

 University of Groningen

Cordies
Koch, Gerald G. ; Koldehofe, Boris; Rothermel, Kurt

Published in:
Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems (DEBS)

DOI:
10.1145/1827418.1827424

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Koch, G. G., Koldehofe, B., & Rothermel, K. (2010). Cordies: Expressive event correlation in distributed
systems. In Proceedings of the Fourth ACM International Conference on Distributed Event-Based Systems
(DEBS) (pp. 26-37). ACM Press. https://doi.org/10.1145/1827418.1827424

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-10-2022

https://doi.org/10.1145/1827418.1827424
https://research.rug.nl/en/publications/e467381e-7b64-42f9-abf7-9526bfde4607
https://doi.org/10.1145/1827418.1827424

Cordies: Expressive event correlation in distributed
systems

Gerald G. Koch Boris Koldehofe Kurt Rothermel
Universität Stuttgart

Institut für Parallele und Verteilte Systeme
Universitätsstr. 38

D-70569 Stuttgart, Germany
{firstname.lastname}@ipvs.uni-stuttgart.de

ABSTRACT
Complex Event Processing (CEP) is the method of choice
for the observation of system states and situations by means
of events. A number of systems have been introduced that
provide CEP in selected environments. Some are restricted
to centralised systems, or to systems with synchronous com-
munication, or to a limited space of event relations that are
defined in advance. Many modern systems, though, are in-
herently distributed and asynchronous, and require a more
powerful CEP. We present Cordies, a distributed system for
the detection of correlated events that is designed for the
operation in large-scale, heterogeneous networks and adapts
dynamically to changing network conditions. With its ex-
pressive language to describe event relations, it is suitable
for environments where neither the event space nor the situ-
ations of interest are predefined but are constantly adapted.
In addition, Cordies supports Quality-of-Service (QoS) for
communication in distributed event correlation detection.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organisation]: Distributed
Systems

General Terms
CEP, event correlation detection

1. INTRODUCTION
Complex Event Processing (CEP) [22] has been subject

to a number of research projects. With the emergence of
the Internet of Things, an ongoing pervasion of ubiquitous
computing, and an increasing number of sensors in common
networked devices, the number of events to process and sit-
uations to detect is expected to grow further. This presents
several challenges to systems that provide CEP.

One challenge is the large number and geographical dis-
tribution of event sources. For instance, modern cellphones

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’10, July 12–15, 2010, Cambridge, UK
Copyright 2010 ACM 978-1-60558-927-5/10/07 ...$10.00.

contain sensors for position, motion etc., which information
can be gathered and aggregated to detect situations with
varying granularity and dependability [8]. Clearly, a cen-
tralised system does not scale for the number of events sub-
mitted by these devices. An insufficient distribution of a
CEP system also leads to the aggregation or correlation of
events that arised in different contexts and therefore rather
blur than clarify the situation of a certain limited location.
The ability of a CEP system to work in a distributed manner
goes with its ability to place CEP functionality at sensible
places in the network of information providers.

A second challenge is the diversity of events. Current CEP
systems are often designed for defined environments or single
applications, e.g., a stock trading system, an electrical power
grid, or river observation [11]. Their scope of observation,
possible and interesting relationships between events, and
information providers are known beforehand. Properties of
the target environment are assumed to hold categorically
(e.g., that water will always flow down the river). Future
systems will not be constrained to one physical location or
to just one application to control the CEP system. There
will rather be a large number of users defining arbitrary
situations of interest, and an even larger number of event
providers, publishing previously unknown events. There-
fore, CEP systems need to provide an expressive language
for event correlation description, and correlation detection
should make no assumptions about the observed systems.

In this paper, we present Cordies (Correlation in distri-
buted event services). It is inherently distributed, so it can
adapt to a user-defined granularity of distribution. Cordies
is fit for the detection of arbitrary situations in future ob-
servable systems because of the expressiveness of its cor-
relation detection language and its independence from as-
sumptions about the observed systems. A framework for
the placement of Cordies functionality allows for the adher-
ence to a number of user-defined restrictions, including, but
not limited to, QoS requirements.

The structure of this paper is as follows. An overview
about related work follows in Section 2. Then, in Section 3,
we introduce the system model, and in Section 4, the correla-
tion detection language (CDL) and its execution in Cordies.
In Section 5, the placement framework for correlation func-
tionality and its control by the user are explained starting
from the language’s support for distribution. In Section 6,
we provide evaluation results about the placement frame-
work. Section 7 concludes the paper.

26

2. RELATED WORK
Over the last two decades, by continuous enhancement,

CEP has become the method of choice for the observation
of system states and situations. Great effort has been put
into the development of query languages and detection algo-
rithms. This is reflected by its application in databases [15,
14, 10, 1, 2] and distributed systems [33, 17, 6, 28, 37, 19, 26,
7]. CEP can express temporal relations [5, 12, 31, 9], expres-
sive situations [22, 3, 25], and even language concepts of het-
erogeneous CEP systems [32]. See Table 1 for an overview
on the features of selected systems.

Operator expressiveness. We realise that CEP has yet po-
tential to improve. It is noticeable, for example, that many
event algebras use operators in parallel that have different
levels of abstraction. Logical operators (conjunction, dis-
junction, negation) test whether or not at least one instance
of an event class is present (cf. Concepts 1, 2 in Table 1).
Temporal operators (e.g. the sequence operator) imply a
conjunction of event instances and require a temporal order
on them (Concept 3). Collection operators imply an ordered
sequence of event instances of the same class and detect an
instance’s repetition or relative position within the sequence
(Concepts 4, 5). A fourth class, Time operators, instructs
the system to create virtual time events with a temporal
relation to received events (Concept 6).

These operators are expressive enough for the respective
environments where event existence, order, and relative tem-
poral or sequential position are important. However, al-
though some operators even overlap in their semantics [10],
they are not sufficient for the expression of arbitrary event
relations. Therefore, a number of additional event opera-
tors have been added over time, e.g., causality [22, 7] (cf.
Concept 7 in Table 1), concurrency (Concept 8) in dis-
tributed systems where event sequence cannot always be
established [5, 28, 37, 19], and spatial operators [37, 34]
(Concept 9).

These operators will not be sufficient for future systems.
However, adding another event operator when a further rela-
tion needs to be described leads to operator explosion. For
example, Ode [15] provides not only one but three differ-
ent sequence operators which allow to detect three different
relative positions of event occurrence intervals. Even this
approach is not expressive enough because there are 13 dif-
ferent relative positions of intervals [4]. Spatial operators
have to consider the same problem [37, 34]. Operators at
several abstraction levels doubtlessly increase the usability
of a language and the ease of the composition of expressions.
Nevertheless, it would be advantageous for a user to also be
able to exactly specify the relations that he or she has in
mind, with the help of just a small set of operators. Cordies
provides a correlation detection language that allows users
to directly address event content and thus specify the seman-
tics of relations on their own. This makes Cordies fit for the
use in future environments where new event properties may
appear and familiar ones can be expressed differently.

Uniform specification of conditions. Another shortcom-
ing of temporal operators is that they specify relative po-
sitions of events, while additional constraints on absolute
temporal distances cannot be expressed. Many different an-
notations on temporal operators with varying expressiveness
have been proposed [24, 17, 28, 9, 37, 19] (cf. Concept 10
in Table 1). With these annotations, expressions become
confusing in their syntax as well as in their semantics. For

instance, a sequence operator annotated with a minimal and
a maximal positive temporal distance between events could
be substituted by a concatenation or even be left out com-
pletely without affecting the detection result.

Furthermore, once additional conditions can be tested on
timestamps, users would expect an event algebra to provide
equal means to specify conditions on arbitrary event prop-
erties (Concept 11). Active databases like Ode [15] provide
this capability. The ECA (event-condition-action) model
allows the definition of conditions in addition to the speci-
fication of the triggering (composite) event. However, sys-
tems with advanced languages like GEM [24], Rapide [22],
Amit [3], XChangeEQ [7] and others [25, 2] primarily model
temporal relations with the available operators and then
add other conditions in different, non-uniform notations and
with varying expressiveness. Apart from the trouble to keep
track of the overall semantics of separately specified condi-
tions, there is also an efficiency problem to it. In most cases,
the composite event has to be detected before the condi-
tions are tested (Concept 12). As a result, tests on non-
temporal event properties are late because all constituent
events have to be detected first, and it can be costly if a
lot of composite events are detected that later do not match
the conditions [2]. For this reason, Cordies handles tem-
poral and non-temporal conditions on events in a uniform
manner and applies them already on evaluable subsets of
constituent events in order to detect failing event combina-
tions early and with minimal computation overhead. To this
end, Cordies provides a uniform description method that is
equally expressive for arbitrary event relations (Concept 13).

Expressive policies. The authors of Snoop [10] analysed
an ambiguity in CEP when more than one event message
per event class is available for the correlation test. They
addressed it with the help of four parameter contexts which
were shown to be combinations of event selection policies
(cf. Concept 14 in Table 1) and event consumption policies
(Concept 15) [38]. While previous systems used to follow
one policy implicitly, modern systems provide a selection
of parameter contexts that can be applied on the system
level [1], the operator level [37] or the operand level [17, 3].
Other consumption policies than the original four have been
proposed [5, 9]. It is remarkable that all proposed event
selection and event consumption policies again concentrate
on temporal relations between events of one class. However,
an event algebra should allow the specification of preferred
event combinations on other than temporal relations as well.
Therefore, Cordies allows users to specify event instance se-
lection and event instance consumption freely as event rela-
tions just like the relations for correlation detection itself.

Distribution and placement. Without doubt, one impor-
tant future application field for CEP will be large distributed
heterogeneous systems with a large number of publishers and
subscribers. For efficiency and reliability reasons it will be
necessary to distribute CEP functionality throughout the
system (cf. Concept 16 in Table 1). CEP systems that
were designed for use in distributed systems have already
addressed the problem of the placement of operators. Usu-
ally, the tree of operators on events is divided in sub-trees
so that each sub-expression observes two [28] or more [19]
different event classes for correlated events. Expressions in
the CDL can be divided in many different ways that allow
to consider the runtime behaviour of relations—especially
their selectivity and computational overhead for evaluation.

27

No. Concept
databases distributed systems pub/sub-based event algebras

[15] [14] [10] [3] [1] [2] [33] [24] [22] [37] [25] [34] [28] [20] Cordies [5] [17] [12] [31] [9] [7]

1
logical
operators

y y y y y y y y y y y y y y (y) y y y y y y

2 negation y y y y y y y y y y y - y - (y) y y - y y y

3
temporal
operators

y y y y y y y y y y y y y y (y) y y y y y y

4 iteration y y y y y y - - y y -a - y y y - - - y - y

5 selection y (y) - y - y - - - y -a - - - (y) - y - y - -

6
creation of
time events

y - - y y y - y - - - - - - y - - - - - y

7 causality - - - - - (y) - - y - (y) - - - (y) - - - - - y

8 concurrency - - - - - (y) y - - y (y) y y - (y) - - - y - -

9
spatial
operators

- - - - - (y) - - - y y y - - (y) - - - - - -

10 equality test (y) y - (y) - y y (y) y y y - y -b (y) - - y - - y

11
arbitrary
relations

y - - y - - - y y - - - - - y - - - - - y

12
early
condition
testing

- y - ? - y ? - - ? - - y - y - - ? - - -

13
uniform
notation

- - - - - - - - - - - - - - y - - - - - -

14
selection
policies

- - y y y y -c -c -d y -e - - - y y y -c -f y -

15
consumption
policies

- - y y y y - -g -d y -e - - - y y y -h -f y -

16
support for
distribution

- - y - - - y y y y y y y y y - - - - - -

17
resource-
driven
placement

- - - - - - - - - - - - y y y - - - - - -

18
operator-
driven
placement

- - - - - - - - - - - - - - y - - - - - -

a possibly modelled by sequence closure b detected by subsequent filter c always chronicle
d partly dispensable because of causality e perhaps continuous f recent g via time window h each event used once

Key: y: available; (y): modelled by other means; -: not available; ?: no information

Table 1: Comparison of concept support in CEP systems

The placement of correlation detection functionality has
been studied for the compliance to node and network con-
straints (cf. Concept 17 in Table 1) in publish/subscribe sys-
tems [20] and stream-based event systems [13, 27]. Cordies
supports its use in distributed systems with the provision
of a placement framework that specifies and maintains re-
quired system properties at the level of overlay nodes and
links instead of making system-wide assumptions about their
behaviour. Placement decisions in Cordies also consider the
requirements of correlation detection itself (Concept 18).

3. SYSTEM MODEL
Cordies is a distributed application that consists of an

arbitrary number of overlay nodes. Cordies nodes do not di-
rectly connect to sensors or other devices that provide data;
they observe events and their correlation by subscribing to
event messages in a publish/subscribe system. Nodes also
publish composite event messages that other subscribers, in-
cluding other Cordies nodes, can subscribe to.

Event messages are modelled as sets of tuples of the
form (attributeName, type, operator, value). The at-

tributeName is the name of an attribute that belongs to an
object or to an observed system. Time, for instance, is an
attribute of the real world rather than a property of a par-
ticular object. The operator is a relational operator, e.g.,
equality, and the value is of the indicated type which allows
for the correct interpretation of the attribute value. Single
values, set expressions or range expression can be used in
association with appropriate operators.

Event messages are records of a section of the observed
system’s state. In particular, their occurrence does not im-
ply that a change took place in the system’s state. These
semantics allow for the existence of duplicate event messages
and the replay of event messages. For instance, sensors that
are new to a system first sense and publish the system’s
state, not a state change. Sensors can also provide state
messages as heartbeat messages.

Event messages belong to event classes that are distin-
guished by an identical set of attribute names or values (the
signature of the message). For the detection of situations
and state changes, concrete sets of event messages are tested
whether they correlate, i.e., whether they are in a particu-
lar relation or not. This relation, however, is defined on

28

the event classes of the involved events. Simple observa-
tions that were not the result of correlation detection are
called atomic events, while a state change or situation that
is distributed and that is detected on the basis of simple
observations is called a composite event.

There is no difference in the message model for atomic or
composite event messages: both are “event messages”—sets
of tuples as described above. In particular, subscribing to
atomic event messages is not different from subscribing to
composite ones. The subscription to a composite event mes-
sage initiates its delivery to the subscriber, not its detection
(for the initiation of detection, see Section 4). As in many
publish/subscribe systems, publishers of event messages (in-
cluding Cordies nodes) are required to advertise events mes-
sages they are going to publish. This model keeps Cordies
decoupled from the publish/subscribe system and is similar
to the approach selected by Pietzuch et al. [28].

4. EVENT CORRELATION DETECTION
In order to perform event correlation detection, a CEP

system needs to provide two means: An algebra to describe
relations for observed events messages (Section 4.1), and an
algorithm to detect individual event messages that are in the
described relation (Section 4.3). Cordies employs an algebra
that avoids traditional event operators. It is rather based
on predicates on event attributes which allows for an expres-
sive description of arbitrary event relations. The language’s
benefits are detailed in Section 4.2.

4.1 Correlation Description
Cordies provides an interface for the initiation of correla-

tion detection where an application can dynamically submit
a Correlation Description (CD). A CD is an XML document
describing details of a specific event relation. The basic ele-
ments of the CD language (CDL) are shown in Listing 1.

The main elements of a CD are sources, computations,
predicates, expressions and events. The sources are
event messages that a Cordies node subscribes to. As soon
as event messages arrive, the node calculates necessary re-
sults by evaluating computations that are defined on event
attributes or on the results of other computations. The com-
plete set of conditions that have to hold on the composite
event are expressed in predicates that are defined on event
attributes and computation results. Expressions have to
evaluate to true so that a composite event can be detected.
The propositions within the expressions are predicates.
Cordies provides built-in predicates for different compar-

Element Explanation

cd root element
source template for an event message
attribute required attribute of the source
anchor a reference to use of the result within the CD
filter pub/sub filter on observed events
collection container for a set of event messages that cannot

be addressed individually
computation template for the calculation of a result
predicate template for the evaluation of a n-ary predicate
expression template for the evaluation of a logical expres-

sion on predicates
event template for a composite event message

Table 2: CDL element explanation

isons on numbers and strings, along with unary predicates
any and none which test for the existence or absence of a
value’s definition and consequently for the presence or ab-
sence of sources, e.g., event messages.

<cd id="..." version="...">
<sources >
<source access="..." class="...">
<attribute name="..." type="..." anchor="...">
[<filter operator="..." />

{expression (value , interval , set) or reference
to an attribute or computation}

</filter>]
[...]
</attribute >

[...]
</source>

[...]
[<collection access="..." class="..." anchor="...">

<attribute name="..." type="..." anchor="...">
<filter operator="..." />
{expression (value , interval , set) or reference

to an attribute or computation}
</filter>
...

</attribute >
...

</collection>]
[...]
</sources >

[<computations>

<computation type="..." anchor="...">

{recursive operations (arithmetic , string , ...),
or method calls on values or references}

</computation >

...
</computations>]

[<predicates >

<predicate name="..." anchor="...">

[{value or reference to an attribute or computation
}]

[...]
</predicate >

[...]
</predicates >]

<expressions >

<expression anchor="...">

{recursive logic expression on references to
predicates}

[...]
</expression >

[...]
</expressions >

<events>
<event access="..." class="..." trigger="...">
[<attribute name="..." type="...">

{expression (value , interval , set) or reference
to an attribute or computation}

</attribute >]
[...]
</event>

[...]
</events>

</cd>

Listing 1: CD structure

The CDL’s semantics are similar to the Rapide lan-
guage [22]. However, there are significant differences. First,
Rapide uses operators and patterns on events while the CDL
applies operators to predicates on event attributes rather
than events. Second, the Rapide correlation test is divided

29

to the event pattern and to the context test which obscures
the entirety of conditions that actually apply to correlated
events. Third, Rapide uses logical, pattern, structural, and
temporal operators for event patterns in parallel although
these are not orthogonal. In contrast, the CDL provides a
uniform way to specify arbitrary semantics of relations.

We now illustrate the use of the CDL in short example.
Assume that the task is to record the parameters of a physi-
cian’s visit who checks the well-being of patients in a hos-
pital. A visit involves several events: The physician would
access the patient’s clinical record twice (for preparation and
update), see the patient, and disinfect before doing so. A
medical insurance is interested in the time that the physi-
cian spent for the patient and in the quality of treatment.
Therefore, a composite event is defined that spans the physi-
cian’s actions. These actions can be followed by his or her
interactions with the IT system and by wireless readers for
a badge in the physician’s pocket.

Assume there are three classes of basic events available.
The access message that represents the access of the medical
file has the signature

(patient, string, =, . . .)

(room, int, =, . . .)

(physician, string, =, . . .)

(accesstype, string, =, . . .)

(begin, time t, =, . . .)

(end, time t, =, . . .)

The disinfect message that represents the use of disinfec-
tant has the signature

(physician, string, =, . . .)

(time, time t, =, . . .)

The door message that represents a passing of a door has
the signature

(physician, string, =, . . .)

(room, int, =, . . .)

(time, time t, =, . . .)

The CD defines the correlation detection in five steps.
First, it defines the five events (sources) that are observed:
two access events (S1, S5), one disinfect event (S2), and two
door events (S3, S4). Two filters require S1 to have the
accesstype read, and S5 to have the accesstype write.

Second, the CD defines the computation of time intervals
between events as shown below:

Ref. Type Computation Meaning

C1 double S3.time − S1.end time from file access to visit

C2 double S3.time − S2.time time from disinfection to
visit

C3 double S4.time − S3.time visit duration

C4 double S5.begin − S4.time time from visit to file access

C5 double S5.end − S5.begin +
S1.end − S1.begin

time for overall paperwork

Third, some predicates check sequences or equalities:

Ref. Predicate Meaning

P1 greater(C1, 0.0) file access before visit?

P2 greater(C2, 0.0) disinfection before visit?

P3 equal(S1.room, S3.room) patient’s room or not?

P4 equal(S3.room, S4.room) identical room?

P5 equal(S2.physician, S3.physician)

identical physician?

P6 greater(C3, 0.0) correct door event sequence?

P7 greater(C4, 0.0) file access after visit?

P8 equal(S1.patient, S5.patient) file of identical patient?

Fourth, the expression that causes a composite event
visit is the simple conjunction P1 ∧ P2 ∧ · · · ∧ P8.

Last, the attributes of the composite event and the origins
of the attribute values are given, e.g. by their anchors.

(physician, string, =, S3.physician)

(patient, string, =, S1.patient)

(roundtime, double, =, C3)

(paperwork, double, =, C5)

Whenever a set of two access events, two door events and
the disinfect event meet all conditions of the expression,
the round event will be published using the respective at-
tribute values.

The benefits of the CDL that are displayed by the above
example are discussed in the next section.

4.2 Benefits of Correlation Descriptions
Expressiveness. The CDL provides direct access to event

attribute. They can be referenced in computations and pred-
icates which have well-known semantics. Thus, even with-
out introducing system-dependent operator semantics, the
CDL’s expressiveness exceeds the expressiveness of opera-
tors of other languages (cf. Section 2) For instance, the exact
semantic of a sequence can be explicitly defined each time.
The example CD in Section 4.1 demonstrates how sequences
can be defined and how they can be extended by any number
of additional predicates on whatever event attributes and
computation results are available. The user has the power
to redefine the semantics of sequence without changing the
CEP system at all, for example, by using sequence numbers
if they were provided by event messages.

Clarity. Of course, temporal operators like the sequence
operator are desirable as short-cuts. However, many CEP
languages provide no equally easy access to describe non-
temporal relations like spatial relations, if at all. For in-
stance, with spatial event operators [34], a simple statement
like “within a range of 20 to 40 length units from my po-
sition” is difficult, if not impossible to express. Operators
with annotated constraints make the additional implicit as-
sumption that all events have a uniform“spacestamp”where
distance can be checked on, which requires a global naming
scheme even for independent event providers. In the CDL,
any relation between events is described on attribute values
or values computed from them at the same level of ease and
with the same notation.

Independence. The CDL is fit for use in systems with a
changing set of event types and volatile semantics of event
attributes. The calculation of time intervals, for instance, is
straightforward although some events have time points and
others have time intervals for timestamps. Also, the use of
arbitrary attribute names for the starting and ending time of
an event with duration is possible because event properties
are not accessed implicitly. This is because predicates in
the CDL are defined on computation results and attribute
values rather than on event messages.

Detection efficiency. The organisation of Cordies CDs
also results in a more efficient correlation detection process.
A Cordies CD imposes no order on predicate evaluation. All
predicates are tested as soon as they are evaluable, i.e., as
soon as all messages are available that provide values which
are required in the predicate. This makes correlation detec-
tion more efficient and, in addition, supports the distribu-
tion of the correlation algorithm which we describe below in
Section 5.

30

S1 S2 S3 S4

˄ ;

;
S5

;

Evaluation of P8(S1,S5)

Figure 1: Late predicate evaluation in trees

On the contrary, in systems where operators are defined
on events rather than predicates, a common way to perform
correlation detection is arranging event templates as leaves
in an operator tree and evaluate the tree in a bottom-up
manner. Figure 1 shows a possible representation of the ex-
ample in Section 4.1 as operator tree (with the conditions left
out). In operator trees, conditions on events are tested as
soon as the operator that combines the events is evaluated.
In Figure 1, predicate P8 that checks whether the sources

S1 and S5 refer to the same patient can be evaluated only
after S2, S3 and S4 were detected and the detection algo-
rithm advanced to the root of the tree. This is especially
problematic if very selective conditions are evaluated rather
late. P8 is an example for a selective condition because of
all possible combinations of access events, very few refer to
the same patient.

Other detection algorithms that evaluate ECA (event-
condition-action) rules [15] or use FSA (finite state au-
tomata) [28] also defer the evaluation of all conditions to
the end of the detection and therefore encounter the prob-
lem of late evaluation of selective predicates. Note that a
division of the expression [28] cannot reduce this problem
because the tree structure is not changed and data from S1

and S5 still be compared only at the root.

4.3 Correlation detection algorithm

4.3.1 Preparation
When running correlation detection on the basis of a CD, a

Cordies node creates a data structure that consists of a tem-
plate for each source, computation, predicate, expression
and composite event of the CD. The templates contain pro-
cessing information (e.g., the algorithm to be executed for
the computation) and are linked with other templates with
which they are related. This structure allows for efficient
correlation detection. For example, a computation is evalu-
ated only once, even if its result is used in several predicates
and again in an attribute of the composite event message
(see the computation C3 in the above example).

The expression leading to the correlation detection is
transformed into a disjoint normal form (DNF). Each term
in a DNF contains only the logical operators ∧ and ¬. There-
fore, each term can independently lead to the detection of
the correlation. For each term, an inducing set template of
source classes is defined. It contains the classes of event
messages that are necessary to receive in order to evalu-
ate all predicates which are referenced in the term. Induc-
ing set templates are also determined for other templates in
the data structure, namely, computations, predicates, and
expressions.

patient = #972132

room = 47

physician = Dr. Q.

accesstype = "read"

begin = 10:57:20

end = 10:58:33

C1 = 10:59:57-10:58:33=84

P1 ≡ 84>0 = true

E1 ≡ true ˄ true ˄ true ˄ P4 ˄ true ˄ P6 ˄ P7 ˄ P8 à_____

round ≡ physician = Dr. Q.

patient = #972132

roundtime = ___

paperwork = ___

A composite event instance

An expression instance

Some predicates’ instances

Computations’ instances

Some sources’ instances

(event messages)
physician = Dr. Q.

time = 10:54:01

physician = Dr. Q.

room = 47

time = 10:59:57

C2 = 10:59:57-10:54:01=356

C3 = _______-10:59:57=___ C4 = _______-_______=___

C5 = (_______-_______)+(10:58:33-10:57:20)=___

P2 ≡ 356>0 = true P3 ≡ 47=47 = true

P4 ≡ 47=__=___ P5 ≡ "Dr. Q."="Dr. Q." = true ...

Figure 2: Exemplary correlation detection structure

When the installation of the data structure and the sub-
scriptions to the sources mentioned in the CD were suc-
cessful, Cordies advertises the publication of the composite
event messages.

4.3.2 Execution
Each template can create an unbounded number of in-

stances that represent incomplete or complete evaluations
of the template. Source instances are event messages;
computation, predicate and expression instances are
(semi-)finished evaluations (see Figure 2).

Incoming event messages are mapped to the inducing set
templates. For each mapping, a new inducing set instance
and a new event instance for the complex event are created.
New predicate instances and computation instances are cre-
ated if the inducing set templates of the predicate template
and computation template reference attributes from the in-
coming event message.

A received event is also mapped to the inducing set in-
stances of already existing event instances. The state of
an event instance, called its configuration, is defined by the
event messages that are mapped to the source templates
and the templates that are still unmapped. If the configura-
tion of an existing inducing set instance allows the mapping
of the received event to unmapped source templates, then
a copy of the event instance is created in which the new
event is integrated. Copies are also created of computation,
predicate and expression instances that will be extended
or evaluated using the new event.

An evaluable predicate may evaluate to false. Then, the
complex event instance and all other instances that exclu-
sively depend on this predicate are deleted, as well as the in-
volved sources if they contribute to no other instance. If all
predicates and expressions that belong to a term in the DNF
can be evaluated and the term evaluates to true, a compos-
ite event is created out of the completed event instance and
the event instance is deleted together with all other involved
instances that contribute to no other instance.

4.4 Correlation detection ambiguity
A well-known problem of correlation detection is its am-

biguity [10]. For instance, in the example provided in Sec-
tion 4.1, several messages about the disinfect event S2

might be available, so that the selection of pairs of S2 and

31

S3 messages for the evaluation of the C3 computation is am-
biguous. This problem has been addressed by introducing
selection policies and consumption policies. Such policies
state that, for instance, only the most recent or only the
oldest messages may be paired and whether a message is
consumed if successfully tested, or not.

The expressiveness of such policies is, however, restricted.
The “oldest” or “most recent” events often cannot be de-
termined in distributed systems with inaccurate clock syn-
chronisation [21]. Before all, the proposed policies concen-
trate on temporal relations between events, ignoring other
relations that might be better suited for deciding whether
a specific set of event messages should be tested for corre-
lation and whether individual messages are consumed for
correlation detection in the case of success.

Therefore, the CDL provides another set of predicates
managing event selection and consumption at a fine-grained
level (see Listing 2). An incoming event message may have
produced a set of (semi-)finished composite event instances.
The <self> expression determines whether a new instance
has a policy defined on it or not. If so, the instance will be
compared to other instances matching the other expression.
Then, the better expression which has the ternary domain
{true, false, incomparable} is applied pairwise. If the
new instance is “better”, the old one will be dropped, and
vice versa. The consumption policy is implemented by the <

previous> expression. If the new instance is an extension of
a less complete instance, and has not been dropped yet, then
the <previous> expression determines whether the less com-
plete instance be dropped, or the new one, or neither. All
expressions are defined on predicates and the predicates

can include computations. The procedure in pseudo-code is
given in Algorithm 1.

<cd ...>
...
<preferences >

<preference >

[<self>reference to expression</self >]
[<previous >reference to expression</previous >]

[<other>reference to expression</other >]
[<better>reference to expression</better >]
<preference >

...
</preferences >

</cd>

Listing 2: Preferences in CDs

The CDL provides short-cut predicates for use in
preference predicates. In the self condition, a predicate
complete tests whether the instance is complete. In the
consumption context, a complete instance may delete all in-
complete instances that share some sources in their inducing
sets. In the test condition, a predicate equivalent tests
whether both compared instances have the same unmapped
sources in their inducing sets.

4.5 Extensions to the CDL
Three additional capabilities of the detection algorithm

are aggregation, data enrichment and the initiation of tem-
poral events.

Aggregation: A common operation on attribute values is
aggregation over an unspecified number of events that occur
between an initiating and a terminating event. Therefore, in
a CD, a source can be defined to hold a number of messages

Algorithm 1 Disambiguation of correlation detection

Require: Reception of a source s
1: I ← { inducing set templates that contain the source type of

s }
2: for all i ∈ I do
3: Instances ← { instances with an inducing set that lacks a

source of the type of s }
4: for all inst ∈ Instances do
5: create a new instance inst′ by adding s to the inducing

set of inst
6: evaluate all computations that can now be evaluated
7: evaluate all predicates that can now be evaluated
8: if a predicate makes a successful detection impossible

then
9: delete inst′

10: continue
11: P ← { all preferences }
12: Pself ← P\{ preferences where the self-expression

evaluates to false for inst′ }
13: bool best← unknown
14: for all inst′′ ∈ { instances of the current inducing set

} do
15: if the better expression evaluates to true then
16: best← true
17: delete inst′′

18: else if the better expression evaluates to false
then

19: best← false
20: if best ==false then
21: delete inst′

22: else if a previous expression exists then
23: if the previous expression evaluates to true then
24: delete inst
25: else if the previous expression evaluates to false

then
26: delete inst′

of one type. This source is called a collection (see List-
ing 1). All sources in a collection must match all conditions
that are defined on the collection. When calculations like
sums, products, or the max and min operators refer to the
source, the operator is applied to all individual messages.
This behaviour can be used to calculate a minimal, maxi-
mal, average or other value from a numeric attribute.

Data enrichment: Event messages may lack information
about the event or its context which is required for CEP [32].
In the provided example, the disinfect and the door mes-
sages might just contain the identifiers of the badge and
reader that published the reading event. The message’s con-
tent needs to by enriched with the physician’s name and
the reader’s location. Both information can be accessed by
querying a database with the tag’s and the reader’s ID as
search keys. Cordies can additionally enrich detected mes-
sages with data that depends on the correlator node’s con-
text. This allows, for instance, to temporally block the de-
tection of specific correlations when the device is in a certain
context, e.g., in presence of a power shortage or when it is
located in a special region.

Initiation of temporal events: Any source that is defined
in the CD can trigger a time event for an absolute or relative
time in the future which will be created by the Cordies node.
As time events are again sources, occurring time events can
also trigger other time events, if all other conditions hold.

5. DISTRIBUTION
Being distributed itself, Cordies provides CEP in a dis-

tributed manner. Two capabilities that support Cordies’
distribution are discussed in the next subsections: first, the

32

divisibility of CDs into a number of CDs with desired prop-
erties (Section 5.1); second, their decentrally managed place-
ment on Cordies nodes (Section 5.2).

5.1 CD divisibility
Resource constraints or usage policies for executing de-

vices and the communication may require to divide CDs
into sub-expressions and execute them separately. At the
device scope, storing a smaller number of incomplete com-
posite event instances consumes less memory, and dropping
unsuccessful instances before performing expensive calcula-
tions can save CPU cycles. At the network scope, a place-
ment considering the CD’s selectivity (i.e. the ratio between
received and published events) can reduce network load.

Traditional CEP algebras often generate structures that
can be easily divided into parts—e.g., operator trees into
sub-trees—where each part can be executed separately. How-
ever, only a considerate generation of sub-expressions allows
to form sub-expressions which reduce network, CPU and
memory usage. The CDL was designed to inherently support
a division scheme which creates sub-expressions that can be
placed following optimisation metrics on network usage and
resource consumption. The proposed division scheme con-
siders the trade-off between the selectivity and the compu-
tational overhead induced by CDs. We first describe the
division algorithm and give an example below.

The algorithm computes the inducing set templates (Sec-
tion 4.3.1) and computations for each predicate and
groups the predicates with matching sets of sources and
computations. Using a combined metric for the selec-
tivity of predicates and the computational overhead of
computations, predicate groups are separated into layers
where selectivity decreases and computational overhead in-
creases from the lowest to the highest layer. The idea is
that predicates in lower layers will form separate CD expres-
sions which can be executed close to the event publishers.
Then, the intersection between the inducing set templates of
predicates in adjacent layers are analysed. If the unions of
intersecting and non-intersecting inducing set templates are
disjoint, the upper layer will be split again. The final step
of the algorithm determines new intermediate complex event
messages and re-use relationships and aggregates predicates
to CDs. The result is a division of the CD’s predicates and
computations into CDs that are rather distinct in selectiv-
ity, computational overhead, and subscribed event messages,
which allows for an optimising placement.

We demonstrate the CD division algorithm with the ex-
ample from Section 4.1. The algorithm creates five groups
of predicates with common inducing set templatess and
computations:

No. Predicates Ind. SetTempl. Computations

1) P1, P3 {S1, S3} C1

2) P8 {S1, S5} —
3) P2, P5 {S2, S3} C2

4) P6, P4 {S3, S4} C3

5) P7 {S4, S5} C4

We use a simple metric: the predicate selectivity is high
for equality tests and medium for the other comparisons,
and the computational overhead is equal for C1 – C4 (C5

does not appear in predicates). This leads to three layers:

Layer: L1 L2 L3

Sets: 2) 1), 3), 4) 5)

The analysis of inducing set template intersection yields
an intersection of Sets 2) and 1), so that L2 will be split in
2 layers—L2a containing Set 1), L2b containing Sets 3) and
4). Layer 3 cannot be split. As a result, Set 2) should be
evaluated separately and publish a new event S6. It includes
S1 and S5, so Sets 1) and 5) can re-use S6. Sets 3) and 4)
are aggregated into one CD providing a new event S7 which
includes S2, S3 and S4. The events for Sets 1) and 5) are
now completely contained in S6 and S7 so that both can be
aggregated into one CD.

The result of the division algorithm are three new CDs
with disjoint sets of predicates, computations and sources

where CD3 publishes the required composite event:

CD: CD1 CD2 CD3

Sources: {S1, S5} {S2, S3, S4} {S6, S7}

The new CDs can be placed independently so that the
more selective CD1 and CD2 can be placed closer to the
respective publishers. The freedom to transfer the evalua-
tion of arbitrary predicates to new CDs directly exploits the
CDL’s way of describing correlations of events using predi-
cates on event attributes.

5.2 CD placement
While CD division supports efficient distributed event cor-

relation detection, it also creates dependencies between the
newly created CDs, additional to the dependencies that al-
ready existed to publishers and subscribers of the CD. In
the example from Section 5.1, CD1 and CD2 depend on
their publishers, and subscribers depend on CD3. CD divi-
sion added new re-use relations between CD1 and CD3 and
between CD2 and CD3. The CD placement framework en-
sures that relations between CDs are duly considered when
assigning CDs to Cordies nodes.

Table 3 shows several relations of interest that constrain
the absolute or relative assignment of CDs to Cordies nodes.
These constraints are enforced with the aid of an additional
interface that Cordies provides: Restriction Graphs.

Arity Relation

Relations on CDs

1

unique (no duplicates)
blockable (while a duplicate runs)
immovable (no migration)
time needed to process

2 Minimum/maximum distance (e.g. delay metric)
Minimum bandwidth

n Collocation (placement in the same domain)

Relations on CDs and Cordies nodes

2 node’s real-time capabilities
node’s available security methods

Relations on CDs and executing devices

2

device’s available memory (stable, RAM)
device’s CPU power
device’s network interface technology
device’s type of energy supply
device’s type of mobility
device’s reliability
device’s identity

Table 3: Exemplary Relations

33

5.2.1 Restriction Graphs
A Restriction Graph (RG) is a document that contains

CDs and restrictions on the CDs’ absolute or relative place-
ment in the network of Cordies nodes. A RG represents the
counterpart to restrictions imposed by constrained network
and device resources because it defends the application’s in-
terests for the execution of CDs.

Listing 3 shows the structure of a RG. An operator con-
tains a CD to be run and references to all restrictions that
apply to its assignment to a Cordies node. A pin is the
identifier of a device (mostly hosting a publisher or a sub-
scriber) that is in a relation with the CD. The restrictions
are selected from predefined types and can be parametrised.

<restrictionGraph id="..." version="...">
<operators >
<operator >
<cd ...> ... </cd>

[<restrictionReference ref="..." />]
[...]
</operator >

[...]
</operators >

[<pins>
...
</pins>]

[<restrictions >
<restriction type="..." ...>...</restriction >

[...]
</restrictions >]

</restrictionGraph >

Listing 3: Restriction Graph structure

Upon reception of a RG, a Cordies node (called initiator)
extracts the CDs and runs a placement algorithm to map
CDs to Cordies nodes in compliance with the restrictions
defined in the RG. When a placement is found, the initiator
assigns the CDs to the selected nodes. The target nodes
execute the CDs, subscribe to events and advertise their
composite events, thus completing a directed acyclic graph
(DAG) of CD re-use within the Cordies network.

Along with the CD, the initiator provides target nodes
with a local RG (LRG) which consists of assigned CDs and
the RG’s restrictions that are defined on these CDs. Tar-
get nodes ensure the permanent compliance with the LRG
autonomously. Upon detection of a violation, nodes locally
attempt a re-placement of the CD to a node where the re-
strictions are satisfied. The permanent compliance of the
evaluation of all CDs in the original RG is therefore ensured
in a distributed manner rather than by the initiator, which
makes the scheme scalable for large DAGs of CD re-use.

The CD assignment process includes a best-effort dupli-
cate prevention scheme. The initiator first checks the CDs
from the RG against known advertisements (“active CDs”).
If a CD in the RG matches an advertisement, the initiator
maps the CD to the advertiser. The advertiser, upon re-
ception of the CD and the correspondent LRG, maintains
restriction compliance of the CD with respect to the pre-
vious LRG combined with the new one. It also attempts
re-placement for the combined LRG.

5.2.2 Placement algorithms
The Cordies placement framework allows to plug in user-

defined placement algorithms. Popular algorithms use com-
binations of delay and bandwidth usage as optimisation cri-
terion [29, 27]. However, in order to support the extended
restriction semantics from the RG concept we introduced in

the previous section, we have implemented own placement
strategies for the initial placement of a RG and for the subse-
quent dynamical re-placement. Both strategies are assisted
by CLIO [16], a distributed service that provides cross-layer
information about device resources and network state.

Initial placement. Initial placement (Algorithm 2) assigns
a RG of moderate size to nodes from a probably large net-
work. This requires a comparison of the RG’s restrictions
with the resources provided by Cordies nodes and the com-
munication network. The initiator accesses resource infor-
mation reactively (lines 7–11). It puts individual CDs out for
tender by publishing tender notices and simultaneously sub-
scribes to corresponding bidding messages. Cordies nodes
that can evaluate CDs subscribe to tender notices, using
their locally available resources as filter, and receive only
tender notices that match these resources. Upon reception
of a tender notice, a node checks for additional network re-
sources required in the notice and publishes a bidding mes-
sage if all restrictions are provided for.

Algorithm 2 Initial placement

1: X ← {CD1, . . . , CDm}
2: Levels ← create_levels(X) // heuristic 1
3: for all l ∈ Levels do
4: if l == 0 then
5: continue
6: Xl ← { CDs of level l }
7: // The following for all is executed in parallel
8: for all cd ∈ Xl do
9: publish_tender() // tender msg contains restrictions

to all CDs from lower level
10: while not timeout do
11: receive_biddings() // fill cd’s domain
12: Cl ← { all restrictions between CDs on level l }
13: for all r ∈ Cl do
14: clean_domains() // AC-3 algorithm on domains of

CDs that are involved in r
15: Dl ← { all domains of CDs on level l }
16: for all d ∈ Dl do
17: order_domain(d) // heuristic 2
18: backtrack(Levels) // start backtracking on level 0

The initiator then decides the assignment of CDs to bid-
ders so that the RG’s restrictions are not violated (called the
RG placement problem, RGPP). The RGPP can be mapped
to the constraint satisfaction problem (CSP) [30] (see Ta-
ble 4). A CSP is defined on a set X of variables where each
variable xi has a domain Di of potential values, and a set R

of constraints on the actual values. A solution to a CSP is a
configuration of values that does not violate the constraints.
A known strategy solve a CSP is backtracking (line 18).

We use heuristics and optimisations to address the prob-
lem that backtracking needs exponential time for the test
of all possible placements. The first heuristic (lines 2–6) re-

CSP RGPP

X = {x1, . . . , xm} X = {CD1, . . . , CDm}
set of variables set of Cordies CDs

D = {D1, . . . , Dm} D = D1 = · · · = Dm =
{node1, . . . , noden}

domains of the variables set of Cordies nodes

C = {C1, . . . , Ck} C = {R1, . . . , Rk}
set of constraints set of restrictions from RG

Table 4: Mapping from RGPP to CSP

34

duces the overhead for backtracking by ordering the CDs
with decreasing strictness of the restrictions on their place-
ment, starting with a level 0 where the pins are located. The
idea is that for very restricted CDs the assignment space is
low, so that early assignments which are decided for these
CDs are unlikely to be reversed and therefore will probably
not require backstepping.

The second heuristic (lines 15–17) improves the first result
of the backtracking algorithm by ordering the CD’s domain,
i.e. the Cordies nodes that a CD can potentially be mapped
to. The idea is that when the first solution is “good”, back-
tracking can terminate after finding this solution without
having to run to its end and compare all found solutions.

The domain ordering metric is stability. A stable mapping
of a CD to a node is one that will probably not be revised
very soon. The metric is defined as follows. Let DCD =
{d1, . . . , dn} be the potential Cordies nodes that the CD

can be mapped to. For each node di a bidding message mi

has been received from the node. The message is a vector of
n resource items that equal or exceed the resources required
by a RG restriction. The corresponding vector of resource
restrictions is r. We define two functions

f(mi[j]) :=

(

mi[j]
r[j]

if r[j] was to exceed

r[j]
mi[j]

if mi[j] was to exceed
(1)

g(mi) := min(f(mi[1]), f(mi[2]), . . . , f(mi[n])) (2)

Two vectors are defined with

~ui =

0

@

f(mi[1])
. . .

f(mi[n])

1

A and ~vi =

0

@

f(mi[1]) − g(mi)
. . .

f(mi[n]) − g(mi)

1

A (3)

Now, each candidate in a domain receives a weight

wi = σSi − τTi with Si =
1

n

n
X

j=1

~ui[j] and Ti =
1

n

n
X

j=1

~vi[j]

(4)
Si measures how far node di exceeds the required resource,
Ti measures the balance of the node’s resources and σ and τ

are parameters. The larger the weight wi, the more probable
is a over-fulfilment of the requested resources and the more
stable is the solution if di is selected.

Finally, we employ the AC-3 algorithm [23] to reduce the
search space of backtracking by eliminating nodes that can-
not lead to an overall solution (lines 12–14).

Monitored CD execution. Cordies runs in a dynamic envi-
ronment where resources change and nodes disappear. The
CD execution itself and its compliance to the LRG are there-
fore continuously monitored. The execution of a CD is moni-
tored by the initiator of its RG. The initiator checks period-
ically whether the corresponding advertisements exist and
whether they are recent. If a CD is missing, the initiator
assigns the CD again to a node selected by a placement al-
gorithm. The loss of the initiator itself is detected by the
application, which then charges another initiator with the
RG. Deploying a CD or a RG a second time is allowed be-
cause of duplicate detection (see Section 5.2.1).

The node running a CD ensures the compliance of the CD
execution with the RG autonomously. If a restriction can-
not be satisfied, the node has to consider a new placement
for the CD. This placement differs from the placement of a
RG: 1) there is just one CD to place; 2) a quick solution

is desirable; 3) the target node will be selected from the
neighbourhood rather than the whole network in order to
keep effects on the overall operation of Cordies low. There-
fore we opted against a backtracking-based algorithm and
implemented a placement algorithm that is based on incom-
plete, proactively collected resource information.

Resource data about potential target nodes is collected
using the gossip-based Resource Collection Protocol (RCP)
that we developed (Algorithm 3). Nodes running RCP pe-
riodically send local device and network resource data to
their neighbours. Upon reception of a RCP message, a node
stores the data (lines 2–5, 8) and rates its benefit following
three metrics: First, a comparison of the resources with the
best known resources; second, a rating of the volatility of the
resource over time; and third, a rating of the balance in the
quality of different resources of the same node (lines 6, 7).
The combined rating results in a value in the interval (0, 1]
and determines the probability with which the RCP message
is forwarded to neighbours (lines 9, 10). While information
about the best resources is thus distributed network-wide,
the probability for the distribution of mediocre information
decreases exponentially with each hop.

When a new local placement is inevitable, the executing
node selects a target node from its local view which com-
plies best with the restrictions of the violating CD. Missing
information about device resources and network behaviour
is accessed using the cross-layer information service.

Algorithm 3 RCP message forwarding algorithm

1: B = ∅ // benefit values
2: while RCP message m about node n received via node f do
3: R← { all resources from m}
4: for all r ∈ R do
5: replace previous RCP information about n with new one
6: compute benefit b(r) ∈ (0, 1] from r
7: B = B ∪ {wr(b(r))} // add weighted benefit from r
8: store path resources to n via f
9: b = compute_benefit(B) // b ∈ (0, 1], overall benefit of n
10: forward m to other neighbours with probability b

6. EVALUATION
We implemented parts of Cordies concepts for the

SpoVNet project [36]. This section addresses the initial RG
placement algorithm which we evaluated for correctness and
to measure its success rate.

The initial placement algorithm relies on two subsystems:
an event notification service for the bidding procedure, and
a resource observation system. Motivated by the RG, we
employ a latency-aware publish/subscribe service that con-
siders latency requirements for individual subscribers [35].
There would be little sense in placing CDs on nodes with a
certain communication latency if the publish/subscribe ser-
vice did not actually restructure to provide the required la-
tency on the application layer.

Resource information is provided by the distributed cross-
layer information provider CLIO [16]. CLIO accepts one-
time and continuous queries for local and remote resources
by a local interface. All Cordies nodes run continuous queries
on their local resources and adapt their subscriptions to the
bidding process as soon as resources change. Nodes that par-
ticipate in a bidding process use one-time queries to access
link resource information to neighbours that are specified by
the initiator.

35

sub pub

CD

1

CD

4

CD

2

CD

5

CD

3L10 L3

L7L6

pin pub publisher sub subscriber max. latency distinct nodesmin. memory

L1

L2L4L5

L8

L9
L11

L12

D1

D2

M1

L1-L12: 20 ms

M1: 0.2 GB

Figure 3: RGs for evaluation

Node
Resources Assigned CDs

RAM Var. A Var. B Var. C Var. D

1a 0.8 − 1.4GB 1, 2, 5 1, 2, 3, 4 4

2b 0.3 − 0.4GB 3 2, 3
3 0.4GB 5 1
4 0.4GB 1, 5 2, 3, 4
5 0.2GB
6 0.4GB 4 5
7 0.1 − 0.2GB

a pinned subscriber b pinned publisher
Average latencies:

Pairs 1-2 1-{3–5} 1-6 {1,2}-7 2-{3–6}
Latency (ms) 9 6 4 24 5

Pairs {3–5}-7 3-{4,5} {3–5}-6 4-5 6-7
Latency (ms) 21 1 2 1 22

Table 5: Placement results

We installed the placement framework on 7 test-bed nodes
and executed the initial placement of a complex RG (Fig-
ure 3). The CD contains latency restrictions, distinct re-
strictions that require to place the affected CDs on different
nodes, and unary restrictions on available memory. Pins
(stationery nodes) are included in the RG to represent sub-
scribers and publishers.

In 75% of all runs, the algorithm found a valid solution
without any backstepping. In other cases, up to 14 back-
steps were necessary, which is still little in comparison to the
16.807 different assignments that the backtracking algorithm
could possibly test. Table 5 shows four different variants of
assignments that were found by the algorithm because the
available resources on test-bed nodes were volatile. Vari-
ant D occurred only once and represents an abnormal case
in which the cross layer information subsystem at nodes 1
and 2 yielded no results and therefore both nodes did not
participate in the bidding procedure.

7. CONCLUSION
In this paper, we have shown the benefits of an expressive

algebra to specify arbitrary event relations on events with
previously unknown signatures so that situation detection
can be initiated dynamically. We have proposed the CDL
language which allows to define any operator semantics on
the level of event attributes. Unlike other CEP languages,
the CDL does not focus on temporal relations with rudi-
mentary support for other relations. Instead, any relations

that can be defined on event attributes and even on con-
text attributes of the event or the correlation node can be
described at the same level of ease. The language also ex-
tends previously known approaches regarding the control of
ambiguity in the detection of correlated events.

Furthermore, we have discussed the necessity to distribute
correlation detection functionality. We verified that the CDL
supports a distribution that is governed by efficiency and re-
source consumption considerations instead of the structure
of the expression. We have presented a way to manage the
initial and continuous placement of sets of correlation de-
scriptions so that not only node and network constraints are
satisfied but also requirements of the correlation detection.

In the future, we plan to further investigate the bene-
fits of the CDL and the placement framework. For in-
stance, we have previously shown how users can gain con-
fidence in correlation detection results although event at-
tributes are imprecise and uncertain [18]. Probability the-
ory blends seamlessly into the Cordies correlation detec-
tion algorithm because the handling of probability distribu-
tions for computation results and of probability measures for
predicates and expressions are well understood. We plan
to integrate the framework for continuous placement with
the latency-aware publish/subscribe system [35] so that the
influence of event latency on the quality of correlation de-
tection can be expressed in probabilistic statements as well.

Acknowledgements
This work was partially funded by the SpoVNet project of
Baden-Württemberg Stiftung gGmbH. We are grateful for
the comments by our reviewers and Prof. Adrian Paschke.

8. REFERENCES
[1] R. Adaikkalavan and S. Chakravarthy. SnoopIB:

interval-based event specification and detection for
active databases. Data Knowl. Eng., 59(1):139–165,
2006.

[2] R. Adaikkalavan and S. Chakravarthy. Event
specification and processing for advanced applications:
Generalization and formalization. In DEXA, pages
369–379, 2007.

[3] A. Adi and O. Etzion. Amit - the situation manager.
The VLDB Journal, 13(2):177–203, 2004.

[4] J. F. Allen. Maintaining knowledge about temporal
intervals. Commun. ACM, 26(11):832–843, 1983.

[5] J. Bailey and S. Mikulás. Expressiveness issues and
decision problems for active database event queries. In
ICDT ’01: Proc. 8th Int. Conf. on Database Theory,
pages 68–82. Springer-Verlag, 2001.

[6] C. Bornhövd and A. P. Buchmann. CREAM: An
infrastructure for distributed, heterogeneous
event-based applications, 2003.

[7] F. Bry and M. Eckert. Rule-based composite event
queries: The language xchangeeq and its semantics.
Lecture Notes in Computer Science, 4524:16–30, 2007.

[8] A. T. Campbell, S. B. Eisenman, N. D. Lane,
E. Miluzzo, R. A. Peterson, H. Lu, X. Zheng,
M. Musolesi, K. Fodor, and G.-S. Ahn. The rise of
people-centric sensing. IEEE Internet Computing,
12(4):12–21, 2008.

[9] J. Carlson and B. Lisper. An event detection algebra
for reactive systems. In EMSOFT ’04: Proc. 4th ACM

36

Int. conf. on Embedded software, pages 147–154.
ACM, 2004.

[10] S. Chakravarthy and D. Mishra. Snoop: An expressive
event specification language for active databases. Data
Knowledge Engineering, 14(1):1–26, 1994.

[11] C.-H. Chen-Ritzo, C. Harrison, J. Paraszczak, and
F. Parr. Instrumenting the planet. IBM J. Res. Dev.,
53(3):1:1–1:16, 2009.

[12] S. Courtenage. Specifying and detecting composite
events in content-based publish/subscribe systems.
Proc. 22nd Int. Conf. on Distributed Computing
Systems Workshops, pages 602–607, 2002.

[13] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, and
F. Reiss. Design considerations for high fan-in systems:
The HiFi approach. In CIDR, pages 290–304, 2005.

[14] S. Gatziu and K. Dittrich. Detecting composite events
in active database systems using petri nets. Proc. 4th
Int. Workshop on Research Issues in Data
Engineering, pages 2–9, 1994.

[15] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event
specification in an active object-oriented database. In
SIGMOD ’92: Proc. ACM Int. Conf. on Management
of Data, pages 81–90. ACM, 1992.

[16] D. Haage, R. Holz, H. Niedermayer, and P. Laskov.
CLIO – a cross-layer information service for overlay
network optimization. In Kommunikation in Verteilten
Systemen (KiVS) 2009, 2009.

[17] A. Hinze and A. Voisard. A parameterized algebra for
event notification services. In TIME ’02: Proc. 9th
Int. Symposium on Temporal Representation and
Reasoning, page 61. IEEE Computer Society, 2002.

[18] G. G. Koch, B. Koldehofe, and K. Rothermel. Higher
confidence in event correlation using uncertainty
restrictions. In Proc. 28th IEEE Int. Conf. on
Distributed Computing Systems Workshops (ICDCSW
’08). IEEE Computer Society, 2008.

[19] G. Li and H.-A. Jacobsen. Composite subscriptions in
content-based publish/subscribe systems. In
Middleware 2005, number 3970 in Lecture Notes in
Computer Science, pages 249–269. Springer, 2005.

[20] G. Li, V. Muthusamy, and H.-A. Jacobsen. Adaptive
content-based routing in general overlay topologies. In
Middleware ’08: Proc. 9th ACM/IFIP/USENIX Int.
Conf. on Middleware, pages 1–21. Springer, 2008.

[21] C. Liebig, M. Cilia, and A. Buchmann. Event
composition in time-dependent distributed systems. In
COOPIS ’99: Proc. 4th IECIS Int. Conf. on
Cooperative Information Systems, page 70. IEEE
Computer Society, 1999.

[22] D. C. Luckham. The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley
Longman Publishing Co., Inc., 2001.

[23] A. Mackworth. Consistency in networks of relations.
Artificial Intelligence, 8(1):99–118, 1977. Reprinted in
Readings in Artificial Intelligence, B. L. Webber and
N. J. Nilsson (eds.), Tioga Publ. Col., pp. 69-78, 1981.

[24] M. Mansouri-Samani and M. Sloman. GEM: A
generalized event monitoring language for distributed
systems. IEE/IOP/BCS Distributed Systems
Engineering Journal, 4:96– 108, 1997.

[25] A. Nagargadde, S. Varadarajan, and
K. Ramamritham. Semantic characterization of real
world events. In DASFAA, pages 675–687. Springer,
2005.

[26] A. Nagargadde, S. Varadarajan, and
K. Ramamritham. Representation and processing of
information related to real world events. Know.-Based
Syst., 20(1):1–16, 2007.

[27] P. Pietzuch, J. Ledlie, J. Shneidman,
M. Roussopoulos, M. Welsh, and M. Seltzer.
Network-aware operator placement for
stream-processing systems. In ICDE ’06: Proc. 22nd
Int. Conf. on Data Engineering, page 49. IEEE
Computer Society, 2006.

[28] P. R. Pietzuch, B. Shand, and J. Bacon. Composite
event detection as a generic middleware extension.
Network, IEEE, 18:44–55, 2004.

[29] S. Rizou, F. Dürr, and K. Rothermel. Solving the
Multi-operator Placement Problem in Large-Scale
Operator Networks. Technical Report 2009/03,
University of Stuttgart, Collaborative Research Center
627, 2009.

[30] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice-Hall, Englewood Cliffs,
NJ, 2nd edition edition, 2003.

[31] C. Sánchez, S. Sankaranarayanan, H. Sipma,
T. Zhang, D. Dill, and Z. Manna. Event correlation:
Language and semantics. Lecture Notes in Computer
Science, 2855:323–339, 2003.

[32] B. Schilling, B. Koldehofe, U. Pletat, and
K. Rothermel. Distributed heterogeneous event
processing: Enhancing scalability and interoperability
of cep in an industrial context. In DEBS ’10: Proc.
4th Int. Conf. on Distributed Event-based Systems.
ACM, 2010.

[33] S. Schwiderski. Monitoring the Behaviour of
Distributed Systems. PhD thesis, Selwyn College,
University of Cambridge, 1996.

[34] S. Schwiderski-Grosche and K. Moody. The SpaTeC
composite event language for spatio-temporal
reasoning in mobile systems. In DEBS ’09: Proc. 3rd
ACM Int. Conf. on Distributed Event-Based Systems,
pages 1–12. ACM, 2009.

[35] M. A. Tariq, G. G. Koch, B. Koldehofe, and
K. Rothermel. Dynamic publish/subscribe to meet
subscriber-defined delay and bandwidth constraints.
In Euro-Par’10: Proc. 16th Int. Euro-Par Conf.
Springer, 2010.

[36] O. Waldhorst, C. Blankenhorn, D. Haage, R. Holz,
G. Koch, B. Koldehofe, F. Lampi, C. Mayer, and
S. Mies. Spontaneous Virtual Networks: On the Road
towards the Internet’s Next Generation. it —
Information Technology Special Issue on Next
Generation Internet, 50(6), Dec. 2008.

[37] E. Yoneki and J. Bacon. Unified semantics for event
correlation over time and space in hybrid network
environments. In On the Move to Meaningful Internet
Systems 2005: CoopIS, DOA, and ODBASE, volume
3760, pages 366—384. Springer Verlag, 2005.

[38] D. Zimmer and R. Unland. On the semantics of
complex events in active database management
systems. Int. Conf. on Data Engineering, 0:392, 1999.

37

