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Abstract 

Fibrosis results from aberrant wound healing and is characterized by an accumulation 
of extracellular matrix, impairing the function of an affected organ. Increased 
deposition of extracellular matrix proteins, disruption of matrix degradation, but also 
abnormal post-translational modifications alter the biochemical composition and 
biophysical properties of the tissue microenvironment – the stroma. Macrophages are 
known to play an important role in wound healing and tissue repair, but the direct 
influence of fibrotic stroma on macrophage behavior is still an under-investigated 
element in the pathogenesis of fibrosis. In this review, the current knowledge on 
interactions between macrophages and (fibrotic) stroma will be discussed from 
biochemical, biophysical, and cellular perspectives. Furthermore, we provide future 
perspectives with regard to how macrophage-stroma interactions can be examined 
further to ultimately facilitate more specific targeting of these interactions in the 
treatment of fibrosis. 
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Introduction  

Fibrosis results from aberrant wound healing and is characterized by excessive deposition of 
extracellular matrix (ECM). Fibrosis can affect a wide range of organs and tissues, including 
but not limited to lungs, heart, liver, skin, and kidney. Increased deposition, disruption of 
degradation, and abnormal post-translational modifications of the ECM change the 
biochemical composition, availability of cell attachment domains, stiffness, and other 
biophysical properties of the tissue microenvironment – also known as the stroma (Figure 1). 
 

 
Figure 1. A schematic representation of stroma in healthy and fibrotic conditions. In fibrosis, aberrant ECM 
deposition and remodeling, as well as higher numbers and altered behavior of fibroblasts and macrophages, 
change the biochemical and biophysical properties of stroma, and the consequential interactions with resident 
cells. 
 

Stroma is composed of ECM and cells such as fibroblasts, pericytes, tissue-resident 
mesenchymal stromal cells (MSCs), adipocytes, mast cells, and macrophages [1]. Although the 
composition of ECM varies depending on the type of tissue, ECM is generally composed of 
collagens (mainly fibrillar collagens such as type I, II, III, V), elastin, fibronectin, and various 
glycosaminoglycan molecules. Mechanical strength is mainly provided by collagen fibers, 
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while elastin fibers provide elasticity [2]. Traditionally ECM is considered a network for 
structural support, however, recent findings indicate ECM to be far more bioactive and 
dynamic – orchestrating biochemical and biomechanical messages that regulate cell behavior 
[1,3]. Dynamic remodeling of ECM is essential to preserve tissue homeostasis and 
dysregulation of ECM remodeling is an emerging research field, especially in cancer and in 
fibrosis [4–6].  

Macrophages are crucial players in the maintenance of tissue homeostasis [7]. Their 
ability to polarize into a spectrum of phenotypes allows them to execute a wide variety of 
functions, all necessary to preserve tissue integrity (Figure 2) [8]. Initially, tissue injury will 
push macrophages towards a pro-inflammatory phenotype. Subsequent switching of 
macrophages to a wound healing phenotype that promotes ECM production by 
myofibroblasts and eventually polarizing to a pro-remodeling phenotype is required to ensure 
restoration of normal tissue architecture [9]. These phenotypes can be induced by cytokines 
such as IFN-γ and TNF-α (pro-inflammatory), IL-4 and IL-13 (wound healing) or IL-10 and TGF-
β (pro-remodeling), amongst a plethora of other stimuli [10]. 

 

 
Figure 2. Macrophages in stroma. Tissue macrophages derive from different origins. Despite their differences, 
macrophages from all origins can change their polarization status to a more pro-inflammatory or profibrotic/anti-
inflammatory phenotype upon stimuli from their microenvironment, as can be identified by metabolic changes 
(arginase-1 vs. NO), the expression of surface markers (e.g. MHCII and CD206) or the expression and secretion of 
cytokines (e.g. TGF-β, IL-10, TNF-α, IL-1β and IL-6). Arg-1: arginase-1. 
 

As macrophages contribute to all phases of wound healing, their potential role in the 
development and progression of fibrotic diseases is emerging [9]. Recent advances in single-
cell RNA-sequencing have shed light on the heterogeneity of macrophages within and 
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between healthy and fibrotic human tissues and allowed detailed identification of 
macrophage populations [11–13]. Macrophages that populate tissues can have two different 
origins, i.e. tissue-resident macrophages derived from embryonic progenitors and monocyte-
derived macrophages (Figure 2). Whereas tissue-resident macrophages mostly arrive on site 
during organ development and are self-maintaining, monocytes migrate from blood to a tissue 
upon injury and can differentiate into macrophages throughout life [14]. In fibrosis, monocyte-
derived macrophages appear to be an important contributor as large numbers of these 
macrophages have been described in fibrosis and depletion of these macrophages has been 
shown to attenuate fibrosis in several mouse models [15–18]. Although these monocyte-
derived macrophages were long thought to be relatively short-lived, it recently became 
evident that these monocyte-derived macrophages can also adopt a phenotype similar to 
tissue-resident macrophages, supporting the emerging role of the tissue microenvironment in 
instructing macrophage behavior [15,19]. Furthermore, we now know that 
microenvironmental cues can have long-term effects on macrophage function: a concept 
called trained immunity [20]. These developments suggest that the direct effect of fibrotic 
stroma on macrophage behavior may be an under-recognized element in the pathogenesis of 
fibrosis. 

In this review, we summarize the current knowledge of macrophage-stroma interactions 
in biochemical, biophysical, and cellular perspectives. First, we focus on the recent advances 
related to influences by altered stromal composition on macrophages. Next, we outline the 
contribution of biophysical changes in the fibrotic stroma to macrophage behavior and 
describe the influence of fibrotic stroma on macrophage-stromal cell interactions. Lastly, we 
provide future perspectives on how these interactions can be further examined to generate 
knowledge of their potential value as targets for the treatment of fibrosis. 

 

 

Biochemical interactions between fibrotic stroma and macrophages 

In fibrosis, aberrant deposition of ECM changes the biochemical composition of the stroma 
(Figure 1). Increased deposition and altered ratios of ECM proteins, such as fibronectin, 
collagen, periostin and glycosaminoglycans, have been shown to influence the profibrotic 
behavior of stromal cells [21–23]. Although studies have indicated effects of individual ECM 
proteins [24–27] and solubilized whole ECM on macrophages [28–30], the exact influence of 
fibrotic stroma on macrophages is still unknown. Emerging data from preclinical models 
indicate differential responses of macrophages in fibrosis: monocyte-derived macrophages 
were shown to be profibrotic in for instance models of peritoneal and hepatic fibrosis [17,18], 
while local microenvironmental cues were proposed as the driving force for in situ 
transitioning of monocyte-derived macrophages towards an antifibrotic phenotype in a 
resolving model of CCl4-induced liver fibrosis in mice [31]. In addition, CD14+ monocytes and 
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macrophages derived from CD14+ monocytes have been shown to activate ECM-stored latent 
TGF-β, a well-known factor for inducing the progression of fibrosis, through integrin αvβ8-
mediated pathways [32]. These observations suggest that the altered stroma present in 
fibrotic tissues may be a driving factor underlying changes in macrophage behavior in fibrotic 
disease. 

An important player in the altered fibrotic stroma is fibronectin. It regulates collagen 
organization and higher deposition of fibronectin has been reported in pulmonary [33], 
hepatic [34], cardiac [35] and renal [36] fibrosis compared to non-fibrotic conditions. Although 
fibroblasts and other stromal cells are the predominant source of fibronectin [37], monocytes 
have also been shown to secrete fibronectin when pro-inflammatory cytokines were present 
in their microenvironment [38] and alternatively activated macrophages were found to have 
high fibronectin expression at both gene and protein levels [39]. Fibronectin-adsorbed 
surfaces primed macrophages to a pro-inflammatory phenotype through activation of β1 
integrin-PI3K/Akt signaling [40]. In contrast, a fibronectin-rich environment has been shown 
to prime macrophages to adopt an anti-inflammatory profile in response to pathogen-
associated molecular patterns through engagement of TLR2/4 coupled integrin β1-signalling 
in vitro [41]. These differential effects may possibly be caused by alternative effects of 
fibronectin-containing Extra Domain A (FN-EDA) and plasma fibronectin [42] on macrophages 
and require more investigation. Fibronectin can also promote the migration of macrophages 
as demonstrated in vitro [43]. As infiltrated macrophages can also produce fibronectin in an 
inflammatory environment, a continuing cycle of inflammation, macrophage influx and 
priming, and fibronectin deposition may therefore contribute to fibrotic pathobiology.  

In vitro systems show that instructions from altered and abnormal composition of 
fibrotic stroma direct macrophages towards more profibrotic responses, although these 
systems generally only allow a simplified version of the multitude of functions of macrophages 
in physiological conditions. Such models are also used to investigate the importance of the 
presence, number and availability of cell binding motifs in stroma. Human monocytic THP-1 
cells encapsulated in methacrylated gelatin (GelMA; collagen-based and therefore cell-
binding) hydrogels had a more anti-inflammatory profile, with increased secretion of arginase-
1 mediated through integrin α2β1 and possibly STAT6 signaling, compared to synthetic 
poly(ethylene glycol)dimethacrylate-based hydrogels, suggesting that the presence of cell 
binding motifs is linked to macrophage polarization [44]. Similarly, comparison of hyaluronic 
acid hydrogels to hyaluronic acid-gelatin hydrogels identified more attachment of peripheral 
blood-derived monocytes to the hyaluronic acid-gelatin hydrogels due to the higher number 
of cell-binding motifs in the latter [45]. Moreover, coating surfaces with collagen type I 
induced polarization of alveolar macrophages towards a more anti-inflammatory MHCIILo-
CD206Hi phenotype as compared to macrophages cultured on uncoated surfaces [46]. 
Similarly, in an in vitro experiment with mouse bone marrow-derived macrophages, collagen 
type I-coating yielded more arginase-1-producing macrophages compared to fibronectin-
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coated surfaces, suggesting differential effects of distinct ECM proteins probably driven by 
their distinct cell-binding domains [26]. Post-translational modifications of collagen, such as 
fiber crosslinking, are important changes affecting the biochemical composition of stroma 
during fibrosis. These inevitably lead to changes in binding domain availability, fiber alignment 
and other biophysical changes, although the exact influences on macrophages are unknown 
to date [47–51]. As with the positive feedback loop between fibrotic ECM and fibroblasts 
described by Parker et al. [22], the above-mentioned findings indicate a possible profibrotic 
interchange between the presence, altered numbers and types of cell binding domains found 
in fibrotic stroma and macrophages.  

Periostin, another important ECM matricellular protein/matrikine, is more abundantly 
expressed in pulmonary [52], hepatic [53], renal [54], and cardiac [55] fibrosis compared to 
healthy conditions. In an acute kidney injury model, periostin-overexpressing mice had more 
tissue-resident macrophages with a pro-regenerative phenotype than wild type mice [56]. In 
the same study, periostin overexpression alone did not result in spontaneous kidney fibrosis, 
while periostin-KO mice had lower numbers of pro-regenerative macrophages. Conversely, in 
a bleomycin model of lung fibrosis, periostin-KO mice had less collagen in their lungs than 
wildtype mice, in concordance with peripheral blood-derived monocytes having higher levels 
of periostin in patients with idiopathic pulmonary fibrosis (IPF) than non-disease control 
donors [52]. In vitro models of macrophage migration showed that periostin stimulated 
migration of primary murine macrophages, which also had higher expression of integrin αV, 
one of the periostin receptors, in the lesion site compared to control. Moreover, periostin 
promoted the secretion of TNF-α from these macrophages, hypothetically through 
engagement of the focal adhesion kinase (FAK) pathway [57]. The exact influence of elevated 
periostin levels on both tissue-resident and monocyte-derived macrophages in fibrosis is yet 
to be understood, but the presented data suggest that periostin may disturb the balance 
between these two types of macrophages in favor of profibrotic monocyte-derived 
macrophages. 

Glycosaminoglycans, non-fibrous components of the ECM, are also expressed at higher 
levels in fibrotic lungs [58], liver [59], kidney [60] and heart [61] compared to non-fibrotic 
conditions. Solubilized urinary bladder-derived ECM, which has high levels of hyaluronic acid, 
did not change TNF-α, NO, and arginase-1 levels in bone marrow-derived macrophages in vitro 
[29]. Once the hyaluronic acid in this ECM was degraded, however, more NO secretion was 
found while TNF-α secretion remained unchanged, suggesting that hyaluronic acid content of 
the ECM plays a role in fine-regulating the pro-inflammatory responses of macrophages. In 
contrast, hyaluronic acid-containing collagen type I hydrogels promoted anti-inflammatory 
polarization of THP-1 macrophages through CD44 signaling and the STAT3 pathway compared 
to unmodified collagen type I hydrogels [62]. Monocyte-derived macrophages displayed lower 
expression of pro-inflammatory markers in hyaluronic acid-containing collagen type I 
hydrogels compared to collagen type I hydrogels without hyaluronic acid [63]. In addition, 
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effects of post-translational modifications, such as additional sulphate groups on high 
molecular weight hyaluronan, on macrophage responses were investigated in the same study; 
however, no additional influence of the sulphate groups was observed. In contrast, another 
study comparing high sulphate to low sulphate content in hyaluronic acid-containing collagen 
type I hydrogels did find altered macrophage responses, as the production of pro-
inflammatory cytokines was lower in high-sulphated hydrogels [64]. Although these studies 
had some opposing results, they do collectively suggest that the amount of, and modifications 
of, glycosaminoglycans could regulate macrophage responses. 

In conclusion, differing macrophage responses may be driven by changes in the 
composition of ECM and aberrant abundancies of ECM components during fibrosis. Fibrotic 
ECM-macrophage interactions could promote a profibrotic loop, stimulating further fibrotic 
responses leading to the recruitment of more profibrotic macrophages. In addition to 
elements determining the structure of ECM, bioactive factors (for example growth factors) 
anchored in the ECM could also contribute to the biochemical interactions between 
macrophages and stroma. However, the challenge of distinguishing the effects of factors 
stored in ECM from paracrine effects of factors secreted by cells limits our understanding of 
the contribution of this reservoir function of (fibrotic) stroma to macrophage regulation. Even 
though there is increased momentum in the emergence of findings dissecting these elements, 
more studies are needed to address the following questions: (1) whether and what specific 
combinations of ECM proteins and their binding domains are responsible for regulating 
macrophage responses in fibrosis; and (2) which mechanisms underlie priming of recruited 
macrophages towards a profibrotic profile by the fibrotic stroma.  

 

 

Macrophage responses to biophysical changes 

The altered biochemical composition of the stroma in fibrosis is also associated with changes 
in biophysical properties such as tissue stiffness, levels of shear stress, and microstructure 
[65]. However, the knowledge on whether and how macrophages respond to these 
biophysical changes is still limited [66]. The knowledge available in the public domain is mainly 
based on biomaterials research, which has aimed at controlling macrophage behavior to 
modulate the foreign body response by regulating biophysical properties of substrates or 
scaffolds [67].  

 

Stiffness 

Native tissue stiffness is highly dependent on the organ of interest, ranging from around 100 
Pa in brain to a few GPa in calcified bone [65,68]. Fibrosis is consistently associated with (local) 
increases in stiffness of the tissue, independent of the organ of interest [65]. This increase is 
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predominantly caused by an excess or different ratio of ECM proteins. Moreover, post-
translational remodeling such as crosslinking of ECM proteins and an increase in cellular 
stiffness have also been described to contribute to these stiffness alterations [69,70]. 

Several studies have indicated an effect of substrate stiffness on macrophage behavior. 
Although the studied stiffnesses and compositions of the substrates varied greatly, stiffening 
of the substrate is generally associated with more macrophage adhesion and a bigger and 
more flattened phenotype as compared to a smaller and more rounded shape on soft 
substrates [71–82]. Nonetheless, these observed morphological changes on two-dimensional 
(2D) substrates may not be fully translatable to an in vivo situation. For instance, He and 
colleagues reported that encapsulation of macrophages inside a stiff 3D hydrogel resulted in 
a more rounded shape as compared to a softer hydrogel [83]. 

Related to these morphological changes, functional changes in migratory behavior and 
phagocytic activity of macrophages have also been observed. Infiltration and accumulation of 
monocyte-derived macrophages have been associated strongly with fibrosis, as inhibition of 
monocyte infiltration dampened the fibrotic response in experimental fibrosis models [18,84]. 
Higher substrate stiffness generally tends to stimulate macrophage migration and may 
therefore exacerbate fibrotic responses [74,76,77]. These investigations were all in 2D setups 
and the influence of substrate stiffness on movement in 3D is yet to be explored thoroughly. 
In addition to their migratory behavior, the phagocytic capacity of macrophages is important 
in tissue homeostasis as well. For instance, impaired phagocytosis has been observed in airway 
macrophages from patients with IPF [85], whose lungs are stiffer than those of healthy 
individuals [58,86]. However, studies investigating whether substrate stiffness has a direct 
effect on the phagocytic capacity of macrophages reported variable results. Some studies 
indicated that higher substrate stiffness promoted phagocytosis compared to low stiffness 
[79,87], while others described a biphasic effect or no significant effect at all [76,80]. 

The effect of substrate stiffness on pro-inflammatory or profibrotic responses of 
macrophages has also not been shown conclusively yet. Most studies indicated more pro-
inflammatory behavior when substrate stiffness increased, based on the expression of 
markers such as IL-1β, IL-6 and TNF-α [73,77,80,82,83,88,89], although the opposite has also 
been described [74,79,87,90]. However, these studies all investigated short-term responses 
of macrophages to substrates of various stiffnesses. In the context of fibrosis, it would be of 
interest to study long-term effects of stiffness on macrophage polarization.  

Recently, several molecular mechanisms underlying macrophage mechanosensing and 
subsequent mechanotransduction have been elucidated. Mechanosensing abilities of 
macrophages have been attributed to transient receptor potential vanilloid-type 4 (TRPV4), 
as deletion or inhibition of this mechanosensitive calcium channel abolished the observed 
effects of substrate stiffness on macrophage behavior [87,91]. Interestingly, higher expression 
of TRPV4 has been shown in human fibrotic tissues and TRPV4-deficient mice were protected 
from fibrosis [92]. Furthermore, Previtera et al. showed that stiffer substrates activated the 
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TLR4-signaling pathway and thereby stimulated macrophage responses to pro-inflammatory 
stimuli [88]. Although the exact role of TLR4 in fibrosis still needs to be defined, several studies 
have indicated that TLR4 plays a role in the development of fibrosis in mice [93,94]. In addition 
to a possible role for these two receptors, substrate stiffness has also been associated with 
higher expression of integrins by macrophages, as well as a higher density of podosomes 
[73,74,77,80,95]. Podosomes are versatile, integrin-mediated adhesion structures that not 
only have mechanosensing and -transducing properties, but also have the ability to mediate 
local recruitment and release of matrix-degrading enzymes upon adhesion to a stiff substrate 
[95,96]. This direct matrix-degrading response of macrophages to substrate stiffness 
especially calls for further investigation into podosome function in fibrosis. Furthermore, in 
many non-myeloid cells, Yes-associated protein (YAP) and transcriptional coactivator with 
PDZ-binding motif (TAZ) signaling is well known to be activated by stiff substrates [97]. Only 
recently, it was demonstrated that YAP signaling also plays a role in macrophage 
mechanotransduction, as macrophages cultured on stiffer hydrogels showed increased 
expression and nuclear translocation of YAP [89]. This nuclear translocation of YAP, which 
requires actin polymerization, has been associated with pro-inflammatory macrophage 
responses [89,98]. However, further elucidation of YAP/TAZ signaling in macrophage 
polarization is required, as a role in Wnt5a- and TGF-β1-mediated profibrotic macrophage 
polarization has also been described [99]. 

In summary, macrophages are able to detect changes in substrate stiffness, but exact 
responses of macrophages and the role of mechanotransduction in fibrosis remain unclear. 
Large differences in variables between the existing studies, such as substrate composition, 
viscoelasticity, porosity, ECM protein coating, macrophage origin, but also the experimental 
timeline, are likely to explain the inconsistent effects of stiffness on the macrophage 
responses observed thus far.  

 

Shear stress and (cyclic) stretch 

Pathologies like ventilator-induced lung injury and obstruction-induced fibrosis models, such 
as the bile duct ligation-induced liver fibrosis model, support the hypothesis that mechanical 
forces can play an important role in the development or progression of fibrosis [100–103]. 
However, the presence and magnitude of mechanical forces, such as (cyclic) stretch and shear 
stress, vary greatly depending on the organ of interest. 

Shear stress is mainly caused by fluid flow, especially in the vasculature and ducts like 
renal tubules [65]. In the lungs, airflow induces shear stress on the airway wall [104]. Tissue 
remodeling in fibrosis decreases the compliance of the vasculature, ducts and airway walls 
and can thereby increase shear stress [104]. Another shear stress-generating phenomenon, 
although very small, is interstitial flow [65]. Interstitial fluid pressure is highly dependent on 
factors such as blood pressure, cell density, and composition of the ECM and has been 
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described to increase during inflammation and wound healing [105,106]. It may also play a 
role in the progression of fibrotic disease as interstitial flow can stimulate myofibroblast 
differentiation, TGF-β production, and collagen alignment [106]. In macrophages, the 
application of interstitial flow induced higher expression of anti-inflammatory markers such 
as arginase-1, TGF-β and CD206 through β1-integrin signaling as compared to static conditions 
[107]. Furthermore, interstitial flow stimulated the migration speed of macrophages 
[107,108]. It is therefore not unlikely that the higher than normal interstitial fluid flow found 
in fibrosis contributes to perpetuation of the fibrotic response by stimulating macrophage 
infiltration and inducing a profibrotic phenotype. 

Whereas shear stress is present in each organ, cyclic stretch or strain is mainly playing a 
role in the heart (pulsatile hemodynamic loading) and lungs (respiration) [109,110]. Fibrosis 
in these organs results in lower compliance, thereby also reducing the cyclic stretch 
magnitudes [65]. Additionally, more subtle stretch forces can be generated by contractions of 
other cells such as myofibroblasts in wound healing and fibrosis [111]. In vitro, uniaxial cyclic 
stretch induced elongation of macrophages in the direction of the applied stretch [112,113]. 
Although macrophage elongation has previously been associated with an anti-inflammatory 
phenotype [114], it is not yet clear how cyclic stretch affects macrophage polarization and 
functional behavior, as many contradicting results have been reported. Most studies 
described higher production of pro-inflammatory mediators upon cyclic stretch [112,115–
120], while others found lower production [121], higher production of pro-remodeling factors 
[122] or a combination thereof [123]. Interestingly, TRPV4 was shown to regulate the 
secretion of pro-inflammatory cytokines by macrophages upon mechanical stretch [120]. 
Again, experimental variables such as macrophage origin, stretching regime, the way 
macrophages were stimulated, and the experimental timeline likely contribute to the 
inconsistent results and complicate the translation of this information to in vivo.  

 

Microstructural changes of the ECM  

Abnormalities in the biochemical composition and post-translational modifications of the ECM 
in fibrosis result in a changed micro- and nanostructure of the tissue, which can be sensed by 
cells [70,124]. However, the number of studies investigating interactions of these altered 
structures with macrophages is limited as the post-translational modifications observed in 
fibrosis are not well characterized and difficult to mimic in vitro. From our own studies and 
studies in the field of biomaterials we know that the surface or scaffold topography can 
modulate macrophage behavior, but translation into a fibrotic context is challenging [46,67].  

To better understand what topography cells can sense in situ in organs, second harmonic 
generation imaging can be used to analyze the organization and maturity of collagen fibers in 
tissue. For example, in IPF thicker and more mature collagen fibers have been observed with 
this technique compared to control [48] and the effect of fiber diameter on macrophage 
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polarization has been studied in vitro. Electrospun fibers with larger diameters (2-6 µm) were 
shown to induce a more anti-inflammatory macrophage phenotype in comparison to smaller 
diameters (<1 µm) [125,126]. Furthermore, high collagen density was recently described to 
induce a more immunosuppressive macrophage phenotype than low collagen density [127]. 
The high degree of collagen fiber alignment observed in fibrosis could also affect macrophage 
behavior, as alignment of electrospun fibers resulted in lower expression levels of pro-
inflammatory IL-1β by macrophages compared to randomly organized fibers [119,128]. In 
addition to the changes in fiber diameter, density and alignment, a study by Veres et al. 
demonstrated that macrophages recognized mechanically damaged collagen fibers [129]. In 
fibrosis, higher levels of denatured, unfolded collagen chains have been detected compared 
to healthy tissues [130,131]. Binding of macrophages to uncoiled, denatured collagen fibers 
induced macrophage spreading and ruffling, thereby increasing the contact area with the 
damaged fibrils [129]. In addition, we have previously shown that alveolar macrophages 
behave differently on non-fibrous collagen type I layers as compared to fibrous collagen type 
I layers [46]: macrophages on fibrous collagen layers transmigrated more, while showing an 
amoeboid-like phenotype, while non-fibrous collagen layers induced a more mesenchymal 
phenotype and higher expression of mannose receptor CD206, involved in collagen 
degradation and known to be upregulated on alveolar macrophages in patients with IPF. 

Together, these studies indicate that macrophages are sensitive to remodeling-
associated (micro)structural changes of collagen fibers in ECM, although their subsequent 
responses and the consequences for fibrosis require further investigation. 

 

 

Stromal regulation of macrophage-cell interactions in fibrosis 

The biochemical and biophysical changes of fibrotic ECM alter macrophage phenotype via 
stimulation of multiple mechanisms (summarized in Figure 3), but cells are also an important 
component of the stroma in addition to the ECM. In the fibrotic microenvironment, (activated) 
fibroblasts are the predominant cell type, although the activation status and the origins of 
these fibroblasts lead to different gene profiles and properties, increasing the heterogeneity 
of fibroblasts found in fibrotic tissues [132]. In addition to fibroblasts, endothelial cells, 
fibrocytes, and tissue-resident MSCs are found in both healthy and fibrotic stroma. Fibroblast-
macrophage interactions in in vitro models of skin [133,134], hepatic fibrosis [135,136], and 
scaffold-free 3D spheroid models [137], as well as computational models [138] have shown 
(bidirectional) feedback mechanisms between these cell types. While direct cell-cell 
communications in fibrotic disease are outside the scope of this review, the influence of 
fibrotic stroma on these interactions now emerges as another key player in fibrosis. 
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Figure 3. A schematic overview of the most described mechanisms involved in interactions between fibrotic 
stroma and macrophages. Hypothesized involvement of signaling pathways/molecules is illustrated with dashed 
frames. Upregulated pro-inflammatory markers are depicted in blue, profibrotic/anti-inflammatory in red. Arg-
1: arginase-1, FAK: focal adhesion kinase, TRPV4: transient receptor potential vanilloid-type 4, YAP: Yes-
associated protein. 
 

Interplay between stromal cells and macrophages through the stroma could also affect 
the responses of these cells. In a recent study by Shook et al., both macrophages and the local 
microenvironment were shown to influence the heterogeneity of myofibroblast 
subpopulations during wound healing [139]. In a fibrocystin knockout mouse model of 
congenital hepatic fibrosis, depletion of macrophages using clodronate resulted in less 
accumulation of myofibroblasts and less deposition of collagen compared to non-treated mice 
[140]. Similarly, in cardiac fibrosis mouse models, macrophages produced secreted protein, 
acidic and rich in cysteine (SPARC, also known as osteonectin, an ECM glycoprotein) along with 
fibroblasts, which in turn promoted collagen production and maturation by fibroblasts [141]. 
Influences on macrophage behavior through the modifications on the (alignment of) stroma 
have also been demonstrated: in a colitis mouse model, a subtype of mesenchymal cells 
regulated collagen and fibronectin fiber structures, guiding macrophages to profibrotic 
responses [142]. Also in prostatic cancer, cancer-associated fibroblasts were found to align 
fibronectin matrix into parallel fibers to guide the migration of cancer cells [143]. In addition, 
contraction of ECM by myofibroblasts has been shown to prime latent TGF-β for later 
activation by proteases and integrin-mediated pathways [144,145]. For example, integrin 
αvβ8-mediated TGF-β activation by macrophages has been shown to result in perpetuation of 
the fibrotic response [32,146]. These findings together support the interplay between the cell-
altered stroma and macrophages. Another demonstration of such interplay was in a study by 
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Ford et al., in which mouse macrophages were stationary in dense collagen type I network 
hydrogels, while co-culturing them with fibroblasts in the same hydrogels increased their 
motility [147]. Direct and/or indirect communications between macrophages and fibroblasts 
in this 3D network resulted in improved directionality and increased speed of migration of 
macrophages, indicating fibroblasts modified the microenvironment in favor of macrophages. 
In concordance, fibroblasts applied greater strains to stiffening collagen fibers [148], while a 
stiffer matrix promoted the profibrotic activation of fibroblasts [22]. Since macrophage 
behavior is guided by both biochemical and biophysical cues in stroma, the above-mentioned 
interplay between cell-modified stroma and macrophages could therefore play an important 
role in regulating macrophage responses in fibrotic diseases. 

The recruitment of monocyte-derived macrophages and their differentiation to 
profibrotic macrophages could be a key element in the progression of fibrosis. Alignment or 
modification of ECM proteins by fibroblasts was found to stimulate migration of profibrotic 
macrophages and therefore to sustain the fibrotic stroma. Mazur et al. have shown that 
treating collagen surfaces with fibroblast activating protein (FAP), a matrix modifying enzyme, 
resulted in more attachment and spread of mouse peritoneal macrophages, compared to non-
treated collagen surfaces [149]. In vitro experiments showed that FAPHi fibroblasts can have 
both ECM synthetic and proteolytic phenotypes. In line with this, increased FAP expression 
stimulated migration of fibroblasts on collagen type I or fibronectin surfaces. Moreover, in 
vivo data suggests that FAPHi fibroblasts predominantly reside in fibronectin-rich regions 
[150,151]. Although the loss of FAP in different mouse models of lung fibrosis showed 
different results [152], elevated FAP levels were demonstrated in lung [153] and liver [154] 
fibrosis patients. These findings suggest that FAP-mediated regulation of stroma and therefore 
putative macrophage recruitment could influence the interactions between the fibrotic 
stroma and macrophages. 

Recent studies indicate a contribution of (recruited) macrophages to the fibrotic 
response by differentiating into myofibroblasts (macrophage-to-myofibroblast transition 
(MMT)). Differentiation of myeloid cells to fibroblast-like cells has been demonstrated in a 
skin wound healing model in mice [155]. In addition, MMT in a mouse renal fibrosis model 
was proposed as a mechanism for transitioning from an acute inflammatory phase to an active 
fibrotic phase. In concert, the majority of transitioned macrophages were profibrotic [156]. 
Similarly, MMT was also demonstrated in human renal allograft biopsy samples [157] as well 
as in a mouse cardiac fibrosis model, suggesting involvement of MMT in many types of fibrosis 
[158]. Direct contribution of MMT was also indicated in a mouse model of myocardial 
infarction, in which the authors ruled out the contribution of fibrocytes to the new population 
of (myo)fibroblasts [158,159]. Furthermore, the lack of fibrocyte-cell surface marker CD34 on 
the majority of cells in granulation tissue of wounds in mice, also supports a macrophage origin 
[155]. Lastly, predominant macrophage markers on these new myofibroblasts found in the 
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chronic renal allograft rejection samples support them being of macrophage origin in contrast 
to fibrocyte origin [157]. 

Overall, interactions between macrophages and cells in fibrotic stroma favor the 
recruitment of (profibrotic) macrophages and/or their profibrotic responses, while profibrotic 
macrophages in turn support proliferation and survival of activated fibroblasts. Although 
interactions between macrophages and tissue-resident MSCs have been shown in pre-clinical 
models [160–163], MSCs affecting macrophages in human fibrosis has yet to be proven. 
Furthermore, the involvement of MSCs in fibrosis needs deeper understanding. While there 
are still many unknown factors in the stroma-macrophage-cell interactions in fibrosis, the 
influence of cell-modified ECM on macrophage responses warrants more attention. 
Therefore, more studies are required on (1) the influence of stromal cells on profibrotic 
response of newly recruited macrophages, (2) how alignment of ECM fibers in stroma could 
favor pro-regenerative macrophage recruitment, and (3) how ECM composition affects MMT. 

 

 
Figure 4. A graphical overview of fibrosis-related biochemical, biophysical and cell-induced changes in stroma, 
concurrently influencing macrophage behavior. 

 



 

   36 

Concluding remarks 

Based on in vitro studies, macrophages are highly responsive to changes in their 
microenvironment, regardless of whether these changes are biochemical, biophysical or 
indirect via other stromal cells (Figure 4). It is almost inevitable that the altered stroma directly 
affects macrophage behavior in fibrosis, but more sophisticated models are required to 
investigate how macrophages integrate a combination of signals, as biochemical or 
biophysical changes never come alone in the tissue environment. 

The majority of studies we discussed were performed in the context of biomaterials and 
therefore did not aim to mimic the stroma in a healthy or diseased state. Especially when 
studying the effect of biophysical properties, the chosen biochemical composition of the 
substrate may affect the response of macrophages in a synergistic or antagonistic manner. It 
is likely that the various contradictory results found between studies are a consequence of the 
impact of these kinds of interferences. It is also important to note that the majority of the 
discussed studies used 2D culture systems, complicating the translation to the 3D 
microenvironment in vivo. Furthermore, most studies investigated the first 24 to 48 hours of 
macrophage responses, whereas studying later points in time may be more relevant for 
understanding the remodeling phase in fibrosis. Thus, although we can learn much from the 
biomaterials field, models that are more reflective of the organ environment are required to 
investigate how the fibrotic stroma affects macrophage behavior.  

The high variation in macrophage responses may also be due to different origins of the 
macrophages studied. Monocyte-derived macrophages and macrophage cell lines are both 
commonly used to study macrophage behavior in response to microenvironmental changes, 
but their responses can vary, especially when compared to primary organ-specific 
macrophages. Given the evidence that myofibroblasts and macrophages isolated from fibrotic 
patients behave differently than macrophages from non-fibrotic patients, more studies are 
needed that investigate whether primary macrophages of fibrotic patients still respond to 
stimuli comparably to macrophages from non-fibrotic donors [164,165]. Such studies would 
also help towards understanding the contribution of macrophages to both the development 
and progression of fibrosis.  

Currently, the number of available antifibrotic therapeutics is limited. In 2014, 
nintedanib and pirfenidone were first approved by the FDA for the treatment of pulmonary 
fibrosis and their effectiveness in slowing down fibrosis in other organs is currently under 
investigation [166–169]. Interestingly, both pirfenidone and nintedanib have been shown to 
change macrophage behavior and to interfere with collagen type I fibril formation [170–172]. 
Therapeutic strategies that specifically skew profibrotic macrophages towards a (slightly 
more) pro-inflammatory phenotype may present as an alternative or addition to existing 
treatment regimens, as recent studies showed in mouse models of fibrosis [173,174]. 
Stimulating or inhibiting the pathways by which the fibrotic stroma affects macrophage 
behavior (Figure 3), such as mechanosensing, may enable us to interfere with the fibrotic 



 

  37 

interplay between the stroma and macrophages (Figure 5). However, as the described 
pathways are not specific for macrophages, unexpected systemic effects need to be taken into 
account or circumvented by specifically targeting macrophages in the fibrotic area. 
Nonetheless, a better understanding of macrophage-stroma interactions and their role in the 
development and progression of fibrotic disease is required to specifically target macrophage 
function for the treatment of tissue fibrosis. 

 

 
Figure 5. Putative targets and therapeutics to skew profibrotic macrophages to a more pro-inflammatory 
phenotype. Antagonists/inhibitors for integrin β1 [175–178], integrin ɑ2 [179,180], CD44 [18] or TRPV4 
[87,91,182–184]. Agonist for TLR4 [185–187]. TRPV4: transient receptor potential vanilloid-type 4. 
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