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Differencing as a Consistency Test for the Within Estimator
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Abstract

The within estimator is commonly used to estimate the linear panel regression model. We exploit the

differences between short- and long-differences estimators to construct a GMM-test for the exogeneity

assumption underlying the within estimator. We find that this test is locally more powerful than a more

generic GMM-test for exogeneity of the regressors. We use our GMM-test in the representation of a

Wald test, which facilitates the economic interpretation and visualization of the test outcomes. We

illustrate our approach in an application to U.S. banks’ economies of scale.
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1. Introduction

Since the early days of econometrics, the within estimator has been widely used to estimate the

linear panel regression model in the presence of individual effects correlated with the regressors

(Mundlak, 1961; Mundlak and Hoch, 1965). Its consistency requires exogeneity of the regressors

after removal of the individual effect. If there are any doubts about a particular covariate’s exogeneity

and one or more instrumental variables are available, it is common to run a Hausman test for exo-

geneity or a J-test for instrument validity (also known as Hansen-Sargan, GMM or overidentifying

test). Both tests are based on prior suspicions about certain covariates and rely on the availability of

instrumental variables. In the absence of prior information or instruments, it is still important to test

the validity of the within estimator’s exogeneity assumption. To our best knowledge, however, a more

general specification test does not exist for this widely occurring case. The present study seeks to

remedy this situation.

To that end, we combine the ideas from the time-series literature about specification tests with

the insights of Griliches and Hausman (1986) to construct a test for the within estimator’s exogene-

ity assumption. From the time-series literature, we take the idea to develop a specification test that

exploits model transformation; see e.g. Plosser et al. (1982), Davidson et al. (1985), Breusch and

Godfrey (1986), and Thursby (1989). These studies use a Hausman test to compare the OLS esti-

mators obtained from differenced and undifferenced regression models. Under the null hypothesis

of no misspecification, OLS yields a consistent and efficient estimator for the undifferenced model,

while it produces a consistent but inefficient estimator for the differenced model. The power of the

Hausman test arises from the difference in the estimators’ probability limits under misspecification.

We combine this idea with the insight of Griliches and Hausman (1986, p. 114) that misspecification

may be present in the linear panel regression model if short- and long-differences estimators differ

significantly.

Although Griliches and Hausman (1986) has eventually become the most frequently cited study

about measurement error in econometrics, exploiting the patterns in short- and long-differences esti-

mators has hardly ever been done in more than thirty years. In fact, we found only four panel data

studies that do this (Levitt, 1998; Goolsbee, 2000; McKinnish, 2008; Bun et al., 2019). These studies

link the patterns in short- and long-differences estimators to measurement error, but do not consider

their relevance for detecting general misspecification. By contrast, we show that these patterns can

detect violation of the within estimator’s exogeneity assumption due to misspecification in general.

Our specification test is developed in a GMM framework and has the familiar form of a J-test. We

show that our test is locally more powerful than a J-test for all moment conditions that follow from the
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exogeneity of the regressors after removing the individual effects. We will refer to this alternative test

as the ‘generic’ J-test, as opposed to our more specific ‘differences’ J-test. The explanation for the

better performance of our J-test is that it directs the power from the full set of moment conditions for

exogeneity to the moment conditions that are directly relevant for the within estimator. Throughout,

we use our J-test in the representation of a Wald test, which facilitates the economic interpretation

and visualization of the test outcomes. We also provide an empirical strategy for consistent model

estimation based on our test.

In the empirical part of our analysis, we estimate U.S. banks’ cost functions using the within

estimator and calculate the implied scale elasticity during the 2011–2017 period. In the literature,

estimates of banks scale elasticities have been used to plead against a size limit on banks (Hughes and

Mester, 2013) and to determine the implied net costs of increasing bank size for too-big-to-fail banks

(Boyd and Heitz, 2016). Our test finds strong evidence against the within estimator’s consistency.

We discuss the possible sources of endogeneity by relating our application to the long-standing prob-

lem in econometrics of how to consistently estimate cost and production functions. We also provide

suggestions for further modeling.

The test developed in this study contributes to the panel-data literature about fixed-T and large-n

specification testing, which includes but is not limited to tests for overidentifying restrictions (Hayakawa,

2019), random vs. fixed effects and for FE vs. FE-2SLS (Hausman, 1978; Baltagi et al., 2003; Amini

et al., 2012; Joshi and Wooldridge, 2019), unit roots (Harris and Tzavalis, 1999), selectivity bias (Ver-

beek and Nijman, 1992; Wooldridge, 1995), cross-sectional dependence (Sarafidis and Wansbeek,

2012) and GMM-based test for autocorrelation in error terms (Arellano and Bond, 1991).

The setup of the remainder of this study is as follows. Section 2 describes the test statistic and

discusses its statistical properties. Section 3 provides the empirical application to U.S. banks’ scale

elasticities. Lastly, Section 4 concludes. Proofs and additional results can be found in the appendix

with supplementary material.

2. Test statistic

We consider the linear panel regression model with T observations over time, given by

yi = γιT + Xiβ + εi [i = 1, . . . , n], (1)

where yi (T × 1) is the dependent variable, γ the intercept, ιT (T × 1) a vector of ones, Xi (T × k) the

matrix of observed covariates, β (k× 1) the coefficient vector, and εi (T × 1) the error term containing

an individual effect possibly correlated with Xi.
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The within estimator is widely used to estimate β in (1). However, its consistency requires exo-

geneity of Xi, after removing the individual effects. This is a strong assumption, which can be violated

due to e.g. measurement error, omitted variables or simultaneity. For this reason, we propose a test

for the consistency of the within estimator.

2.1. J-test

The test we propose is developed in a GMM framework and of the familiar form of the J-test for

some population moment condition H0 : IE[gi(β)] = 0, exploiting overidentification.

The statistical properties of the J-test under correct specification and misspecification are well-

known, but have been mostly studied in a time-series context (Newey, 1985; Hall, 2005). These prop-

erties rely on the asymptotic normality of the GMM estimator. We refer to Hayakawa (2019) for the

formulation of similar conditions in a fixed-T and large-n panel data setting. Throughout, we assume

that these conditions hold and that the usual properties of the J-test apply. In particular, we use that

the asymptotic distribution of the J-test is central chi-square under H0 and non-central chi-square

under local alternatives of the Pitman form H1 : IE[gi(β)] = d/
√

n, for some finite constant d.

We start with some notation. Let e` (k × 1) be the `-th unit vector and write

Xi = (xi1, . . . , xik) =
∑
`

xi`e′` such that xi = vec(Xi) =
∑
`

e` ⊗ xi`. (2)

We denote the centering matrix of order T by A = IT − ιT ι
′
T/T and write ∆ j = D jD′j, with D j the

T × (T − j) matrix that takes differences over time span j = 1, . . . ,T − 1.

The within estimator is the MM estimator of β corresponding to the k ‘within’ moment conditions

IE(X′iAεi) = 0. (3)

Evidently, we cannot use the J-test for an exactly identified system of moment conditions. One

option would be to test the T (T−1)k population moment conditions for exogeneity of Xi, after removal

of the individual effects by taking first differences. The resulting ‘generic’ moment conditions for

exogeneity are given by

IE(xi ⊗ D′1εi) = 0. (4)

These are not the moment conditions that we will use, though. We propose a J-test for the (T − 1)k
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‘differences’ moment conditions given by

IE(X′i∆ jεi) = 0 [ j = 1, . . . ,T − 1]. (5)

Before we turn to the rationale for our choice of moment conditions, we need to understand the

relation among the aforementioned moment conditions. We start by noting that A = D1∆
−1
1 D′1, because

both A an D1∆
−1
1 D′1 are symmetric, idempotent of rank T − 1 and orthogonal to ιT . Consequently, the

generic moment conditions in (4) are equivalent to

IE(xi ⊗ Aεi) = 0. (6)

The within conditions in (3) are a linear combination of the conditions in (6). To see this, note that

(Ik ⊗ vec(IT ))′(xi ⊗ Aεi) = X′iAεi. (7)

The generic moment conditions in (4) imply that

IE(xi ⊗ D′jεi) = 0 [ j = 1, . . . ,T − 1], (8)

since the conditions in (8) are a linear combination of those in (4). That is, each D j is a linear com-

bination of the columns of D1: D2 is obtained by adding up each set of two adjacent columns of D1,

D3 by adding up each set of three adjacent columns of D1, and so on. By noting that (8) is equivalent

with IE(xi ⊗ ∆ jεi) = 0 we obtain, analogously to (7), the differences moment conditions in (5).

Because ∆ j has j-th pseudo-diagonal equal to −1, it follows that A = (∆1 + . . . + ∆T−1)/T . All

other pseudo-diagonals are zero, while
∑

j ∆ j has diagonal elements equal to T − 1 since all rows add

to zero. Hence, the within conditions in (3) are also a linear combination of the differences moment

conditions in (5). In particular, (3) is the average of (5) over j.

In sum, we have (4) ≡ (6) =⇒ (8) =⇒ (5) =⇒ (3) due to the linear dependence of the various

moment conditions.

2.2. Optimality

We consider the J-test for the differences moment conditions in (5), based on the (1 − α)-critical

value of the central chi-square distribution with (T − 1)k degrees of freedom, for 0 < α < 1. For the

sake of comparison, we also consider the J-test for the generic moment conditions in (4) based on the

(1 − α)-critical value of the central chi-square distribution with T (T − 1)k degrees of freedom.
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We are interested in the properties of both J-tests as a test of the within moment conditions in

(3). In terms of asymptotic size, both tests are conservative, because they both test a set of moment

conditions that imply the within moment conditions. That is, the rejection rates will be above nominal

if (3) holds. Furthermore, the J-test for the generic moment conditions in (4) is more conservative

than the J-test for the differences conditions (5), because (4) =⇒ (5).

Comparing both tests in terms of local power requires some more work. Because the J-test for the

generic moment conditions in (4) has the maximum number of degrees of freedom, it has the largest

possible value of the non-centrality parameter for all local alternatives (Newey, 1985, Prop. 6). Stated

differently, for each local alternative, its non-centrality parameter is larger than or equal to the non-

centrality parameter of the J-test for the differences moment conditions in (5). Hence, viewed as a

test of the generic moment conditions, neither of the two tests has uniformly higher local power than

the other one. This follows because the value of a given tail probability of the non-central chi-square

distribution decreases with the number of degrees of freedom, but increases with the non-centrality

parameter (Newey, 1985, p. 238).

However, we are interested in the local power of both tests if we view them as a test of the within

conditions in (3). The J-test for the differences moment conditions in (5) turns out to be the more

powerful J-test for local alternatives such that the within conditions in (3) do not hold. Intuitively,

this J-test directs the power from the full set of moment conditions for exogeneity to the ones that

are relevant for the within estimator. That is, if (3) does not hold locally, testing more moment con-

ditions than those in (5) will not lead to more power. Furthermore, if (3) holds, testing more moment

conditions than those in (5) will increase the risk of a rejection.

The theorem below provides a formal comparison of the two J-tests’ local power properties as a

test of (3), while assuming that both tests use the same α > 0. The proof can be found in Section A of

the appendix with supplementary material.

Theorem 1 (comparison of J-tests)

(i) For all local alternatives such that within moment conditions in (3) do not hold, the J-test for

the differences moment conditions in (5) has higher power than the J-test for the generic moment

conditions in (4). (ii) Both tests are conservative for local alternatives such that the within moment

conditions in (3) hold, with local power larger than or equal to α.

The theorem tells us that, in order to detect local alternatives for which the within estimator’s

moment conditions do not hold, it is optimal to use the J-test for the differences conditions in (5)

instead of the generic conditions in (4).
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2.3. Wald test

The test we have proposed is a J-test for the differences moment conditions in (5), but we will use

this test in the representation of a (numerically identical) Wald test. This has certain advantages, as

we will explain below.

The idea of the Wald test is that we estimate β separately for each time span j = 1, . . . ,T − 1

and then assess whether the resulting T − 1 estimates β̂ j are identical. With β j = plimn→∞ β̂ j, our null

hypothesis becomes H0 : β j = β j+1, while the alternative hypothesis is H1 : β j , β j+1 for at least one

j ( j = 1, . . . ,T − 2).

Because the Wald test requires the joint asymptotic covariance matrix of the β̂ js, we obtain the

β̂ js jointly as an exactly identified (G)MM estimator and use a cluster-robust estimator for the joint

asymptotic covariance matrix. This yields the estimators

β̂ j =

∑
i

X′i∆ jXi

−1 ∑
i

X′i∆ jyi, (9)

for j = 1, . . . ,T −1. We store the β̂ js in a (T −1)k-vector and denote this vector by β̂ = (β′1, . . . ,β
′
T−1)′.

Let B1 be the (T − 1) × (T − 2) matrix taking first differences and let R = B1 ⊗ Ik. The Wald statistic

corresponding to H0 is given by

qW = β̂′R
∑

i

R′uiu′iR
−1

R′β̂, (10)

where

ui =


(∑

` X′`∆1X`

)−1 X′i∆1ε̂i1
...(∑

` X′`∆T−1X`

)−1 X′i∆T−1ε̂i,T−1

 , (11)

with ε̂i j = yi − Xiβ̂ j for j = 1, . . . ,T − 1.

Because of the linearity of the moment conditions in β, qW is numerically identical to the J-test

statistic for the differences conditions in (5), provided that both statistics use the same consistent

estimator for the covariance matrix. This equality holds both under the null and the (fixed or local)

alternative hypothesis. Furthermore, the Wald test statistic is also identical to three other well-known

tests for H1 : β j = β j+1 ( j = 1, . . . ,T − 2): the LM test, the distance-difference test (i.e., the GMM

equivalent of the likelihood-ratio test) and the minimum chi-square test. Again the equality only holds

if the same consistent estimator for the covariance matrix is used (Newey and West, 1987; Newey and
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McFadden, 1994; Ruud, 2000).

Because the above tests are numerically identical, the choice for any one representation can be

made on non-statistical grounds (Newey and West, 1987). We choose the Wald test because of its

appealing economic interpretation and its potential for visualization. By using the Wald test, the vio-

lation of overidentifying restrictions is translated into patterns in the β js. If H0 is rejected, the patterns

in the β̂ js reveal the economic relevance of the within estimator’s inconsistency. If the variation in the

β̂ js is small and the β̂ js are close to the within estimator, the economic importance of the rejection

will be limited. An informal visualization of the Wald test is obtained by plotting β̂ js as a function of

j for each covariate, with the within estimator added as a horizontal line. We will refer to this as the

‘difference curves’.

2.4. Motivating examples

To illustrate the link between the Wald test and familiar situations where the within estimator is

inconsistent, Table 1 considers four cases: (i) classical measurement error, (ii) non-classical measure-

ment error, (iii) omitted variables and (iv) simultaneity. The precise model specification in each case

is described in the first column of Table 1. We emphasize that the list of examples is not exhaustive;

evidently, there are many other cases in which the within estimator is inconsistent. All calculations

related to Table 1 have been relegated to Sections B and C of the appendix with supplementary mate-

rial.

In each case, a univariate version of the linear panel regression model in (1) is estimated using the

within and differences estimators. The resulting estimators of the regression coefficient are invariably

inconsistent. The second column in Table 1 reports the inconsistency of the differences estimator in

each case.

The last two columns pertain to the local power of the Wald test for T = 3. We first mention

the local alternatives with Pitman drift considered in each case. The final column shows the implied

non-centrality parameter of the Wald test under these local alternatives.1

The local power of the Wald test arises from the differences in the probability limits β j for different

values of j. For certain parameter values, however, the inconsistencies do not depend on j. An example

of such a case is classical measurement error with equal persistence of the unobserved regressor and

the measurement error. The non-centrality parameter is 0 in such cases, while the local power is

equal to α (also referred to as ‘trivial’ power). Because of the equality of the Wald and J-tests, the

cases where the Wald test has trivial power correspond to the cases where also the J-test has trivial

1Section C of the supplementary material provides expressions for the non-centrality parameter for T ≥ 4, which turn
out similar as for T = 3.
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power. We refer to Newey (1985, Prop. 1) and Hall (2005, Th. 5.4) for more details about the local

alternatives under which the J-test has trivial power.

We have performed a simulation study for each of the motivating examples to investigate the finite-

sample properties of the Wald test in terms of power and size under fixed alternatives. The simulation

results confirm the Wald tests’s consistency under fixed alternatives: even a relatively weak pattern in

the β js can be detected, provided that n is large enough. These results can be found in Section D of

the supplementary material.

2.5. Empirical strategy

Turning back to the general case, we propose an empirical strategy based on the proposed Wald

test:

(1) Estimate qW. If qW exceeds the critical value of the χ2
(T−2)k distribution, then reject H0 : β j = β j+1

( j = 1, . . . ,T − 2).

(2) If H0 is rejected, plot the difference curves for all covariates and verify the economic signifi-

cance of the non-constant patterns in the difference curves, especially if n is large.

(3) In case of both statistical and economic significance, revise the set of moment conditions and

test again. For this purpose, assume that there are m potentially endogenous covariates, for

which there are m candidate instrumental variables available. Then return to Step 1, but replace

the differences moment conditions for the m covariates by the differences moment conditions

for the m instruments.

(4) If there are more than m candidate instruments available for the m potentially endogenous co-

variates, then use a standard J-test for the within moment conditions. Because of the overiden-

tification, it is no longer necessary to use the larger set of differences moment conditions.

(5) If no candidate instruments are available or if H0 continues to be rejected, then switch to an es-

timator that requires less stringent exogeneity assumptions than the within estimator, or change

the model specification using any available information about the nature of the endogeneity.

Steps 1–2 apply to running and visualizing our test and do not require any prior information about

the nature of the endogeneity. Evidently, if the model has to be revised because H0 is rejected, the use

of instrumental variables will require some idea about the potentially endogenous variables.
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3. Empirical application

The consistent estimation of cost and production functions is a long-standing problem in econo-

metrics (e.g., Coen and Hickman, 1970; McElroy, 1987; Griliches and Hausman, 1986; Mundlak,

1996; Paris and Caputo, 2004; Dimitropoulos, 2015). In particular, Griliches and Hausman (1986)

investigate this problem in the context of the ‘short run increasing returns to scale puzzle’ for manu-

facturing firms’ labor elasticity. This puzzle refers to estimated labor elasticities of output that are less

than unity, which is economically implausible because it would indicate increasing returns to scale

to labor alone. The empirical application that we provide in this section fits in this strand of litera-

ture. We will estimate U.S. banks’ cost functions and the implied scale elasticities using the within

estimator and use our test to investigate the estimator’s consistency.

3.1. Banks’ scale elasticity

Banks’ scale effects are typically measured by the scale elasticity. This elasticity is the inverse of

the cost elasticity with respect to output (Hanoch, 1975). A scale elasticity larger than one indicates the

presence of economies of scale, meaning that banks’ unit costs of production decrease with output.

Many recent banking studies provide estimates of banks’ scale elasticities and tend to find scale

elasticity estimates that are significantly larger than one (e.g., Feng and Serletis, 2010; Wheelock and

Wilson, 2012; Hughes and Mester, 2013; Feng and Zhang, 2012, 2014; Beccalli et al., 2015; Spierdijk

and Zaouras, 2018; Wheelock and Wilson, 2018). Scale elasticities play an important role in banking

and are considered to have a high policy relevance. For example, Hughes and Mester (2013) plead

against a size limit on banks on the basis of their scale elasticity estimates, while Boyd and Heitz

(2016) use scale elasticity estimates to determine the implied net costs of increasing bank size for

too-big-to-fail banks.

3.1.1. Cost function

We follow the intermediation model of banking (Klein, 1971; Monti, 1972; Sealey and Lindley,

1977) and assume that banks employ a cost technology with three input factors (funding, personnel,

and physical capital) and total assets as the single output factor (qit). For bank i = 1, . . . , n in year

t = 1, . . . ,T , the corresponding input-factor prices are the price of funding (p1,it), the wage rate (p2,it),

and the price of physical capital (p3,it). Total input-factor costs (cit) are defined as the sum of expenses

on funding, personnel, and physical capital. The quantity of total assets is denoted by qit.

We model the dependence of total input-factor costs on input-factor prices and total assets using

a translog cost function, which was introduced by Christensen et al. (1971, 1973). This type of cost

function provides a log-quadratic approximation to a true cost function and has been widely used
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virtually all areas of economics ever since (e.g., Koetter et al., 2012; Byrne, 2015; Grieco et al., 2016;

Kee and Tang, 2016; Krasnokutskaya et al., 2018).

We initially consider a simplified version of the quadratic translog cost function for sake of expo-

sition, which results in a multivariate linear panel regression model. More specifically, we consider

the following three-input and one-output translog cost function for bank i in year t:

log (̃cit) = αi + γt + βq log (qit) +
1
2
βqq[log (qit)]2 +

3∑
k=2

βpk log (p̃k,nt) + εit, (12)

where αi denotes a bank-specific effect that is potentially correlated with the error term εit and γt a

year fixed effect. Throughout, variables with a tilde have been divided by the price of funding p1,it to

ensure that the cost function features linear homogeneity in input prices.

The implied scale elasticity for the simple translog cost function in (12) equals

e(qit) =

(
∂ log (cit)
∂log (qit)

)−1

=
1

βq + βqq log (qit)
. (13)

In the usual case that average costs are U-shaped (i.e., βqq > 0), the scale elasticity is a decreasing

function of (log) output. Throughout, we will evaluate the scale elasticity in the sample mean of log

output and denote the resulting scale elasticity estimate by ē.

3.1.2. Potential sources of endogeneity

There are several reasons to believe that the within estimator of (12) is inconsistent. Although

cost functions in terms of observed input prices and outputs are still widely used in the literature,

it has been known for long that this approach is problematic from the perspective of measurement

error (e.g., Coen and Hickman, 1970; McElroy, 1987; Griliches and Hausman, 1986; Mundlak, 1996;

Paris and Caputo, 2004; Dimitropoulos, 2015). In reality, the demand for input factors will be based

on expected output levels and input prices. Consequently, using observed values instead of expected

values in the cost function will result in measurement error. Furthermore, the effect of measurement

error in the output variable will be exacerbated in the presence of a quadratic term (Griliches and

Ringstad, 1970).

There are also two potential sources of omitted variables. The first source relates to functional

misspecification of the translog cost function. A full quadratic translog cost function contains more

terms than the ones included in (12), which we omitted for the sake of exposition. Even third- or

higher-order terms may be required to provide an accurate fit to the data. These and other forms of

functional misspecification of the regression function can be viewed as a form of omitted variables

bias (Plosser et al., 1982). The second source of omitted variables relates to bank-specific control

10



variables. For example, the simple translog cost function in (12) does not control for bank risk, asset

quality and other time-varying bank characteristics (Mester, 1996).

3.1.3. Estimation results

We use year-end 2011–2017 Call Report data, consisting of banks’ balance sheets and income

statements. We construct a balanced annual sample of n = 2, 505 U.S. banks covering T = 7 years,

with a total of 17,535 bank-year observations. Section E of the supplementary material explains the

selection of banks in more detail. Using the series available in the Call Report data, we calculate input

prices in a way that is common in banking. This is also explained in the appendix.

We include time fixed effects in all specifications and estimate the translog cost function using

the within and differences estimators. The coefficient estimates and the implied estimates of ē are

reported in Table 2.

Our Wald statistic has a value of 374.5. With a critical value of 31.4 (degrees of freedom 20), the

null hypothesis H0 : βq, j = βq, j+1; βqq, j = βqq, j+1; βp2, j = βp2, j+1; βp3, j = βp3, j+1 ( j = 1, . . . ,T − 2) is

rejected at each reasonable significance level.2

Figure 1 shows the difference curve for the scale elasticity ē. This elasticity is our main object of

interest and a function of the two coefficients related to output; see (13). The scale elasticity implied

by the within estimator equals 1.23 and is significantly larger than one, suggesting substantive scale

economies. The j-th differences estimates of ē decrease with j from 1.28 to 1.16, confirming the

economic relevance of the statistical rejection. Because our Wald test provides strong evidence against

the consistency of the within estimator, we cannot rely on the implied estimate of the scale elasticity.

3.1.4. Robustness checks

For the sake of exposition, we have used a simple translog cost function. We have also estimated a

wide range of additional specifications, including: (1) different samples, (2) more complete quadratic

translog costs functions, (3) the inclusion of time-varying bank-specific control variables such as the

equity ratio, (4) multiple outputs (such as loans, securities and off-balance sheet activities) instead of

total assets as the single aggregate output, (5) stratified estimation on the basis of total bank output

to account for differences in cost technology between banks of different sizes, and (6) an alternative

functional form known as the generalized Leontief cost function (Diewert, 1971; Hall, 1973; Diewert,

1976; Fuss, 1977). Leontief technologies have been widely used in banking research and other fields

(e.g., Thomsen, 2000; Gunning and Sickles, 2011; Martı́n-Oliver et al., 2013; Miller et al., 2013).

2Because the Wald test is numerically identical to a J-test, we may sometimes need a generalized inverse to calculate
the statistic (Newey, 1985). We note that the J-test statistic does not depend on the choice of generalized inverse due to
the linearity of our moment conditions (Newey, 1985).
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All these additional specifications are still linear panel regression models to which our test can be

applied. In all cases, we continue to find strong evidence against the within estimator’s consistency. A

selection of the additional estimation results can be found in Section F of the supplementary material.

3.1.5. Consistent estimation

We follow the empirical strategy outlined in Section 2.5 and consider potential instruments for the

covariates related to input prices and output. Finding such instruments turns out challenging. Although

a bank’s amount of fixed assets and its total number of full-time equivalent employees seem candidate

supply-side instruments for output, both of them are already used in the model. Labor is considered

to be an input factor, while the number of full-time equivalent employees is used to calculate the

wage rate. Furthermore, fixed assets are contained in total assets. Demand-side candidate instruments

for output, including measures of economic activity and the yield on e.g. Treasury bills, do not vary

across banks and turn out weak instruments. Similarly, it is challenging to find instruments for input

prices. As an alternative, we could resort to modeling banks’ cost-minimizing input decisions on the

basis of their expectations concerning input prices and output. This would yield a system of non-linear

equations with latent variables and measurement error (e.g., Paris and Caputo, 2004; Dimitropoulos,

2015).

For any alternative approach, the limitations of the translog cost function to proxy the shape of

an unknown cost function should be a point of attention (e.g., White, 1980; Gallant, 1981; Byron

and Bera, 1983; Bera, 1984; Aizcorbe, 1992; McAllister and McManus, 1993). Because of these

limitations, several studies have used non-parametric techniques to estimate the cost function and

the implied scale elasticity (e.g., Wheelock and Wilson, 2012, 2018). Because measurement error in

observed output quantities and input prices arises independently of the functional form of the cost

function, it remains important to deal with measurement error even if the cost function is estimated

non-parametrically. More specifically, Driscoll and Boisvert (1991) show that more complex func-

tional forms could actually do more harm than good in the presence of ignored measurement error.

They apply both second- and third-order translog functions to simulated data with and without mea-

surement error. They show that the third-order models do not outperform the quadratic models in the

presence of measurement error, while they do in the error-free case.

All in all, these considerations show that ‘fixing’ the cost model is complicated and suggest that

it is by no means guaranteed that a correctly specified model will eventually be found. Given the

substantial societal relevance of banks’ scale economies, it nevertheless remains important to continue

the quest for a correct specification.
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4. Conclusion

The within estimator is widely used to estimate the linear panel regression model. Its consistency

requires exogeneity of the regressors, which can be violated due to e.g. measurement error, omitted

variables and simultaneity.

We have exploited the differences between the short- and long-differences estimators in the linear

panel data model to construct a GMM-test for the consistency of the within estimator. This test is

locally more powerful than a more generic GMM-test for exogeneity of the regressors. Throughout,

we have used our GMM-test in the representation of a Wald test, which facilitates the economic

interpretation and visualization of the test outcomes using ‘difference curves’.

If our test fails to reject, there is no evidence against the within estimator’s consistency. Although

this is the most favorable outcome, researchers should be aware of the possibility that the test may

have low power in certain cases. It therefore remains important to look for other evidence against

the within estimator, such as coefficient signs and magnitudes that are unlikely from an economic

perspective. Researchers should also be aware of the possibility that low power could arise from

limited data variability due to taking differences, yielding coefficient estimates with relatively large

standard errors.

If our test rejects, we recommend several salvaging steps to achieve consistent estimation. As

usual, however, finding a well-specified model remains to a large extent a case-by-case puzzle with-

out guaranteed success, depending on e.g. prior information and the availability of valid and strong

instruments. What is universal, though, is our urgent advice to researchers working with panel data to

routinely run our test and to draw the associated difference curves, and to discard the within estimator

for further inference if it fails to pass the test.
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Table 2: Estimation results for the translog cost function

FE D1 D2 D3 D4 D5 D6

log(q) 0.69 0.26 0.56 0.64 0.73 0.83 0.89
(0.00) (0.12) (0.00) (0.00) (0.00) (0.00) (0.00)

100 × 1
2 [log(q)]2 0.95 4.03 1.85 1.22 0.64 -0.02 -0.21

(0.43) (0.00) (0.16) (0.36) (0.62) (0.99) (0.84)
log(p̃2) 0.76 0.69 0.75 0.77 0.78 0.78 0.78)

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
log(p̃3) 0.07 0.08 0.07 0.06 0.06 0.06 0.06

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
ē 1.23 1.28 1.26 1.26 1.23 1.20 1.16

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
adj. R2 0.85 0.83 0.84 0.85 0.85 0.86 0.86

Notes: This table shows the estimated coefficients of the translog cost function in (12) applied to the U.S. banking
data. The column captioned ‘FE’ reports the estimation results for the within estimator, while the columns captioned
‘D j’ contain the j-th differences estimates. The p-values associated with the estimated coefficients are in parentheses.
The time fixed effects are not reported, but have been taken out by using the dependent variable and the regressors
in deviations from their means per time period. The associated scale elasticity in (13), evaluated in the sample mean
of log (qit), is also shown. The reported p-value for the scale elasticity corresponds to a one-sided t-test of the null
hypothesis H0 : ē = 1 (no scale effects) against the alternative hypothesis H0 : ē > 1 (economies of scale). The
standard error of ē used in this test is based on the Delta-method. The reported adjusted R2s apply to the models in
terms of the transformed data.
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Figure 1: Difference curve for the scale elasticity ē
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Notes: This figure shows the difference curve for the scale elasticity in (13), evaluated in the sample mean of log (qit).
The intervals in red show the 95% asymptotic confidence interval for each point estimate. The dashed line indicates
the value of the within estimator.
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A. Proof of Theorem 1

A.1. Preliminaries

For the sake of convenience, we repeat some notation from the main text. We consider the linear

panel regression model with T observations over time,

yi = Xiβ + εi, (A.1)

for i = 1, . . . , n; yi (T × 1) is the dependent variable, Xi (T × k) is the matrix of observed covariates,

β (k × 1) a coefficient vector, and εi (T × 1) the error term containing an individual effect possibly

correlated with Xi. Let e` (k × 1) be the `-th unit vector and write

Xi = (xi1, . . . , xik) =
∑
`

xi`e′` such that xi = vec(Xi) =
∑
`

e` ⊗ xi`. (A.2)

The centering matrix of order T is denoted by A = IT − ιT ι
′
T/T , with ιT a T -vector of ones.

Furthermore, we write ∆ j = D jD′j, with D j the T × (T − j) matrix that takes differences over time span

j = 1, . . . ,T − 1.

The within estimator is the exactly identified (G)MM estimator of β corresponding to the k

‘within’ moment conditions

IE(X′iAεi) = 0. (A.3)

The T (T −1)k ‘generic’ moment conditions for strict exogeneity of Xi after removing the individ-

ual effect are given by

IE(xi ⊗ D′1εi) = 0. (A.4)

We propose a J-test for the (T − 1)k ‘differences’ moment conditions given by

IE(X′i∆ jεi) = 0 [ j = 1, . . . ,T − 1]. (A.5)

A.2. The proof

Let p = T (T − 1)k and q = (T − 1)k. We consider the J-test for the differences moment conditions

in (A.5). The GMM estimator of β in (A.1) that is used for this test is the two-step efficient GMM

estimator corresponding to the differences conditions in (A.5), denoted β̂1. The resulting J-test is
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referred to as the J1-test. We assume that the J1 test uses the (1 − α) quantile of the chi-square

distribution with q − k degrees of freedom, for 0 < α < 1.

We also consider the J-test for the p generic moment conditions in (A.4). The GMM estimator

used for this test is the two-step efficient GMM estimator of β in (A.1) corresponding to the generic

moment conditions in (A.4). We denote the resulting GMM estimator by β̂2. The resulting J-test is

referred to as the J2-test. The use of β̂1 instead of β̂2 for this J-test yields an asymptotically equivalent

J-test, with the same non-centrality parameter as the initial J2-test (Newey, 1983, Lemma 1.9). Be-

cause of this asymptotic equivalence, we will continue to refer to this test as the J2-test. We assume

that the J2 test uses the (1 − α) quantile of the chi-square distribution with p − k degrees of freedom.

As explained in the main text, the differences moment conditions in (A.5) are a linear combination

of the generic moment conditions in (A.4). The associated q × p transformation matrix of rank q

that transforms (A.4) into (A.5) is denoted by M1. We write (A.4) as IE[gi(β)] = 0 and (A.5) as

M1IE[gi(β)] = 0.

Let d , 0 be a local alternative such that the within conditions in (A.3) do not hold, implying that

(A.4) and (A.5) cannot hold either. This means that we must have M1IE[gi(β)] = d1/
√

n , 0. This

is Case 1 in Table A.1, where the threefold ‘no’ indicates that none of the three population moment

conditions hold under the local alternative. The non-centrality parameter of the J1-test for this local

alternative is denoted λ1(d1). The non-centrality parameter of the J2-test is denoted by λ2(d). Because

the J2-test has the maximum number of degrees of freedom, its non-centrality parameter has the

largest possible value λ∗(d) for this local alternative (Newey, 1985, Prop. 6). Hence λ1(d1) ≤ λ2(d) =

λ∗(d).

Now take a (p − q) × p matrix M2 of rank p − q such that L = [M′
1 M′

2]′ has rank p. The

J-test for the moment conditions LIE[gi(β)] = 0 has the maximum number of degrees of freedom

and must therefore also have the maximum non-centrality parameter λ∗(d). We conclude that λ∗(d)

cannot depend on d2 = M2IE[gi(β)]; otherwise there would exist a J-test with the maximum number

of degrees of freedom but a higher or lower non-centrality parameter than λ∗(d). We must therefore

have λ∗(d) = λ∗(d1).

Let d̃ be a local alternative with M1IE[gi(β)] = d1/
√

n , 0, but M2IE[gi(β)] = 0. Because λ∗(d1)

only depends on d1, we must have λ2(d̃) = λ2(d) = λ∗(d1). Furthermore, because M2IE[gi(β)] = 0, we

must also have λ2(d1) = λ1(d1). We thus conclude that λ∗(d1) = λ1(d1) = λ2(d1), showing that the J1-

and J2-tests both have the same maximum value of the non-centrality parameter for local alternatives

such that (A.3) does not hold.

Because the J1-test has a lower number of degrees of freedom, its local power is higher than that of

the J2-test for such alternatives (Newey, 1985, p. 238). Hence, the J1-test for the differences moment

2



conditions in (A.5) is the more powerful J-test to detect local alternatives for which (A.3) does not

hold. Only if the non-centrality parameter turns out 0 for such alternatives – which may happen as

shown by Newey (1985, Prop. 1) and Hall (2005, Th. 5.4) – the local power of both tests is the same

and equal to α.

For local alternatives such that (A.3) does hold, there are three possible cases; see Cases 2–3–4 in

Table A.1.1 For each case, the asymptotic distributions of the two J-tests are given in Table A.1. In

case of a central chi-square distribution, the J-test’s local power is α (i.e., nominal). If the asymptotic

distribution is non-central chi-square, the power exceeds α (above nominal). From Table A.1 it be-

comes clear that each J-test’s local power is nominal or above nominal whenever (A.3) holds, making

both tests conservative. 2

Table A.1: Asymptotic distribution of J-test statistics under different local alternatives

case within differences generic J1 J2

1 no no no χ2
c1,q−k χ2

c1,p−k

2 yes yes yes χ2
q−k χ2

p−k

3 yes yes no χ2
c3,q−k χ2

p−k

4 yes no no χ2
c4,q−k χ2

c4,p−k

Notes: This table compares two J-tests: for the generic conditions (J1) and the differences conditions (J2). The yes/no
in each case refers to the moment conditions that apply under the local alternative. The within conditions are given in
(A.3), the differences conditions in (A.5) and the generic conditions in (A.4). The central chi-square distribution with
degrees of freedom d f is denoted by χ2

d f . The non-central chi-square distribution with non-centrality parameter c and
degrees of freedom d f is denoted by χ2

c,d f . The non-centrality parameter is numbered for each case to emphasize its
dependence on the local alternative. The expression for the non-centrality parameter is given in (C.30).

B. Motivating examples: calculations

Properties of the AR(1) model

This appendix makes use of a few elementary properties of stationary AR(1) processes, which we

summarize here for completeness. Assume that xit and zit are generated by stationary AR(1) processes,

such that

xit = ρxi,t−1 + θit [0 < ρ < 1] (B.1)

zit = δzi,t−1 + ηit [0 < δ < 1]. (B.2)

1Because (A.4) =⇒ (A.5) =⇒ (A.3) not all combinations of moment conditions are possible, which explains why
Table A.1 considers four cases in total.
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We assume that IE(θit) = IE(ηit) = 0, IE(θ2
it) = σ2

θ and IE(η2
it) = σ2

η for all i and t. We also assume that

Cov (θmt, ηis) = 0 for m , n, Cov (θis, ηit) = 0 for s , t, and Cov (θit, ηit) = σθη. Lastly, we assume that

Cov (θmt, εis) = Cov (ηmt, εis) = 0 for all m, i, s, t.

For k ≥ 1, we can write

xit = ρkxi,t−k +

k−1∑
`=0

ρ`θi,t−`, zit = δkzi,t−k +

k−1∑
`=0

δ`ηi,t−`. (B.3)

By letting k → ∞, we find

xit =

∞∑
`=0

ρ`θi,t−`, zit =

∞∑
`=0

δ`ηi,t−`. (B.4)

Using these alternative formulations for xit and zit, we find for j ≥ 0,

Var (xit) = σ2
θ/(1 − ρ

2) ≡ σ2
x, Var (zit) = σ2

η/(1 − δ
2) ≡ σ2

z , (B.5)

Cov (xit, xi,t− j) = ρ jσ2
x, Cov (zit, zi,t− j) = δ jσ2

z . (B.6)

We also have

Cov (xit, zi,t− j) = δ− j
∞∑
`= j

(δρ)`Cov (θi,t−`, ηi,t−`) = δ− jσθη

∞∑
`= j

(δρ)` = ρ jσθη/(1 − δρ). (B.7)

Similarly, we find

Cov (xi,t− j, zit) = δ jσθη/(1 − δρ). (B.8)

B.1. (Non-)Classical measurement error

We start with the errors-in-variables model and allow for non-classical measurement error, with

classical measurement as a special case. We will derive the inconsistency in both cases.

Model. Consider the linear panel regression model with measurement error, given by

yit = αi + βξit + εit (B.9)

xit = ξit + vit, (B.10)

where n = 1, . . . , n and t = 1, . . . ,T . We assume that (εit) is i.i.d. with IE(εit) = 0 and IE(ε2
it) = σ2

ε for

all i and t. Regarding (ξit) and (vit), we assume that they are generated by stationary AR(1) processes,
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such that

ξit = ρξi,t−1 + θit [0 < ρ < 1] (B.11)

vit = δvi,t−1 + ηit [0 < δ < 1]. (B.12)

We assume that IE(θit) = IE(ηit) = 0, IE(θ2
it) = σ2

θ and IE(η2
it) = σ2

η for all i and t. Furthermore,

we assume that Cov (θmt, ηis) = 0 for m , n, Cov (θis, ηit) = 0 for s , t, Cov (θit, ηit) = σθη and

Cov (θmt, εis) = 0 for all m, i, s, t. Lastly, we assume that Cov (εmt, ηis) = 0 for m , i, Cov (εis, ηit) = 0

for all s, t. If σθη , 0, we have a form of non-classical measurement error.

Inconsistency. We first show that the within estimator will usually be inconsistent. Let xi = (xi1, . . . , xiT )′

and yi = (yi1, . . . , yiT )′. With A the T × T centering matrix we obtain

plim
n→∞

β̂w = plim
n→∞

∑
i x′iAyi∑
i x′iAxi

=
tr[A(Σξ + Σξv)]
tr[A(Σξ + Σv)]

β, (B.13)

where Σv contains the covariances Cov (vns, vnt) and Σξv the covariances Cov (ξns, vnt). The probability

limit will typically be unequal to β if at least Σv , 0.

We now turn to the estimators β̂ j that are obtained after taking differences over time span j. It

holds that

plim
n→∞

β̂ j =
Cov (yit − yi,t− j, xit − xi,t− j)

Var (xit − xi,t− j)

=
Cov (β(xit − xi,t− j) − β(vit − vi,t− j) + εit − εi,t− j, xit − xi,t− j)

Var (xit − xi,t− j)

= β +
Cov (εit − εi,t− j, xit − xi,t− j) − βCov (vit − vi,t− j, xit − xi,t− j)

Var (xit − xi,t− j)
. (B.14)

Under the given assumptions, the numerator in (B.14) reduces to

Cov (εit − εi,t− j, vit − vi,t− j) − β
[
Var (vit − vi,t− j) + Cov (vit − vi,t− j, ξit − ξi,t− j)

]
=

−2β[σ2
η(1 − δ

j)/(1 − δ2) + σθη(1 − (δ j + ρ j)/2)/(1 − δρ)]. (B.15)

Furthermore, the denominator can be written as

Var (ξit − ξi,t− j + vit − vi,t− j) =

Var (ξit − ξi,t− j) + Var (vit − vi,t− j) + 2Cov (ξit − ξi,t− j, vit − vi,t− j) =

2[σ2
θ(1 − ρ

j)/(1 − ρ2) + σ2
η(1 − δ

j)/(1 − δ2) + 2σθη(1 − (δ j + ρ j)/2)/(1 − δρ)]. (B.16)
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The inconsistency thus boils down to

plim
n→∞

β̂ j − β =
−β[σ2

η(1 − δ
j)/(1 − δ2) + σθη(1 − (δ j + ρ j)/2)/(1 − δρ)]

σ2
θ(1 − ρ j)/(1 − ρ2) + σ2

η(1 − δ j)/(1 − δ2) + 2σθη(1 − (δ j + ρ j)/2)/(1 − δρ)

=
−β[σ2

v(1 − δ j) + σξv(1 − (δ j + ρ j)/2)]
σ2
ξ(1 − ρ j) + σ2

v(1 − δ j) + 2σξv(1 − (δ j + ρ j)/2)
. (B.17)

Because

(1 − δ j)(1 − ρ j+1) > (1 − δ j+1)(1 − ρ j) (B.18)

if and only if δ < ρ, it is readily seen that the inconsistency’s magnitude decreases with j if and only

if δ < ρ. For δ > ρ, the magnitude of the inconsistency is increasing and for δ = ρ the inconsistency

does not depend on j. For both classical and non-classical measurement error, the inconsistency does

not vanish for larger values of j.

B.2. Omitted variables

The second source of endogeneity that we consider is an omitted variable.

Model. Consider the linear panel regression model with two regressors, given by

yit = αi + βxit + γzit + εit, (B.19)

where i = 1, . . . , n and t = 1, . . . ,T . We assume that (εit) is i.i.d. with IE(εit) = 0 and IE(ε2
it) = σ2

ε for

all i and t. Regarding the explanatory variables, we assume that xit and zit are generated by stationary

AR(1) processes, such that

xit = ρxi,t−1 + θit [0 < ρ < 1] (B.20)

zit = δzi,t−1 + ηit [0 < δ < 1]. (B.21)

We assume that IE(θit) = IE(ηit) = 0, IE(θ2
it) = σ2

θ and IE(η2
it) = σ2

η for all i and t. Furthermore, we

assume that Cov (θmt, ηis) = 0 for m , n, Cov (θis, ηit) = 0 for s , t, and Cov (θit, ηit) = σθη. Lastly,

we assume that Cov (θmt, εis) = Cov (ηmt, εis) = 0 for all m, n, s, t.

We estimate the omitted-variable regression

yit = αi + βxit + εit, (B.22)

and are interested in the probability limit of β̂ j, the estimator of β based on the model after taking
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differences over time span j.

Inconsistency. We first show that the within estimator for βwill usually be inconsistent. Using similar

matrix notation as before, we obtain

plim
n→∞

β̂w = plim
n→∞

∑
i x′iAyi∑
i x′iAxi

= β +
tr(AΣzx)γ
tr(AΣx)

, (B.23)

which will be unequal to β for γ , 0 and Σzx , 0.

We now turn to the estimators β̂ j that are obtained after taking differences over time span j. It

holds that

plim
n→∞

β̂ j =
Cov (yit − yi,t− j, xit − xi,t− j)

Var (xit − xi,t− j)
. (B.24)

Under the given assumptions, the numerator reduces to

Cov (yit − yi,t− j, xit − xi,t− j) = βVar (xit − xi,t− j) + γCov (xit − xi,t− j, zit − zi,t− j) =

βVar (xit − xi,t− j) + γ[2Cov (xit, zit) − Cov (xi,t− j, zit) − Cov (xit, zi,t− j)] =

2[βσ2
θ(1 − ρ

j)/(1 − ρ2) + γσθη(1 − (δ j + ρ j)/2)/(1 − δρ)]. (B.25)

For the denominator, we find

Var (xit − xi,t− j) = 2[Var (xit) − Cov (xit, xi,t− j)] = 2σ2
x(1 − ρ

j) = 2σ2
θ(1 − ρ

j)/(1 − ρ2). (B.26)

The probability limit then becomes

plim
n→∞

β̂ j =
βσ2

θ(1 − ρ
j)/(1 − ρ2) + γσθη(1 − (δ j + ρ j)/2)/(1 − δρ)

σ2
θ(1 − ρ j)/(1 − ρ2)

= β +
γσθη[1 − (δ j + ρ j)/2]/(1 − δρ)

σ2
θ(1 − ρ j)/(1 − ρ2)

. (B.27)

The inconsistency thus boils down to

plim
n→∞

β̂ j − β =
γσθη[1 − (δ j + ρ j)/2]/(1 − δρ)

σ2
θ(1 − ρ j)/(1 − ρ2)

=
γσxz[1 − (δ j + ρ j)/2]

σ2
x(1 − ρ j)

. (B.28)

As a sanity check on the above expression, we notice that the inconsistency is zero for σθη = 0.

The inconsistency should be zero in this particular case, because σθη = 0 implies that xit and zit are

uncorrelated.
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Because

(1 − ρ j+1)(1 − (δ j + ρ j)/2) > (1 − ρ j)(1 − (δ j+1 + ρ j+1)/2) (B.29)

if and only if δ < ρ, is readily seen that plimn→∞ |β̂ j − β| > plimn→∞ |β̂ j+1 − β| if and only if δ < ρ. The

inconsistency’s magnitude is increasing for δ > ρ and for δ = ρ the inconsistency does not depend on

j. We note that the inconsistency does not vanish for larger values of j.

Extension to time-varying covariates. The general case of omitted variables encompasses the case

of an ignored time-varying coefficient. Models with time-varying coefficients have been considered

in production and cost analysis to deal with technical change that affects e.g. marginal costs and

productivity growth (e.g., Koetter et al., 2012). To see the relation with omitted variables, consider

the linear panel regression model with a single regressor and a coefficient that is a deterministic

function of time, given by

yit = αi + β(t)xit + εit, (B.30)

for i = 1, . . . , n and t = 1, . . . ,T . We consider the case that β(t) = b0 + b1t + b2t2 for scalars b0, b1, b2.

This functional form of the time-varying coefficient has also been used in the aforementioned produc-

tion and cost literature.

We assume that (εit) is i.i.d. with IE(εit) = 0 and IE(ε2
it) = σ2

ε for all i and t. Regarding the

explanatory variable, we assume that xit is generated by a stationary AR(1) process, such that

xit = ρxi,t−1 + θit [0 < ρ < 1]. (B.31)

We assume that IE(θit) = 0 and IE(θ2
it) = σ2

θ for all i and t. We also assume that Cov (θit, ε js) = 0 for all

i, j, s, t.

We create endogeneity by ignoring the possibility of a time-varying coefficient and estimate the

misspecified regression with a time-constant β; i.e. we estimate

yit = αi + βxit + εit. (B.32)

We now see that the linear panel regression model in (B.32) contains two omitted variables,

namely txit and t2xit. Because this case of omitted variables is analytically hard to deal with, our

calculations are less detailed as before.

Let τi = (xi1, 2xi2, . . . ,T xiT )′ and τ̃i = (xi1, 4xi2, . . . ,T 2xiT )′. Using similar matrix notation as

8



before, we obtain for the within estimator

plim
n→∞

β̂w = plim
n→∞

∑
i x′iAyi∑
i x′iAxi

= b0 +
tr(AΣxτ)b1 + tr(AΣxτ̃)b2

tr(AΣx)
, (B.33)

which will typically be inconsistent for b0 for b1 , 0 or b2 , 0. Similarly, we find

plim
n→∞

β̂ j = plim
n→∞

∑
i x′i∆ jyi∑
i x′i∆ jxi

= b0 +
tr(∆ jΣxτ)b1 + tr(∆ jΣxτ̃)b2

tr(∆ jΣx)
. (B.34)

Given (B.34), the inconsistency of plimn→∞ β̂ j relative to b0 is genereally expected to depend on j.

B.3. Simultaneity

The third source of endogeneity that we consider is simultaneity.

Model. We consider the simultaneous equations model given by the structural equations

yit = βi + βxit + εit (B.35)

xit = αi + αyit + uit. (B.36)

We assume that (εit) is i.i.d. with IE(εit) = 0 and Var (εit) = σ2
ε, independent of (uit). Here (uit) is a

stationary AR(1) process defined by

uit = ρui,t−1 + θit [0 < ρ < 1], (B.37)

with IE(θit) = 0, IE(θ2
it) = σ2

θ and Cov (θmt, εis) = 0 for all m, i, t, s.

Solving the two equations yields the reduced forms

yit =
βi + βαi

1 − αβ
+
βuit + εit

1 − αβ
(B.38)

xit =
αi + αβi

1 − αβ
+

uit + αεit

1 − αβ
. (B.39)

We estimate (B.35) in j-th differences, thereby ignoring (B.36). We are interested in the probability

limit of β̂ j, the estimator of β based on the model in j-th differences. We want to know how the

inconsistency depends on j.

Inconsistency. We first show that the within estimator for βwill usually be inconsistent. Using similar

matrix notation as before, we obtain

plim
n→∞

β̂w = plim
n→∞

∑
i x′iAyi∑
i x′iAxi

=
tr(AΣu)β + tr(AΣε)α
tr(AΣu) + tr(AΣε)α2 , (B.40)
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which will be unequal to β if α , 0 and α , 1/β.

We now turn to the estimators β̂ j that are obtained after taking differences over time span j. The

probability limit of the resulting estimator for β equals

plim
n→∞

β̂ j =
Cov (yit − yi,t− j, xit − xi,t− j)

Var (xit − xi,t− j)

=
[αVar (εit − εi,t− j) + βVar (uit − ui,t− j]/(1 − αβ)2

Var (xit − xi,t− j)

=
αVar (εit − εi,t− j) + βVar (uit − ui,t− j)
α2Var (εit − εi,t− j) + Var (uit − ui,t− j)

. (B.41)

Under the given assumption, this reduces to

plim
n→∞

β̂ j =
2[ασ2

ε + βσ2
θ(1 − ρ

j)/(1 − ρ2)]
2[α2σ2

ε + σ2
θ(1 − ρ j)/(1 − ρ2)]

=
ασ2

ε + βσ2
θ(1 − ρ

j)/(1 − ρ2)
α2σ2

ε + σ2
θ(1 − ρ j)/(1 − ρ2)

=
ασ2

ε + βσ2
u(1 − ρ j)

α2σ2
ε + σ2

u(1 − ρ j)
.

This gives the inconsistency

plim
n→∞

β̂ j − β =
ασ2

ε(1 − αβ)
α2σ2

ε + σ2
u(1 − ρ j)

. (B.42)

The inconsistency is positive for α(1 − αβ) > 0 and negative for α(1 − αβ) < 0. Its magnitude

decreases with j for 0 < ρ < 1. We note that the inconsistency does not vanish for larger values of j.

C. Local power: calculations

The notation in this section deviates slightly from the main text.

C.1. Wald test

We assume that we estimate the linear panel regression model

yit = αi + βxit + εit, (C.1)

for i = 1, . . . , n and t = 1, . . . ,T . Here yit is the dependent variable, αi is an individual effect, xit is an

observed covariate, β an unknown coefficient and εit an error term. We regress yit on xit after taking

differences over time span j:

yit − yi,t− j = β(xit − xi,t− j) + εit − εi,t− j [t = j + 1, . . . ,T ]. (C.2)

The corresponding OLS estimator of β is denoted by β̂ j for j = 1, . . . ,T − 1. We focus on fixed-T and

large-n asymptotics and define β j ≡ plimn→∞ β̂ j.
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Our Wald test is based on (β̂1, . . . , β̂T−1)′. We write β = (β1, . . . , βT−1)′ and β̂ = (β̂1, . . . , β̂T−1)′. Let

yi1 = (yi2 − yi1, yi3 − yi2, . . . . . . , yiT − yi,T−1)′

yi2 = (yi3 − yi1, yi4 − yi2, . . . , yiT − yi,T−2)′

...

yi,T−1 = yiT − yi1,

and let xi1, . . . , xi,T−1 be defined analogously. Next, let

yi =



yi1

yi2
...

yi,T−1


, Xi =



xi1 0 . . . 0

0 xi2 . . . 0
...

...
. . .

...

0 0 . . . xi,T−1


.

Then

β̂ =

1
n

n∑
i=1

X′iXi

−1
1
n

n∑
i=1

X′iyi. (C.3)

A cluster-robust consistent estimator of the asymptotic covariance matrix of
√

n(β̂ − β) is given by

Σ̂ =

1
n

n∑
i=1

X′iXi

−1 1
n

n∑
i=1

X′iuiu′iXi

 1
n

n∑
i=1

X′iXi

−1

, (C.4)

where ui = yi − Xiβ̂.

To test the null hypothesis H0 : β j = β j+1 for all j = 1, . . . ,T − 2 against the alternative hypothesis

H1 : β j , β j+1 for at least one j = 1, . . . ,T − 2, we write the Wald test statistic as

qW = nβ̂′B′1(B1Σ̂B′1)−1B1β̂, (C.5)

where B1 is the (T − 2) × (T − 1) matrix

B1 =



−1 1 0 . . . 0

0 −1 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . −1 1


. (C.6)

Under the null hypothesis, qW is asymptotically χ2
T−2 distributed. The Wald test is consistent
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against any fixed alternative H1 : B1β , 0. Under a local alternative H1 : B1β = d/
√

n, the Wald

test statistic is non-central chi-square distributed with T − 2 degrees of freedom and non-centrality

parameter c = d′(B1G−1HG−1B′1)−1d, with G−1HG−1 = plimn→∞
H1

Σ̂; see Cameron and Trivedi (2005,

Ch. 7).

C.2. Local power of Wald test: T = 3

Preliminaries for the case T = 3. We start with the case of T = 3 and will generalize to higher values

of T later. We consider the errors-in-variables model with classical measurement error and assume

that ηit is normally distributed with mean 0 and variance σ2
η = σ̃2

η/
√

n. Under this local alternative of

the Pitman drift form, it holds that

plim
n→∞

H1

√
n(β̂2 − β̂1) = dCME, plim

n→∞
H1

β̂1 = plim
n→∞

H1

β̂2 = β. (C.7)

Using (B.17) with σθη = 0, we find

dCME = plim
n→∞

H1

√
n(β̂2 − β̂1) =

βσ̃2
η(ρ − δ)

σ2
θ(1 + δ)

. (C.8)

The non-centrality parameter of the χ2
c,1 distribution under the local alternative is given by

cCME = d2
CME(B1G−1HG−1B′1)−1, (C.9)

with B1 = [ −1 1 ]. The term G−1HG−1 enters the non-centrality parameter as G−1HG−1 = plimn→∞
H1

Σ̂.

The matrices G and H will be specified below.

Asymptotic covariance matrix. The asymptotic covariance matrix of
√

n(β̂ − β) is estimated as

Σ̂ =

1
n

n∑
i=1

X′iXi

−1 1
n

n∑
i=1

X′iuiu′iXi

 1
n

n∑
i=1

X′iXi

−1

(C.10)

where ui = yi − Xiβ̂.

To calculate the non-centrality parameter of the χ2
c,1 distribution, we need plimn→∞

H1
Σ̂. This asymp-

totic covariance matrix is given by G−1HG−1. Here G is the matrix

G = plim
n→∞

H1

1
n

n∑
i=1

X′iXi

 =

 g11 0

0 g22

 ,

12



with

g11 = IE
(
(ξi2 − ξi1)2 + (ξi3 − ξi2)2

)
=

4σ2
θ

1 + ρ
(C.11)

and

g22 = IE
(
(ξi3 − ξi1)2

)
= 2σ2

θ . (C.12)

The matrix H is given by

H = plim
n→∞

H1

1
n

n∑
i=1

X′iuiu′iXi

 =

 h11 h12

h12 h22

 ,
where ui = yi − Xiβ̂. Omitting the terms from H that have a zero probability limit under the local

alternative, we find

h11 = IE
(
(ξi2 − ξi1)2(εi2 − εi1)2 + (ξi3 − ξi2)2(εi3 − εi2)2 + 2(ξi2 − ξi1)(ξi3 − ξi2)(εi2 − εi1)(εi3 − εi2)

)
= 2

(
4σ2

εσ
2
θ

1 + ρ
+

(1 − ρ)σ2
θσ

2
ε

1 + ρ

)
. (C.13)

h12 = IE
(
(ξi2 − ξi1)(ξi3 − ξi1)(εi2 − εi1)(εi3 − εi1) + (ξi3 − ξi2)(ξi3 − ξi1)(εi3 − εi2)(εi3 − εi1)

)
= 2σ2

εσ
2
θ . (C.14)

h22 = IE
(
(ξi3 − ξi1)2(εi3 − εi1)2

)
= 4σ2

θσ
2
ε. (C.15)

Key steps. Throughout, our derivations of G and H make use of three key results:

(1) ηit, θit and εit are mutually independent and each have zero means.

(2) Under H1, σ2
η = σ̃2

η/
√

n and

plim
n→∞

H1

β̂1 = plim
n→∞

H1

β̂2 = β. (C.16)

(3) Under normality of the mutually independent random variables x and y (Wansbeek and Meijer,

2000, p. 366), it holds that IE(x2y2) = IE(x2)IE(y2) + 2[IE(xy)]2. We use this result to calculate

13



the expectations

IE
(
(vit − vi,t−1)2(vit − vi,t−2)2

)
= IE

(
(vi,t−1 − vi,t−2)2(vit − vi,t−2)2

)
, (C.17)

IE
(
(vit − vi,t−1)2(vi,t−1 − vi,t−2)2

)
, (C.18)

IE
(
(vit − vi,t−1)4

)
, IE

(
(vit − vi,t−2)4

)
. (C.19)

Together, these results ensure that various terms vanish in the probability limit under the local alter-

native. For example, consider the term

1
n

n∑
i=1

{
(vit − vi,t−1)2(vit − vi,t−2)2

}
, (C.20)

that appears in the calculation of H. After application of the third result, we see that this term vanishes

in the probability limit under the local alternative, since

1
n
· n ·

σ̃4
η

n
2(3 + δ)
(1 + δ)

→ 0. (C.21)

Non-centrality parameter. The non-centrality parameter of the χ2
c,1 distribution under the local alter-

native is given by

cCME = d2
CME(B1G−1HG−1B′1)−1, (C.22)

with B1 = [ −1 1 ]. This yields

cCME =
8β2σ̃4

η(δ − ρ)2

σ2
θσ

2
ε(1 + δ)2(9 − ρ2)

. (C.23)

Omitted variables and simultaneity. Following the same approach, we derive the non-centrality pa-

rameter in case of omitted variables and simultaneity. In both cases, we assume that ηit is normally

distributed. For the model with an omitted variable (OV), the local alternative with Pitman drift is

γ = γ̃/
√

n and for simultaneity (S) it is α = α̃/
√

n. This results in

dOV =
γ̃σθη(1 − δ)(δ − ρ)

2σ2
θ(1 − δρ)

, (C.24)

dS = −
α̃ρσ2

ε

σ2
θ

, (C.25)
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and

cOV =
2γ̃2σ2

θησ
2
θ(1 − δ)

2(δ − ρ)2

σ2
εσ

4
η(1 − δρ)2(9 − ρ2)

, (C.26)

cS =
8α̃2ρ2σ2

ε

σ2
θ(9 − ρ2)

. (C.27)

Because the case of non-classical measurement error involves elaborate expressions, we focus on

the case of σεη = 0 for simplicity. As before, we assume that ηit is normally distributed. The local

alternative is σ2
η = σ̃2

η/
√

n;σθη = σ̃θη/
√

n. We then find

dNCME =
β(ρ − δ)[2σ̃2

η(1 − δρ) + σ̃θη(1 − δ2)]

2σ2
θ(1 + δ)(1 − δρ)

. (C.28)

This yields

cNCME =
2β2(δ − ρ)2[σ̃θη(1 − δ2) + 2σ̃2

η(1 − δρ)]2

σ2
εσ

2
θ(1 + δ2)(1 − δρ)2(9 − ρ2)

. (C.29)

For a general discussion of the local power of the Wald test, we refer to Cameron and Trivedi

(2005, Ch. 7). We also note that normality is a sufficient but not a necessary condition. Under weaker

conditions, the same results can be obtained.

C.3. Local power of Wald test: T > 3

Classical measurement error. We consider T > 3 for the case of classical measurement error. Let

σ2
η = σ̃2

η/
√

n under the local alternative, implying that also σ2
v = σ̃2

v/
√

n. We maintain the assumption

that ηit is normally distributed. The non-centrality parameter of the χ2
c,T−2 distribution under the local

alternative is

cCME = d′CME(B1G−1HG−1B′1)−1dCME, (C.30)

with B1 as given in (C.6). Furthermore, dCME is a vector of length T − 2, with the k-th element equal to

−β
σ̃2

v

σ2
ξ

(
1 − δk+1

1 − ρk+1 −
1 − δk

1 − ρk

)
(C.31)

G is the (T − 1) × (T − 1) diagonal matrix with the k-th diagonal element equal to

gk = −2σ2
ξ(T − k)(1 − ρk). (C.32)
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Lastly, H is the (T − 1) × (T − 1) symmetric matrix with diagonal elements

hkk = σ2
ξσ

2
ε

[
4(T − k)(1 − ρk) + 2(T − k − 1)(ρ2k − 2ρk + 1)

]
, (C.33)

and off-diagonal elements (for ` > k)

hk` =

T∑
s=k+1

T∑
t=`+1

{
(r|s−t| − r|s−t+`| − r|s−t−k| + r|s−t+`−k|)[rε|s−t| − rε|s−t+`| − rε|s−t−k| + rε|s−t+`−k|]

}
(C.34)

= 2σ2
ε(T − `)[r0 − r` − rk + r`−k] (C.35)

− σ2
ε(rk − rk+` − r0 + r`)[(T − 2` + 1)1{`≤T/2} + (T − k − `)1{`+k+1≤T }]. (C.36)

Here r|k| = ρkσ2
ξ = ρkσ2

θ/(1 − ρ
2) and rε

|k| = σ2
ε1{k=0} .

Notice that we can write

dCME =
βσ̃2

η

σ2
θ

δ∗CME(δ, ρ,T ), G = σ2
θG
∗(ρ,T ), H = σ2

θσ
2
εH
∗(ρ,T ), (C.37)

where δ∗CME(δ, ρ,T ), G∗(ρ,T ) and H∗(ρ,T ) are (matrix) functions of δ and/or ρ and T . Consequently,

we can also write

cCME = d′CME(B1G−1HG−1B′1)−1dCME =
β2σ̃4

η

σ2
θσ

2
ε

c∗CME(δ, ρ,T ), (C.38)

where c∗CME(δ, ρ,T ) is a function of δ, ρ and T only. Hence, dCME and c∗CME are ‘separable’ in a compo-

nent that depends on δ, ρ and T only and a component that depends only on the remaining model

parameters.

Omitted variables, simultaneity and non-classical measurement error. Proceeding in a similar fashion

(maintaining the normality assumptions made in Appendix C.2), we find similar separability in case

of omitted variables, simultaneity and non-classical measurement error (with σεη = 0 but σθη , 0):

cOV =
γ̃2σ2

θησ
2
θ

σ4
ησ

2
ε

c∗OV(δ, ρ,T ), (C.39)

cS =
α̃2σ2

ε

σ2
θ

c∗S(ρ,T ), (C.40)

cNCME =
β2

σ2
θσ

2
ε

c∗NCME(σ̃η, σ̃θη, δ, ρ, T ). (C.41)

We note that the local power decreases with the number of degrees of freedom (which is a function

of T ) and increases with c (Newey, 1985). Hence, even if we were able to show that c increases with

T , the effect of T on the local power would remain ambiguous.
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D. Simulation study

We run a simulation study to explore the finite-sample properties of the consistent Wald test in

terms of power and size under a fixed alternative. We simulate the models for classical measurement

error, omitted variables and simultaneity as considered in Table 1 in the main text, for both T = 5 and

T = 10. For classical measurement error and omitted variables, we simulate two scenarios in terms

of the persistence parameters: δ = 0.3 and ρ = 0.9 and δ = 0.3 and ρ = 0.6. For simultaneity, we

consider the cases ρ = 0.6 and ρ = 0.9.

Tables D.1 and D.2 report, respectively, the empirical power and size of the Wald test in (9). The

notes of Table D.1 report the full set of parameters for each model. This part of the table also reports

the probability limits of the underlying model’s R2 and the reliability and noise-to-signal ratios for

the models with classical measurement error. The simulation results show that the Wald test’s power

can turn out relatively low for smaller values of n. This is especially the case if the distance between

ρ and δ is relatively small. Table D.2 also points out that the size of the Wald test may be conservative

for smaller values of n and T . In the other cases, the rejection rates are close to nominal.

The right-hand-side panels of Tables D.1 and D.2 report the empirical power and size of the J-

test based on the generic moment conditions in (A.4). We have already proven that this test’s power

is lower than the above Wald test’s power for local alternatives under which the within estimator’s

moment conditions do not hold. The simulation allows us to consider three fixed alternatives under

which the within estimator is inconsistent. Both tests are consistent against these fixed alternatives.

We therefore compare the two tests’ finite-sample performance in terms of empirical power and size.

We observe that the Wald test always outperforms the generic J-test for n = 100. For n = 500

and n = 1, 000 the differences are smaller but the Wald test still outperforms the J-test in case there

is a power difference between the two tests, with exception of one case (T = 10, ρ = 0.6, OV). In

terms of size, the generic J-test tends to produce empirical rejection rates below the nominal level,

especially for smaller values of n and T . This confirms the conclusion drawn in the main text about

the conservativeness of the generic J-test.
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Table D.1: Simulation results: empirical power

n = 100 n = 500 n = 1, 000 n = 100 n = 500 n = 1, 000
conditions (A.5) (‘differences’) conditions (A.4) (‘generic’)

ρ = 0.9 T = 5 T = 5
ME 1.00 1.00 1.00 0.00 1.00 1.00
OV 1.00 1.00 1.00 0.00 1.00 1.00
S 1.00 1.00 1.00 0.00 1.00 1.00
ρ = 0.6
ME 0.61 1.00 1.00 0.00 0.68 0.99
OV 0.73 1.00 1.00 0.00 1.00 1.00
S 0.96 1.00 1.00 0.00 1.00 1.00
ρ = 0.9 T = 10 T = 10
ME 0.60 1.00 1.00 0.13 0.97 1.00
OV 0.87 1.00 1.00 0.82 1.00 1.00
S 0.77 1.00 1.00 0.21 1.00 1.00
ρ = 0.6
ME 0.22 0.70 0.96 0.04 0.36 0.72
OV 0.29 0.85 0.99 0.19 0.99 1.00
S 0.53 1.00 1.00 0.11 0.94 1.00

Notes: We consider the Wald form of the J-test for the moment conditions in (A.5), as well as the J-test for the generic
moment conditions for strict exogeneity in (A.4). In all cases, the simulation results are based on 1,000 simulation
runs. The empirical power is obtained as the fraction of the number of simulation runs in which the test rejects the
null hypothesis. The simulated models correspond to three of the illustrative cases listed in Table 1 of the main text.
Parameters for classical measurement error (‘ME’): β = 1, σ2

ε = 1, σ2
θ = 1.44, σ2

η = 0.64, δ = 0.3. This yields
reliabilities of 0.92 (ρ = 0.9) and 0.76 (ρ = 0.6), noise-to-signal ratios of 0.09 (ρ = 0.9) and 0.312 (ρ = 0.6) and
probability limits for the model’s R2 of 0.88 (ρ = 0.9) and 0.69 (ρ = 0.6). Parameters for omitted variables (‘OV’):
β = 1, γ = 1, σ2

ε = 0.25, σ2
θ = 0.36, σ2

η = 0.36, ρθη = −0.6, δ = 0.3. This yields probability limits for the model’s R2

of 0.89 (ρ = 0.9) and 0.74 and (ρ = 0.6). Parameters for simultaneity (‘S’): β = 1, α = 2, σ2
ε = 4, σ2

θ = 1. This yields
probability limits for the model’s R2 of 0.84 (ρ = 0.9) and 0.81 (ρ = 0.6).
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Table D.2: Simulation results: empirical size

n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1, 000
conditions (A.5) (‘differences’) conditions (A.4) (‘generic’)

ρ = 0.9 T = 5 T = 5
ME 0.10 0.06 0.06 0.00 0.03 0.04
OV 0.10 0.06 0.06 0.00 0.02 0.03
S 0.12 0.05 0.05 0.00 0.03 0.05
ρ = 0.6
ME 0.10 0.06 0.06 0.00 0.03 0.05
OV 0.06 0.05 0.06 0.00 0.02 0.03
S 0.10 0.05 0.05 0.00 0.03 0.05
ρ = 0.9 T = 10 T = 10
ME 0.06 0.05 0.06 0.02 0.03 0.04
OV 0.07 0.05 0.05 0.02 0.05 0.05
S 0.07 0.05 0.06 0.03 0.05 0.05
ρ = 0.6
ME 0.06 0.06 0.05 0.03 0.04 0.03
OV 0.06 0.05 0.05 0.02 0.05 0.06
S 0.07 0.05 0.05 0.02 0.04 0.05

Notes: In all cases, the simulation results are based on 1,000 simulation runs. The empirical size is obtained as the
fraction of the number of simulation runs in which the test rejects the null hypothesis, while the null hypothesis is true.
The simulated models correspond to three of the illustrative cases listed in Table 1 of the main text. Parameters for
classical measurement error (‘ME’): β = 1, σ2

ε = 1, σ2
θ = 1.44, σ2

η = 0, δ = 0.3. Parameters for omitted variables
(‘OV’): β = 1, γ = 0, σ2

ε = 0.25, σ2
θ = 0.36, ρθη = −0.6. Parameters for simultaneity (‘S’): β = 1, α = 0, σ2

ε = 4,
σ2
θ = 1.
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E. Call Report Data

We use year-end Call Report Data to create a balanced sample of U.S. commercial banks covering

the 2011–2017 period. Filtering is done by excluding banks with total assets (in 2017 prices) less

than USD 100 million, that are not part of a bank holding company, not located in a U.S. state, have

no deposit insurance, or are not commercial according to their charter type. Furthermore, we remove

bank-year observations with non-positive values of input factor expenses or total assets. We also

delete bank-year observations with negative values for total loans and leases, total securities, or total

equity. We leave out bank-year observations whose funding rate falls below the 1% sample quantile,

whose wage rate exceeds the 99% sample quantile, or whose price of physical capital exceeds the

99% sample quantile. All level variables have been deflated using the Consumer Price Index for All

Urban Consumers (CPIAUCSL) downloaded from the website of the Federal Reserve Bank of St.

Louis. Table E.1 explains how the Call Report Data, downloaded from the FFIEC website, have been

used to define the variables used in the empirical part of this study.
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F. Additional estimation results

In this appendix, we apply the Wald test to two more elaborate specifications of the translog costs

function than considered in the main text.

We start with a translog cost function with the same three input factors (funding, labor services,

and physical capital) and single output factor (total assets) as before. Such a cost function has been

widely used in the banking literature (e.g., Spierdijk and Zaouras, 2018; Fosu et al., 2017; Cubillas

et al., 2017; Dong et al., 2016; Calderon and Schaeck, 2016; Carbó-Valverde et al., 2016). Using

similar notation as in the main text, we specify

log (̃cit) = αi + γt +

3∑
j=2

β j,p log (p̃ j,it) + (1/2)
3∑

j=2

β j,pp[log (p̃ j,it)]2 +

3∑
j=2

∑
k> j

β jk,pp log (p̃ j,it) log ( p̃k,it)

+

3∑
j=2

β j,pq log (p̃ j,it) log (qit) + βq log (qit) + (1/2)βqq[log (qit)]2

+ βeq log (EQit/qit) + εit, (F.1)

where EQ/q is the equity ratio. Throughout, variables with a tilde have been divided by the price of

purchased funds p1,it to ensure linear homogeneity. For this model, the Wald test statistic equals 454.2

with p-value 0.0000 (degrees of freedom 10) and the resulting differences curves are visualized in

Figure F.1.

We also consider a three-input three-output translog cost function, based on the same three inputs

as before and three different outputs: total loans, total securities and off-balance sheet output. This

choice of outputs is based on Wheelock and Wilson (2012) and results in a type of multi-product

translog cost function that has been widely used in the banking literature (e.g., Tsionas et al., 2018;

Spierdijk and Zaouras, 2018; Forssbæck and Shehzad, 2015; Kick and Prieto, 2015; Koetter et al.,

2012). It is specified as

log (̃cit) = αi + γt +

3∑
j=2

β j,p log (p̃ j,it) + (1/2)
3∑

j=2

β j,pp[log (p̃ j,it)]2 +

3∑
j=2

∑
k> j

β jk,pp log (p̃ j,it) log ( p̃k,it)

+

3∑
k=2

3∑
`=1

βk`,pq log (p̃k,it) log (q`,it) +

3∑
`=1

β`,q log (q`,it) + (1/2)
3∑
`=1

β`,qq[log (q`,it)]2

+

3∑
`=1

∑
m>`

β`m,qq log (q`,it) log (qm,it) + βeq log (EQit/T Ait) + εit, (F.2)

where q1,it denotes total loans, q2,it total securities and q3,it total assets of bank i in year t. As before,

we use the equity ratio as a control variable, which is now denoted as EQ/T A. Appendix E provides

the formal definitions of the input, output and control variables used in the cost function. For this
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model, the Wald test statistic equals 778.5 with p-value 0.0000 (degrees of freedom 21). The resulting

differences curves are shown in Figures F.2 and F.3.

Figure F.1: Difference curves for the estimated coefficients of the cost function in (F.1)
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Figure F.2: Difference curves for the estimated coefficients of the cost function in (F.2)
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Figure F.3: Patterns in the j-th difference estimates of the coefficients of the cost function in (F.2)
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G. Applications to existing data

This section considers two existing panel data sets from the literature, which each contain an ex-

planatory variable that is suspected to be subject to measurement error. In the context of our theoretical

results, these data sets provide a particularly relevant empirical case for our test.

G.1. Birth rates and welfare

Economic theory suggests that a government transfer program that reduces the cost of supporting

a child should lead to a rise in birth rates. As pointed out by McKinnish (2008), childbearing is a

commitment to current and future consumption. We may therefore expect fertility decisions to be

relatively unresponsive to transitory fluctuations in welfare benefits. This would imply that welfare

benefits are erroneous relative to the conceptual variable of interest, even though these benefits are

generally reported without error in administrative records. As explained by Griliches and Hausman

(1986), this kind of ‘conceptual’ measurement error is isomorphic to the errors-in-variables model

with measurement error that is less persistent than the unobserved regressor and would render the

within estimator inconsistent.

McKinnish (2008) aims to provide an empirical investigation of the presence of such conceptual

measurement error in welfare benefits. She uses a panel data set consisting of U.S. state-level birth

rates by white women in the age group 20–24.5 years and AFDC benefit levels for a family of four

with no additional income. The panel data set with n = 51 and T = 20 covers the 1973–1992 period.

The data set also contains a measure of the earnings per capita in each state. Both welfare benefits

and earnings per capita are deflated and expressed in prices of the base year 1982–84.

We consider the linear panel regression model specified as

log(yit) = αi + γt + βw log(wit) + βe log(eit) + εit, (G.1)

where yit denotes the birth rate in state i in year t, αi a state fixed effect, γt a year fixed effect, wit the

welfare benefit (i.e., the allegedly error-ridden regressor), and eit the earnings per capita.

McKinnish (2008) estimates the linear panel regression model in (G.1) using data that is differ-

enced over a time span of j = 1, 3, 5, 7 years. We denote the resulting coefficient estimates of the

welfare benefit by β̂w, j. McKinnish (2008) compares the β̂w, js for different values of j. In this way,

she proceeds in a similar fashion as Goolsbee (2000). McKinnish (2008) establishes a monotonically

increasing pattern in the β̂w, js, which she contributes to the presence of conceptual measurement error.
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We use the data set of McKinnish (2008) to formally test the within estimator’s consistency. We

estimate the linear panel regression model in (G.1) using data that is differenced over a time span of

j = 1, . . . , 10 years. The estimation results are summarized in the upper panel of Table G.1. This table

also reports the FE estimation results.

The Wald test rejects the null hypothesis H0 : βe, j = βe, j+1; βw, j = βw, j+1 for j = 1, . . . , 9 for each

reasonable significance level; see Table G.2. Figures G.4(a) and (b) show the difference curves for the

welfare-benefit and the earnings variables, which confirm the economic relevance of the rejection.

Table G.2: Test outcomes

Wald df c.v. p-value
McKinnish (2008) 139.6 18 28.87 0.00
Erickson and Whited (2000) 5.10 6 12.59 0.53

Notes: This table shows the results of the Wald tests for the model in (G.1) applied to the data of McKinnish (2008)
(upper panel) and the model in (G.2) applied to the data of Erickson and Whited (2000) (lower panel). For each Wald
test, we report the number of degrees of freedom (‘df’), critical value (‘c.v.’) and p-value.
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Figure G.4: Difference curves (McKinnish (2008) data)
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Notes: This figure shows the difference curves for the estimated coefficients of the natural log of (a) the welfare benefit
and (b) the earnings per capita. They correspond to the model in (G.1), applied to the data of McKinnish (2008). The
intervals in red show the 95% asymptotic confidence interval for each point estimate. The two dashed lines indicate the
zero line and the value of the within estimator.

Our test outcome suggests that McKinnish (2008) was right to suspect the within estimator of

(G.1) to be inconsistent. Although the test outcome is consistent with the presence of measurement

error in the welfare benefit variable, the type of misspecification remains an open question. For exam-

ple, the data we used are aggregated across different cohorts and states that may respond differently

to changes in welfare over time. Finding instrumental variables for the welfare benefit variable would

be the first step in the empirical strategy that we outlined in Section 2.5.

G.2. Investments and Tobin’s q

Erickson and Whited (2000) analyze the impact of Tobin’s q on the investment rate. The theoret-

ical motivation for studying this relation is the standard model of a perfectly competitive firm. This

model is based on the maximization of net shareholder wealth, in the presence of convex adjustment

costs following changes in the capital stock (e.g., Blundell et al., 1992). According to this model,

Tobin’s q has a positive effect on the investment rate. An empirical complication is the measurement-

error problem associated with Tobin’s q. This problem arises due to the difference between marginal

q, the conceptual variable of interest, and measured q. Erickson and Whited (2000) discuss the pos-

sible sources of measurement error in measured q and propose an estimator that controls for such
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error by exploring higher-order moments. Their empirical analysis is based on a Compustat firm-level

panel data set for the 1992–1995 period, with n = 737 and T = 4.

We consider the linear panel regression model given by

yit = αi + γt + βqqit + βccit + β f ccit fi + εit, (G.2)

where yit denotes the ratio of investments to the replacement value of the capital stock for firm i in

year t, αi a firm fixed effect, γt a year fixed effect, qit the proxy of marginal Tobin’s q, cit cash flow

divided by the replacement value of the capital stock, and fi a 0–1 variable indicating whether a firm

is financially constrained or not. The indicator variable fi is constructed on the basis of a firm’s lack

of bond rating and does not vary over time; its own marginal effect is therefore contained in the fixed

effect αi.

In the presence of measurement error in q, the within estimator of (G.2) will typically be incon-

sistent. We therefore use the data set of Erickson and Whited (2000) to estimate the linear panel

regression model in (G.2) after differencing over a time span of j = 1, 2, 3 years.2 Detailed estimation

results are given in the lower panel of Table G.1. This table also reports the estimation results based

on FE estimation.

The Wald test fails to reject the null hypothesis H0 : βq, j = βq, j+1, βc, j = βc, j+1; β f c, j = β f c, j+1 for

j = 1, 2; see again Table G.2. Although we do not reject, the difference curves for the covariates are

provided in Figure G.5 for the sake of completeness.

How to go from here? Our test finds no evidence against the within estimator’s inconsistency. This

is a favorable outcome, but – as usual – we should remain aware of the possibility of that the test may

have low power in certain cases. Low power could arise from limited data variability due to taking

differences, yielding coefficient estimates with relatively large standard errors. In such a scenario, our

test could fail to reject in the presence of misspecification. This explanation does not seem very likely

in the present case, though. The strong significance of the estimated coefficients in the lower panel of

Table G.1 suggests that the time-differenced data still contain a sufficient amount of variation.

Another possibility is that the test outcome reflects the presence of two or more forms of en-

dogeneity whose effects offset each other. To investigate this possibility in more detail, we could

consider the potential endogeneity of the cash flow variable. For instance, cash flows may not only

affect investments, but also vice versa. This would result in simultaneity and could offset the effects

of measurement error in Tobin’s q. Finding instrumental variables for Tobin’s q and the cash-flow

2This data set of Erickson and Whited (2000) is available at http://toni.marginalq.com/publications.html.
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variable would be the first step in the empirical strategy that we outlined in Section 2.5.

Given these considerations, it remains important to look for other evidence against the within

estimator’ consistency, such as coefficient signs that are unlikely from an economic perspective. Here,

we find the coefficient signs that we would expect on the basis of economic theory: Tobin’s q and the

cash-flow variable both have a positive effect on the expected investment rate, which is smaller if

firms are financially constraint.

Figure G.5: Difference curves (Erickson and Whited (2000) data)
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Notes: This figure shows the difference curves for the estimated coefficients of (a) measured Tobin’s q, (b) cash flows
per unit of capital and (b) the interaction of cash flow per unit of capital and an indicator variable for financially
constraint firms. They correspond to the model in (G.2), applied to the data of Erickson and Whited (2000). The
intervals in red show the 95% asymptotic confidence interval for each point estimate based. The two dashed lines
indicate the zero line and the value of the within estimator.
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