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Modelling Behavioural Preferences in Epidemic Models for Sexually
Transmitted Infections on Temporal Networks

Kathinka Frieswijk, Lorenzo Zino and Ming Cao

Abstract— In this paper, we propose a temporal model for
the spreading of curable sexually transmitted infections (STIs).
The model is developed within the framework of activity-driven
networks, which allows to model the time-varying pattern
of sexual encounters and the individuals’ heterogeneity in
their proclivity to initiate them. Our model explicitly includes
the delay between infectiousness and symptoms onset, and
individuals’ behavioural preferences for the use of protection
during encounters. Behavioural preferences evolve according to
a nontrivial mechanism that accounts for the perceived risks,
the cost of adopting protective measures, and the persuasive
effect of interactions with individuals who have a different
preference. In the limit of large-scale populations, we use a
mean-field approach to derive the epidemic threshold and study
the effect of two control measures on the spread of STIs:
i) routine screening at STI clinics, and ii) condom (social)
marketing campaigns. Our results reveal the important effect of
routine screening for STIs, which has emerged as a key factor to
favour stability of the disease-free equilibrium, while marketing
campaigns can be very effective in mitigating endemic diseases.

I. INTRODUCTION
Without treatment, sexually transmitted infections (STIs)
such as chlamydia, gonorrhoea, syphilis and trichomoniasis
can cause health problems among which, but not exclusively,
infertility, stillbirths, cancer and chronic neurological prob-
lems [1]. Since the discovery of the treatment using penicillin
in 1928, however, syphilitic facial deformities and death
have predominantly become things of the past. After having
rid society of such grim visual reminders of the dangers
of having “one night with Venus”, curable STIs have been
underappreciated adversaries for decades [2], and today, they
are on the rise. Each day, more than one million people
become infected with a common STI [1], and in 2018, the
prevalence of combined cases of gonorrhoea, chlamydia and
syphilis in the United States reached an all-time high [3].
Furthermore, the current health crisis related to COVID-19
has called for the relocation of STI resources to the COVID-
19 response, and additionally caused a disruption in STI
services [4], the consequences of which are yet to be seen.
Since STIs are often asymptomatic [5], they present a peril
as a silent global epidemic, with risk for escalation lurking
in the shadows of the ongoing COVID-19 pandemic. The
rise in STI cases is concerning, since STIs — in particular
gonorrhoea — are developing resistance to antibiotics, vastly
reducing treatment options [6]. Although condoms are highly
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effective in preventing the spreading of STIs [7], their use
is prevalent at varying degrees, and not always supported
by public health authorities [8]. An understanding of the
dynamics behind the current trends of risky sexual behaviour
would aid in the development of effective control policies.

Mathematical models of epidemic spreading on networks
are potent means to shed light on spreading of infectious
diseases [9]–[12]. After analysis, the gained insights can sub-
sequently be used to inform control strategies to impact the
evolution of epidemic spreading [10]–[13]. Since real-world
networks of interactions are often time-varying, temporal
networks have especially emerged as effective paradigms to
capture the patterns of human interactions [14]. A valuable
paradigm to study real-world time-varying networks can be
found in the concept of activity-driven networks (ADNs)
[15]–[17]. In ADNs, an activity rate is assigned to each
individual, which captures the individual’s propensity to have
interactions with others. Using such a network construction
enables analysis of epidemic spread on heterogeneous tem-
poral networks [13], [15]–[17].

Despite most of the literature on epidemic models on
temporal networks focusing on other types of disease, such
as flu or recently COVID-19, some efforts have been made
to study STIs through the lens of temporal networks. In
[18], a multi-layer temporal network model is used to study
the impact of casual partners on the spreading of STIs.
A framework to handle heterogeneities existing in contact
networks can be found in [19]. In [20], a bipartite network
is employed to model a heterosexual contact network.

In this paper, we propose a model for the spread of
STIs, in which individuals initiate sexual interactions with
others according to a stochastic mechanism governed by
a continuous-time ADN. The proposed model incorporates
individuals’ heterogeneity and their behavioural preferences
with regard to the use of protective measures when engaging
in sexual contacts. We achieve this by adding extra compart-
ments to the well-known susceptible–infected–susceptible
(SIS) model, which is standardly used to model STIs such
as gonorrhoea [21]. These additional compartments allow the
representation of the individual behavioural preferences, and
the presence of asymptomatic, unaware — but infectious
— individuals. The individual’s behavioural preference is
determined by a trade-off decision between the perceived
risk (associated with the detected prevalence of the disease)
and the cost of adopting protective measures, and it may
also change after an encounter with an individual who has a
different preference. In our model, we implemented two mea-
sures to control the spread of infection: (i) routine screening



for STIs at high-volume sites, which was determined to be
the most effective approach to control the spreading of STIs
[5]; and (ii) condom (social) marketing campaigns, whose
positive effect on the likelihood to adopt protective measures
has been proved through systematic studies [22].

Besides the mathematical formalisation of the model, the
main contributions of this paper are given by the derivation of
the epidemic threshold, by means of a mean-field analysis
in the limit of large-scale populations, and the numerical
analysis of the system above the epidemic threshold. Our
theoretical results allow to shed light on the role of the
model parameters and on the effectiveness of the two control
measures on the spread of STIs. Specifically, our results
suggest that routine screening of STIs is a more effective
control measure than the introduction of condom marketing
campaigns. The simulation results extend our theoretical
findings beyond the limitations of our analysis and suggest
that condom marketing campaigns may be critical to miti-
gating endemic diseases.
The rest of the paper is organised as follows. In Section II,
we formulate the network model for STIs. In Section III,
we derive the dynamical system. In Section IV, we present
our main results. Section V concludes the paper and outlines
future research.

Here, we define some notation used throughout this paper.
The set of real, real nonnegative, and strictly positive real
numbers is denoted by R, R≥0, and R>0, respectively.
Given a function x(t) with t ∈ R≥0, we define x(t+) =
lims↘t x(s), and x(t−) = lims↗t x(s).

II. MODEL

We consider a population of n individuals V = {1, . . . , n}.
Sexual interactions are modelled by a directed temporal
network (V, E(t)), which evolves in continuous time t ∈
R≥0. The nodes represent the individuals and E(t) is the
time-varying set of directed links, in which the directed link
(j, k) ∈ E(t) if and only if individual j initiates a sexual
encounter with player k at time t.

A. Activity Driven Networks

Interactions are generated according to a mechanism inspired
by continuous-time ADNs [16]. Specifically, each individual
j ∈ V is characterised by a parameter aj ∈ R>0 called
activity, which models j’s tendency to initiate a sexual en-
counter. Interactions are generated in a probabilistic fashion.
Each individual j is equipped with a Poisson point process
(to which we refer as a clock) with the rate aj , independent
of the others, as in [16]. When a clock clicks, the individual
associated to it activates and initiates a sexual encounter
with another member of the population, selected uniformly
at random in the network. The network formation process is
summarised in the following algorithm: i) at time t = 0,
E(t) = ∅; ii) if at time t ∈ R>0, the Poisson clock
associated with individual j ∈ V ticks, then j activates
and selects an individual k ∈ V \ {j} uniformly at random.
Instantaneously, the directed link is (j, k) is added to E(t);
iii) Immediately afterwards, (j, k) is removed from E(t), the

Poisson clock associated with individual j is re-initialised,
and the algorithm resumes from point ii).

B. Epidemic Model

We consider an extension of the classical network SIS model
[23], where we introduce extra compartments to account for
behavioural preferences with regard to the use of protective
measures during sexual interactions, and for detected infected
individuals that are receiving treatment. Each individual j ∈
V is characterised by a state Xj(t) ∈ {Sr,Sp, Ir, Ip, It} at time
t, reflecting their behavioural preference and health state. In
particular,

Xj(t) =



Sr if j is susceptible and prefers to not use
protective measures (risky),

Sp if j is susceptible and prefers to use
protective measures,

Ir if j is infected, asymptomatic, and prefers
to not use protective measures (risky),

Ip if j is infected, asymptomatic, and prefers
to use protective measures,

It if j is infected, symptomatic, and
receiving treatment,

at time t. Here, we make the simplifying assumption that
once infected individuals become symptomatic, they are
immediately diagnosed and receive treatment. Note that
asymptomatic infected individuals are unaware of their health
condition, and thus exhibit the same behavioural patterns as
susceptible individuals.

The infection spreads through pairwise interactions be-
tween susceptible and infected individuals, which occur
according to the following mechanism. If (j, k) ∈ E(t),
and none of the individuals is receiving treatment (i.e.
Xj(t) 6= It and Xk(t) 6= It), then individual j proposes a
sexual encounter to individual k. Depending on individual
j’s behavioural preference, j proposes to use protective
measures (if Xj(t) ∈ {Sp, Ip}), or not (if Xj(t) ∈ {Sr, Ir}).
If individual k has the same behavioural preference, then we
assume that k always accepts. If individual k’s behavioural
preference differs, then the encounter is accepted with prob-
ability σ ∈ [0, 1] (see Fig. 1a), where σ is the individuals’
degree of amenability.1 If k accepts, then the behavioural
preference of k changes accordingly, consistent with the
literature on decision inertia, i.e. people’s tendency to repeat
past decisions [24], [25]. The state of an individual j ∈ V
evolves over time according to the following processes.
Play safe: Besides the behavioural changes due to an en-
counter with an individual that wants to use protective
measures, an individual may start favouring protective be-
haviour as a response to the epidemic spreading. To model
this, each individual that has a non-protective tendency
(Xj(t

−) ∈ {Sr, Ir}) starts to desire the adoption of protective

1Note that different degrees of amenability among the individuals may
be defined to capture behavioural heterogeneities in the population.
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Fig. 1: (a) A flow chart of the process of proposal and acceptance; (b) State transitions of the epidemic model for j ∈ V .

behaviour (Xj(t
+) ∈ {Sp, Ip}) according to a Poisson clock

with rate equal to f(It). Here, It(t) denotes the detected
prevalence of the disease at time t, i.e. It(t) := 1

n

∣∣{j ∈
V | Xj(t) = It}

∣∣, and f(It(t)) : [0, 1]→ R≥0 is a monoton-
ically non-decreasing risk perception function, which repre-
sents the incentive to adopt self-protective behaviours due to
fear arising when the disease spreads within the population.
Play risky: Apart from the behavioural changes due to
an encounter with an individual that does not want to
use protective measures, an individual having a protective
tendency (Xj(t

−) ∈ {Sp, Ip}) may spontaneously lose the
desire to protect (Xj(t

+) ∈ {Sr, Ir}) due to the costs of
using protections. In the model, we introduce a Poisson
clock with rate cj , associated with each individual that has
a protective tendency, where cj ∈ R>0 captures the cost of
using protection: this includes not only the cost of condoms,
but also the potential personal reluctance in using them. For
the sake of simplicity, we assume that cj = c ∈ R>0 for all
j ∈ V .2

Contagion: If a susceptible individual (Xj(t) ∈ {Sr,Sp})
does not use protective measures during an encounter with
an infected individual k (Xk(t) ∈ {Ir, Ip}), individual j
becomes infected with probability λ ∈ [0, 1].
Symptoms onset: An asymptomatic infected individual
(Xj(t

−) ∈ {Ir, Ip}) spontaneously develops symptoms ac-
cording to a Poisson clock with rate µ ∈ R>0. We assume
that symptomatic individuals become aware and immediately
start treatment (Xj(t

+) = It).
Recovery: An infected individual undergoing treatment
(Xj(t

−) = It) spontaneously recovers according to a Poisson
clock with rate β ∈ R>0. We assume that after recovery, the
individual adopts protective behaviour (Xj(t

+) = Sp).

C. Control

We introduce two measures to control the spreading of STIs.

2Note that different costs among individuals may be used to capture
heterogeneities in the population with respect to the perceived cost for
using protections, which may be influenced by wealth status, social stigmas,
religious interdicts, and prevailing moral norms [26].

Routine screening at STI clinics: We examine what hap-
pens if the government provides routine screening at clin-
ics, and free condoms after the STI tests. By providing
free routine tests, individuals without symptoms are in-
duced to get tested. This is implemented in the modelling
framework by introducing an additional Poisson clock with
rate us ∈ R>0, which represents the rate at which STI
screening takes place. Hence, asymptomatic infected indi-
viduals (Xj(t

−) ∈ {Ir, Ip}) receive diagnosis and treatment
(Xj(t

+) = It) according to a Poisson clock with rate us. Sus-
ceptible individuals (Xj(t

−) ∈ {Sr,Sp}) get tested according
to a Poisson clock with rate us. We assume that, as a con-
sequence of the reminder of the dangers of STIs, they adopt
a behavioural preference for the use of protective measures
after receiving the negative diagnosis (Xj(t

+) = Sp).
Condom marketing campaigns: Due to marketing pro-
grammes, individuals are stimulated to use protection during
intercourse. The effect of such schemes is incorporated in the
model by reducing their cost (in the “play risky” mechanism)
by um ∈ [0, c], that is, from c to c− um.

III. DYNAMICS
Since all the mechanisms in the dynamics are triggered
by Poisson clocks, each one independent of the others,
the system’s state X(t) evolves according to a continuous-
time n-dimensional Markov process in the state space
{Sr,Sp, Ir, Ip, It}n. As illustrated in Fig. 1b, the generic jth

entry of the vector X(t) can undergo nine different state
transitions. Three of them —namely, the ones from Ip and Ir
to It, and the one from It to Sp— are just triggered by sponta-
neous mechanisms. Hence, the corresponding transition rates
are simply equal to the sum of the rates of the Poisson clocks
involved in the process. The other six transitions, however,
involve mechanisms that are triggered by mechanisms in-
volving interactions between individuals. These mechanisms
are the contagion process, and the behavioural changes due
to persuasion. In the following, we derive the expressions for
the rates of these mechanisms and, consequently, we compute
the six transition rates that involve them.



Contagion: If Xj(t
−) = Sr, j contracts the disease

(Xj(t
+) = Ir) according to a Poisson clock with rate

κr,j :=
λ

n− 1

[
aj

[ ∑
k:Xk=Ir

1 + σ ·
∑

k:Xk=Ip

1

]
+

∑
k:Xk=Ir

ak

]
.

If Xj(t
−) = Sp, individual j becomes infected (Xj(t

+) = Ir)
according to a Poisson clock with rate

κp :=
λσ

n− 1

∑
k:Xk=Ir

ak.

Play safe: If Xj(t
−) ∈ {Sr, Ir}, j is persuaded by k to start

desiring the use of protective measures (Xj(t
+) ∈ {Sp, Ip})

according to a Poisson clock with rate

νp :=
σ

n− 1

∑
k:Xk∈{Sp,Ip}

ak.

Play risky: If Xj(t) ∈ {Sp, Ip}, j is persuaded by
k to no longer covet the use of protective measures
(Xj(t

+) ∈ {Sr, Ir}) according to a Poisson clock with rate

νr :=
σ

n− 1

∑
k:Xk∈{Sr,Ir}

ak.

Hence, the overall transition rate from state Sr to state Sp is
equal to the sum of three contributions: the persuasion effect
νp, the risk perception f(It), and the control effort placed
in routine screening us. Similarly, the overall transition rate
from state Ir to state Ip is equal to the sum of the first two
contributions, since an infected individual that undergoes a
routine screening would test positive and transition to the
diagnosed compartment It. Next, the overall transition rate
from state Ip to Ir is equal to the sum of the persuasion
effect νr and the cost of using protective measures c, minus
the control effort placed in marketing campaigns um. The
overall transition rate from state Sp to Sr equals the latter,
but additionally contains the term −κp, due to contagion
taking place. The transition rate matrix for the generic ith

component of the Markov process X(t) is given by

Qj =


· νp + f(It) + us κr,j 0 0

νr + c− um − κp · κp 0 0
0 0 · νp + f(It) µ+ us
0 0 νr + c− um · µ+ us
0 β 0 0 ·

,
where the rows (columns) correspond to state Sr,Sp, Ir, Ip,
and It, respectively. The diagonal elements equal the opposite
of the sum of the other row elements, to ensure that each
row of Qj sums to zero. For any h, k ∈ {Sr,Sp, Ir, Ip, It}
with h 6= k,

P [Xj(t+ ∆t) = k|Xj(t) = h] = (Qj)hk∆t+ o (∆t) ,

as ∆t → 0. Note that Qj is dependent on the state of the
other nodes, and that the dimension of the state space grows
exponentially with n. This complicates the direct analysis of
the Markov process X(t) for large-scale populations. Hence,
as in [13], [27], we study the following continuous-state
deterministic mean-field relaxation of the stochastic system.
For all j ∈ V , we consider the probabilities sr,j(t) :=

P [Xj(t) = Sr], sp,j(t) := P [Xj(t) = Sp], ir,j(t) :=
P [Xj(t) = Ir], ip,j(t) := P [Xj(t) = Ip], and it,j(t) :=
P [Xj(t) = It]. For all j ∈ V , in the mean-field relaxation,
the probabilities are governed by the set of differential equa-
tions

(
ṡr,j ṡp,j i̇r,j i̇p,j i̇t,j

)
= (sr,j sp,j ir,j ip,j it,j)Qj , or

equivalently

ṡr,j =−
(
γp,j + f(It) + us +

λ

n− 1

∑
k∈V
k 6=j

akir,k

)
sr,j

−
(
aj

λ

n− 1

∑
k∈V
k 6=j

(ir,k + σip,k)
)
sr,j

+
( σ

n− 1

∑
k∈V
k 6=j

ak (sr,k + (1− λ)ir,k) + c− um

)
sp,j ,

ṡp,j = (γp,j + f(It) + us) sr,j − (γr,j + c− um) sp,j + βit,j ,

i̇r,j =
λ

n− 1

(∑
k∈V
k 6=j

akir,k + aj
∑
k∈V
k 6=j

(ir,k + σip,k)
)
sr,j (1)

+
λσ

n− 1

(∑
k∈V
k 6=j

akir,k

)
sp,j + (γr,j + c− um) ip,j

− (γp,j + f(It) + us + µ) ir,j ,

i̇p,j = (γp,j + f(It)) ir,j − (γr,j + c− um + µ+ us) ip,j ,

i̇t,j = (µ+ us) ir,j + (µ+ us) ip,j − βit,j ,

where we use the notation γr,j := σ
n−1

∑
k∈V
k 6=j

ak (sr,k + ir,k),

and γp,j := σ
n−1

∑
k∈V
k 6=j

ak (sp,k + ip,k), for the sake of

readability.

IV. MAIN RESULTS

In this section, we perform the theoretical and numerical
analysis of the dynamical system in (1), to shed light on the
effect of the two control actions on the epidemic spreading.
We start by showing that (sr,j(t) sp,j(t) ir,j(t) ip,j(t) it,j(t))
governed by (1) is a probability vector for all j ∈ V and for
all t ∈ R≥0.

Lemma 1. For all j ∈ V , the set {(sr,j sp,j ir,j ip,j it,j) :
sr,j , sp,j , ir,j , ip,j , it,j ≥ 0, sr,j +sp,j + ir,j + ip,j + it,j = 1}
is positive invariant under (1).

Proof. Note that ṡr,j + ṡp,j + i̇r,j + i̇p,j + i̇t,j = 0, for all
j ∈ V , so sr,j + sp,j + ir,j + ip,j + it,j = 1 for all t ∈ R≥0.
Next, note that if one of the variables governed by (1) equals
zero, then its respective time-derivative is non-negative. This
implies that sr,j , sp,j , ir,j , ip,j , it,j ≥ 0 for all t ∈ R≥0.

Lemma 1 entails that system (1) consists of 4n linearly
independent differential equations. Before stating our results,
let us introduce some notation. We define α1 := 1

n

∑
j∈V aj ,

and α2 := 1
n

∑
j∈V a

2
j , that is, the mean and the second

moment of the activity distribution, respectively. Next, the
average probability for a randomly selected individual to
be in state Sr, Sp, Ir, Ip, and It is given by ys,r :=
1
n

∑
j∈V sr,j , ys,p := 1

n

∑
j∈V sp,j , yi,r := 1

n

∑
j∈V ir,j ,



yi,p := 1
n

∑
j∈V ip,j , and yi,t := 1

n

∑
j∈V it,j , respectively.

The prevalence of the states can be arbitrarily closely ap-
proximated by the average probabilities for any finite time-
horizon [17], [28] by considering a sufficiently large popula-
tion, i.e. It(t) ≈ yi,t, Sr(t) := 1

n |{j ∈ V|Xj(t) = Sr}| ≈ ys,r,
Sp(t) := 1

n |{j ∈ V|Xj(t) = Sp}| ≈ ys,p, Ip(t) := 1
n |{j ∈

V|Xj(t) = Ip}| ≈ yi,p, and Ir(t) := 1
n |{j ∈ V|Xj(t) =

Ir}| ≈ yi,r if n is sufficiently large (see Fig. 2). In view of the
above, we will henceforth study the behaviour of large popu-
lations using the average probabilities. Specifically, we wish
to investigate whether there exist conditions that prevent the
escalation of a local outbreak of the disease into a pandemic.
Formally, we desire to acquire the conditions necessary for a
(local) asymptotically stable disease-free equilibrium. Close
to the disease-free equilibrium, it is reasonable to assume
that the risk perception function is linear in the detected
prevalence.

Assumption 1. We assume that f(It) = ζIt, with ζ ∈ R>0.

The following theorem presents conditions required for (lo-
cal) asymptotic stability of the disease-free equilibrium, i.e.
the epidemic threshold, for system (1). In our results, we
present the threshold as a critical value for the parameter µ.
If µ is larger than the critical value µ∗, then the epidemic is
quickly eradicated; otherwise, it becomes endemic. Note that
a negative value of µ∗ implies that the epidemic is quickly
eradicated, since µ ∈ R>0.

Theorem 1. Consider the behavioural SIS model (1) under
Assumption 1. Then, in the thermodynamic limit of large
scale systems n→∞, the following hold:

(i) For us � c− um, the epidemic threshold is equal to

µ∗1 := λ (α1 +
√
α2)− us. (2)

If µ > µ∗1, the disease-free equilibrium (with yi,r =
yi,p = yi,t = 0) is locally asymptotically stable.

(ii) For us � c− um, the epidemic threshold is equal to

µ∗2 : = −us − 1
2 (σα1(1− λ) + c− um) + (3)

1
2

√
(σα1(1− λ) + c− um)2 + 4λσα1(c− um).

If µ > µ∗2, the disease-free equilibrium (with yi,r =
yi,p = yi,t = 0) is locally asymptotically stable.

Proof. It can be observed from (1) that the unique disease-
free equilibrium (yi,r = yi,p = yi,t = 0) is given by

(sr,j , sp,j , ir,j , ip,j , it,j) =

(
c− um

us + c− um
,

us

us + c− um
, 0, 0, 0

)
, (4)

for all j ∈ V . Equilibrium (4) is always globally asymptoti-
cally stable on the disease-free manifold ir,j = ip,j = it,j = 0
for all j ∈ V . In order to study its local stability, we define
qj := sp,j− us

us+c−um
, yq := 1

n

∑
j∈V qj , zq := 1

n

∑
j∈V ajqj ,

zi,r := 1
n

∑
j∈V ajir,j , zi,p := 1

n

∑
j∈V ajip,j , and zi,t :=

1
n

∑
j∈V ajit,j . Let x =

(
yq yi,r yi,p yi,t zq zi,r zi,p zi,t

)>
.

Linearizing system (1) about the origin yields a set of
differential equations, which can be written as ẋ(t) = Ax(t),
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Fig. 2: Simulations of the extended SIS-model (solid curves)
and its deterministic approximation (dashed curves). The
model parameters are λ = 0.8, σ = 0.5, us = 0.1, c = 0.4,
um = 0.3, µ = 0.04, β = 0.5, and aj = 0.3 for all j ∈ V .
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Fig. 3: The epidemic threshold for different values of the
control effort put in routine screening us and the control
effort put in marketing campaigns um in the two limit cases
considered in Theorem 1. The model parameters are λ = 0.8,
σ = 0.5, c = 0.1, and aj = 0.7 for all j ∈ V .

with A ∈ R8×8. Equilibrium (4) is (locally) asymptotically
stable if and only if all eigenvalues λ of A satisfy Re(λ) < 0.

(i) Consider the case us � c−um, for which us
us+c−um

≈ 0.
The eigenvalues of A are approximated by −(σα1+c−um +
us) < 0, −(σα1 + c − um + us + µ) < 0 (with multiplicity
2), −(c − um + us) < 0, −β < 0 (with multiplicity 2), and
λ
(
α1 ±

√
α2

)
− us − µ. From the latter, we conclude that

the largest eigenvalue is negative if and only if µ > µ∗1.
(ii) Next, consider the case us � c−um. Since us

us+c−um
≈

1, the eigenvalues of A are approximated by −(σα1 + c −
um + us) < 0, −(c − um + us) < 0, −β < 0 (with
multiplicity 2), −(µ + us) < 0, −(c − um + µ + us +
σα1) < 0, and −

[
µ+ us + 1

2 (σα1(1− λ) + c− um)
]
±

1
2

√
(σα1(1− λ) + c− um)

2
+ 4λσα1(c− um). We con-

clude that the largest eigenvalue is negative if and only if
µ > µ∗2.

Remark 1. Note that for us = 0, the threshold (2) reduces
to the threshold for an uncontrolled SIS model on ADNs,
which is given by λ

µ <
1

α1+
√
α2

[16].

In a scenario in which the effective cost of using protection is
dominant, i.e. when c− um � us, the epidemic threshold is
monotonically decreasing in us, as shown in Fig. 3a. In this
scenario, it is possible to establish a critical value of control
effort placed in screening practices u∗s = λ

(
α1 +

√
α2

)
−µ ,

such that, if us > u∗s , then possible STIs outbreaks are always



Fig. 4: Simulation of the deterministic approximation of the
endemic prevalence yi,r(t)+yi,p(t)+yi,t(t) for different values
of um. The model parameters are λ = 0.8, σ = 0.5, us =
0.15, c = 1, µ = 0.04, β = 0.5, and aj = 0.3 for all j ∈ V .

eradicated at their inception. We observe from (2) that the
control action um has no effect on the epidemic threshold.
When the efforts put in the routine screenings are sensibly
larger than the effective cost of using self protection, that is,
when us � c−um, the epidemic threshold is monotonically
decreasing with respect to the control actions us and um, as
shown in Fig. 3b.

Our results suggest that during the initial phase of the
epidemics, routine screening is the most effective control
measure, capable of stopping the disease from becoming en-
demic. Numerical simulations suggest, however, that condom
marketing campaigns are key to mitigating endemic STIs,
sensibly reducing their prevalence (see Fig. 4).

V. CONCLUSION

We proposed a model on ADNs for the spread of STIs,
which incorporates behavioural preferences for the use of
protective measures during sexual intercourse, and a risk
perception function based on the detected infection preva-
lence. By means of a mean-field analysis in the limit of
large-scale populations, we established some preliminary
results on the epidemic threshold, and studied the impact of
routine screening at STI clinics, and condom (social) mar-
keting programmes. Our preliminary findings suggest that,
whereas routine screening is key to avoid outbreaks, condom
marketing campaigns become very important in managing
and mitigating endemic diseases, allowing to effectively
decrease the endemic prevalence of STIs. As a next step,
we plan to expand the analysis of the epidemic threshold for
homogeneous ADNs, and characterise the system behaviour
above the epidemic threshold. For future research, one can
consider incorporating social networks, to model real-world
interaction patterns more accurately, and subsequently study
the effect of contact tracing as a control measure. A third
research avenue would be to validate the model against real-
world data on STIs.
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