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Singularity-Free Guiding Vector Field for
Robot Navigation

Weijia Yao , Héctor Garcia de Marina , Bohuan Lin , and Ming Cao

Abstract—In robot navigation tasks, such as unmanned aerial ve-
hicle (UAV) highway traffic monitoring, it is important for a mobile
robot to follow a specified desired path. However, most of the exist-
ing path-following navigation algorithms cannot guarantee global
convergence to desired paths or enable following self-intersected
desired paths due to the existence of singular points where nav-
igation algorithms return unreliable or even no solutions. One
typical example arises in vector-field guided path-following (VF-PF)
navigation algorithms. These algorithms are based on a vector
field, and the singular points are exactly where the vector field
diminishes. Conventional VF-PF algorithms generate a vector field
of the same dimensions as those of the space where the desired path
lives. In this article, we show that it is mathematically impossible
for conventional VF-PF algorithms to achieve global convergence
to desired paths that are self-intersected or even just simple closed
(precisely, homeomorphic to the unit circle). Motivated by this new
impossibility result, we propose a novel method to transform self-
intersected or simple closed desired paths to nonself-intersected and
unbounded (precisely, homeomorphic to the real line) counterparts
in a higher dimensional space. Corresponding to this new desired
path, we construct a singularity-free guiding vector field on a higher
dimensional space. The integral curves of this new guiding vector
field is thus exploited to enable global convergence to the higher di-
mensional desired path, and therefore the projection of the integral
curves on a lower dimensional subspace converge to the physical
(lower dimensional) desired path. Rigorous theoretical analysis is
carried out for the theoretical results using dynamical systems
theory. In addition, we show both by theoretical analysis and
numerical simulations that our proposed method is an extension
combining conventional VF-PF algorithms and trajectory tracking
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algorithms. Finally, to show the practical value of our proposed
approach for complex engineering systems, we conduct outdoor
experiments with a fixed-wing airplane in windy environment to
follow both 2-D and 3-D desired paths.

Index Terms—Guidance, navigation, path following, robot
motion, singularity, vector field.

I. INTRODUCTION

S EVERAL robot navigation tasks, such as highway traf-
fic monitoring, underwater pipeline inspection, border pa-

trolling, and area coverage, require the fundamental function-
ality of following a desired path [1], and new applications are
emerging, such as using drones to probe atmospheric phenomena
along prescribed paths [2]. The path-following navigation prob-
lem has attracted the attention from both the robotics community
[3]–[7] and the control community [8]–[13]. In a path-following
navigation algorithm, the desired path is usually given in the
form of a single connected curve without temporal information,
and then robots are guided to converge to and move along it
with sufficient accuracy. Treating the desired path as a geometric
object rather than a time-dependent point, path-following navi-
gation algorithms sometimes are able to overcome a number of
performance limitations rooted in trajectory tracking [14], e.g.,
inaccuracy due to unstable zero dynamics [15] and difficulty
to maintain constant tracking speed [16]. Moreover, comparing
to trajectory tracking algorithms, there is separate interest for
the study of path-following navigation algorithms since they are
more suitable for some applications, such as fixed-wing aircraft
guidance and control [4], [17], [18].

Among different path-following navigation algorithms, those
using a guiding vector field have been studied widely [3]–[5],
[8]–[10], and we refer to these algorithms as vector-field guided
path-following navigation algorithms (or, VF-PF algorithms).
The guidance feature of the vector field is justified as fol-
lows: usually robot kinematics models (e.g., single-integrator
and double-integrator models [3], [17]) are considered, and the
guiding vector field, as its name suggests, provides guidance
signal inputs to the model. This is valid based on the common
assumption that the robot-specific inner-loop dynamics control
can track these guidance signal inputs effectively [16], [19], [20].
Thus, one can simply focus on the guidance layer (i.e., designing
a guiding vector field), while considering other control layers
separately. Specifically, the guiding vector field is designed such
that its integral curves are guaranteed to converge to a predefined
geometric desired path. Utilizing the convergence property of
the vector field, one can then derive suitable control laws. It is
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Fig. 1. Normalized vector fields [16] for a circle path described by φ(x, y) =
x2 + y2 − 1 = 0 in (a) and a figure “8” path described by φ(x, y) = x2 −
4y2(1− y2) = 0 in (b). The red points are the singular points of the (unnor-
malized) vector fields.

claimed in [18] that VF-PF algorithms demonstrate the lowest
cross-track error while requiring the least control effort among
several other path-following navigation algorithms. In addition,
[21] shows that VF-PF algorithms achieve better path-following
accuracy than the integral line-of-sight (ILOS) method [12].

Although the VF-PF algorithms are intuitive and easy to
implement, the rigorous analysis remains nontrivial for general
desired paths [13], [16], [22], [23]. Significant difficulty in the
analysis and application of the VF-PF algorithms arises when
there are singular points1 in the vector field [see Fig. 1(a) and
(b)]. In such a case, the convergence of trajectories to the desired
path cannot be guaranteed globally, and the normalization of the
vector field at those points is not well-defined [3], [13], [16],
[22]. In [3], it is assumed that these singular points are repulsive
to simplify the analysis, while this assumption is dropped in
[16] for a planar desired path and in [13] and [22], for a desired
path in 3-D. However, to the best of our knowledge, few efforts
have been made on dealing with singular points directly or on
eliminating them effectively. Recently, [4] presents a simple
treatment of the singular point—the robot does not change its
course inside a ball centered at the singular point. Under some
conditions, the Lyapunov function evaluated at the exit point is
proved to be smaller than that at the entry point. However, these
conditions are conservative, since they assume repulsiveness of
the singular points, which is not the case, e.g., for saddle points.

Related to the existence of singular points, one of the chal-
lenges for the VF-PF navigation problem is to follow a self-
intersected desired path. Many existing VF-PF algorithms (e.g.,
[3], [13], [16], [17], [25]) fail to fulfil this task. This is rooted
in the fact that the vector field degenerates to zero at the cross-
ing points of a self-intersected desired path, leading to a zero
guidance signal, and thus, a robot can get stuck on the desired
path [see Fig. 1(b)]. Due to the existence of singular points on
the desired path, some effective VF-PF algorithms such as [13],
[16], and [22], become invalid simply because the assumptions
are violated in this case. In fact, this task is also challenging for
other existing path-following methods, since in the vicinity of the
crossing points, many methods are “ill-defined.” For example,
the line-of-sight method [26] is not applicable as there is not a

1A point where a vector field becomes zero is called a singular point of the
vector field [24, p. 219].

unique projection point in the vicinity of the intersection of the
desired path. Indeed, many existing path-following navigation
algorithms either focus on simple desired paths such as circles or
straight lines [18], [25], [27], or only deal with desired paths that
are sufficiently smooth [3], [13], [16], [22]. One might retreat
to the virtual-target path-following navigation algorithm [28].
In this method, a virtual target has its own dynamics traveling
on the desired path; thus the path-following navigation problem
is implicitly converted to a target tracking problem. Although
through this conversion, it is possible for a robot to follow a
self-intersected desired path, this method is inherently a tracking
approach, and thus, may inherit the performance limitations
mentioned before, such as limited path-following accuracy.

Another challenging task arising from the VF-PF methods
is the description of the desired path, which is crucial for the
derivation of the vector field. For generality, the desired path is
usually determined by the intersection of several (hyper)surfaces
represented by the zero-level sets of some implicit functions [3],
[4], [13], [16], [22], [29]. For planar desired paths, for example,
the implicit function of a star curve might be as complicated as
that in [7], while for desired paths in a higher dimensional space,
it is counter-intuitive to create (hyper)surfaces such that the
intersection is precisely the desired path, such as a helix. On the
other hand, many geometric curves are described by parametric
equations [30] rather than implicit functions. It is possible to
transform the parametric equations to implicit functions and then
derive the vector field, but this might not always be feasible and
is computationally expensive. The restrictive characterization of
the desired path limits the applicability of VF-PF algorithms to
some extent.

In this article, we improve the VF-PF methodology in the
sense that we address the aforementioned three issues—the
existence of singular points, the obstacle of dealing with self-
intersected paths, and the difficulty of representing a generic
desired path. Specifically, based on the design of guiding vector
fields in [22], we use an intuitive idea to eliminate singular points
of the vector field so that global convergence to the desired path,
even if self-intersected, is guaranteed. The general idea is to
extend the dimensions of the vector field and eliminate singular
points simultaneously. This procedure naturally leads to a simple
way to transform the descriptions of desired paths from pa-
rameterized forms to the intersection of several (hyper)surfaces,
which are required in creating a guiding vector field.

It is important to clarify the terminology used throughout
this article. In many VF-PF algorithms, the desired path is a
geometric object which is not necessarily parameterized. In a
precise mathematical language, we assume that the desired path
is a 1-D connected differential manifold [13]. Therefore, we
can generally classify desired paths into two categories—those
homeomorphic to the unit circle S1 if they are compact, and
those homeomorphic to the real line R otherwise [31, Th. 5.27].
This assumption is not a restriction, since many desired paths in
practice, such as a circle, an ellipse, a Cassini oval, a spline and a
straight line, satisfy this assumption. For ease of exposition, we
refer to those desired paths homeomorphic to the unit circle as
simple closed desired paths, and those homeomorphic to the real
line as unbounded desired paths. Note that self-intersected paths
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do not satisfy this assumption. Nevertheless, we will introduce
in the sequel how to transform a self-intersected physical desired
path to a non-self-intersected and unbounded higher dimen-
sional desired path such that the assumption holds to apply our
algorithm.

Here, we summarize the major contributions of our article.
First, we show by rigorous topological analysis that guiding

vector fields with the same dimension as the desired path (e.g.,
[5], [7], [16], [22]) cannot guarantee the global convergence to
a simple closed or self-intersected desired path (see Theorem 1
in Section III). With the dichotomy of convergence discussed
in the article, this implies that singular points of the vector
field always exist for a simple closed or self-intersected desired
path regardless of which hypersurfaces one uses to characterize
the desired path. This explains why many vector-field guided
path-following navigation algorithms in the literature cannot
guarantee global convergence in the Euclidean space to a simple
closed desired path. We note that excluding singular points is
important in practice (e.g., for fixed-wing aircraft guidance and
navigation) since degenerated or pathological solutions of sys-
tem dynamics can be safely avoided. Therefore, this topological
obstacle is the primary motivation of the subsequent theoretical
development including the introduction of extended dynamics
(see Section IV) and the creation of singularity-free guiding
vector fields (see Section V).

Secondly, due to the aforementioned topological obstruction,
we improve the existing VF-PF algorithms such that all singu-
lar points are removed, and global convergence of trajectories
to the desired path is rigorously guaranteed (see Sections IV
and V). We overcome this topological obstruction by changing
the topology of the desired paths. Specifically, we transform
a physical simple closed or self-intersected desired path to a
new unbounded and nonself-intersected desired path in a higher
dimensional space. We then derive the corresponding guiding
vector field on this higher dimensional space, which is guaran-
teed to have no singular points.

Thirdly, our proposed method to create this new singularity-
free guiding vector field is proved to enjoy several appealing
features (see Section V-B). For example, we provide theoretical
guarantees for global exponential convergence of trajectories of
system dynamics to the desired path. In addition, the new system
dynamics with the singularity-free guiding vector field is ro-
bust against perturbation, such as noisy position measurements
(see Feature 3 in Section V-B). Moreover, using our proposed
method, it becomes straightforward to represent (hyper)surfaces
of which the intersection is the new higher dimensional desired
path, as long as a parametrization of the physical (lower dimen-
sional) desired path is available (see Feature 2 in Section V-B).

Last but not least, we successfully conduct experiments using
a fixed-wing aircraft to verify the effectiveness of our proposed
VF-PF algorithm in 3-D (see Section VI), in addition to the
experiment with an e-puck robot [32] in our previous preliminary
work [33]. This verifies the practical significance of our pro-
posed method for highly complex autonomous vehicles. We also
discuss and conclude that our proposed VF-PF algorithm com-
bines and extends features of the conventional VF-PF algorithms
and trajectory tracking algorithms (see Section VII). While we

do not claim that our proposed new singularity-free guiding
vector field is always superior than traditional trajectory tracking
algorithms in every application scenario (such as quadcopter
attitude tracking), we emphasize that it significantly improves
conventional VF-PF algorithms by providing a global solution
and enabling the path-following behavior of complicated or
unconventional desired paths (e.g., a self-intersected Lissajous
curve). This is imperative and irreplaceable in applications such
as fixed-wing aircraft guidance and navigation where conver-
gence to and propagation along a desired path from every initial
position is required.

This article is a significant extension of our preliminary ver-
sion in [33] in the following aspects: 1) [33] only considers
physical planar desired paths and the higher dimensional 3-D
vector field, but we generalize all the results to n-dimensional;
2) [33] only investigates a linear transformation operator, but
we introduce a more general transformation operator which can
be linear or nonlinear in this article. Compared with [33], we
present the following five new results.

1) We prove a topological theorem regarding the feasibility
of global convergence to desired paths, which serves as
the primary motivation for the subsequent development.

2) We provide rigorous guarantees to justify the features of
our proposed approach.

3) We provide experiments with a fixed-wing aircraft in 3-
D to verify the practicality of the proposed approach for
complex engineering systems.

4) We elaborate on some important aspects in the implemen-
tation of the proposed approach.

5) We provide new insightful discussion of our proposed
approach and existing algorithms.

Although our previous work in [13] introduces part of the
theoretical foundation for this article, it does not solve the
singularity problem that will be addressed here.

The remainder of this article is organized as follows.
Section II introduces conventional guiding vector fields for path
following. In Section III, a theorem about the impossibility of
global convergence to simple closed or self-intersected desired
paths using the conventional VF-PF navigation algorithm is
elaborated. This is the main motivation for the design of higher
dimensional guiding vector fields, which will be utilized in
Section IV through extended dynamics. Based on the previous
sections, the construction approach of singularity-free guiding
vector fields is presented in Section V. In addition, several
appealing features of this method are highlighted in this section.
Then experiments with a fixed-wing aircraft are conducted to
validate the theoretical results in Section VI. Following this,
Section VII discusses how our proposed approach can be viewed
as a combined extension of VF-PF algorithms and trajectory
tracking algorithms. Finally, Section VIII concludes the article
and indicates future work. Due to the page limit, some theoretical
proofs are provided in the Appendix in the full version [34]. We
present here some notations and basic concepts that are used
throughout the article.

Notations: The notation ‖ · ‖ denotes the Euclidean norm of
a vector or the induced matrix two-norm of a matrix, and :=
means “defined to be.” Given a positive integer n, the distance
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between a point p0 ∈ Rn and a set S ⊆ Rn is denoted by
dist(p0,S) = dist(S, p0) := inf{||p− p0|| : p ∈ S}. The dis-
tance between two sets A and B is dist(A,B) = dist(B,A) :=
inf{||a− b|| : a ∈ A, b ∈ B}. If ξ is a differentiable function of
time t, then the derivative of ξ with respect to time is ξ̇. The
normalization of a vector v is denoted by v̂ (i.e., v̂ = v/‖v‖).
The transpose of a vector v is denoted by v�. Suppose there is
a function ρ : C → D, where the sets C and D are nonempty.
The image of a subset F ⊆ C under ρ is the subset ρ(F) ⊆ D
defined by ρ(F) := {ρ(x) ∈ D : x ∈ F}. Given two functions
f : X → Y, g : Y → Z, g ◦ f denotes the composition of these
two functions.

Basic concepts: A trajectory ξ : [0,+∞) → Rn asymptoti-
cally converges to a nonempty set B ⊆ Rn if for any ε > 0,
there exists T > 0 such that dist(ξ(t),B) < ε for all t > T .
If the trajectory can only be maximally prolonged to t∗ <∞
[35, Ch. 3], then we say that it converges to the set B as t
approaches t∗, if for any ε > 0, there exists δ > 0 such that
dist(ξ(t),B) < ε for |t− t∗| < δ. Two subsets U ⊆ Rm and
V ⊆ Rk are homeomorphic, denoted by U ≈ V , if there exists
a continuous bijection ϕ : U → V of which the inverse is also
continuous. The map ϕ is called a homeomorphism [31].

II. GUIDING VECTOR FIELDS FOR PATH FOLLOWING

In this section, we introduce the vector-field guided path-
following (VF-PF) navigation problem and guiding vector fields.
We formally define the VF-PF navigation problem as follows.

Problem 1 (VF-PF navigation problem): Given a desired
path P ⊆ Rn, the VF-PF navigation problem is to design a
continuously differentiable vector field χ : Rn → Rn for the
differential equation ξ̇(t) = χ(ξ(t)) such that the two conditions
as follows are satisfied.

1) There exists a neighborhood D ⊆ Rn of the desired path
P in (1) such that for all initial conditions ξ(0) ∈ D, the
distance dist(ξ(t),P) between the trajectory ξ(t) and the
desired path P approaches zero as time t→ ∞; that is,
limt→∞ dist(ξ(t),P) = 0.

2) If a trajectory starts from the desired path, then the trajec-
tory stays on the path for t ≥ 0 (i.e., ξ(0) ∈ P ⇒ ξ(t) ∈ P
for all t ≥ 0). In addition, the vector field on the desired
path is nonzero (i.e., 0 /∈ χ(P)).

In this article, we only investigate the guiding vector field
in the Euclidean space Rn, but it can be extended to a general
smooth manifold [36]. For easy understanding of the guiding
vector field on Rn in the sequel, we first introduce the one defined
on the 2-D Euclidean space R2.

A. Preliminaries on 2-D VF-PF Control

In [16], the desired path P is described by the zero-level set
of an implicit function

P = {(x, y) ∈ R2 : φ(x, y) = 0} (1)

where φ : R2 → R is twice continuously differentiable. In this
description,P is a subset of R2. The description is different from
some other works where the desired path is a parameterized
differentiable curve (e.g., [14]); that is, a differentiable map

f : I → Rn of an open interval I = (a, b) of the real line R into
Rn [30]. From the definition, we observe that the mathematical
object in (1) is actually the trace of a parameterized curve f [30],
or the image of a mapping f . However, this description of the
desired path without any parametrization is common in the field
of VF-PF navigation [3]–[5], [13], [22], [37]–[40]. One of the
advantages is that the vector field can be derived directly from
the function φ(·), independent of the specific parametrization
of the desired path. Another advantage is that we can replace
the calculation of the Euclidean distance2 dist(ξ,P) between
a point ξ ∈ R2 and the desired path P simply by the value
of |φ(ξ)|. For simplicity, rather than referring to P in (1) as
“the trace of a parameterized curve,” we call P the desired
path throughout the article. In fact, one feature of the VF-PF
navigation problem is that the desired path P is described by
a 1-D connected submanifold, so we have the extra freedom
of choosing different analytic expressions (i.e., φ) for the same
desired path.

If the desired path is nonself-intersected, then a valid 2-D
vector fieldχ : R2 → R2 to solve the VF-PF navigation problem
is [16]

χ(x, y) = E∇φ(x, y)− kψ (φ(x, y))∇φ(x, y) (2)

where E ∈ SO(2) is the 90◦ rotation matrix3 [ 0 −1
1 0 ], and ψ :

R → R is a strictly increasing function satisfying ψ(0) = 0.
For simplicity, one can choose ψ(φ(x, y)) = φ(x, y). The first
term of the vector field is “tangential” to the desired path, thus
enables a robot to move along the desired path, while the second
term of the vector field is perpendicular to the first term, helping
the robot move closer to the desired path. Therefore, intuitively,
the vector field guides the robot to move toward and along the
desired path at the same time. After the preliminaries on the
guiding vector field on R2 (i.e., 2-D vector field), we are ready
to introduce in the next subsection the more abstract guiding
vector field on Rn, where n ≥ 2.

B. General Guiding Vector Field

Based on the description of a desired path P ⊆ Rn, the
corresponding guiding vector field for path following is derived
in this section. Some mild assumptions along with motivation
and justification are presented.

1) Guiding Vector Field Structure: We introduce the general
method of designing a vector field χ : Rn → Rn corresponding
to a desired path P ⊆ Rn, where n ≥ 2. The vector field is a
generalization of those in [16], [22], while its structure is the
same as that in [3]. However, we present crucial assumptions
while abandoning the assumption in [3] about the repulsiveness
of the set of singular points.

Suppose a desired path in the n-dimensional Euclidean space
is described by the intersection of (n− 1) hypersurfaces, i.e.,

P = {ξ ∈ Rn : φi(ξ) = 0, i = 1, . . . , n− 1} (3)

2This calculation is generally difficult since one needs to find the closest point
on the desired path to ξ; e.g., it is not trivial for even an ellipse.

3In fact, the matrix is −E in [16], but we use E for conventional simplicity.
This only affects the direction of the motion (forward or backward) on the desired
path.
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where φi : Rn → R, i = 1, . . . , n− 1, are of differentiability
class C2. It is naturally assumed that P in (3) is nonempty
and connected. We further require the regularity of the desired
path as shown later in Assumption 1. For better understanding,
φi(·) = 0 can be regarded as (n− 1) constraints, resulting in a
one degree-of-freedom desired path.

Remark 1: Topologically, the desired path P itself is 1-D,
independent of the dimensions of the Euclidean space where
it lives. However, with slight abuse of terminology and for
convenience, the desired pathP is called ann-D (ornD) desired
path if it lives in the n-dimensional Euclidean space Rn and not
in any lower dimensional subspace W ⊆ Rn (i.e., the smallest
subspace the desired path lives in). For example, a planar desired
path might be defined in the 3-D Euclidean space R3, but we
only consider the 2-D subspace W ⊆ R2 where it is contained,
and it is thus natural to call it a 2D (or 2-D) desired path rather
than a 3D (or 3-D) desired path. Sometimes, for simplicity, we
refer to a tangent vector field on the n-dimensional Euclidean
space Rn as an n-dimensional vector field, and we say that this
vector field is n-dimensional. �

The vector field χ : Rn → Rn is designed as follows:

χ = ×(∇φ1, . . . ,∇φn−1)−
n−1∑
i=1

kiφi∇φi (4)

where ∇φi is the gradient of φi, ki > 0 are constant gains,
and × : Rn × · · · × Rn → Rn is the generalized cross product.
In particular, let pi = (pi1, . . . , pin)

� ∈ Rn, i = 1, . . . , n− 1,
and bj ∈ Rn be the standard basis column vector with the jth
component being 1 and the other components being 0. Then an
intuitive formal expression for ×(p1, . . . , pn−1) is

×(p1, . . . , pn−1) =

∣∣∣∣∣∣∣∣∣
b1 b2 · · · bn
p11 p12 · · · p1n

...
...

. . .
...

pn−1,1 pn−1,2 · · · pn−1,n

∣∣∣∣∣∣∣∣∣
. (5)

In other words, ×(p1, . . . , pn−1) is obtained by the cofactor
expansion along the first row of (5), where bi should initially be
regarded as scalars, and in the final evaluation replaced by the
basis vectors [41, pp. 241–242]. The generalized cross product
has the following property [42, Prop. 7.2.1].

Lemma 1 (Orthogonality): It holds that ×(p1, . . . , pn−1) is
orthogonal to each of the vectors p1, . . . , pn−1.

Remark 2: Due to Lemma 1, the physical interpretation of the
vector field in (4) is clear. The first term ×(∇φ1, . . . ,∇φn−1),
being perpendicular to each∇φi, provides a tangential direction
to each surfaces φi(ξ) = 0, and hence “pushes” the robot along
the desired path. The forward or backward direction of move-
ment along the desired path is determined by the order of the
gradient vectors. Thus, if the motion needs to be reversed, it is
sufficient to swap any two of these vectors. We call this term the
propagation term. The latter term −∑n−1

i=1 kiφi∇φi provides a
direction toward those surfaces, acting as a “pulling force” to
the desired path. We call this term the converging term. �

To simplify the notations, we define a matrix N(ξ) =
(∇φ1(ξ), . . . ,∇φn−1(ξ)) ∈ Rn×(n−1), a positive definite gain
matrix K = diag{k1, . . . , kn−1} ∈ R(n−1)×(n−1) and a C2

function e : Rn → Rn−1 by stacking φi; that is

e(ξ) = (φ1(ξ), . . . , φn−1(ξ))
� ∈ Rn−1. (6)

In addition, we define ∇×φ : Rn → Rn by ξ ∈ Rn �→
×(∇φ1(ξ), . . . ,∇φn−1(ξ)). Therefore, the vector field (4) can
be compactly written as

χ(ξ) = ∇×φ(ξ)−N(ξ)Ke(ξ). (7)

Using this notation, the desired path is equivalent to

P = {ξ ∈ Rn : e(ξ) = 0}. (8)

We call e(ξ) the path-following error or simply error between
the point ξ ∈ Rn and the desired path P . An intuitive example
is a 2-D circle described by the zero-level sets of e(x, y) =
φ1(x, y) = x2 + y2 − r2. As the point (x, y) approaches the
circle, the norm of the path-following error ‖e(x, y)‖ = |x2 +
y2 − r2| decreases. When ‖e(x, y)‖ = 0, the point is right on the
path. The use of ‖e(·)‖ is more convenient than that of the dis-
tance function dist(·,P). However, there are subtle differences
between the norm of the path-following error ‖e(·)‖ and the
distance dist(·,P); e.g., when the norm of the path-following
error converges to zero, the trajectory might not converge to
the desired path [22, Example 3], [43]. Assumptions will be
proposed to avoid this pathological situation.

Remark 3: The vector field in (4) is basic while effective in
VF-PF navigation problems. First, we note that many existing
studies only deal with simple desired paths such as a circle or
a straight line (or a combination of them) [11], [18], [25], but
the vector field in (4) is designed for any generic sufficiently
smooth desired path. Second, many vector fields in the literature
can be seen as variants of the vector field in (4). One type of
variants are generated by adding φi-dependent gains to the
converging term or (and) the propagation term in (4) [5], [7],
[16]. Another type of variants adds time-varying gains or an
additional time-varying component [3], [17]. Thus, the vector
fields in [5], [7], [16], and [44] can be regarded as 2-D variants
of (4), and those in [7], [9], [13], [22], and [45], as 3-D variants
of (4). Therefore, the study of the basic vector field in (4) is of
great significance. Note that we do not consider time-varying
gains or components in the vector field as [3] and [17] do. For
one thing, this simplifies the structure of the vector field and
facilitates the practical implementation; for another, this clarifies
the topological property of these vector fields as studied in
Section III. For convenience, we refer to these (time-invariant)
vector fields in the literature as conventional vector fields. �

2) Assumptions: To justify using the norm of the path-
following error ‖e(·)‖ instead of dist(·,P), we need some as-
sumptions that are easily satisfied in practice. These assumptions
are based on [16] and [22], but are extended to Rn. To this end,
we define two sets. The singular set consisting of singular points
of a vector field is defined as follows:

C = {ξ ∈ Rn : χ(ξ) = 0}. (9)

Another related set is

M = {ξ ∈ Rn : N(ξ)Ke(ξ) = 0} . (10)

It can be proved that M = P ∪ C.
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Lemma 2: It holds that M = P ∪ C.
Proof: See Appendix A-A in the full version [34]. �
Now we are ready to propose the following assumptions.
Assumption 1: There are no singular points on the desired

path. More precisely, dist(C,P) > 0.
Assumption 2: In view of (8), as the norm of the path-

following error ‖e(ξ)‖ approaches zero, the trajectory ξ(t)
approaches the desired path P . Similarly, in view of (10), as
the “error” ‖N(ξ)Ke(ξ)‖ approaches zero, the trajectory ξ(t)
approaches the set M.

Assumption 1 leads to Lemma 3 about the topological prop-
erty of the desired path, which is an extension of [22].

Lemma 3: The zero vector 0 ∈ Rn−1 is a regular value of
the C2 function e in (6), and hence the desired path P is a C2

embedded submanifold4 in Rn.
Proof: See Appendix A-B in the full version [34]. �
Remark 4: Henceforth the “regularity” of the desired path

is guaranteed; namely, the desired path P is assumed to be
a 1-D connected manifold, which can generally be classified
into those homeomorphic to the unit circle if they are compact,
and those homeomorphic the real line otherwise [31, Th. 5.27].
Thus throughout the article, we use the notions of simple closed
desired paths and desired paths homeomorphic to the unit circle
interchangeably. The same applies to unbounded desired paths
and desired paths homeomorphic to the real line. Note that
self-intersected desired paths do not satisfy Assumption 1, as
shown later in Proposition 1, but we will propose a method
in Section V to transform them into unbounded and nonself-
intersected desired paths, which are then homeomorphic to the
real line R. �

Assumption 2 is satisfied in many practical cases such as many
polynomial or trigonometric functions; examples are demon-
strated in [3], [4], [16], and [22]. Since the same desired path can
be characterized by various choices of φi(·), the assumption are
crucial to exclude some pathological cases [22, Example 3],[43].
The mathematical formulation of Assumption 2 is presented in
Appendix A-C in the full version [34].

III. ISSUES ON THE GLOBAL CONVERGENCE TO

DESIRED PATHS

In this section, we show that, under some conditions, it is not
possible to guarantee global convergence to desired paths using
the existing VF-PF algorithms as introduced in Section II. More
specifically, given a desired pathP ⊆ Rn as described in (3), we
investigate solutions (trajectories) of the autonomous ordinary
differential equation:

ξ̇(t) = χ (ξ(t)) (11)

where χ is defined in (7). We consider the cases of self-
intersected and simple closed desired paths, respectively.

We first show that the crossing points of a self-intersected
desired path P are singular points of the corresponding vector
field χ in (4).

4See [24, pp. 105, 98–99] for the definitions of a regular value and an
embedded submanifold.

Proposition 1: If the desired path P in (3) is self-intersected,
then the crossing points of the desired path are singular points
of the vector field χ in (4).

Proof: See Appendix B-A in the full version [34]. �
Remark 5: This proposition shows that 0 ∈ χ(P) when P

is a self-intersected desired path, and therefore, the VF-PF
navigation problem (Problem 1) cannot be addressed as the
second requirement about 0 /∈ χ(P) is always violated. Note
that Assumption 1 does not hold in this case, but we will propose
in the sequel an approach to transform a self-intersected desired
path such that Assumption 1 holds. �

In Fig. 1(b), for example, the 2-D desired path resembling the
figure “8” is self-intersected. It can be numerically calculated
that the vector field at the crossing point is zero. This is intuitive
in the sense that there is no “preference” for the vector at this
point to point to either the left or right portion of the desired
path, leaving the only option of zero.

Now, we consider simple closed desired paths. In the planar
case, due to the Poincáre–Bendixson theorem [35, Corollary
2.1], there is at least one singular point of the 2-D vector field
in the region enclosed by the simple closed desired path. Thus,
we can conclude that global convergence to a simple closed
planar desired path is not possible. However, this conclusion
cannot be trivially generalized to the higher dimensional case
since the Poincáre–Bendixson theorem is restricted to the planar
case. Nevertheless, we can still reach this conclusion with some
topological analysis.

Proposition 2: If an n-D desired path P ⊆ Rn described by
(3) is simple closed, under the dynamics (11) where the guiding
vector field χ : Rn → Rn is in (4), then it is not possible to
guarantee the global convergence of trajectories of (11) to the
desired path P; precisely, the domain of attraction of P cannot
be Rn.

Proof: See Appendix B-B in the full version [34]. �
Based on Propositions 1 and 2, we can reach the following

key statement about the impossibility of global convergence to
some desired paths.

Theorem 1 (Impossibility of global convergence): If an n-
D desired path P ⊆ Rn described by (3) is simple closed or
self-intersected, then it is not possible to guarantee the global
convergence to the desired path with respect to the dynamics in
(11) with the n-dimensional guiding vector field χ in (4); more
precisely, the domain of attraction of P cannot be Rn.

Proof: If the desired pathP is self-intersected, then by Propo-
sition 1, there is at least one singular point on the desired path.
Obviously, the path-following problem formulated by Problem
1 cannot be solved. If the desired path P is simple closed,
then the global convergence to the desired path is impossible
by Proposition 2. �

Remark 6: We note that the topological obstacle to global
convergence to the desired path roots in two aspects: 1) the
geometry of the desired path: being either simple closed or
self-intersected; 2) the time-invariance property of the vector
field. Although we show this topological obstacle only for the
basic vector field in (4), this obstacle also exists for other variants
of vector fields as listed in Remark 3. This is because the
two aspects that lead to the topological obstruction mentioned
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above also hold for these time-invariant vector fields. Note that
a state-dependent positive scaling (e.g. the normalization) of
vector fields does not affect the topological properties of interest
(i.e., the phase portrait, or the convergent results) [46, Prop.
1.14]. �

To overcome this topological obstacle and satisfy Assumption
1 even for self-intersected desired paths, we propose a new idea
in the sequel to construct unbounded and nonself-intersected de-
sired paths from the originally simple closed or self-intersected
desired paths by “cutting” and “stretching” them in a higher
dimensional space. Indeed, such a higher dimensional desired
path will codify or contain information about the (lower di-
mensional) physical desired path. Based on the proposed higher
dimensional desired paths, we can derive a guiding vector field
on this higher dimensional space and show that its singular
set is empty. However, to take advantage of the new guiding
vector field, we need to transform (or project in the linear
transformation case) its integral curves into a lower dimensional
subspace that contains the information of the physical desired
path. The details of transformation into another space will be
discussed in Section IV, and the detailed construction of a
singularity-free guiding vector field on a higher dimensional
space will be presented in Section V.

IV. EXTENDED DYNAMICS AND CONVERGENCE RESULTS

In this section and the subsequent sections, we consider an
m-dimensional Euclidean space Rm, wherem > n. The reason
is self-evident as the article develops, but it is not necessary to
bother with this difference now. To proceed, we introduce the
extended dynamics and derive related convergence results. The
extended dynamics relates to a transformation operator defined
as follows.

Definition 1: A transformation operator is a function Gl :
Rm → Rm which is twice continuously differentiable and glob-
ally Lipschitz continuous with the Lipschitz constant l.

One can observe that the corresponding Jacobian matrix
function of a transformation operator DGl = ∂Gl/∂x : Rm →
Rm×m is locally Lipschitz continuous, where x is the argu-
ment of Gl. The transformation operator is able to transform a
space into another space (or subspace). One example is a linear
transformation operator defined by Gl(x) = Ax, where A is
a nonzero matrix, called the matrix representation [47, Remark
6.1.15] of this particular linear transformation operatorGl. Now
we introduce the extended dynamics as follows.

Lemma 4 (Extended dynamics): Let χ : D ⊆ Rm → Rm

be a vector field that is locally Lipschitz continuous. Given
an initial condition ξ(0) = ξ0 ∈ D, suppose that ξ(t) is the
unique solution to the differential equation ξ̇(t) = χ(ξ(t)), then
(ξ(t), ξtrs(t)) ∈ R2m, where ξtrs(t) := Gl(ξ(t)) and Gl is a
transformation operator, is the unique solution to the following
initial value problem:{

ξ̇(t) = χ (ξ(t)) ξ(0) = ξ0

ξ̇trs(t) = DGl (ξ(t)) · χ (ξ(t)) ξtrs(0) = Gl(ξ0)
. (12)

Moreover, if the trajectory ξ(t) asymptotically converges to
some set A �= ∅ ⊆ Rm, then ξtrs(t) asymptotically converges

to the transformed setAtrs := Gl(A) = {p ∈ Rm : p = Gl(q),
q ∈ A}.

Proof: See Appendix C-A in the full version [34]. �
We call the ordinary differential equation with the initial

condition in (12) the extended dynamics. Correspondingly,
ξtrs(t) := Gl(ξ(t)) is called the transformed solution or trans-
formed trajectory of (12). Before presenting Corollary 1 related
to the VF-PF navigation problem, we first define the transformed
desired path and the transformed singular set.

Definition 2: The transformed desired path Ptrs of P ⊆ Rm

in (8) and the transformed singular set Ctrs of C ⊆ Rm in (9)
are defined as follows:

Ptrs := Gl(P) = {p ∈ Rm : p = Gl(q), q ∈ P} (13)

Ctrs := Gl(C) = {p ∈ Rm : p = Gl(q), q ∈ C}. (14)

In some practical applications, it is desirable to scale the
vector field to have a specified constant length. This is useful
if a robot takes the vector field as the control input directly
and is required to move at a constant speed. In this case, the
properties of the integral curves of the scaled vector field are
stated in the corollary below. Recall that the solution x(t) to
an initial value problem ẋ = f(x), x(0) = x0, where f(x) is
sufficiently smooth, is not always possible to be prolonged to
infinity. In other words, the solution might only be well-defined
in a finite time interval [0, t∗), where t∗ <∞ [46]. The time
instant t∗ is called the maximal prolonged time of the solution.

Corollary 1: Suppose the desired path P in (8) is unbounded
(i.e., P ≈ R). Let χ : D ⊆ Rm → Rm be the vector field de-
fined in (4). Suppose ξ(t) is the unique solution to the initial
value problem ξ̇(t) = sχ̂(ξ(t)), ξ(0) = ξ0 /∈ C, where s > 0
is a constant and ·̂ is the normalization operator. Consider the
following dynamics:{

ξ̇(t) = sχ̂ (ξ(t)) ξ(0) = ξ0 /∈ C
ξ̇trs(t) = DGl · sχ̂ (ξ(t)) ξtrs(0) = Gl(ξ0)

(15)

where Gl is a transformation operator. Suppose t∗ ≤ ∞ is the
maximal prolonged time of the transformed solution ξtrs(t) to
(15). Then ξtrs(t) asymptotically converges to the transformed
desired path Ptrs in (13) as t→ ∞ or the transformed singular
set Ctrs in (14) as t→ t∗.

Proof: See Appendix C-B in the full version [34]. �
Remark 7: Due to the normalization of the vector field in (15),

the right-hand side of the differential equation is not well defined
at singular points of the vector field. Therefore, if the trans-
formed singular set Ctrs is bounded, then the maximal interval
to which the transformed trajectory ξtrs(t) can be prolonged is
only finite when the transformed trajectory ξtrs(t) is converging
toCtrs. This happens when the initial value ξ(0) is in the invariant
manifold of the singular set C. �

The previous lemma states that the transformed trajectory
converges to either the transformed desired path or the trans-
formed singular set for initial conditions ξtrs(0) ∈ Rm \Gl(C),
while the latter case is undesirable. A preferable situation is
where the (transformed) singular set is empty. Moreover, as
indicated by Theorem 1, to seek for global convergence, the only
possibility is to consider unbounded and nonself-intersected
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desired paths (i.e., P ≈ R). Therefore, we reach the following
corollary.

Corollary 2 (Global convergence to Ptrs): Suppose the de-
sired path P in (13) is unbounded (i.e., P ≈ R). If C = ∅
(equivalently, Ctrs = ∅), then the transformed trajectory ξtrs(t)
of (15) globally asymptotically converges to the transformed
desired path Ptrs as t→ ∞ in the sense that the initial condition
ξ(0) (and hence ξtrs(0)) can be arbitrarily chosen in Rm.

As will be shown later, only the second differential equation
of (12) or (15) is relevant to the physical robotic system. This
corollary thus motivates us to design a (higher dimensional) vec-
tor field such that the singular set is empty, in which case global
convergence to the (transformed) desired path is guaranteed. In
the next section, we will introduce an intuitive idea to “cut” and
“stretch” a possibly simple closed or self-intersected physical
desired path and create a higher dimensional singularity-free
vector field.

V. HIGH-DIMENSIONAL SINGULARITY-FREE GUIDING

VECTOR FIELD CONSTRUCTION

In this section, we explain how to implicitly construct an
unbounded desired path from the physical desired path (possibly
simple closed or self-intersected) together with a higher dimen-
sional guiding vector field without any singular points (a.k.a,
singularity-free guiding vector field).

For simplicity, we restrict the transformation operator Gl :
Rm → Rm to a linear one defined byGl(x) = Pax, wherePa ∈
Rm×m is a nonzero matrix defined by

Pa = I − ââ� (16)

where I is the identity matrix of suitable dimensions and â =
a/‖a‖ ∈ Rm is a normalized nonzero vector. In this case, Gl is
actually a linear transformation that projects an arbitrary vector
to the hyperplane orthogonal to the given nonzero vector a, and
Pa is the matrix representation of Gl. One can observe that the
linear transformation Gl is globally Lipschitz continuous with
the Lipschitz constant l = ‖Pa‖ = 1, where ‖ · ‖ is the induced
matrix two-norm. In addition, the Jacobian is simplyDGl = Pa.

Before formulating the problem in the sequel, we define the
coordinate projection function π(1,...,n) : Rm → Rn as

π(1,...,n)(x1, . . . , xn, . . . , xm) = (x1, . . . , xn)

wherem > n. In other words, the coordinate projection function
π(1,...,n) takes only the first n components of anm-dimensional
vector and generates a lower dimensional one.

Problem 2: Given an n-D physical desired path5 Pphy in Rn,
we aim to find anm-D desired path Phgh in Rm, wherem > n,
which satisfies the following conditions.

1) There exist functions φi(·), i = 1, . . . ,m− 1, such that
Phgh is described by (3).

2) The singular set Chgh of the higher dimensional vector
field χhgh : Rm → Rm in (4) corresponding to Phgh is
empty.

5Recall the notion of an n-D desired path in Remark 1.

3) There exists a transformation operator Gl : Rm → Rm

such that π(1,...,n)(Ptrs) = Pphy, where the transformed
desired path Ptrs = Gl(Phgh).

Remark 8: It is important to distinguish among the physical
desired path Pphy, the higher dimensional desired path Phgh

and the transformed desired path Ptrs. A major difference is the
dimensions of their ambient space; that is, Pphy ⊆ Rn, while
Phgh,Ptrs ⊆ Rm andm > n. Although the higher dimensional
desired path Phgh and the transformed desired path Ptrs both
live in Rm, the transformed desired path Ptrs lives in a subspace
W ⊆ Rm probably withdim(W) < m sincePtrs = Gl(Phgh).
Indeed, for the case of a linear transformation operator in (16),
the transformed desired path Ptrs = Pa(Phgh) lives in the or-
thogonal complement subspace W of the linear space spanned
by the vector a (i.e., span{a}), and dim(W) = m− 1 < m. �

Next, we propose the solution to Problem 2 in Section V-A.
Having found the higher dimensional desired pathPhgh, then we
can directly derive the corresponding vector field χhgh defined
on Rm by (4). Some features of the approach illustrated in
Section V-A are highlighted in Section V-B.

A. Construction of a Singularity-Free Guiding Vector Field

Suppose an n-D physical path Pphy is parameterized by

x1 = f1(w), . . . , xn = fn(w) (17)

where w ∈ R is the parameter of the desired path and fi ∈
C2, i = 1, . . . , n. We can simply let

φ1(ξ) = x1 − f1(w), . . . , φn(ξ) = xn − fn(w) (18)

where ξ = (x1, . . . , xn, w) has an additional coordinate w now
and is anm-dimensional vector, wherem = n+ 1. So them-D
desired path is

Phgh = {ξ = (x1, . . . , xn, w) ∈ Rm : φi(ξ)

= 0, i = 1, . . . , n}. (19)

Thus the first requirement of Problem 2 is met. Intuitively,
the new higher dimensional desired path Phgh is obtained by
“cutting” and “stretching” the n-D desired path Pphy along the
additional virtual w-axis. From the higher dimensional desired
path Phgh ⊆ Rm in (19), we obtain the corresponding guiding
vector field on the higher dimensional space Rm by (4)

χhgh = ∇×φ−
n∑

i=1

kiφi∇φi.

It can be calculated that∇φi = (0, . . . , 1, . . . ,−f ′i(w))� for i =
1, . . . , n, where f ′i(w) :=

dfi(w)
dw and 1 is the ith component of

the gradient vector. Therefore

∇×φ = (−1)n(f ′1(w), . . . , f
′
n(w), 1)

� ∈ Rm = Rn+1. (20)

It is interesting that themth coordinate of this vector is a constant
(−1)n regardless of the specific parametric form of the desired
path. This means that ‖∇×φ(ξ)‖ �= 0 for ξ ∈ Rm globally. From
Lemma 1, we know that the propagation term ∇×φ of the vector
field is always linearly independent from the converging term∑n

i=1 kiφi∇φi unless they are zero vectors. However, as we
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have shown that ‖∇×φ‖ �= 0 in Rm globally, this reveals the
appealing property that the vector field χhgh(ξ) �= 0 for any
point ξ ∈ Rm, implying that there are no singular points in the
higher dimensional space Rm; i.e., Chgh = ∅. Thus, the second
requirement of Problem 2 (as well as a related condition in
Corollary 2) is satisfied.

To let the third requirement of Problem 2 be satisfied, we
retreat to a linear transformation operator with a matrix rep-
resentation Pa. One of the simplest linear transformation op-
erators corresponds to a = bn+1 ∈ Rm, which is a standard
basis column vector with the (n+ 1)th component being 1 and
the other components being 0. This is used to transform an
m-dimensional space to an n-dimensional subspace by “zero-
ing” the last coordinate. Specifically, we let a = bn+1, then the
matrix representation of the linear transformation operator is
Pa = [ In×n 0

0 0 ], where0 are zero vectors of suitable dimensions.
Observe that the n-D desired path Pphy ⊆ Rn is the orthogonal
projection of the higher dimensional desired path Phgh ⊆ Rm

on the plane where w = 0; i.e.,

π(1,...,n)(Phgh) = π(1,...,n)(Ptrs) = Pphy.

Therefore, the third requirement of Problem 2 is also satisfied.
By the construction in (19), the higher dimensional desired
path Phgh ⊆ Rm satisfying all the conditions in Problem 2
is thus found. Ultimately, we can take advantage of the new
“well-behaved” guiding vector field χhgh ∈ Rm derived from
Phgh ⊆ Rm as mentioned above. This result is formally stated
in the following theorem.

Theorem 2: Suppose an n-D physical desired path Pphy ⊆
Rn is parameterized by (17). If φ1, . . . , φn are chosen as in
(18), then there are no singular points in the corresponding
guiding vector field χhgh : Rn+1 → Rn+1 defined on the (n+
1)dimensional space Rn+1. Let a = bn+1 for the linear trans-
formation operatorPa. Suppose the transformed trajectory of the
extended dynamics (15) is ξtrs(t) := (x1(t), . . . , xn(t), w(t))

�.
Then the projected transformed trajectory

ξprj(t) := π(1,...,n)
(
ξtrs(t)

)
= (x1(t), . . . , xn(t))

�

globally asymptotically converges to the physical desired path
Pphy as t→ ∞.

Proof: By (4) and (18), the guiding vector field on the (n+
1)-dimensional space Rn+1 is

χhgh(x1, . . . , xn, w) =

⎡
⎢⎢⎢⎢⎣

(−1)nf ′1(w)− k1φ1
...

(−1)nf ′n(w)− knφn

(−1)n +
∑n

i=1 kiφif
′
i(w)

⎤
⎥⎥⎥⎥⎦ . (21)

As discussed before, the singular set Chgh = ∅. According to
Corollary 2, ξtrs(t) globally asymptotically converges to the
transformed desired pathPtrs = Gl(Phgh) = Pa(Phgh) as t→
∞. Since a�ξtrs = a�Paξ = 0, the (n+ 1)th coordinate w(t)
of the transformed trajectory ξtrs(t) is equal to 0, meaning
that the transformed trajectory ξtrs(t) lies on the subspace

W := {(x1, . . . , xn+1) ∈ Rn : xn+1 = 0}. Therefore, the pro-
jected transformed trajectory ξprj(t) = π(1,...,n)(ξ

trs(t)) glob-
ally asymptotically converges to the physical desired path
Pphy. �

Remark 9: Note that the proof of convergence to the physical
desired path Pphy is indirect. The norm of the path-following
error ‖e(·)‖ = ‖(φ1(·), . . . , φn(·))‖ captures the distance to the
higher dimensional desired path Phgh, taking into account the
additional coordinatew as well. It is shown first that in the higher
dimensional space Rn+1, the norm of the path-following error
‖e(·)‖ approaches zero asymptotically. Then the convergence to
the transformed desired path Ptrs is obtained from Corollary 1
(or Corollary 2). Due to the special choice of the linear transfor-
mation operator Pa, where a = bn+1, the transformed desired
path Ptrs is “almost” the same as the physical desired path
Pphy, except that it has an additional but constant coordinate
w(t) ≡ 0. �

We have shown that, by extending the vector field from Rn to
Rn+1, the new guiding vector field does not have any singular
points. Therefore, by using the extended dynamics, the conver-
gence to the physical desired path is guaranteed globally. When
n > 3, this case corresponds to some configuration spaces, such
as the robot arm joint space in a smooth manifold embedded in
Rn. See [36] for more details.

B. Features of the Approach

There are several intriguing features of our proposed approach
discussed above in Section V-A. These features are summa-
rized below, and the corresponding theoretical guarantees are
presented in Appendix D in the full version [34]. For ease of
narration and without loss of generality, we take the case of a 2-D
physical desired path Pphy ⊆ R2 for discussion (i.e., n = 2).

Feature 1: The corresponding higher dimensional desired
path Phgh = {ξ ∈ R2+1 : φ1(ξ) = 0, φ2(ξ) = 0} is not self-
intersected. This is due to the fact that a crossing point must
be a singular point (see Proposition 1), but we have shown that
there are no singular points in the higher dimensional guiding
vector field. In fact, the parameter of the desired pathw in (17) is
implicitly transformed to an additional coordinate of the higher
dimensional desired path. Thus the physical planar desired path
Pphy is “cut” and “stretched” into the 3-D Euclidean space,
and becomes unbounded and nonself-intersected along the ad-
ditional dimension. The significance of this feature is that even
a self-intersected physical desired path Pphy described by (17)
can be successfully followed by using the new singularity-free
guiding vector field, which in fact corresponds to a nonself-
intersected “stretched” desired path Phgh.

Feature 2: This approach facilitates the expression of hy-
persurfaces characterized by implicit functions φi. Usually, a
parameterized form of the desired path is more readily available
than the hypersurfaces of which the intersection is the desired
path. Therefore, given the parameterized form in (17), we do
not need to convert them into φ(x, y) = 0 and derive the cor-
responding 2-D vector field. Instead, by simply defining two φ
functions as in (18), we obtain a singularity-free vector field
χhgh defined on R2+1.
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Fig. 2. Autonomous Opterra 1.2 m equipped with Paparazzi’s Apogee autopi-
lot. The airframe is built by E-Flite/Horizon Hobby company.

Feature 3: One only needs to examine the boundedness of
|f ′i(z)|, i = 1, 2, in the vicinity of the higher dimensional desired
path Phgh to guarantee both the property of local exponential
vanishing of the norm of the path-following error ‖e‖ and the
property of robustness against disturbance of the system dynam-
ics (11), while these properties usually require more conditions
to be satisfied for general vector fields [13]. The theoretical
guarantees are shown in Propositions 4 and 5, respectively, in
Appendix D in the full version [34].

Feature 4: Only Assumption 2 is required. Since the new
guiding vector field does not have any singular points, the other
assumption, Assumption 1, is vacuously true. This is indepen-
dent of the specific parametrizations of the desired path in (17).
The intuitive Assumption 2 holds for many practical examples;
thus one might ignore it in practice [13], [16], [22].

Feature 5: The additional virtual coordinate can be used to re-
alize scalable distributed multirobot coordinated path-following
navigation by adding a consensus term and guarantee collision
avoidance by using a safety barrier certificate [48].

VI. EXPERIMENTS WITH AN AUTONOMOUS AIRCRAFT

In this section, we demonstrate the effectiveness of our path
following approach with an autonomous fixed-wing aircraft. In
particular, we verify the tracking of both 2-D and 3-D self-
intersected desired paths. All the related software has been de-
veloped within the open-source project for autopilots Paparazzi
[49]. The codes only require the corresponding parametric equa-
tions to implement other desired paths.6

A. Autonomous Aircraft and Airfield

For the experiments, we use one Opterra as shown in Fig. 2.
Two elevons actuate the aircraft at the wings and one motor acts
in pushing the configuration. The vehicle’s electronics consists
of the autopilot Apogee, an Ublox GPS receptor, a Futaba
receiver, and a X-Bee S1 radio modem. The Apogee’s core is an
STM32F4 microcontroller where our algorithm runs with a fixed
frequency of 50 Hz, and all the relevant data are logged in an SD
card at 100 Hz. The ground segment consists of a standard laptop
with another X-Bee S1 radio modem to monitor the telemetry
and a Futaba transmitter in case of taking over manual control of

6[Online]. Available: https://github.com/noether/paparazzi/tree/
gvf_advanced/sw/airborne/modules/guidance/gvf_parametric

the vehicle. The flights took place on July 18, 2020, in Ciudad
Real (Spain) with GPS coordinates (39.184535,−4.020797)
degrees. The weather forecast reported 36 °C and a South wind
of 14 km/h.

B. Aircraft’s Guidance System Design

We employ a decoupled vertical and horizontal model for
setting the aircraft’s guiding reference signals. In particular, ac-
counting for the nonholonomic lateral constraint of the aircraft,
we consider the following unicycle model:

ẋ = v cos θ ẏ = v sin θ θ̇ = uθ ż = uz (22)

where (x, y, z) is the 3-D position, θ is the heading angle on
the XY plane, v is the ground speed, uθ is the angular velocity
control/guiding signal to change the heading, and uz is the
guiding signal for the climbing velocity. We will show how to
design the guiding signals uθ and uz , which are injected into
the control system of the aircraft that deals with the nontrivial
couplings of the lateral and vertical modes. Particularly, uθ is
tracked by banking the aircraft depending on the current speed
v and the pitch angle to achieve a coordinated turn, and uz is
tracked by controlling the pitch angle and the propulsion to vary
the lift and the vertical component of the pushed force coming
from the propeller. We leave the reader to check the details
of the employed low-level controllers.7 The experiments will
show that our algorithm is compatible with the model (22) and
the low-level controller employed in Paparazzi for a fixed-wing
aircraft.

Note that the wind has a noticeable impact on the ground speed
of the aircraft. Nevertheless, as the experimental results indicate,
such a wind speed does not impact the intended performance of
the algorithm. In practice, we consider θ as the heading angle
(given by the velocity vector), not the attitude yaw angle. If
there is no wind, both angles are the same in our setup. When
we consider the heading instead of the yaw for the model (22),
the aircraft compensates the lateral wind by crabbing such that
aerodynamic angle sideslip is almost zero.8

For following 3-D paths (including 2-D paths at a constant
altitude), we will employ a higher dimensional 4-D vector field.
The generalized 4-D velocity vector of the aircraft is defined
as ξ̇ = (ẋ, ẏ, ż, ẇ)�, where (ẋ, ẏ) is the actual ground velocity
of the aircraft, ż is the vertical speed, and ẇ is the velocity in
the additional coordinate to be determined. Now we present the
control algorithm design; that is, the design of uθ and uz in (22)
with the following proposition:

Proposition 3: Suppose the 3-D physical desired path
Pphy ⊆ R3 to follow is parameterized by (17). Then a cor-
responding 4-D vector field χ : R4 → R4 can be constructed
by Theorem 2. Assume that the vector field satisfies χ1(ξ)

2 +
χ2(ξ)

2 �= 0 for ξ ∈ R4, where χi denotes the ith entry of χ.

7[Online]. Available: http://wiki.paparazziuav.org/wiki/Control_Loops
8Crabbing happens when the inertial velocity makes an angle with the nose

heading due to wind. Slipping happens when the aerodynamic velocity vector
makes an angle (sideslip) with the body ZX plane. Slipping is (almost) always
undesirable because it degrades aerodynamic performance. Crabbing is not an
issue for the aircraft.
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Consider the model (22), and let the dynamics of the additional
coordinate w be

ẇ =
vχ4√
χ2
1 + χ2

2

. (23)

Let the angular velocity control input uθ and the climbing
velocity input uz be

uθ =

( −1

‖χp‖ χ̂
p�EJ(χp)ξ̇

)
︸ ︷︷ ︸

:=θ̇d

−kθĥ�Eχ̂p (24a)

uz =
vχ3√
χ2
1 + χ2

2

(24b)

where kθ > 0 is a gain constant, h = (cos θ, sin θ)�, E =
[ 0 −1
1 0 ], χp = (χ̂1, χ̂2)

� and J(χp) is the Jacobian matrix of
χp with respect to the generalized position ξ = (x, y, z, w)
and ξ̇ = (ẋ, ẏ, ż, ẇ)� is the generalized velocity. Let the angle
difference directed from χ̂p to ĥ be denoted by β ∈ (−π, π]. If
the initial angle difference satisfies β(0) ∈ (−π, π), then it will
vanish asymptotically (i.e., β(t) → 0). Furthermore, the actual
robot trajectory (x(t), y(t), z(t)) will converge to the physical
desired path Pphy asymptotically as t→ ∞.

Proof: Let χ′ := 1√
χ2
1+χ2

2

χ be the scaled 4-D vector field.

We aim to let the generalized robot velocity ξ̇ = (ẋ, ẏ, ż, ẇ)�

eventually align with and point towards the same direction as
the scaled vector field. Specifically, let the orientation error be
defined by

eori(t) = ξ̇ − vχ′ (23),(24b)
= v

⎡
⎢⎢⎢⎣
cos θ − χ′

1

sin θ − χ′
2

0

0

⎤
⎥⎥⎥⎦ =

[
h− g

0

]
∈ R4

where h = (cos θ, sin θ)� and g = (χ′
1, χ

′
2)

�. It is obvious that
eori → 0 if and only if h− g → 0. Therefore, it suffices to show
that the orientation ofh asymptotically aligns with that of g. Note
that

χ̂p =
1√

χ̂2
1 + χ̂2

2

[
χ̂1

χ̂2

]
=

1√
χ2
1 + χ2

2

[
χ1

χ2

]
= g

and ĥ = h. Therefore, we can define a new orientation error as
e′ori := ĥ− χ̂p ∈ R2. Choose the Lyapunov function candidate
V = 1/2 e′�orie

′
ori and its time derivative is

V̇ = ė′�orie
′
ori = (θ̇Eĥ− θ̇dEχ̂p)�(ĥ− χ̂p)

= (θ̇ − θ̇d)ĥ
�Eχ̂p

(24a)
= −kθ(ĥ�Eχ̂p)2 (25)

which is negative semidefinite. The second equation makes use

of the identities: ˙̂h = θ̇Eĥ and ˙̂χp = θ̇dEχ̂p, where θ̇d is defined
in (24a). The third equation is derived by exploiting the facts
thatE� = −E and a�Ea = 0 for any vector a ∈ R2. Note that
V̇ = 0 if and only if the angle difference between ĥ and χ̂p is
β = 0 or β = π. Since it is assumed that the initial angle differ-
enceβ(t = 0) �= π, it follows that V̇ (t = 0) < 0, and thus, there
exists a sufficiently small ε > 0 such that V (t = ε) < V (t = 0).

It can be shown by contradiction that |β(t)| is monotonically
decreasing with respect to time t.9 By (25), one observes that
|β(t)| andV (t) tends to 0, implying that the generalized velocity
ξ̇ will converge asymptotically to the scaled vector field vχ′.
Note that the integral curves of the state-dependent positive
scaled vector field χ′ has the same convergence results as those
for the original vector field χ [46, Prop. 1.14]. Therefore, the
generalized trajectory (x(t), y(t), z(t), w(t)) will converge to
the higher dimensional desired pathPhgh in (19). From Theorem
2, the actual robot trajectory (i.e., the projected transformed
trajectory) (x(t), y(t), z(t))will converge to the physical desired
path Pphy asymptotically as t→ ∞. �

We set our aircraft to fly at a constant airspeed (around 12 m/s)
while flying at a constant altitude; therefore, we have a bounded
speed v (estimated onboard with an inertial navigation system)
when we account for the wind. For tracking 3-D paths, the
aircraft will nose down or change the propeller’s r.p.m.; never-
theless, the airspeed is also bounded between 9 and 16 m/s. Note
that both ground and airspeed are not control/guiding signals;
therefore, we do not face any saturation problems regarding these
variables.

C. Accommodating the Guidance to the Aircraft’s Dynamics

An arbitrary function φi(·) in (18), which depends on a
specific parametrization fi(·), may result in a highly sensitive
coordinate w. This can lead to considerable vibrations of the
guidance signals, due to noisy sensor readings or disturbances
of the position, that cannot be tracked effectively by the aircraft.

We propose two approaches, which can be combined to mit-
igate this practical effect. The first one is to reparameterize the
equations for the 3-D desired path Pphy; this does not affect the
convergence result. Suppose Pphy is reparameterized by

x = f1 (g(w)) , y = f2 (g(w)) , z = f3 (g(w))

where g : R → R is a smooth bijection with nonzero derivative
(i.e., dg

dw (w) �= 0 for all w ∈ R). A simple example of g is
g(w) = βw, where β is a positive constant. This is adopted for
the experiments. Let φ1, φ2, and φ3 be chosen as in (18), then
the first term of the higher dimensional vector field becomes (for
simplicity, the arguments are omitted)

× (∇φ1,∇φ2,∇φ3) = −
(
df1
dg

dg

dw
,
df2
dg

dg

dw
,
df3
dg

dg

dw
, 1

)�
.

To reduce the effect of the “virtual speed” from the
fourth coordinate of the equation above, the “gain” dg

dw

can be chosen large such that (df1dg · dg
dw )2 + (df2dg · dg

dw )2 +

(df3dg · dg
dw )2 � 1, which implies that ‖∇φ1 ×∇φ2 ×∇φ3‖ ≈

| dgdw |
√

(df1dg )2 + (df2dg )2 + (df3dg )2. However, from the analytic

9Suppose there exist 0 < t1 < t2 such that |β(t1)| < |β(t2)|. It can be
calculated that V (t) = 1− cosβ(t), and thus, V (t1) < V (t2), contradicting
the decreasing property of V̇ . Thus, |β(t)| is indeed monotonically decreasing.
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expression of the vector field

χ =

⎡
⎢⎢⎢⎢⎣

− dg
dw · df1

dg − k1φ1

− dg
dw · df2

dg − k2φ2

− dg
dw · df3

dg − k3φ1

−1 + dg
dw

(
k1φ1

df1
dg + k2φ2

df2
dg + k3φ3

df3
dg

)

⎤
⎥⎥⎥⎥⎦

one observes that, when ‖(φ1, φ2, φ3)‖ is large, (i.e., the aircraft
is far from the desired path), the additional coordinate of the
vector has also been enlarged approximately by a factor of dg

dw .
Thus, the “gain” | dgdw | should not be chosen too large.

The second approach is to scale down the functions φi. That
is, (18) are changed to φ̃i(x, y, z, w) = Lφi, i = 1, 2, 3, where
L ∈ (0, 1). The corresponding 3-D vector field is thus changed
to

χ̃ = L

⎡
⎢⎢⎢⎣

−L2 df1
dw − k1φ1

−L2 df2
dw − k2φ2

−L2 df3
dw − k3φ3

−L2 + k1φ1
df1
dw + k2φ2

df1
dw + k3φ3

df1
dw

⎤
⎥⎥⎥⎦ .

The new guiding vector field is scaled down; thus, it helps to
lower the sensitivity of the additional coordinate w.

D. Two-Dimensional Trefoil Curve

We start with following a 2-D self-intersected desired path,
the trefoil curve, at a constant altitude zo = 50 m over the ground
level. The parametric equations of the trefoil curve are given by

f1(w) = cos(βw ω1)(a cos(βw ω2) + b)

f2(w) = sin(βw ω1)(a cos(βw ω2) + b)

f3(w) = 0

where we have set β = dg
dw = 0.45 (the “gain” introduced in

Section VI-C), ω1 = 0.02, ω2 = 0.03, a = 80, and b = 160. In
order to fit into the available flying space, these parametric
equations have been rotated by α and shifted adequately by
(xo, yo) in the autopilot, i.e.,

f ∗1(w) = cos(α)f1(w)− sin(α)f2(w) + xo

f ∗2(w) = sin(α)f1(w) + cos(α)f2(w) + yo

f ∗3(w) = f3(w) + zo.

Note that the same affine transformation must be done for both
f ′i and f ′′i (needed for the Jacobian ofχ as we will see shortly). In
particular, for the presented flight, we set xo = 79, yo = −68.10
and zo = 50meters andα = 0. We set the scaling factorL = 0.1
for the construction of φ̃i as in Section VI-C, and we choose

the gains k1 = k2 = k3 = 0.002. We finally set kθ = 1 for the
control/guidance signal uθ in Proposition 3.

Note that for computing all the control signals (24), we
need fi(w) and their derivatives f ′i(w) and f ′′i (w) with respect
to w. For the sake of completeness, we provide the Jacobian
J(χp) in (24a), which is given by J(χp) = FJ(χ̂) = F (I −
χ̂χ̂�)J(χ)/‖χ‖,where F = [ 1 0 0 0

0 1 0 0 ], and J(χ) is shown in
(26). We show the flight results for the trefoil curve in Fig. 3.

E. Three-Dimensional Lissajous Curve

We consider the 3-D Lissajous curve described as below:

f1(w) = cx cos(βw ωx + dx)

f2(w) = cy cos(βw ωy + dy)

f3(w) = cz cos(βw ωz + dz)

where we have set β = dg
dw = 0.01, ωx = 1, ωy = ωz = 2,

cx = cy = 225, cz = −20, dx = dz = 0, and dy = π/2. This
selection of parameters gives us an eight-shaped desired path
that is bent along the vertical axis. As with the trefoil curve, we
have added an affine transformation of fi(w), f ′i(w) and f ′′i (w)
in the autopilot to fit the Lissajous curve into the available flying
space. In particular, we have set xo = 79, yo = −68.10, zo =
50, α = 0.66). Finally, for the construction of φ̃i, we have cho-
sen L = 0.1, k1 = k2 = 0.002 and k3 = 0.0025, and we finally
set kθ = 1 for the control/guiding signal uθ in Proposition 3. We
show the flight results in Fig. 4.

VII. DISCUSSION: PATH FOLLOWING OR

TRAJECTORY TRACKING?

In this section, we show that our proposed higher dimensional
VF-PF algorithm is an extension that combines elements from
both conventional VF-PF algorithms (e.g., [16], see Remark 3)
and trajectory tracking algorithms (e.g., [50, p. 506]). While
our generated guiding vector field is the standard output for the
path-following approach, we will argue that our algorithm can
also be seen as a fair extension of a trajectory tracking approach.
Therefore, our algorithm, to some extent, combines and extends
elements from both approaches. For ease of explanation and
without loss of generality, we restrict our focus to a physical
planar desired path in R2; that is, Pphy ⊆ R2.

Compared to trajectory tracking algorithms, a similarity exists
in the sense that the additional coordinatew in the proposed VF-
PF algorithms acts like the time variable in trajectory tracking
algorithms. However, our approach is an extension in the sense
that the time-like variable is in fact state-dependent. In trajectory
tracking algorithms, a desired trajectory (xd(t), yd(t)) is given.
Then, at any time instant t, the algorithm aims to decrease the

J(χ) = L

⎡
⎢⎢⎢⎣

−k1L 0 0 −f ′′1 (βw)L2β2 + k1βLf
′
1(βw)

0 −k2L 0 −f ′′2 (βw)L2β2 + k2βLf
′
2(βw)

0 0 −k3L −f ′′3 (βw)L2β2 + k3βLf
′
3(βw)

k1βLf
′
1(βw) k2βLf

′
2(βw) k3βLf

′
3(βw) β2

∑3
i=1

[
kiφif

′′
i (βw)− kiLf

′2
i (βw)

]

⎤
⎥⎥⎥⎦ (26)
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Fig. 3. Flight results of the trefoil path tracking at a constant altitude. On the low-right side, we show a screenshot of the ground control station, where the green
circle denotes the stand-by trajectory just before starting the tracking of the trefoil. On top, we show the first minute of the flight once the tracking of the trefoil
started. All the tracking is done at the constant altitude of 50 meters, and the evolution of the coordinate z is thus omitted. We can see how the blue dot, i.e.,
(f1(w), f2(w)) goes and waits for the aircraft at time t = 321. Afterward, the vehicle converges to the desired path as the first two low-left plots indicate with φ1

and φ2 staying around 0 meters. The third plot shows the evolution of the virtual coordinate w. We can see how w does not follow a constant growth, but it varies
since it is in closed-loop with the position of the aircraft to facilitate the convergence to the path. Coming back to the ground control station, we can see in blue
color the described 2-D trajectory of the aircraft, showing one period of the trefoil.

distance to the desired trajectory point (xd(t), yd(t)), which
moves as time t advances. Note that the dynamics of the desired
trajectory point (xd(t), yd(t)) is open-loop in the sense that it
does not depend on the current states of the robot, but only
depends on time t. From (18), if we let φi = 0, i = 1, 2, then
we may call the point (f1(w(ξ(t))), f2(w(ξ(t)))) the guiding
point, since it always stays on the desired path and may be
regarded as the counterpart of the desired trajectory point in
trajectory tracking algorithms. But as we will show later, the
guiding point is essentially different from the desired trajectory
point. Note that the guiding point (f1(w(ξ(t))), f2(w(ξ(t)))) in
our VF-PF algorithm depends on the evolution of the additional
coordinatew(ξ(t)), of which the dynamics is state-dependent as
shown in (23). This might be roughly regarded as a closed-loop
version of the desired trajectory point. An intuitive conse-
quence of this difference is that the desired trajectory point
(xd(t), yd(t)) in trajectory tracking algorithms always moves
unidirectionally along the desired trajectory as t monotonically
increases, while the guiding point can move bidirectionally
along the desired path, subject to the current state (i.e., the robot
position). In fact, when the initial position of the guiding point
(f1(w(ξ(0))), f2(w(ξ(0)))) is far from the initial position of the
robot, the guiding point “proactively” moves towards the robot
along the desired path to accelerate the path-following process.
This feature, along with better robustness against perturbation
in some cases, are experimentally studied in our previous work
[33, Sec. VII]. To illustrate this closed-loop feature more in-
tuitively, after the robot has successfully followed the desired
path, we manually move the robot far away from the desired
path and keep it stationary (to mimic the situation of erroneous
localization and operation failure of the robot). As is clear in the
supplementary video, although the robot is kept stationary, the
guiding point (f1(w(ξ(t))), f2(w(ξ(t)))) can still move in the
reverse direction to approach the robot along the desired path

such that the path-following error decreases, and the guiding
point eventually stops at some place on the desired path. After
that, the guiding point does not move until the robot is released
to move again.

In existing VF-PF algorithms, a 2-D vector field on R2 is cre-
ated for guiding the robot movement (see Remark 3). However,
as we aim to create a higher dimensional (i.e., 3-D) vector field,
our approach can be roughly regarded as utilizing an infinite
number of layers of projected 2-D vector fields, and thus, might
be seen as a dynamic 2-D vector field. The dynamic property is
due to the dynamics of the additional coordinatew. For example,
consider a circular desired path parameterized by

x = f1(w) = cos(4w) y = f2(w) = sin(4w)

where w ∈ R is the parameter. In conventional VF-PF algo-
rithms, a 2-D vector field can be created, as shown in Fig. 1(a),
but there exists a singular point at the center of the circle.
Nevertheless, using our approach, we can generate a singularity-
free 3-D vector field, as illustrated in Fig. 5. For clarity of
visualization, we plot the 3-D vectors, which originate from
three planes where thew values are 0, 0.6, and 1.4, respectively.
For each value of the additional coordinate w, we can obtain a
projected 2-D vector field, as shown in Fig. 6. Therefore, we
can observe that these 2-D vector fields change dynamically
as w varies. As a result of the dynamics of w, the guiding
point (f1(w(ξ(t))), f2(w(ξ(t)))) moves along the 2-D desired
path (not necessarily unidirectionally). Again, we note that this
point is not the same as the desired trajectory point in trajectory
tracking algorithms since the integral curves of the 2-D vector
field do not converge to this point, as can be seen graphically
from Fig. 6 or analytically from the expression of the vector field
in (7): the second term leads to convergence to the guiding point,
while the first term “deviates” this convergence, since it controls
the propagation along the higher dimensional desired path.
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Fig. 4. Flight results of the 3-D Lissajous path tracking. On the low-right side, we show a screenshot of the ground control station, where the green circle denotes
the stand-by trajectory just before starting the tracking of the Lissajous figure. In the 3-D plots on top, we show the first seconds of the flight once the tracking
of the Lissajous figure started. We can see how the blue dot, i.e., (f1(w), f2(w), f3(w)) travels quickly and waits for the aircraft at time t = 204. This quick
traveling of w can be seen at the beginning of the fourth plot in the bottom row. Afterward, the vehicle stays on the desired path as the three bottom-left plots
indicate with φ1, φ2, and φ3 staying around 0 meters. The aircraft has been trimmed to fly at a constant altitude. However, this path requires the vehicle to track a
sinusoidal ascending/descending trajectory, and any disturbance (e.g., changing wind) makes the aircraft sensitive to track a climbing/descending speed different
from zero accurately. In addition, the Lissajous curve demands aggressive turnings a bit beyond the capabilities of the aircraft, in particular, when the aircraft is
descending and achieving maximum speed. We can see how w does not follow a constant growth, but it varies since it is in closed-loop with the position of the
aircraft to facilitate the convergence to the path. Coming back to the ground control station, we can see in blue color the described 2-D (projected) trajectory of the
aircraft, showing one period of the Lissajous figure. In particular, we can see that the aircraft passes by the middle waypoint corresponding to the highest point of
the desired track.

Fig. 5. Three layers of the 3-D vector field corresponding to a circle. The
solid line is the 2-D desired path while the dashed line is the corresponding
3-D (unbounded) desired path. Three layers of the 3-D vector field evaluated at
w = 0, 0.6, 1.4, respectively, are illustrated.

In many existing VF-PF algorithms, the desired path is
usually not parameterized but is described by the intersection
of (hyper)surfaces, while the latter case might be restrictive
in describing more complicated desired paths. However, our

Fig. 6. Projected 2-D vector field corresponding to w = 0, 0.6, 1.4, respec-
tively. The solid line is the projected 2-D desired path. The solid dots represent
the guiding point (cos(4w), sin(4w)).

approach enables the possibility to use a parameterized desired
path directly in the design of a higher dimensional vector
field. Our approach thus extends the flexibility of conventional
VF-PF algorithms. The desired path can now be described
by either the intersection of (hyper)surfaces or parameterized
functions. In the latter case, the parametric equations can
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be easily converted using (17)–(19) and leads to a higher
dimensional desired path and singularity-free guiding vector
field. Theoretically, the parametrization is not instrumental,
since it is only utilized to derive the expressions of functions φi,
of which the zero-level sets are interpreted as (hyper)surfaces.
The subsequent derivation of the vector field is based on φi,
independent of the specific parametrization of the desired path.

VIII. CONCLUSION

In this article, we first showed that the integral curves of a
time-invariant continuously differential vector field as in (4)
cannot guarantee global converge to desired paths which are
simple closed (i.e., homeomorphic to the unit circle) or self-
intersected. Motivated by this general topological result, we
proposed a novel approach to create unbounded desired paths
from simple closed or self-intersected ones, and constructed a
singularity-free higher dimensional guiding vector field. One of
the advantages of this approach was that global convergence to
the desired paths, which could be even self-intersected, was now
rigorously guaranteed. This was achieved by the introduction of
a transformation operator and the extended dynamics. Another
advantage was that, given a parameterized desired path, we could
easily describe the (hyper)surfaces as the zero-level set of some
implicit functions, and then the proposed vector field on a higher
dimensional space could be directly constructed. This increased
the applicability of conventional VF-PF algorithms. In addition,
we highlighted five features of our approach, with rigorous
theoretic guarantees. We also showed that our approach was a
combined extension of both conventional VF-PF algorithms and
trajectory tracking algorithms. Finally, we conducted outdoor
experiments with a fixed-wing aircraft under wind perturbation
to validate the theoretical results and demonstrated the practical
effectiveness for complex robotic systems.

Due to the additional coordinates of the vector field, it was
difficult for a robot to follow the desired path at a constant speed.
This may be solved by replacing the normalization of the vector
field χ̂ by the “partial normalization”, i.e., χ̃ := χ/‖χp‖, where
χp is the vector composed of only the first (n− 1) components
of χ. It is our future work to use the singularity-free guiding
vector field to solve collision avoidance problems (preliminary
results are reported in [44]), and determine the parameteriza-
tion of the desired path to achieve the optimal path-following
accuracy.
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