDa þMF,
m
z
,10�6 (1)

FTICR:

PDMTDa ¼
�

Afti

2:35482

�
,
�m
z

�2
þMF,

m
z
,10�6 (1a)

Orbitrap:

PDMTDa ¼
�

Aorb

2:35482

�
,
�m
z

�1:5
þMF,

m
z
,10�6 (1b)

Q-TOF:
e change of peak width defined as FWHM (Full Width at Half Maximum) in function of
xis. (B) Compound 1 is located at a high m/z 1428.1220 Da, which has a large FWHM,
which has a small FWHM, around 0.003462 Da (9.2 ppm).
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PDMTDa ¼
�

Aqtof

2:35482

�
,
�m
z

�
þMF,

m
z
,10�6 (1c)

Quadrupole:

PDMTDa ¼ Constant (1d)

While the peak detection mass tolerance in ppm (PDMTppm) can
be calculated by

PDMTppm ¼ MDppm þMF (2)

In the above equations, the value of 2.35482 corresponds to

2
ffiffiffiffiffiffiffiffiffiffi
2ln2

p
. This constant relates the standard deviations (s) and the

mass peak width using Gaussian distribution. Aorb, Aqtof and Afti are
constants which relatesm/zwithMD for Orbitrap, Q-TOF, and FTICR
data respectively when divided by 2.35482. In the following, we
describe the equations for calculating Aorb in the Orbitrap mass
spectrometer. The equations for Aqtof and Afti can be found in
Appendix A.

2.2. Estimation of the mass dispersion according to the mass peak
width

The variation of them/z defined by the MD is linked to the mass
resolution or mass resolving power of a particular mass analyzer.
We first defined the essential concepts necessary to express theMD
in terms of m/z and mass resolution based on the theory of Hoff-
mann and Stroobant. [33]; these terms may be defined differently
in other sources. [34]) These definitions are as follows: mass peak
width (Dm): full width at half maximum (FWHM) of mass spectral
peak;mass resolving power (R): the observedmass (m) divided by
the mass peak width (Dm) at 50% height for an isolated single mass
spectral peak, as illustrated in Eq. (3).

R¼ m
Dm

(3)

Therefore, the mass peak width (Dm) changes according to mass
resolving power (R) and the observed mass (m), as illustrated in Eq.
(4).

Dm ¼ m
R

(4)

It follows from Eq. (2), by replacing mass (m) with the mass-to-
charge ratio (m/z),

Dðm=zÞ ¼ m=z
R

(5)

The underlying physical principle used to estimate m/z is
different for different mass analyzers. In an Orbitrap mass spec-
trometer, the frequency (w) is directly linked to the m/z ratio, as
illustrated in Eq. (6)

w ¼
ffiffiffiffiffiffiffi
zek
m

r
(6)

In which e represents the electron charge, and z represents the
number of charges of the ions. The letter k represents the field
curvature, which is a constant value. Thus,

m
z
¼ ekw�2 (7)

To find the relationship between the mass resolving power R
and m/z, we use the derivative of the mass with respect to the
angular frequency from Eq. (7) and derive Eq. (8) after
4

rearrangement:

dm
z

¼ �2ekw�3dw (8)

The ratio of mass-to-mass variation can then be obtained by
dividing Eq. (7) by Eq. (8)

m
dm

¼ w�2

�2w�3dw
¼ w

�2dw
(9)

For a slight variation, the derivative operator (d) and the dif-
ference used in numerical calculations (D) are interchangeable. The
mass resolving power of the Orbitrap is further obtained by intro-
ducing the expression of the angular frequency from Eq. (6) into Eq.
(9) as follows:

Rorb ¼ m
Dm

¼ w
�2Dw

¼

ffiffiffiffiffiffiffi
zek
m

r
�2Dw

¼

ffiffiffiffiffi
ek

p ffiffiffiffiffi
z
m

r
�2Dw

¼
ffiffiffiffiffi
ek

p

�2Dw

�m
z

��0:5

(10)

Where Dm and Dw are 50% of the peak width measured on the
mass scale and frequency scale, respectively. Several publications
have indicated that the peak width in the frequency domain is an
almost constant value; the seminal work of Makarov pointed out
that frequency errors are due to the construction of the instrument
rather than the experimental conditions [35]. L€ossl et al. [36]
applied a fitting of Eq. (10) and showed an almost constant behavior

of the coefficient of ðm=zÞ�0:5:Thus, for fixed acquisition times, Eq.
(10) indicates the mass resolving power Rorb is inversely propor-
tional to the square root of them/z ratio [37]. The correlation can be
expressed as:

RorbzCt,
�m
z

��0:5
(11)

In which Ct is a constant value. Including Eq. (11) in Eq. (5), the
expression of the mass peak width for Orbitrap (i.e., Dðm=zÞorb)
becomes:

Dðm=zÞorb ¼ m=z
Rorb

z
ðm=zÞ1:5

Ct
(12)

For a chosen reference m/z (m=zrÞ:

DðmzrÞorbz
ðm=zrÞ1:5

Ct
(13)

From Eq. (12) and Eq. (13) follows the equality:

Dðm=zÞorb
Dðm=zrÞorb

¼ ðm=zÞ1:5
ðm=zrÞ1:5

(14)

Eq. (14) can be further transformed into:

Dðm=zÞorb ¼
 
Dðm=zrÞorb
ðm=zrÞ1:5

!
ðm=zÞ1:5 ¼ Aorbðm=zÞ1:5 (15)

In Eq. (15), Aorb is considered a constant value that can be
calculated from the reference m/zr value and the reference
resolving power Rr. Based on Eq. (5), it becomes:

Aorb ¼ Dðm=zrÞorb
ðm=zrÞ1:5

¼ m=zr
ðm=zrÞ1:5,Rr

¼ 1

ðm=zrÞ0:5,Rr
(16)

In which Rr indicates the reference resolving power at reference
m/zr. MD is usually quoted in terms of standard deviations (sÞ[38],
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which can be estimated by the calculated mass peak width in Eq.
(15), according to the definition of a Gaussian-shaped function [39].

sz
Dðm=zÞorb
2:35482

¼
�

Aorb

2:35482

�
ðm=zÞ1:5 (17)

Finally, MD in Da (MDda) can be expressed as,

MDdazsz

�
Aorb

2:35482

�
ðm=zÞ1:5 (18)

While the MD in ppm (MDppm) can be expressed as:

MDppm ¼
�
MDDa

m=z

�
,106z

�
Aorb

2:35482

�
,ðm=zÞ0:5,106 (19)

Eq (18) and (19) indicate that the mass dispersion changes as a
function of m/z. According to Eq. (1) and Eq. (2), the PDMT should
also change as a function of m/z. The reference m/z (m= zr) is set to
200 Da, and the reference mass resolving power (Rr) is set to
70,000. According to Eq. (16), Aorb equals 1.0102$10�6. The mass
fluctuation (MF) is less than one ppm for a calibrated instrument at
200 Da [32]. We use MF ¼ 1 ppm in the following equations.
PDMTDa is defined according to Eq. (1) and Eq. (18)

PDMTDa ¼ 4:2897,10�7,ðm=zÞ1:5 þ 1,ðm=zÞ,10�6 (20)

and PDMTppm is defined according to Eq. (2) and Eq. (19)

PDMTppm ¼ 0:42897,ðm=zÞ0:5 þ 1 (21)

3. Materials and methods

3.1. Materials and methods

Materials. LC-MS grade acetonitrile (ACN), methanol (MeOH),
isopropanol (IPA), and chloroform were purchased from Biosolve
BV (Valkenswaard, The Netherlands). Ammonium formate (AmF),
formic acid (FA), and tert-Butyl methyl ether (MTBE) were pur-
chased from Sigma Aldrich (St. Louis, MO). Lipid standards were
purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). Heparin-
anticoagulated plasma samples were obtained anonymously from
an adult patients at the University Medical Center Groningen
(UMCG) and were combined to generate a standard plasma sample
as described previously [40]. The study design was in accordance
with the current revision of the Helsinki Declaration (2013).

Deuterium lipid internal standard (IS) mixture preparation.
20 different deuterium-labeled lipid internal standard (IS), and 4
deuterium-labeled lipid IS premixes were selected to cover the
major lipid classes and distributed evenly inm/z and retention time
range. All lipid standard stock solutions were diluted with chloro-
form:MeOH (1:1, v/v) andmixed to generate a lipid IS mixturewith
optimized concentrations for each standard to acquire adequate
signal intensity (as listed in Table A.1). The lipid ISmixturewas used
to create a dilution series where concentration ratios were set to a
factor of two starting from concentration 1 up to concentration 1/
16.

Lipid extraction. Plasma lipid extraction was performed
following the protocol of Matyash et al. [41] with slight modifica-
tions. In brief, 60 ml of plasma was mixed with 300 ml of MeOH and
sonicated for 10 min. Subsequently, 1000 ml MTBE was added, and
the mixture was kept at 25 �C on a shaker (900 rpm) for 30 min.
Phase separation was induced by adding 190 ml ultrapure water.
Then the mixture was centrifuged at 3000 RCF for 10 min, and the
850 ml upper phasewas transferred to a new tube. The re-extraction
5

was performed by adding 600 ml MTBE/MeOH/ultrapure water
(10:3:2.5, v/v/v) into the lower phase, and 500 ml were collected
after centrifugation to combine with the previous organic phase.
The combined lipid extract solution was aliquoted into 6 tubes
(190 ml per tube) to generate a plasma lipid matrix. Different con-
centrations of lipid standard mixture were added to the plasma
lipid extract aliquots and dried in a vacuum centrifuge at 45 �C. The
dried lipid extracts were resuspended with 30 ml chlor-
oform:MeOH:MQ (60:30:4.5, v/v/v) and further diluted with 90 ml
of IPA:ACN:MQ (2:1:1 v/v/v) for LC-MS analysis.

LC-MS analysis. LC-MS lipid analysis was performed on an Ul-
timate 3000 High-Performance UPLC coupled with a QExactive
Orbitrap instrument (Thermo Fischer Scientific, Darmstadt, Ger-
many). Chromatography separation was achieved with an Acquity
UPLC CSH column [1.7 mm, 100 � 2.1 mm, (Waters Corporation,
Milford, MA)] at 55 �C with a flow rate of 0.4 ml/min. Mobile phase
Awas composed of ultrapure water/acetonitrile 40:60 (v/v), 10 mM
ammonium formate, and 0.1% formic acid. Mobile phase B con-
tained ACN/IPA 10:90 (v/v) with 10 mM ammonium formate and
0.1% formic acid. The LC gradient was modified from Damen et al.
[42] It started with 40%mobile phase B and increased to 43%mobile
phase B in 2 min. The percentage of mobile phase B increased to
50% in the next 0.1 min and increased to 54% in the next 9.9 min.
Mobile phase B increased to 70% in 0.1 min and to 99% in 5.9 min
and was maintained at 99% for 1 min. The percentage of mobile
phase B went back to 40% in 0.1 min, and the system was equili-
brated for 3.9 min before the next run started. The MS was set for
positive mode and data-dependent acquisition. A full MS scan
ranging from 250 to 1750 Da was acquired at resolution 70,000
FWHM at 200 Da. The AGC target was set to 1$106. The maximum
injection time was 50 ms and the MS1 scan was followed by up to
8 MS/MS events with a collision energy of 25 eV at resolution
17,500 FWHM at 200 Da. The precursor isolationwindowwas set to
1.5 Da with a dynamic exclusion time of 6 s. The ionization settings
were as follows: capillary voltage: þ3.2 kV; capillary temperature:
320 �C; sheath gas/auxiliary gas: 60/20.

3.2. Computational methods

Quality score calculation. Fig. A.4 shows the experimental
design of spiked-in lipidomics dataset preparation as well as the
steps of data processing using different LC-MS preprocessing
workflows. Different concentrations of lipid IS mixture spiked in
one aliquoted human plasma lipid extract. Four-fold changes were
generated by comparing IS 1 with IS 1/16 (fold change 16, FC16), IS
1/8 (fold change 8, FC8), IS 1/4 (fold change 4, FC4), IS 1/2 (fold
change 2, FC2). Two replicates of all ISs without plasma lipid extract
were used to identify the spiked-in ISs in the plasma background
manually. t-statistics were calculated according to Hoekman et al.,
using the t-statistics of standard two independent samples t-test
between pairs of these four-fold changes. [31] Based on these t-
statistics, the features were ranked and quality scores were calcu-
lated. To get the distribution of these quality scores, we randomly
selected from 9 to 2 out of the 10 replicates to calculate the t-sta-
tistics and the quality score. This selection was repeated 20 times
resulting in 20 quality scores for each comparison.

P-value calculation. P-values were calculated to measure the
significance level between the quality scores of the dynamic
binning and fixed binning with a threshold of 7 ppm. This was
calculated using a two-samples Wilcoxon non-parametric test.

IS adducts confirmation. Each IS described in materials and
methods was annotated as 10 adduct types: M þ H - H2O, M þ H,
M þ NH4, M þ Na, M þ K, M þ 2Na-H, 2 M þ H, 2 M þ NH4,
2 M þ Na, and 2 M þ K, and the m/z value were calculated
accordingly. According to the calculated m/z value, the EICs were
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Fig. 2. Validation of the theoretical model calculating PDMT in the function of m/z
with sampling intervals of mass spectra from Orbitrap mass analyzer. The red dots
(sampling interval, see definition in the text) represent the manually determined
sampling intervals and the dark red dots (sampling interval � 2) represent double the
manually determined sampling intervals. (a) The manually checked sampling intervals
(red dots) increase proportionally to ðm=zÞ1:5:This increase in sampling intervals fol-
lows equation (15) of our theory. (b) The PDMT m/z tolerance in the function of m/z as
implemented in the dynamic binning method using the centWave XCMS peak detec-
tion algorithm. The dynamic binning threshold is shown with the blue line, while the
fixed binning method initially implemented in XCMS with a 7, 13, or 19 ppm thresholds
are shown as light green, green, and dark green lines, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the Web version
of this article.)
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visualized. Based on these visualizations, we confirmed the pres-
ence of 159 IS adducts. The criteria for confirming that an EIC cor-
responded to an IS were: (1) the corresponding EIC should not
show a bell-shaped peak signal in the blank samples; (2) the cor-
responding EIC should form a bell-shaped peak in both IS mixture
with and without human plasma lipid extract background repli-
cates (3) the apex of the bell-shaped signal (i.e., peak height);
should pass the noise level of 105 ion counts in the ISmixture and in
the highest spiked-in concentration in human plasma samples; (4)
the EIC should be identified in both pure IS mixture and IS mixture
spiked plasma samples in at least three spiked-in concentrations;
(5) the EIC should follow the concentration fold changes in IS
mixture spiked plasma samples in at least in three spiked-in con-
centrations. The EICs for the IS adducts are available in Appendix B.
An example of EIC of confirmed IS adducts is shown in Fig. A.5.

IS fragment confirmation. After the collected LC-MS data were
carefully inspected, we identified 416 IS fragments (in addition to
the IS adducts described in the previous paragraph) and included
these in the IS list. The criteria for selecting these IS fragments were
the same as for IS adducts. The EICs for the IS fragments are
available in Appendix B. An example of EIC of an IS fragment
included in the analysis is shown in Fig. A.6.

Lipidomics data pre-processing and filtering. Thermo Xcali-
bur® software (version 3.2.63, Thermo Scientific, Waltham, MA)
was used for data acquisition (Fig. A.4). The acquired .raw thermo
files were used directly by Progenesis QI (version 2.1) for peak
picking, grouping, and isotope filtration. The .raw data were further
converted into .mzML format usingMSConvert (Version: 3.0.18234)
tool of ProteoWizard [43] package, and the Vendor Peak Picking
filter was selected to export centroid data. The .mzML files were
sent to mzMine (version 2.40.1) for peak picking, grouping, and
isotope filtration. XCMS (standalone version 3.8.2, developed by
Steffen Neumann et al.) also used .mzML files as input for peak
picking and grouping for the dynamic and fixed binning methods.
The results were further isotope filtered by CAMERA (version
1.43.2). The exported .csv files were used to assess the performance
of the various LC-MS pre-processing tools. The fixed binning term
reflected one parameter set in ppm that was used to linearly
expand the EIC construction m/z range in function of m/z.

Dynamic binning. In XCMS, the centWave [28] algorithm is one
of the most used peak detection algorithms and applies a mass
tolerance for EIC construction in ppm. In this study, the centWave
algorithm in XCMS source code was modified to implement the
dynamic binning approach, which is available in GitHub at https://
github.com/xiaodfeng/DynamicXCMS. The m/z of the dataset
ranges from 250 Da to 1750 Da; thus, the modified XCMS source
code's mass tolerance was changed according to the presented
theory.

4. Results and discussion

4.1. Model validation

To validate our model to set the EIC construction threshold, we
visually inspected the sampling interval in the profile mode data-
set. Sampling intervals are the distances in m/z between two
adjacent acquisition points. They are determined by an algorithm
implemented on the electronic card of the Orbitrap instrument and
ensure a constant number of sampling points for each peak in the
mass spectrum. Since the number of sampling points in the Orbi-
trap mass spectra is constant, the increase in sampling interval
should be in accordance with our theory on increasing peak width.
Fig. 2a shows that the manually checked sampling intervals (red
dots in the figure) increase proportionally to ðm=zÞ1:5. The exact
values of the sampling intervals are shown in Appendix C. This
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increase in the sampling intervals set on the acquisition instrument
and found in the profile mass spectrum follows the increase in peak
width in the function of m/z described by Eq. (15).

The exact number of sampling intervals defining them/z interval
(which contains all ion intensity information for a peak in profile
mode) may vary depending on instrumental setting such as reso-
lution. Empirically, this number can be estimated as 4. Myers et al.
[27] used centroided data to show that most peaks in a mass
spectra span between 0 and 3 sampling intervals. They chose a
fixed m/z tolerance value of 0.01 Da for Orbitrap and 0.02 Da for Q-
TOF. This setting ensures that most of the centroid maxima of the
analyzed isotopic ions in consecutive mass spectra (Fig. 1a) are
included in the EIC construction. The m/z tolerance value is esti-
mated according to 1 sampling interval at the highest m/z. In our
model, the PDMTDa calculated according to Eq. (20) is between 1
and 2 sampling intervals (Fig. 2a). This dynamic setting for peak
detection mass tolerance could avoid merging EICs at low m/z
values and avoid splitting EICs of one isotope peak at high m/z
values.

In the implemented dynamic binning method, them/z tolerance
value in centWavewas set to the dynamic PDMT value, while for the
fixed binning method, 7, 13, or 19 ppm (Fig. 2b) were used for peak
detection in the entire m/z range.

4.2. Comparison of dynamic and fixed binning in XCMS

Figs. 1 and 2 show that proper binning is important for the EIC
construction. Because of the less accurate binning of EIC, the
quantification of detected peaks may be less accurate when fixed
binning is used. The peaks in Fig. 3 can be detected using the fixed
binning and dynamic binning methods, but the two methods yield
different quantification (Table 1). The parameter was set following

https://github.com/xiaodfeng/DynamicXCMS
https://github.com/xiaodfeng/DynamicXCMS
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the guideline for setting XCMS parameters [21]. The lower part of
the figure shows the scatter plot of m/z and retention time, while
the upper part shows the peak shape as a scatter plot of intensity
and retention time. For example, the highlighted point with a black
square in Fig. 3a is included only by dynamic binning, while from
the LC profile (upper part of Fig. 3a), it is evident that the point is
part of the bell-shaped curve. As a result, the area of the peak
detected by dynamic binning is higher than the one detected by
fixed binning (i.e., 1:278,107 compared with 1:241,107). Fig. 3b
shows an example of peak splitting using fixed binning peak
detection. The green and red rectangles indicate that the fixed
binning method detected this peak twice at retention times of 415
and 424 s, while the dynamic binning method correctly detected
only one peak at retention time of 415 s, as indicated by the blue
rectangle. To illustrate the peak splitting clearly, we zoomed on the
green and red rectangles in Fig. 3b, as shown in Fig. 3c and d,
respectively.

The difference between the number of detected peaks was
slight. Based on the presented data of a few examples, it is not
apparent how dynamic binning performs at the whole dataset
level. To observe differences in quantification between dynamic
binning and fixed binning for all the peaks, we used the
BlandeAtman plot of quantification with dynamic and static EIC
binning, as shown in Fig. 4. Fig. 4 shows the comparison between
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Fig. 3. Examples of improved quantification by the dynamic binning algorithm. All peaks
quantified values are different. (A) The highlighted point is included only with dynamic binn
higher peak area with dynamic binning than with fixed binning. (B) An example of peak split
two peaks detected by fixed binning and the blue rectangle indicates one peak correctly iden
Enlarged EIC related to the red rectangle in Fig. 3b. (For interpretation of the references to
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concentrations 1/16, 1/8, 1/4, 1/2, and 1. In each concentration, the
x-axis shows the mean log2 of peak intensities obtained with dy-
namic and fixed binning (7 ppm), and the y-axis represents the
differences of the log2 of the peak intensities obtained with both
methods (i.e., log2ðIDynamicÞi � log2ðIFixedÞi for the ith peak). For each
concentration, bias (dashed blue line) was higher for dynamic
binning (i.e., dashed blue line above 0). This was confirmed by a
significantly more dots above the upper limit of agreement (dashed
green line) compared with the lower limit of agreement (red line),
both expressed as two standard deviations from the overall center
(dashed blue line).

Dynamic binning improved XCMS performance primarily by
more accurate quantification. Identification was also slightly
improved. The examples only existed at higher m/z ranges, indi-
cating high uncertainty. At these ranges, the fixed binning method
may fail to detect several ISs because limited ions are included for
EIC construction, so the constructed EICs may not pass the XCMS's
filtration parameters such as firstBaselineCheck, prefilter, or snthresh.
Fig. A.7 shows two ISs that cannot be detected using a fixed 7 ppm
mzTolerance for the EIC building. For example, the peak in Fig. A.7a
can be detected by using 13 ppm, 19 ppm with a fixed value of
mzTolerance, and by applying the dynamic binning method. This
peak should be detected in XCMS because 1) it matches M þ Na
adduct of IS 24:1(3)-14:1 CA; 2) it contains intensive signal in the
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in the figure can be detected using both fixed binning and dynamic binning, but the
ing, while it is missing with fixed binning using the 7 ppm threshold. This results in a
ting in fixed binning with a 7 ppm threshold. The green and red rectangles indicate the
tified by dynamic binning. (C) Enlarged EIC related to the green rectangle in Fig. 3b. (D)
color in this figure legend, the reader is referred to the Web version of this article.)



Fig. 4. Bland-Altman plot showing differences in quantification between dynamic and fixed binning with a 7 ppm EIC construction threshold in human plasma lipidomics datasets
spiked with IS at 1/16, 1/8, 1/4, 1/2 and 1 dilution level. The x-axis shows the mean log2 peak intensities obtained with dynamic and fixed binning. The y-axis represents the
differences of log2 peak intensities obtained with both methods. The bias of the two methods is shown with a blue line. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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m/z range between 1676.236 and 1676.239 in Da; 3) it follows a
bell-shaped curve with tailing in the retention time (between 1099
and 1134 s); and 4) it has high-intensity values, namely the area
under the chromatographic peak is 1.648$108, which becomes
1.646$108 after baseline correction and the maximum intensity
measured in the m/z and retention time rectangle containing the
peak is 6.441$106 (Table 1). The peak in Fig. A.7b shows similar
detection behavior with respect of peak detection by both methods
as the peak in Fig. A.7a.

To further assess if the higher values reflect more accurate
quantification, we used a quality score introduced byHoekman et al.
[31] that assesses the ability to identify differential spiked-in
compounds in samples with the same complex lipid background.
Fig. 5. shows the distribution of quality scores for the studied
Table 1
Examples of missing peaks and improved quantification.

Method m/z m/z min m/z max rt

Details of the missing
Fixed 7 ppm e e e e

Dynamic 1676.238 1676.236 1676.239 1118
Details of the missing

Fixed 7 ppm e e e e

Dynamic 1668.240 1668.239 1668.242 1050
Details of the peaks with improv

Fixed 7 ppm 612.5013 612.5009 612.5042 843
Dynamic 612.5014 612.5009 612.5063 843

Details of the peaks with improv
Fixed 7 ppm 776.5780 776.5774 776.5785 415
Fixed 7 ppm 776.5882 776.5860 776.5893 424
Dynamic 776.5783 776.5765 776.5883 415

m/z ¼ mass to charge value; m/z min, m/z max ¼ minimal and maximum m/z.
rt ¼ measured retention time in seconds; rt min, rt max ¼ minimal and maximum rt.
int o, int b ¼ intensity calculated based on area before and after baseline correction; ma
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pipelines for four fold-change concentrations (16, 8, 4, and 2). As
indicated by the asterisks, with all four fold change concentrations,
dynamic binning achieved a significantly higher quality score than
fixed binning did with 7 ppm (p-values 2.4$10�4, 1.9$10�5, 2.7$10�4

and 9.8$10�3 of two-samples Wilcoxon tests). Dynamic binning
improved the ability of XCMS to identify the biomarker from the
background, even when compared with other fixed PDMT thresh-
olds such as 13 and 19 ppm. These results showed that dynamic
binning overperformed original XCMS implementation. Apart from
sampling 9 out of 10 replicates in Fig. 5, we also sampled from 8 to 2
out of 10 replicates, which gave similar results (Fig. A.8). The use of
a lower number of replicates results in lower quality scores. This
can be explained by a lower number of replicates leading to lower t-
statistics and earlier dilution of spiked-in related features in the
rt min rt max int o int b max o

peaks in Fig. A.7a
e e e e e

1099 1134 1.648$108 1.646$108 6.441$106

peaks in Fig. A.7b
e e e e e

1045 1057 1.528$107 1.480$107 1.771$106

ed quantification in Fig. 3a
838 846 1.241$107 1.241$107 3.498$106

838 847 1.278$107 1.276$107 3.498$106

ed quantification in Fig. 3b
404 423 5.628$107 5.613$107 7.296$106

422 428 3.798$106 3.798$106 1.063$106

404 425 5.758$107 5.716$107 7.296$106

x o ¼ intensity calculated based on height.



"***"=0.001, "**"=0.01, "*"=0.05

Fig. 5. Box plot showing quality score, which measures the pipeline's ability to identify differential spiked-in lipid related peaks. The figure shows the quality scores distribution of
XCMS with dynamic binning and fixed binning (19, 13 and 7 ppm), mzMine and Progenesis for four different fold changes (16, 8, 4, and 2), where a dilution series of 1/16, 1/8, 1/4,
and 1/2 is compared with a dilution series of 1. The asterisks indicate the p-values (2.4$10�4, 1.9$10�5, 2.7$10�4 and 9.8$10�3) of two-sample Wilcoxon non-parametric tests
performed using dynamic binning and fixed binning with a threshold of 7 ppm. Dynamic binning performs better than fixed binning and dynamic binning improves XCMS's
quantification performance. The performance of dynamic binning is much better than that of mzMine and similar to that of Progenesis.
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ranked discriminating feature list, leading to lower cumulative
scores. Furthermore, using lower number of replicates increase the
score differences between Progenesis and the other workflows.
This can be explained by the replicate sampling procedure, which
takes peak quantities from a quantitative table obtained using an
average LC-MS map constructed with all replicates by Progenesis.
Progenesis is a GUI based program and cannot be included in a
sampling loop where peak picking is performed in each loop iter-
ation using an average LC-MS map constructed only from the
replicates selected in a particular iteration. In contrast, XCMS per-
forms peak picking individually in each chromatogram, which is
not influenced by other chromatograms. Peak matching perfor-
mance could be affected by the number of replicates, but this has
much weaker effect than peak picking on an average chromato-
gram constructed with all available replicates.

The quality score assessing the identification of spiked-in fea-
tures in a stable molecular background is a cumulative score;
therefore, it is worth exploring the ranking of spiked-compound-
related features in identified features that are differential be-
tween spiking levels. The cumulative quality scores in the function
of a ranked list of discriminating features are shown in Fig. 6. In this
figure, a binary heat map is included above the x-axis. Each row in
this heat map indicates a differential feature ranked (using t-sta-
tistics) from the most differential on the left to the least differential
on the right. The colored bars indicate features related to the
spiked-in compounds, which contribute to the cumulative quality
scores as indicated by the y-axis of the line plots. In contrast, the
9

white bars indicate features that correspond to compounds from
the background sample, which are non-discriminatory between the
different spiked-in concentration levels. These non-discriminatory
features will lower the increase in quality scores for subsequent
lower-ranked IS features. For example, the dynamic binning con-
tains more colored bars than white bars among the most discrim-
inant features on the left side of the plots. This indicates that
dynamic binning detected more differentially spiked-in IS-related
features as reflected in the quality score. This indicates that dy-
namic binning detects differential features more accurately than
fixed binning does. The higher number of colored cells on the left
side of the plot results in the higher cumulative score of dynamic
binning than fixed binning at 7, 13, and 19 ppm.

4.3. Comparison between XCMS, mzMine, and progenesis

To consistently compare between XCMS, mzMine, and Pro-
genesis, we used the quantitative feature tables containing
matched features across all chromatograms in the dataset. The
parameters for peak detection, grouping, and isotope filtration are
shown in Table A.2, A.3, and A.4. Progenesis and dynamic binning
XCMS showed the highest quality scores for spiked-in levels FC16,
FC8, FC4, and FC2, followed by fixed binning XCMS and mzMine
(Fig. 5). These results indicate that Progenesis and dynamic binning
XCMS have a strong ability to find spiked-in compound-related
discriminating features and identify fewer background peaks with
the same level across all spiked-in levels.



Fig. 6. Plots showing the development of the cumulative quality scores for XCMS with dynamic binning, XCMS with fixed binning (7, 13 and 19 ppm), mzMine and Progenesis
allowing to assess the quantification differences of the various LC-MS pre-processing pipelines. The cumulative quality score is based on t-statistics ranked features using samples
spiked-in at different levels. The theoretical fold change between spiking levels is indicated in the title of each plot. A binary heat map above the x-axis shows the ranked list of
discriminating features from the left (most discriminating) to the right (least discriminating). In this heatmap, matched features related to the IS are shown as colored cells, and the
white cells show the features not associated with IS. The features corresponding to the white cells are not contributing to the cumulative quality score increase and will lower the
rise of the cumulative score for any subsequent higher rank IS-related features. The dynamic binning method contains more colored cells than white ones (indicating more IS-
related features) among the most discriminant features on the left of the heat map.
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Apart from finding accurately features with different levels, it is
also worth evaluating the precision of the quantification of
different methods. Fig. 7 shows the scatter plot of log2 fold change
(x-axis) versus log10 average abundance of a matched features (y-
axis). The y-axis range of XCMS and mzMine are similar (5-11),
while Progenesis is different (3-9), indicating differences in the
quantification metric. To assess if pipeline preserves the quantita-
tive order of peaks, we constructed EICs (Fig. A.9) of three ISs using
the raw data. We labeled these three compounds as Compound A
(17:0-17:1-17:0 D5 TG), Compound B (18:1-d7 MG), and Compound
C (20:0-20:1-20:0 D5 TG), where compound A has the highest area
abundance, compound B has the middle area abundance and
compound C the lowest. XCMS and mzMine calculated abundances
as the area under the EIC curve, while Progenesis used the “raw
abundance,” which is the sum of all ion intensities in the rectangle
defined by the retention time andm/z of all isotopes of a compound
(Table A.5). The rectangle coordinates were identified in an aggre-
gated ion intensity map combined from all chromatograms after
retention time alignment and the area is used in all individual
chromatograms to sum up the corresponding intensities. The
summed intensities in individual chromatogram are used as
quantitative values for the same compound and used for down-
stream statistical analysis. Compounds A, B, and C shared the same
decreasing trend of abundance in XCMS and mzMine (i.e.,
26.206$107, 3.214$107 and 1.980$107 for compounds A, B and C
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respectively in XCMS). At the same time, we observed no
decreasing trend from compound A, B and C in Progenesis (i.e.,
12.425$107, 0.089$107 and 23.802$107 for compound A, B and C,
respectively). There are many possible reasons for this difference in
abundance. One reason may be the different algorithms used to
calculate abundance; XCMS and mzMine use the CAMERA algo-
rithm for isotope filtration, which usually uses the highest isotope
peaks to calculate abundance. In contrast, Progenesis uses the
average of detected isotope clusters to calculate abundance. The
peak areas of compounds A and B should differ by around one order
of magnitude, which is accurately captured by the dynamic peak
picking of XCMS and mzMine, while this difference is almost two
orders of magnitude in data pre-processed by Progenesis. Another
explanation could be that the aggregate LC-MS map is constructed
from aligned chromatograms of all fold changes. In this setup, the
highest spiking level determines the area rectangle where the ion
intensities for all identified isotopes are added together and this
rectangle is larger than that should be optimal for lower spiking
levels features. Therefore, the rectangle may include ions that do
not belong to the spiking features, which may change the order of
intensity.

The x-axis of Fig. 7 reflects the fold change of detected features,
and each IS-related feature is plotted four times according to FC2,
FC4, FC8, and FC16 (labeled in green, red, yellow, and blue,
respectively). In the plots, the x-axis of the green, red, yellow, and
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blue dots are located around the theoretical log2 fold change of 1, 2,
3, and 4, respectively. The number of ISs detected by XCMS,
mzMine, and Progenesis is shown in the Venn diagram. Progenesis
uniquely detected the most ISs (24 ISs), followed by XCMS (5 ISs),
and mzMine (1 IS). These numbers are relatively low compared
with the number of detected features common to all pipelines (412
ISs). The features from XCMS, mzMine, and Progenesis that are not
related to ISs were labeled as plasma-related features (grey dots)
and are distributed around log2 fold change of 0 in the x-axis. The
fluctuation of plasma-related features in Progenesis was smaller
compared with XCMS and mzMine. This is most probably because
the aggregate aligned map was used for feature detection, which
detects compounds relatively well when variability between sam-
ples is low but may have difficulty detecting compounds when
variability between samples is higher. The better performance of
the dynamic binning peak picking is shown in Fig. 6; dynamic
binning had higher cumulative scores than Progenesis did for the
most significantly different features (i.e., features in the left of the
plot). The Progenesis peak picking approach uses the aggregate
map, which can detect less abundant peaks because the average
signal across multiple LC-MS maps is used for peak picking, which
helps to identify a larger number of less differential peaks. This is
indicated by the higher cumulative scores of Progenesis compared
with those of dynamic binning XCMS, taking into account all fea-
tures for the score calculation.

To further evaluate the joint technical variance of LC-MS mea-
surements and data pre-processing of the three methods, the dis-
tributions of the coefficient of variations (CV) were calculated based
on the intensities of plasma-related features. The full range of
Fig. 7. Ratio distributions between two spiking levels for each LC-MS pre-processing met
abundance in the whole data set (y-axis, in log10). The y-axis range is similar in XCMS and mz
In the x-axis, each IS is plotted four times with FC2, FC4, FC8, and FC16 labeled in green, red,
log2 fold change of 1, 2, 3, and 4, respectively, on the x-axis. The number of ISs detected by
interpretation of the references to color in this figure legend, the reader is referred to the
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detected CV is shown as a violin plot in Fig. A.10. The density plot of
CV between 0 and 1.5 (i.e., 150%) is shown in Fig. 8. These figures
show that feature quantificationwasmost accuratewith Progenesis
indicated by lower CVs, indicating lower variability of features in
replicates of five individual concentration levels. In contrast, CVs
were more widely distributed in mzMine and XCMS. Progenesis
had better performance because it used the aligned aggregate map
for peak picking and feature detection, which can detect features
more accurately with low variance, as discussed previously.
Plasma-related features have the same level in each sample, which
does not reflect the large biological variability of compounds in
clinical samples.
5. Conclusion

Setting accurate PDMT is crucial for accurate peak detection. To
this end, we suggested and implemented a dynamic method for a
more accurately set the PDMT. Namely, the PDMT is proportional to�
m
z

�2
for FTICR, to

�
m
z

�1:5
for Orbitrap, and tom/z for Q-TOF, and is a

constant value for Quadrupole. This method improved XCMS per-
formance by reducing the number ofmissing peaks (Fig. A.7) and by
improving the accuracy of quantification (Figs. 3 and 4). As a result,
dynamic binning had a higher quality score (Fig. 5, maximum p-
value: 9.8$10�3) and cumulative score (Fig. 6) than the fixed
binning method. This indicates that the ability of XCMS to find
meaningful compounds (i.e., lipid biomarkers) is improved with
dynamic binning.

Progenesis achieved similarly high cumulative quality scores in
hod. The figure shows the scatter plot of fold change (x-axis, in log2) versus average
Mine (5-11 orders of magnitude), but different in Progenesis (3-9 orders of magnitude).
yellow, and blue, respectively. The green, red, yellow, and blue dots are located around
XCMS, mzMine, and Progenesis is shown in the Venn diagram (bottom right plot). (For
Web version of this article.)



Fig. 8. Density plot of coefficient of variation (CV) for 3 different LC-MS pre-processing methods using plasma-related features. The plot shows the density of CV between 0 and 1.5
(150%). Progenesis shows the most precise feature quantification indicated by lower CVs in replicates of five individual concentration levels, while mzMine and XCMS have a wider
CV distribution.
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all four fold changes as the dynamic binning XCMSmethod because
aligned aggregate LC-MSwas used for feature detection. In addition
to the cumulative quality score, we evaluated the quantification
stability of XCMS, mzMine, and Progenesis using the log2 fold
change distribution (Fig. 7) and CV distribution (Fig. 8) based on the
intensities of detected features. Progenesis had the lowest CVs for
plasma-related features, indicating lower variability of features in
replicates of five individual concentration levels, followed by XCMS
and mzMine. The lower variability of Progenesis (Fig. A.10) may be
due to the unique quantification algorithm. However, this also
altered the order of quantitative values of ISs (Table A.5 and
Fig. A.9), which compounds have higher variability between sam-
ples. The use of aligned aggregate LC-MSmaps for feature detection
areas may help to quantify peaks with low variability but may also
lead to artifacts if LC-MS maps are misaligned and/or if features
have larger variability. Dynamic binning had a similar peak picking
performance in XCMS as Progenesis, without using aligned aggre-
gate maps and without the aforementioned artifacts. Therefore, we
recommend the dynamic binning approach for quantitative
profiling in lipidomics and metabolomics. In this research, we only
generated a spike-in dataset using Orbitrap LC-MS/MS and
demonstrated the improvement of quantification of XCMS with
dynamic binning. According to our dynamic binning theory, the
peak width in m/z is linearly related to m/z for Q-TOF data. There-
fore, setting PDMT for EIC construction in ppm in the original XCMS
should provide accurate quantification for Q-TOF data. In this work,
we did not generate spiked-in dataset with FTICR and quadrupole
mass analyzer but have provided the theory of considering peak
width change and setting EIC construction tolerance (PDMT)
properly for accurate quantification.
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