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Abstract

In this paper we prove an extreme value law for a stochastic process obtained by iterating the Rényi
ap x ↦→ βx (mod 1), where we assume that β > 1 is an integer. Haiman (2018) derived a recursion

ormula for the Lebesgue measure of threshold exceedance sets. We show how this recursion formula is
elated to a rescaled version of the k-generalized Fibonacci sequence. For the latter sequence we derive

Binet formula which leads to a closed-form expression for the distribution of partial maxima of the
tochastic process. The proof of the extreme value law is completed by deriving sharp bounds for the
ominant root of the characteristic polynomial associated with the Fibonacci sequence.
c 2021 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

eywords: Extreme value laws; Fibonacci numbers; Renyi map

1. Introduction

Extreme value theory for a sequence of i.i.d. random variables (X i )∞i=0 studies the asymptotic
istribution of the partial maximum

Mn = max(X0, . . . , Xn−1) (1)

s n → ∞. Since the distribution of Mn has a degenerate limit it is necessary to consider a
escaling. Under appropriate conditions there exist sequences an > 0 and bn ∈ R for which
he limiting distribution of an(Mn − bn) is nondegenerate. As an elementary example, assume
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that the variables X i ∼ U (0, 1) are independent. Then with an = n and bn = 1 it follows for
≥ 0 that

lim
n→∞

P(an(Mn − bn) ≤ −λ) = lim
n→∞

P
(

Mn ≤ 1 −
λ

n

)
= lim

n→∞

(
1 −

λ

n

)n

= e−λ. (2)

ore generally, it can be proven that extreme value distributions for i.i.d. random variables are
ither a Weibull, Gumbel, or Fréchet distribution [12,13,27]. For extensions of extreme value
heory to dependent random variables, see [21].

In the last twenty years the applicability of extreme value theory has been extended to the
etting of deterministic dynamical systems. The pioneering work [6] introduced many ideas
hat were used in subsequent papers by various authors. A particularly important development
as proving the link between hitting and return time statistics on the one hand and extreme
alue laws on the other hand [10]. Hence, extreme value laws can be proven by using the many
esults on hitting and return time statistics that are available. The latter have been derived for
eneral classes of dynamical systems [1,16–19,28] and go beyond the context of the piecewise
inear maps that will be considered in the present paper. For a detailed account on the subject
f extremes in dynamical systems the interested reader is referred to the recent monograph [23]
nd the extensive list of references therein.

In this paper we consider the Rényi map [26] given by

f : [0, 1) → [0, 1), f (x) = βx (mod 1),

here we restrict to the case where β > 1 is an integer. This map is an active topic of study
ithin the field of dynamical systems and ergodic theory. In the special case β = 2 the map f

s also known as the doubling map which is an archetypical example of a chaotic dynamical
ystem [4]. Other applications, in which also non-integer values of β are considered, include
he study of random number generators [2] and dynamical systems with holes in their state
pace [20].

The assumption that β > 1 is an integer implies that the Lebesgue measure is an invariant
robability measure of the map f :

emma 1.1. If X is a random variable such that X ∼ U (0, 1), then f (X ) ∼ U (0, 1).

roof. For u ∈ (0, 1] we have that P(X ∈ [0, u)) = u. This gives

P( f (X ) ∈ [0, u)) = P(X ∈ f −1([0, u))) =

β∑
k=1

P
(

X ∈

[
k − 1
β

,
k − 1 + u

β

))
= u,

hich implies that f (X ) ∼ U (0, 1). □

Consider the stochastic process (X i )∞i=0 defined by X i+1 = f (X i ), where X0 ∼ U (0, 1).
emma 1.1 implies that the variables X i are identically distributed, but they are no longer

ndependent. Let Mn be the partial maximum as defined in (1). Haiman [15] proved the
ollowing result:

heorem 1.2. For fixed λ > 0 and the sequence nk = ⌊βkλ⌋ it follows that

lim
k→∞

P(Mnk ≤ 1 − β−k) = e−
β−1
β
λ
.

Note that for λ ∈ N we have P(Mnk ≤ 1 − β−k) = P(βkλ(Mβkλ − 1) ≤ −λ). Therefore,
he result of Theorem 1.2 is in spirit similar to the example in (2), albeit that a subsequence
f M is considered.
n
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The aim of this paper is to give an alternative proof for Theorem 1.2 which relies on
symptotic properties of a rescaled version of the k-generalized Fibonacci numbers. The
estriction that β is an integer is essential for our proof. Indeed, for non-integer values of
> 1 the invariant measure of the map f is generally different from the Lebesgue measure;

ee [5,26] for the case β = (
√

5 + 1)/2. A more general approach to establish an extreme
alue law would be to show that two mixing conditions are satisfied which guarantee that an
xtreme value law for a time series generated by a dynamical system can be obtained as if it
ere an i.i.d. stochastic process. An application of this approach to the tent map process can
e found in [8]. However, in Appendix A we show that one of these conditions does not hold
he Rényi map process.

The fact that the limit in Theorem 1.2 is not equal to e−λ has a particular statistical
nterpretation. The coefficient θ := (β − 1)/β in the exponential is called the extremal index
nd measures the degree of clustering in extremes arising as a consequence of the dependence
etween the variables X i ; see [21,23] for more details. In Appendix B we show how the
xtremal index for the Rényi map process can be derived in an elementary way. For more
eneral dynamical systems, conditions for extreme value laws with particular extremal indices
re derived in [11].

. The relation with generalized Fibonacci numbers

In this section we fix the numbers k ∈ N and u = β−k . For any integer i ≥ 0 we define the
et

Ei = {x ∈ [0, 1) : f i (x) > 1 − u},

here the dependence on k is suppressed in the notation for convenience. Then

P(Mn ≤ 1 − u) = 1 − Bn where Bn = Leb
(n−1⋃

i=0

Ei

)
,

here Leb denotes the Lebesgue measure. Based on self-similarity arguments Haiman [15]
erived the following recursion formula which holds for each fixed k ∈ N:

Bn = (n − 1)
β − 1
β

u + u if 1 ≤ n ≤ k + 1, (3)

Bn+1 = Bn +
β − 1
β

u(1 − Bn−k) if n ≥ k + 1. (4)

he same idea was used earlier by Haiman to study extreme value laws for the tent map [14].
For n ∈ Z we define the following numbers:

Fn =

⎧⎪⎪⎨⎪⎪⎩
0 if n < 1,
1 if n = 1,
Bn − Bn−1

u/βn−1 if n > 1.
(5)

hese numbers have the following geometric meaning. Note that the sets Ei can be written as
union of β i intervals:

Ei =

βi⋃[
j − u
β i

,
j
β i

)
, i ≥ 0.
j=1
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For n ≥ 2 the number Fn equals the number of subintervals of the set En−1 which need to
e added to E0 ∪ · · · ∪ En−2 in order to obtain E0 ∪ · · · ∪ En−1. Fig. 1 illustrates this for the
pecial case β = 2 and k = 2.

emma 2.1. For any k, n ∈ N it follows that

P(Mn ≤ 1 − β−k) =
β1−n−k

β − 1
Fn+k+1.

roof. For n ≥ k + 2 Eq. (4) gives

Fn =
Bn − Bn−1

u/βn−1 = (β − 1)βn−2(1 − Bn−k−1),

r, equivalently,

Bn−k−1 = 1 −
β2−n

β − 1
Fn.

he proof is completed by substituting n for n − k − 1. □

The following result provides the connection between the sequence (Bn) and generalizations
of the Fibonacci numbers. In particular, for β = 2 the sequence (Fn) is the well-known
k-generalized Fibonacci sequence.

Lemma 2.2. The following statements are equivalent:

(i) Eqs. (3) and (4) hold;
(ii) For fixed k ∈ N, the sequence (Fn), where n ∈ Z, defined in (5) satisfies

Fn =

⎧⎪⎨⎪⎩
0 if n < 1,
1 if n = 1,
(β − 1)(Fn−1 + Fn−2 + · · · + Fn−k) if n ≥ 2.

(6)

In particular, Fn = (β − 1)βn−2 for 2 ≤ n ≤ k + 1.

Proof. Assume that statement (i) holds. By definition F1 = 1 and for 2 ≤ n ≤ k + 1 Eq. (3)
implies that

Fn =
Bn − Bn−1

u/βn−1 =
βn−1

u

[(
(n−1)

β − 1
β

u+u
)

−

(
(n−2)

β − 1
β

u+u
)]

= (β−1)βn−2.

We proceed with induction on n. For any n ≥ k + 1 Eq. (4) gives

Fn+1 =
Bn+1 − Bn

u/βn
= (β − 1)βn−1(1 − Bn−k). (7)

n particular, for n = k + 1 we have

Fk+2 = (β − 1)βk(1 − B1)

= (β − 1)(βk
− 1) = (β − 1)2

k∑
βk−i

= (β − 1)
k∑

Fk+2−i .
i=1 i=1
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Fig. 1. Illustration of the sets E0, . . . , E5 for β = 2 and k = 2. Each set En is a union of βn intervals. Intervals
n En which are disjoint from (resp. contained in) the intervals comprising E0, . . . , En−1 are drawn in blue (resp.
ed). For n ≥ 2 the number Fn equals the number of subintervals of the set En−1 which need to be added to

E0 ∪ · · · ∪ En−2 in order to obtain E0 ∪ · · · ∪ En−1. The figure clearly shows that F2 = 1, F3 = 2, F4 = 3, F5 = 5,
nd F6 = 8 which are the starting numbers of the Fibonacci sequence. (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this article.)

ssume that for some n ≥ k + 1 it follows that

Fn+1 = (β − 1)
k∑

i=1

Fn+1−i .

irst using Eq. (5) and then Eq. (4) twice gives

Fn+2 = (β − 1)βn(1 − Bn−k+1)

= (β − 1)βn(1 − Bn−k) − (β − 1)2βn−k−1(1 − Bn−2k)
= βFn+1 − (β − 1)Fn−k+1,

here the last equality follows from (7). Finally, the induction hypothesis implies that

Fn+2 = (β − 1)Fn+1 + Fn+1 − (β − 1)Fn−k+1

= (β − 1)Fn+1 + (β − 1)
k∑

i=1

Fn+1−i − (β − 1)Fn−k+1

= (β − 1)
k∑

i=1

Fn+2−i .

ence, statement (ii) follows.
Conversely, assume that statement (ii) holds. In particular, Fn = (β − 1)βn−2 for 2 ≤ n ≤

+ 1 so that by Eq. (5) it follows that

Bn = Bn−1 +
u

βn−1 Fn = Bn−1 +
β − 1
β

u.

Eq. (3) now follows by recalling that B1 = u.
We proceed by strong induction on n. We have

Fk+2 = (β − 1)
k∑

Fk+2−i = (β − 1)
k∑

(β − 1)βk−i
= (β − 1)(βk

− 1).

i=1 i=1
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Recalling that B1 = u = β−k , Eq. (5) implies that

Bk+2 = Bk+1 +
u
βk+1 Fk+2 = Bk+1 +

u
βk+1 (β − 1)(βk

− 1) = Bk+1 +
β − 1
β

u(1 − B1),

hich shows that Eq. (4) holds for n = k + 1. Assume that there exists m ∈ N such that (4)
holds for all k + 1 ≤ n ≤ m. Observe that

Fm+2 = (β − 1)
k∑

i=1

Fm+2−i

= (β − 1)
(

Fm+1 − Fm+1−k +

k∑
i=1

Fm+1−i

)
= (β − 1)

(
Fm+1 − Fm+1−k +

Fm+1

β − 1

)
= βFm+1 − (β − 1)Fm+1−k .

herefore,

Bm+2 − Bm+1 =
u

βm+1 Fm+2

=
u

βm+1 (βFm+1 − (β − 1)Fm+1−k)

= Bm+1 − Bm −
β − 1
βk+1 (Bm+1−k − Bm−k).

The induction hypothesis gives

Bm+2 − Bm+1 =
β − 1
β

u(1 − Bm−k) −
(β − 1)2

βk+2 u(1 − Bm−2k)

=
β − 1
β

u
(

1 −

(
Bm−k +

β − 1
β

u(1 − Bm−2k)
))

=
β − 1
β

u(1 − Bm−k+1).

Hence, statement (i) follows. □

3. The Binet formula

Let the sequence (Fn) be as defined in (6), where β ≥ 2 is assumed to be an integer. In
this section we will derive a closed-form expression for Fn as a function of n along the lines
of Spickerman and Joyner [29] and Dresden and Du [7]. Levesque [22] derived a closed-form
expression for sequences of the form (6) in which each term is multiplied with a different factor.
Another interesting paper by Wolfram [30] considers explicit formulas for the k-generalized
Fibonacci sequence with arbitrary starting values, but we will not pursue those ideas here.

The characteristic polynomial corresponding to the recursion relation (6) is given by

pk(x) = xk
− (β − 1)

k−1∑
i=0

x i . (8)

he following result concerns properties of the roots of this polynomial. The proof closely
ollows Miller [25]. For alternative proofs for the special case β = 2, see [24,30].
709
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Lemma 3.1. Let k ≥ 2 and β ≥ 2 be integers. Then

(i) the polynomial pk has a real root 1 < rk,1 < β;
(ii) the remaining roots rk,2, . . . , rk,k of pk lie within the unit circle of the complex plane;

(iii) the roots of pk are simple.

Proof. (i) Descartes’ rule of signs implies that pk has exactly one positive root rk,1. Since

pk(1) = 1 − k(β − 1) < 0 and pk(β) = 1

the Intermediate Value Theorem implies the existence of a root 1 < rk,1 < β.
(ii) Define the polynomial

qk(x) = (x − 1)pk(x) = xk+1
− βxk

+ β − 1,

and make the following observations:

O1) if x > rk,1, then pk(x) > 0, and if 0 < x < rk,1, then pk(x) < 0;
O2) if x > rk,1, then qk(x) > 0, and if 1 < x < rk,1, then qk(x) < 0.

Note that pk has no root r such that |r | > rk,1. Indeed, if such a root exists, then pk(r ) = 0,
or, equivalently, r k

= (β − 1)
∑k−1

i=0 r i . The triangle inequality gives |r |
k

≤ (β − 1)
∑k−1

i=0 |r |
i .

Hence, pk(|r |) ≤ 0, which contradicts observation (O1).
In addition, pk has no root r with 1 < |r | < rk,1. Indeed, if such a root exists, then

k(r ) = (r − 1)pk(r ) = 0 so that βr k
= r k+1

+ β − 1. The triangle inequality implies that
β|r |

k
≤ |r |

k+1
+ β − 1. Hence, qk(|r |) ≥ 0, which contradicts observation (O2).

Finally, pk has no root r with either |r | = 1 or |r | = rk,1 but r ̸= rk,1. Indeed, if such a root
exists, then qk(r ) = (r − 1)pk(r ) = 0, which implies βr k

= r k+1
+ β − 1 and

β|r |
k

= |r k+1
+ β − 1| ≤ |r |

k+1
+ β − 1. (9)

If the inequality in (9) is strict, then qk(|r |) > 0. Since qk(1) = 0 and qk(rk,1) = 0 it then
follows that |r | ̸= 1 and |r | ̸= rk,1. If the inequality in (9) is an equality, then r k+1 must be
real. Since qk(r ) = 0, it follows that r k

= ((β − 1) + r k+1)/β is real as well and hence r itself
is real. An application of Descartes’ rule of signs to qk implies that when k is even pk has one
negative root, and when k is odd pk has no negative root. If k is even, then pk(0) = −(β − 1)
and pk(−1) = 1. By the Intermediate Value Theorem it follows that −1 < r < 0. We conclude
that no root of pk , except rk,1 itself, has absolute value 1 or rk,1.

(iii) If pk has a multiple root, then so has qk . In that case, there exists r such that
k(r ) = q ′

k(r ) = 0. Note that q ′

k(r ) = 0 implies that r = 0 or r = βk/(k + 1). Clearly,
= 0 is not a root of qk . By the Rational Root Theorem it follows that the only rational roots

of qk can be integers that divide β − 1. Hence, r = βk/(k + 1) is not a root of qk either. We
conclude that qk , and thus pk , cannot have multiple roots. □

The proof of the following result closely follows the method of Spickerman and Joyner [29]
and then uses a rewriting step as in Dresden and Du [7].

Lemma 3.2. The sequence (Fn) as defined in (6) is given by the following Binet formula:

Fn =

k∑
j=1

rk, j − 1
β + (k + 1)(rk, j − β)

rn−1
k, j ,

here r , . . . , r are the roots of the polynomial p defined in (8).
k,1 k,k k
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Proof. The generating function of the sequence (Fn) is given by

G(x) =

∞∑
n=0

Fn+1xn.

The equation
∞∑

n=k

(
Fn+1 − (β − 1)

k∑
i=1

Fn+1−i

)
xn

= 0

leads to

G(x) =

k−1∑
n=0

Fn+1xn
− (β − 1)

k−1∑
i=1

k−i−1∑
n=0

Fn+1xn
+ (β − 1)G(x)

k∑
i=1

x i .

inally, using that F1 = 1 and Fn = (β − 1)βn−2 for 2 ≤ n ≤ k − 1 implies that

G(x) =
1

1 − (β − 1)
∑k

i=1 x i
.

Note that 1/r is a root of the denominator of G if and only if r is a root of the characteristic
polynomial pk . By Lemma 3.1 part (iii) we can expand the generating function in terms of
partial fractions as follows:

G(x) =

k∑
j=1

c j

x − 1/rk, j
,

here the coefficients are given by

c j = lim
x→1/rk, j

x − 1/rk, j

1 − (β − 1)
∑k

i=1 x i
= −

1

(β − 1)
∑k

i=1 i(1/rk, j )i−1
.

bserve that(
1 −

1
rk, j

) k∑
i=1

i
(

1
rk, j

)i−1

=

k∑
i=1

[
i
(

1
rk, j

)i−1

− (i + 1)
(

1
rk, j

)i]
+

k∑
i=1

(
1

rk, j

)i

= 1 − (k + 1)
1

r k
k, j

+
1

β − 1
.

his results in

c j = −
1 − 1/rk, j

β − (β − 1)(k + 1)/r k
k, j
.

ince r k+1
k, j − βr k

k, j + β − 1 = (rk, j − 1)p(rk, j ) = 0 it follows that rk, j − β = (1 − β)/r k
k, j so

hat

c j = −
1 − 1/rk, j

β + (k + 1)(rk, j − β)
.

inally, we have that

G(x) =

k∑
j=1

c j

(
−rk, j

∞∑
n=0

rn
k, j x

n
)

=

∞∑
n=0

(
−

k∑
j=1

c jrn+1
k, j

)
xn.

ubstituting the values for the coefficients completes the proof. □
711
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For the special case β = 2 Dresden and Du [7] go one step further and derive the following
simplified Binet formula:

Fn =

⌊
rk,1 − 1

β + (k + 1)(rk,1 − β)
rn−1

k,1 +
1
2

⌋
for n ≥ k − 2,

here rk,1 is the unique root of pk for which 1 < rk,1 < β; see Lemma 3.1. We expect that this
ormula can be proven for all integers β > 1 for n sufficiently large, where the lower bound
n n may depend on both β and k. However, we will not pursue this question in this paper.

. Exponentially growing sequences

In preparation to the proof of Theorem 1.2 we will prove two facts on sequences that exhibit
xponential growth. The first result is a variation on a well-known limit:

emma 4.1. If (ak) is a sequence such that limk→∞ kak = c, then

lim
k→∞

(1 − ak)k
= e−c.

roof. Let ε > 0 be arbitrary. Then there exists N ∈ N such that |kak − c| ≤ ε, or, equivalently,(
1 −

c + ε

k

)k

≤ (1 − ak)k
≤

(
1 −

c − ε

k

)k

for all k ≥ N . Hence, we obtain

e−(c+ε)
≤ lim inf

k→∞

(1 − ak)k
≤ lim sup

k→∞

(1 − ak)k
≤ e−(c−ε).

ince ε > 0 is arbitrary, the result follows. □

The next result provides sufficient conditions under which the difference of two exponen-
ially increasing sequences grows at a linear rate:

emma 4.2. If a > 1 and (bk) is a positive sequence such that limk→∞ akbk = c, then

lim
k→∞

ak
− (a − bk)k

k
=

c
a
.

roof. The algebraic identity

xk
− yk

= (x − y)
k−1∑
i=0

xk−1−i yi

eads to

ak
− (a − bk)k

k
=

akbk

a
· Sk where Sk =

1
k

k−1∑
i=0

(
1 −

bk

a

)i

.

It suffices to show that limk→∞ Sk = 1. To that end, note that the assumption implies that
limk→∞ bk = 0 so that −1 < −bk/a < 0 for k sufficiently large. Bernoulli’s inequality gives

1 − i
bk

≤

(
1 −

bk
)i

< 1,

a a
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which implies that

1 −
k − 1

2
·

bk

a
< Sk < 1

for k sufficiently large. Moreover, the assumption implies that limk→∞ kbk = 0. An application
of the Squeeze Theorem completes the proof. □

5. Proof of the extreme value law

Let λ > 0 and define nk = ⌊βkλ⌋. Combining Lemmas 2.1 and 3.2 gives

P(Mnk ≤ 1 − β−k) =
β

β − 1

k∑
i=1

ai (k) where

ai (k) =
rk,i − 1

β + (k + 1)(rk,i − β)

(
rk,i

β

)nk+k

,

here rk,i are the roots of pk . Recall that rk,1 is the unique root in the interval (1, β), and that
|rk,i | < 1 for i = 2, . . . , k. In the remainder of this section Theorem 1.2 will be proven by a
careful analysis of the asymptotic behaviour of the dominant root rk,1.

We define the following numbers:

rk,min = β −
β − 1
βk − 1

(1 + β−k/2) and rk,max = β −
β − 1
βk − 1

.

he number rk,max is obtained by applying a single iteration of Newton’s method to pk using
he starting point x = β. The number rk,min is a correction of rk,max with an exponentially
ecreasing factor.

emma 5.1. If β ≥ 2 is an integer and k ∈ N is sufficiently large, then

(i) pk(rk,max) > 0;
(ii) pk(rk,min) < 0;

(iii) rk,min < rk,1 < rk,max.

roof. (i) For x ̸= 1 we have

pk(x) = xk
− (β − 1)

k−1∑
i=0

x i
= xk

− (β − 1)
1 − xk

1 − x
=

1
1 − x

(
(β − x)xk

− (β − 1)
)
.

In particular, for k ≥ 2 it follows that

pk(rk,max) =
1

βk − 2

[
βk

−

(
β −

β − 1
βk − 1

)k

− 1
]
.

t suffices to show that the expression between brackets is positive for k sufficiently large.
Lemma 4.2 gives

lim
k→∞

1
k

(
βk

−

(
β −

β − 1
βk − 1

)k)
=
β − 1
β

.

ence, for k sufficiently large it follows that

βk
−

(
β −

β − 1
βk − 1

)k

− 1 ≥
β − 1

2β
k − 1,

and the right-hand side is positive for k > 2β/(β − 1).
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(ii) Similar to the proof of part (i) it follows that

pk(rk,min) =
1

2 + β−k/2 − βk

[(
β −

β − 1
βk − 1

(1 + β−k/2)
)k

(1 + β−k/2) − βk
+ 1

]
.

t suffices to show that the expression between brackets is positive for k sufficiently large.
Lemma 4.2 gives

lim
k→∞

1
k

(
βk

−

(
β −

β − 1
βk − 1

(1 + β−k/2)
)k)

=
β − 1
β

.

ence, for k sufficiently large it follows that

βk
−

(
β −

β − 1
βk − 1

(1 + β−k/2)
)k

≤ k.

This gives(
β −

β − 1
βk − 1

(1 + β−k/2)
)k

(1 + β−k/2) − βk
+ 1

= βk/2
+ 1 − (1 + β−k/2)

(
βk

−

(
β −

β − 1
βk − 1

(1 + β−k/2)
)k)

≥ βk/2
+ 1 − (1 + β−k/2)k,

nd the right-hand side is positive for k sufficiently large.
(iii) By the Intermediate Value Theorem there exists a point c ∈ (rk,min, rk,max) such that

pk(c) = 0. Note that c > 1 for k sufficiently large. Since rk,1 is the only zero of pk which lies
outside the unit circle it follows that c = rk,1. □

In the particular, for β = 2 the previous result improves the bound 2(1 − 2−k) < r1,k < 2
derived by Wolfram [30].

Lemma 5.2. We have that

lim
k→∞

a1(k) =
β − 1
β

e−
β−1
β
λ
.

roof. From Lemma 5.1 it follows for sufficiently large k that

β −
β − 1
βk − 1

(1 + β−k/2) < rk,1 < β −
β − 1
βk − 1

. (10)

n particular, this implies

lim
k→∞

rk,1 = β and lim
k→∞

(k + 1)(rk,1 − β) = 0

o that

lim
k→∞

rk,1 − 1
β + (k + 1)(rk,1 − β)

=
β − 1
β

. (11)

efine the sequences

ak =
β − 1

(1 + β−k/2) and bk =
β − 1

.

βk+1 − β βk+1 − β

714



N.B. Boer and A.E. Sterk Indagationes Mathematicae 32 (2021) 704–718

B

w

P

F

W

T
a

T

The inequality βkλ− 1 ≤ nk ≤ βkλ combined with (10) implies that

(1 − ak)β
kλ−1+k

≤

(
rk,1

β

)nk+k

≤ (1 − bk)β
kλ+k . (12)

y Lemma 4.1 it follows that

lim
k→∞

(1 − bk)β
k+1

= e−
β−1
β and lim

k→∞

(1 − bk)k
= 1,

hich implies that

lim
k→∞

(1 − bk)β
kλ+k

= e−
β−1
β
λ
.

A similar result holds for the sequence (ak). Hence, (11) together with the Squeeze Theorem
applied to (12) completes the proof. □

Lemma 5.3. For k sufficiently large we have that

|ai (k)| <
2

|β + (k + 1)(1 − β)|
·

1
βnk+k

for i = 2, . . . , k.

roof. Using that |rk,i | < 1 for i = 2, . . . , k gives

|ai (k)| =
|rk,i − 1|

|β + (k + 1)(rk,i − β)|
·

(
|rk,i |

β

)nk+k

<
2

|β + (k + 1)(rk,i − β)|
·

1
βnk+k

.

or z ∈ C we consider the function

f (z) = β + (k + 1)(z − β).

riting z = x + iy gives

| f (z)|2 = (β + (k + 1)(x − β))2
+ (k + 1)2 y2

≥ (β + (k + 1)(x − β))2.

he quadratic function in the right-hand side attains its minimum value at xk = β−β/(k + 1),
nd for k sufficiently large it follows that xk > 1. Using that Re(rk,i ) ∈ (−1, 1) gives

| f (rk,i )| ≥ |β + (k + 1)(1 − β)|.

his completes the proof. □

From Lemma 5.3 it follows for k sufficiently large that⏐⏐⏐⏐ k∑
i=2

ai (k)
⏐⏐⏐⏐ ≤

k∑
i=2

|ai (k)| ≤
2(k − 1)

|β + (k + 1)(1 − β)|
·

1
βnk+k

,

so that Lemma 5.2 implies that

lim
k→∞

P(Mnk ≤ 1 − β−k) = lim
k→∞

β

β − 1

k∑
i=1

ai (k) = lim
k→∞

β

β − 1
a1(k) = e−

β−1
β
λ
,

whereby Theorem 1.2 has been proven.
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Appendix A. The conditions D(un) and D′(un)

A more general approach to study extreme value laws is to determine for which sequences
(un), depending on a parameter λ ≥ 0, it follows that

lim
n→∞

P(Mn ≤ un) = e−λ.

In [21, Theorem 1.5.1] the following equivalence is proven: if (X i )∞i=0 is an i.i.d. sequence of
random variables and λ ≥ 0, then

lim
n→∞

P(Mn ≤ un) = e−λ
⇔ lim

n→∞
nP(X0 > un) = λ. (13)

For example, if the variables X i ∼ U (0, 1) are independent, then with un = 1 − λ/n it clearly
ollows that nP(X0 > un) = λ for all n and the left hand side of (13) yields precisely the
tatement in (2).

When the variables X i are generated by a dynamical system, and therefore dependent, the
quivalence (13) need not hold in general and additional conditions need to be satisfied. Let
f : M → M be a map on a manifold M admitting an invariant Borel probability measure µ.
n addition, consider a random variable X : M → R on the probability space (M,B, µ), where

is the Borel σ -algebra on M , with P(X ≤ u) = µ(X−1(−∞, u]). The sequence X i = X ◦ f i

s identically distributed but not independent. Based on [21] the following two conditions were
resented in [9]:

efinition A.1. The condition D(un) holds for the sequences (X i )∞i=0 and (un)∞n=1 if for any
ntegers ℓ, t, n ≥ 1 we have⏐⏐P(X0 > un,X t ≤ un, . . . , X t+ℓ−1 ≤ un)

− P(X0 > un)P(X t ≤ un, . . . , X t+ℓ−1 ≤ un)
⏐⏐ ≤ γ (n, t),

here γ (n, t) is non-increasing in t for each n and nγ (n, tn) → 0 as n → ∞ for some sequence
n = o(n) as tn → ∞.

efinition A.2. The condition D′(un) holds for the sequences (X i )∞i=0 and (un)∞n=1 if

lim
k→∞

(
lim sup

n→∞

n
⌊n/k⌋∑

j=1

P(X0 > un, X j > un)
)

= 0.

The D(un) condition imposes a decay rate on the dependence of specific events concerning
hreshold exceedances. The D′(un) condition restricts the amount of clustering of exceedances
ver a threshold. Under these two conditions the equivalence in (13) remains true for the
rocess X i = X ◦ f i [9, Theorem 1]. For the Rényi map process we will now show that

D(un) is satisfied, but D′(un) is not.
It follows from [3, Theorem 8.3.2] that the Rényi map has exponential decay of correlations.

his means the following: for all functions ϕ ∈ BV ([0, 1)) and ψ ∈ L∞([0, 1)) there exist
onstants C > 0 and 0 < r < 1 such that⏐⏐⏐⏐ ∫ 1

0
ϕ · (ψ ◦ f t )dµ−

∫ 1

0
ϕdµ

∫ 1

0
ψdµ

⏐⏐⏐⏐ ≤ CVar(ϕ)∥ψ∥∞r t for all t ≥ 0.

y taking the indicator functions ϕ = 1{X0>un} and ψ = 1{X0≤un ,...,Xℓ−1≤un} it follows that the
t α
D(un) condition is satisfied with γ (n, t) = 2Cr and tn = n for any 0 < α < 1.
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Now we show that D′(un) does not hold for any sequence un that satisfies

lim
n→∞

nP(X0 > un) = lim
n→∞

n(1 − un) = λ > 0.

o that end, observe that we have the following inclusion:

(un, 1) ∩ f − j ((un, 1)) ⊃

(
1 −

1 − un

β j
, 1

)
.

This gives the inequality

P(X0 > un, X j > un) = Leb
(
(un, 1) ∩ f − j ((un, 1))

)
≥ Leb

(
1 −

1 − un

β j
, 1

)
=

1 − un

β j
,

hich implies that

n
⌊n/k⌋∑

j=1

P(X0 > un, X j > un) ≥ n(1 − un)
⌊n/k⌋∑

j=1

1
β j

= n(1 − un) ·
1 − β−⌊n/k⌋

β − 1
.

inally, it follows that

lim
k→∞

(
lim sup

n→∞

n
⌊n/k⌋∑

j=1

P(X0 > un, X j > un)
)

≥
λ

β − 1
> 0,

hich shows that the D′(un) condition is not satisfied.

ppendix B. Clustering and the extremal index

Extremes in the Rényi map process can form clusters. Let u = β−k for some k ∈ N. The
robability of having a cluster of q consecutive variables X i exceeding the threshold 1 − u is
iven by

P(X0, . . . , Xq−1 > 1 − u, Xq ≤ 1 − u)
P(X0 > 1 − u)

=
Leb(E0 ∩ · · · ∩ Eq−1 ∩ Ec

q )

Leb(E0)
.

bserve that

E0 ∩ · · · ∩ Eq−1 =

[
βq−1

− u
βq−1 , 1

)
and Ec

q =

βq⋃
j=1

[
j − 1
βq

,
j − u
βq

)
,

hich implies that

E0 ∩ · · · ∩ Eq−1 ∩ Ec
q =

[
βq−1

− u
βq−1 ,

βq
− u
βq

)
.

Hence, the probability of the occurrence of a cluster of length q is given by
P(X0, . . . , Xq−1 > 1 − u, Xq ≤ 1 − u)

P(X0 > 1 − u)
=
β − 1
β

·
1

βq−1 .

Using that 1 + 2x + 3x2
+ · · · = 1/(1 − x)2 for |x | < 1 implies that the mean cluster size is

given by

E(cluster size) =

∞∑
q=1

qP(cluster of size q) =
β − 1
β

∞∑
q=1

q
βq−1

=
β − 1

(
β

)2

=
β

.

β β − 1 β − 1
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(

Finally, by taking the reciprocal of the mean cluster size we obtain the extremal index θ =

β − 1)/β. It is precisely the clustering of extremes which violates the D′(un) condition that
was discussed in the previous section.
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