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CHAPTER 1

Introduction
Humans and computers do not speak the same language. A lot of day-to-day
tasks would be vastly more efficient if we could communicate with comput-
ers using natural language instead of relying on an interface. It is necessary,
then, that the computer does not see a sentence as a collection of individ-
ual words, but instead can understand the deeper, compositional meaning
of the sentence. A way to tackle this problem is to automatically assign a
formal, structuredmeaning representation to each sentence, which are easy
for computers to interpret. Say, for instance, that we want to produce such
a meaning representation for the following example:

(1) Jack killed Tom.

We could say that there was a killing event, with Jack as the killer, and
Tom as the person that was killed. Another formulation is that there are two
people in this sentence (p1 and p2), one of which is Jack and one of which
is Tom, and that Jack killed Tom. These two representations are shown in
Figure 1.1.

 Jack (p1)
 Tom (p2)
 killed (p1, p2)

 p1  p2    
kill

TomJack

killer killed

Figure 1.1: Two example representations for the sentence Jack killed Tom.
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1.1 Semantic Parsing

The method of going from text to meaning representation is better known
as semantic parsing, while the flavor of meaning representation is called the
semantic formalism. We candevise a set of rules to automatically create these
representations by looking at the syntax: the subject is always the killer, and
the direct object is the person that gets killed. We could easily extend this
set of rules to handle other verbs, such as hit, tickled, kissed, liked and so on.
Moreover, we could add rules that can handle transitive constructions (Jack
was killed by Tom) and perhaps even automatically recognize negation (Jack
did not kill Tom). However, now consider the following examples:

(2) Jack killed Tom with his gun.
(3) Jack killed Tom with his joke.

We could extend our set of syntactic rules to account for Example (2), but
Example (3) already shows that this will not be sufficient. Clearly, no actual
killing event took place here, as killed was used in a non-literal sense, even
though the syntax is the same. We have to somehow account for themeaning
of both the individual words and how they are combined in a sentence.

There is a large body of work that tried to add such a meaning compo-
nent to existing sets of syntactic rules, usually called grammars. However,
these grammar extensions had to be manually created, which is an expen-
sive and time-consuming task. Moreover, they usually did not work well
outside the domain they were created for. This is not surprising, consider-
ing the immense depth of natural language. Wewould rather have amethod
that automatically learns to produce themeaning representations, instead of
being reliant on manually constructed rule-based components.

There are indeed a number of studies that attempt this (and we will re-
view them in Section 2.2), which have gotten impressive results. However,
they are usually still reliant on linguistic resources, such as syntactic anal-
yses or predefined lexicons. We would prefer a method that can construct
a meaning representation based on only the input text, without being de-
pendent on any external resources. In this thesis, we will be working with
neural networks, specifically sequence-to-sequence models (Sutskever et al.,
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2014). These models can learn to transform a sequence of inputs (letters or
words) to a sequence of outputs (parts of the meaning representations) and
have achieved impressive performance on a number of Natural Language
Processing (NLP) tasks (Vinyals et al., 2015; Rush et al., 2015; Xiao et al., 2016).

We will apply this model on two semantic formalisms for which open
domain annotated corpora are available: the graph-based Abstract Mean-
ing Representation (Banarescu et al., 2013) and the more expressive scoped
meaning representations of Discourse Representation Structures (Kamp and
Reyle, 1993). In particular, we are interested in finding out what the best rep-
resentation of the input texts is for this model: individual letters (characters)
or words? Word-level models are the more intuitive choice, but character-
level models have a number of advantages, as they are, for instance, better
equipped to deal with unknown words and spelling errors.

We have to solve a number of problems along the way. First, we propose
novel methods to deal with the variables in the meaning representations.
Variables, such as p1 and p2 in Figure 1.1, are commonly used to accurately
model semantic phenomena, including coreference, control constructions
and scope. As the variable names themselves are arbitrary andmeaningless,
they present a challenge to our sequence-to-sequence model. Second, while
semantic parsing data sets are generally small, these models are known to
be data-hungry. To combat this, we use automatically generated (silver stan-
dard) data to increase performance. Third, we investigate howmuchwe can
benefit from injecting linguistic knowledge (such as syntactic analyses) into
the system. In the last content chapter, we discuss the rise of contextual lan-
guage models (Devlin et al., 2019) that happened throughout the course of
this thesis, and try to determine if character-level representations are still
useful in this new era of NLP.

1.2 Chapter Guide

This thesis is divided in five parts and contains ten chapters. The research in
this thesis centers around developing open domain neural semantic parsers
that can produce accurate (formal) meaning representations. We aim to an-
swer the following seven research questions:
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RQ1 Can neural sequence-to-sequence models be used to produce accurate
meaning representations?

RQ2 How canwe best represent the input texts for thesemodels: characters
or words?

RQ3 To what extent can we improve performance by employing silver stan-
dard data?

RQ4 How can we best deal with the variables in the meaning representa-
tions?

RQ5 AMR has a well-established evaluation method. Can we construct a
similar method to evaluate Discourse Representation Structures?

RQ6 Can we improve neural semantic parsers by injecting linguistic knowl-
edge?

RQ7 Can we combine character-level representations with representations
from a contextual language model to improve neural semantic pars-
ing? If so, what is the best method of combining them?

Part I - Background

Part I sets the stage for the rest of the thesis. It contains an extensive descrip-
tion of the two semantic formalisms we will be using throughout the the-
sis: AMR and DRS. We also review the previous work on semantic parsing.
Most importantly, we describe our neural sequence-to-sequence model in
detail, starting from a general definition of neural networks. Finally, we de-
scribe the advantages and disadvantages of character-level models, as well
as a number of studies that successfully utilized them.

Part II - Abstract Meaning Representation

Part II contains our first attempts at neural semantic parsing. In Chapter 4
we apply our sequence-to-sequence model to AMR parsing and describe a
number of methods needed to achieve good performance (RQ1). We show
that a character-level model greatly outperforms a word-level model (RQ2)
and substantially improve performance by supplying the model with silver
standard training data (RQ3). In Chapter 5 we focus on the aspect that was
most challenging for our model: dealing with variable re-entrancies (RQ4).
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Part III - Discourse Representation Structures

Part III details our experiments on producing meaning representations
based on formal semantics. To be able to evaluate our semantic parser,
we develop an automatic evaluation method for DRS in Chapter 6 (RQ5).
We are interested if the lessons we learned in Part I are still applicable
when training a neural semantic parser on this more challenging domain.
In Chapter 7, we find this is indeed the case: our model outperforms
baseline DRS parsers (RQ1), with characters as the preferred representation
(RQ2), while benefiting a lot from using silver standard data (RQ3). Best
performance is reached by rewriting the variable names to a more general
representation, based on the order they were introduced (RQ5). Finally, in
Chapter 8 we show that exploiting linguistic information has modest, but
significant benefits for the character-level model (RQ6).

Part IV - Characters & Contextual embeddings

Part IV is concerned with a relatively new phenomenon in NLP: pretrained
contextual language models. In Chapter 9 we outline the effect they had on
the field and try to determine whether character-level representations can
still be useful. We devise two differentmethods of combining character-level
and contextual languagemodel representations, which we test on both AMR
andmulti-lingual DRS.We find that they can indeed still be useful, withmod-
est, but consistent, improvements across different formalisms, data sets, lan-
guage models and languages (RQ7).

Part V - Conclusions

Part V concludes with Chapter 10, which provides an overview of our main
conclusions based on the answers on our research questions listed above.
Finally, we reflect on our work in this thesis and outline possible directions
for future work in (neural) semantic parsing.
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Background





CHAPTER 2

Computational Semantics

2.1 Semantic Formalisms

This thesis will focus on two semantic formalisms: Abstract Meaning Repre-
sentation and Discourse Representation Structures. In this section, we pro-
vide a detailed overview of both formalisms.

2.1.1 Abstract Meaning Representations

The first semantic formalism we will be focusing on in this thesis is Abstract
Meaning Representation (AMR). The basics of this formalism were first de-
scribed by Langkilde and Knight (1998), though only after the release of the
first AMR corpus (Banarescu et al., 2013) it gained popularity in the field of
NLP. AMR aims to model the meaning of individual sentences by assigning
them a rooted, labeled and directed graph, derived from the PENMAN no-
tation (Kasper, 1989; Bateman, 1990). It abstracts away from syntax: sen-
tences that have the same basic meaning should have the exact same seman-
tic graph. AMRs are not created compositionally, i.e., there is no necessary
alignment between the words in a sentence and the semantic structures.

An example AMR is shown in Figure 2.1. There are three common ways
to represent AMRs: in string format (top left), graph format (top right) and
triple format (bottom). In this section we will use the prettier graph format,
but in other chapters we will be using the string format, as it better matches
how our AMR parser handles the data. The triple format is commonly only
used during evaluation.
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(w / want-01

:ARG0 (c / clown)

:ARG1 (p / perform-01

:ARG0 c))

want-01

clown perform-01

ARG0 ARG1

ARG0

Instance Attribute Relation

(instance, w, want-01) (TOP, w, top) (ARG0, w, c)
(instance, c, clown) (ARG1, w, p)
(instance, p, perform-01) (ARG0, p, c)

Figure 2.1: Three equivalent AMRrepresentations for the sentenceThe clown
wants to perform: string tree format (top left), graph format (top right) and
triple format (bottom).

AMRs consist of concepts (graph nodes) and relations (graph edges). AMR
concepts are closely related to the words in the sentence. They can either be
English words (clown), PropBank (Palmer et al., 2005) framesets (want-01,
perform-01) or special keywords (e.g., have-org-role-91). The PropBank
frames are used to distinguish different word senses, as well as selecting
the correct relations for that frame. For example, fold-02 has an :ARG0

that should indicate a person, while :ARG1 should represent hands, used
when someone folds their hands. However, fold-04 only has an :ARG0,
which is a card player, used when, for example, a poker player folds a set
of cards in a game. AMR does not differentiate between nouns and verbs:
PropBank frames are often used to represent nouns as well, for example us-
ing opine-01 to describe someone having an opinion.

The PropBank arguments are not the only possible arguments: AMR con-
tains relations that cover general semantic relations (:poss, :polarity),
quantities (:quant, :unit), dates (:day, :year) and lists (:op1, :op2).
AMRs can also model coreference and control structures by using graph
re-entrancies, i.e., adding an extra edge to an existing node, as is shown in
Figure 2.1. In this case, the clown is both thewanter and the performer. AMR
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handles this by assigning a variable to each instance, which can then later
be used to indicate re-entrancy. In Chapter 5, we look into this phenomenon
in more detail.

AMR handles negation by using the :polarity relation with a negative
constant. It represents the scope of the negation by where this node attaches
in the graph, see, for example, the difference between the left and right AMR
in Figure 2.2. Named entities in the AMR are represented by the :name re-
lation, with standardized forms such as person, country and organization,
while they are grounded using wikification (Cucerzan, 2007), as is shown
in Figure 2.3 (left). Here, the named entity Dick Advocaat is linked to the
Wikipedia page Dick_Advocaat.

obligate-01

laugh-01

clown

ARG1

ARG0

-polarity
obligate-01

laugh-01

clown

ARG1

ARG0

polarity-

Figure 2.2: AMRs for The clown does not have to laugh (left) and The clown
must not laugh (right). The attachment of the polarity determines the scope
of the negation.

There are also a number of simplifications and drawbacks of AMR. First,
AMR is heavily biased towards English, and not meant to be an interlingua.1

Second, it does not consider grammatical number and definiteness, with the
consequence that The clowns want to perform and A clown wants to perform
have identical graphs. Third, it does not model tense and aspect, meaning

1There are efforts towards multi-lingual AMR, with annotation efforts for Czech (Xue
et al., 2014), Chinese (Li et al., 2016), Brazilian Portuguese (Anchiêta and Pardo, 2018; So-
brevilla Cabezudo and Pardo, 2019) and Spanish (Migueles-Abraira et al., 2018). Moreover,
there are case studies for Korean (Choe et al., 2019) and Vietnamese (Linh and Nguyen,
2019).
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want-01

person perform-01

ARG0 ARG1

ARG0

Dick_Advocaat

wiki name

Dick Advocaat

op1 op2

possible

resist-01

no-one

ARG1

ARG0

Figure 2.3: AMR representations for the sentence Dick Advocaat wants to
perform (left) and No one can resist (right).

that The clown wanted to perform has the same graph as well. Fourth, it
does not handle quantifier scope in a principled way. For example, see how
AMR models No one can resist in the right AMR of Figure 2.3.2 Bos (2016)
showed that there is a way to formally model universal quantification in
AMR, but thismethod can atmost handle a single universal quantifier. More-
over, Pustejovsky et al. (2019) showed that there also can be ambiguities for
a single universal quantifier: Everyone in the room listened to a talk has the
same graph structure for everyone listening to the same talk, or each person
listening to a different talk.

However, these simplifications alsomake AMR an easy to understand for-
malism and allowed a large number of people to annotate AMRs, which in
turn led to the release of large-scale corpora. Before this, meaning repre-
sentations data sets were generally small and not always fully manually an-
notated. The release that we will working with in this thesis (LDC2017T10)
already contains 39,260 gold standard AMRs, while the most recent release
(LDC2020T02) has 59,255. This allowed for the development of a large num-
ber of AMR parsers, which will be discussed in Section 2.2, Chapter 4 and
Chapter 9.

2We based the AMR on the gold standard example No one can enter otherwise.
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2.1.2 Discourse Representation Structures

Discourse Representation Structures (DRSs) are formal meaning represen-
tations based on Discourse Representation Theory (DRT, Kamp 1984; Kamp
and Reyle 1993). DRT is a formalism that explores meaning representations
based on formal semantics. The main reason for its development was its
capability in handling donkey sentences (Geach, 1962) such as Every farmer
who owns a donkey beats it. The semantic formalisms at the time could not
account for the fact that the indefinite description of a donkey has to play
the role of a universal quantifier when referred to by the pronoun it. DRT
resolved this by introducing discourse referents, which are referents to each
non-anaphoric noun phrase in the discourse, that can then potentially be
used to bind anaphora that occur later in the discourse. In general, DRT
can serve as a unifying formalism to represent a large number of semantic
phenomena in a single meaning representation (DRS). Intuitively, a DRS can
be seen as a mental representation of the discourse by the hearer. Among
others, DRT has been used to study presuppositions (Van der Sandt, 1992),
rhetorical structure (Asher and Lascarides, 2003) and conventional implica-
tures (Venhuizen, 2015). Another nice feature of DRSs is that they can be
automatically translated to first-order logic (Muskens, 1996), which in turn
can aid programs that perform inference on natural language (Blackburn
et al., 1998; Blackburn and Bos, 2005). Next, we will discuss the specific di-
alect of DRS that we will be using throughout this thesis. This is the format
that is used in the Parallel Meaning Bank project (Abzianidze et al., 2017).

A full DRS is commonly seen as a collection of boxes. A box consists of
discourse referents and conditions. The discourse referents are indicators of
discourse elements, e.g., persons or events. The conditions assert informa-
tion over these discourse elements. For example, Figure 2.4a shows a simpli-
fied DRS for the sentence Tom owns a credit card. There are two discourse
referents, x1 and x2. The conditions then assert that x1 is named Tom, x2 is
a credit card, and that x1 is the owner of x2. The conditions can also be inter-
preted as truthconditions, which are satisfied if there indeed exists someone
named Tom that owns a credit card. In our DRS interpretation, we represent
Tom (x1) a bit more formal: x1 is a male that is named Tom (see Figure 2.4b).
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 Tom (x1)
 credit card (x2)
 owns (x1, x2)

		x1			x2				

 male (x1)
 name (x1, Tom)
 credit card (x2)
 owns (x1, x2)

		x1			x2				

 male.n.02 (x1)
     Name (x1, "tom")
 credit_card.n.01 (x2)
 own.v.01 (e1)
     Pivot (e1, x1)
     Theme (e1, x2)

		x1			x2			e1	

(a) (b) (c)

Figure 2.4: Example DRSs for the sentence Tom owns a credit card. A sim-
plified DRS is shown in (a) and extended in (b) by using a more principled
representation of named entities. In (c), the concepts are grounded in Word-
Net, while the roles are grounded in VerbNet.

DRS conditions can either be basic or complex. A basic DRS condition can
be one of three types: a concept, a role or a comparison operator. The con-
cepts are grounded using WordNet (Fellbaum, 1998), indicating the lemma,
part-of-speech and sense number. This can spanmultiple tokens in the input:
credit card is represented as credit_card.n.01. We use neo-Davidsonian
event semantics to represent events (Parsons, 1990). An event, usually intro-
duced by a verb, has its own discourse referent (e1). The verb that invoked
this event is represented using aWordNet synset (own.v.01), while the roles
the participants play in this event are grounded in VerbNet (Bonial et al.,
2011). For our example sentence, the verb own introduces the role Pivot

for the thing that owns something, while Theme is used for the thing that is
owned. These conditions are two-place predicates, as they have to relate the
event to the event participants. This DRS is shown in Figure 2.4c. Lastly, the
comparison operators can be used to relate and compare discourse referents
to each other, such as x1 < x2 (x1 is smaller than x2) or x1 SZN x2 (x1 is
spatially under x2). The arguments of the DRS conditions are called terms.
Terms are usually the discourse referents (which are often called variables),
but can also be constants. Constants are used to represent, among others,
discourse direction ("speaker", "hearer"), questions ("?"), names ("tom"),
quantities ("40") and tense ("now").
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Complex conditions, on the other hand, are used to indicate logical rela-
tions between the sets of conditions and can represent their scope. They are
defined as follows:

• If B is a DRS, then ¬B, 3B and 2B are complex conditions;

• If x is a variable, and B is a DRS, then x:B is a complex condition;

• If B and B’ are DRSs, then B⇒B’ and B∨B’ are complex conditions.

We can use the complex conditions to model Tom doesn’t own a credit
card as shown in Figure 2.5a. Moreover, we now have a principled way of
modelling No one can resist (Figure 2.6a), as opposed to the right AMR in
Figure 2.3. It can be interpreted as “It is not the case that there exists a person
for whom it is possible to be an agent in a resisting event”. We also want to
model tense, so we can model the difference between Tom doesn’t own a
credit card and Tom didn’t own a credit card. In English, the tense is usually
introduced by the main verb in the sentence. It is modeled as a time period
(t1), represented by the concept time.n.08 and role Time. The tense is then
represented by conditions such as ≺ (temporally precedes) and = (equal to).
The latter is used for the present tense, in which the time period equals the
constant "now", as in t = "now" in Figure 2.5b.

(a) (b)

 credit_card.n.01 (x2)
 own.v.01 (e1)
     Pivot (e1, x1)
     Theme (e1, x2)

		x2			e1	

  x1 

¬  credit_card.n.01 (x2)
 own.v.01 (e1)
     Pivot (e1, x1)
     Theme (e1, x2)
     Time (e1, t1)

		x2			e1

  x1		t1

¬

male.n.02 (x1)
    Name (x1, "tom")

male.n.02 (x1)
    Name (x1, "tom")
time.n.08 (t1)
     t1  =  "now"

Figure 2.5: Example DRSs for the sentence Tom doesn’t own a credit card,
without tense (a) and with tense (b).
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The conditions for Tom in Figure 2.5a are modeled outside the negation,
because the sentence implies that a male named Tom exists, whether he
owns a credit card or not. This is known as projected content or a presup-
position. In our dialect of DRS, we model these presuppositions in separate
boxes outside of the main box of the DRS, as is shown in Figure 2.6b, based
on Van der Sandt (1992) and projective DRT (Venhuizen et al., 2018).

(b)

 credit_card.n.01 (x2)
 own.v.01 (e1)
     Pivot (e1, x1)
     Theme (e1, x2)
     Time (e1, t1)

		x2			e1			

  t1

¬
 
 male.n.02 (x1)
     Name (x1, "tom")

		x1

  time.n.08 (t1)
      t1  =  "now"

		x1

¬
  resist.v.02 (e1)
      Agent (e1, x1)

		e1

person.n.01 (x1)

(a)

Figure 2.6: Example DRSs for the sentence No one can resist (a) and Tom
doesn’t own a credit card (b). In (b), we model the presupposition in a sepa-
rate box.

Even though our current format in principle can handle multi-sentence
documents, understanding the relation between different discourse seg-
ments is known to be a necessary component of discourse understanding
(Grosz and Sidner, 1986). We model this by using rhetorical relations from
Segmented DRT (Asher, 1993; Asher and Lascarides, 2003). In essence, this
allows us to describe the discourse relations between different (possibly
nested) boxes of a DRS. Each box is given its own identifier (b1, b2, etc) so
we can indicate the relations between the boxes. Common relations include
CONTINUATION (I can’t squeeze this orange. It’s dry), CONSEQUENCE (He who
has the money, also has the power) and CONTRAST (The telephone rang, but no
one answered, see Figure 2.8 on page 21). A definition of DRS in Backus-Naur
form is given in Figure 2.7, mostly based on Abzianidze et al. (2019).
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<DRS> ::= {<DRS>} <box>

<box> ::= <simple box> | <segmented box>

<simple box> ::= {<referent>} {<condition>}

<condition> ::= <basic condition> | <complex condition>

<term> ::= <referent> | <constant>

<basic condition> ::= <concept><pos_sense_number>(<term>)

| <semantic role> (<term>, <term>)

| <term> <comparison operator> <term>

<complex condition> ::= ¬ <box> | 3 <box> | 2 <box>

| <box> ⇒ <box>

| <referent> : <box>

<segmented box> ::= {<box>} {<condition>}

<condition> ::= <relation> (<label>, <label>)

Figure 2.7: A definition of DRS given in Backus-Naur form.

The DRS dialect we will be using in this thesis is based on the Parallel Mean-
ing Bank (Abzianidze et al., 2017), which in turn was heavily based on the
Groningen Meaning Bank (Basile et al., 2012a,b; Bos et al., 2017). We will
describe these two corpora below.

GroningenMeaning Bank The first large corpus annotatedwith DRSswas
the Groningen Meaning Bank (GMB). It was designed to unify a large range
of semantic phenomena in a single formalism. The GMB focuses mostly on
multi-sentence documents of news wire texts. The latest release (2.2.0) con-
tains 10,000 documents and over a million tokens. The DRSs are not anno-
tated from scratch, rather they are corrected versions of automatically gen-
erated output. However, the annotations are not on the level of the final
meaning representation, but focus on correcting intermediate layers. Each
layer focuses on a different aspect of syntax and semantics, which can be cor-
rected at the token-level. There are ten different layers in the GMB: tokeniza-
tion, POS-tagging, lemmatization, CCG supertagging, named entity recogni-
tion, animacy tagging, word sense disambiguation, thematic role labelling,
scope annotation and coreference resolution. The output of these layers is
then fed to the rule-based semantic parser Boxer (Bos, 2008b), which pro-
duces the final DRS. There is a trained tagger available for a number of these
layers, which could be retrained when more annotations became available.
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An issue with the GMB is that there is no set of gold standard documents
available for evaluation, as the released documents are only partially cor-
rected by human annotators. For semantic parsing this is problematic, as it
is unclear to what extent we are modelling the output of Boxer, instead of
learning how to produce accurate DRSs.

Parallel Meaning Bank The follow-up project of the GMB is the Paral-
lel Meaning Bank (PMB). This is a corpus of parallel texts annotated with
DRSs. English is used as the pivot language, i.e., each document contains En-
glish, while translations can either be in German, Italian or Dutch. It follows
the same process of layer-wise annotation by correcting automatically pro-
duced token-level tags. The layers, though based on the same principles, are
changed to allow them to be language-neutral. Also, the POS-tagging, named
entity recognition and animacy tagging layers are resolved in a single seman-
tic tagging layer (Bjerva et al., 2016b; Abzianidze and Bos, 2017). Moreover,
the concept and role symbols in the final DRS are grounded inWordNet (Fell-
baum, 1998) and VerbNet (Bonial et al., 2011). The aim of the PMB is that the
final DRS is language-neutral, i.e., the final DRS of Tom doesn’t own a credit
card and its Dutch translationTomheeft geen creditcard should be equivalent
if the translation is meaning preserving. The PMB contains a large number
of shorter, sentence-level documents, which allows for a set of gold standard
DRSs that canbeused during training, andmost importantly, evaluation. The
work in this thesis will therefore focus on the PMB; amore detailed introduc-
tion of the corpus is given in Chapter 6. Specifically, we will be working with
PMB release 1.0.0 (Chapter 6), 2.1.0 (Chapter 7), 2.2.0 (Chapter 8) and 3.0.0
(Chapter 9). Detailed descriptions of these data sets will be provided in the
respective chapters.

2.1.3 Comparing AMR and DRS

There are some notable differences between AMR and our variant of DRS. In
short, DRS is a more expressive formalism than AMR, as it models more se-
mantic phenomena. The main difference is that DRS models scope explicitly,
allowing a more principled representation of negation and quantification.
Another major difference is that DRS can handle multi-sentence documents
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 person.n.01 (x2)
 answer.v.02 (e2)
      Agent (e2, x2)
      Time (e2, t2)

		x2		e2

		t2

¬

CONTRAST (b2, b3)

b3

b4

 ring.v.01 (e1)
     Theme (e1, x1)
     Time (e1, t1)
 time.n.08 (t1)
      t1  ≺  "now"

		e1		t1 b2
time.n.08 (t2)
    t2  ≺  "now"

 telephone.n.01 (x1)

		x1 b1

contrast-01

ARG1

ARG2

ring-01

answer-01 no-one

telephone
ARG0

ARG0

AMR representation:

DRS representation:

Figure 2.8: Example AMR (top) and segmented DRS (bottom) for the sentence
The telephone rang, but no one answered.

by using explicit discourse relations, while AMR is designed to only give
sentence-level representations (though it can handle some multi-sentence
cases). DRS also explicitlymodels presuppositions, which is not done in AMR.

There are also a few smaller differences. DRS concepts and roles are
grounded in WordNet (Fellbaum, 1998) and VerbNet (Bonial et al., 2011), re-
spectively, while AMR only uses PropBank (Palmer et al., 2005) for verbs,
leaving nouns ungrounded. On the other hand, AMR grounds named entities
using wikification (Cucerzan, 2007), while DRS does not have such a compo-
nent. Another difference is that DRS models tense, meaning it has different
meaning representations for things that already happened and things that
will happen in the future. In Figure 2.8, we highlight the difference in expres-
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siveness of AMR and DRS. DRS explicitly models past tense (rang, answered)
and presupposition (telephone), while also having a principled treatment of
the negation (no-one).

We believe these formalisms make for an interesting testing domain for
semantic parsers, as they aim to model meaning from quite different per-
spectives. In this sense, we believe that if a system is able to successfully
model both AMR and DRS, it is likely that it can also learn other semantic
formalisms. We compare AMR to DRS in more detail in Chapter 6.

2.2 Semantic Parsing

Semantic parsing is the task of automatically mapping a natural language
text into a formal, interpretable meaning representation. Informally speak-
ing, a meaning representation describes who did what to whom, when, and
where, and to what extent this is the case or not. In this section, we will de-
scribe previous semantic parsing approaches, ranging from the traditional
rule-based systems to the recent neural network models. We will discuss
open domain and closed domain approaches in separate sections, with par-
ticular interest for AMR and DRS parsing systems.

2.2.1 Rule-based Approaches

Already since the 1950s, extracting themeaning of a sentencewas thought to
be a major component of possible automatic machine translation (Weaver,
1955; Masterman, 1961). The first studies on what now would be considered
semantic parsing emerged in the 1970s. SHDRLU (Winograd, 1972) and LU-
NAR (Woods et al., 1972) were systems that constructed a semantic represen-
tation based on its syntactic analysis by applying a set of rules. SHDRLU was
a system that could manipulate a block world based on user input, while
LUNAR could answer questions based on a database of Apollo 11 research.
Schank (1975), in his overview work, took it a step further and proposed
that any natural language processing problem has three different parts: (i)
mapping sentences to ameaning representation, (ii) processing thismeaning
representation and (iii) translating the produced meaning representation
back to natural language. The developed system, MARGIE, could make para-
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phrases and inferences from natural language and was based on Concep-
tual Dependency Theory (Schank, 1972). Wilks (1972) introduced an English-
French machine translation systems that worked similarly. It first mapped
the English input sentence to a meaning representation using Preference Se-
mantics (Wilks, 1975), whichwas thenused to generate the translated French
sentence.

These parsers were heavily rule-based, though, since they relied on syn-
tactic and semantic grammars. This remained the dominant approach until
the 1990s, with approaches including Hendrix et al. (1978), Damerau (1981),
Templeton and Burger (1983), Johnson and Klein (1986), Pereira and Shieber
(1987) and many others. The approaches usually followed the same recipe:
a rule-based transformation is applied on the syntactic analysis of the sen-
tence, with the aim to create a formal (meaning) representation. These rules
were hand-crafted, limited to the domain they were designed for and re-
quired considerable domain expertise during design. This severely limited
the general applicability of the created systems.

2.2.2 Closed Domain Semantic Parsing

The common definition of semantic parsing also includes tasks which map
natural language sentences to computer-interpretable interpretations, such
as text-to-SQL (ATIS, Hemphill et al. 1990; Dahl et al. 1994) and text-to-prolog
(GeoQuery, Zelle and Mooney 1996). These tasks had corresponding anno-
tated data sets on which performance could be evaluated, which drove the
creation of data-driven parsers. These parsers could at least (partially) learn
how to produce the final representations by using statisticalmethods (Pierac-
cini et al., 1992; Miller et al., 1994; Zelle and Mooney, 1996). Models on these
types of data sets remained dominant through the 2000s, with, among others,
approaches based on lambda-calculus (Zettlemoyer and Collins, 2005; Wong
and Mooney, 2007), parse trees (Ge and Mooney, 2005, 2009), support vec-
tor machines (Kate and Mooney, 2006), tree transducers (Jones et al., 2012)
and statistical machine translation techniques (Wong andMooney, 2006; An-
dreas et al., 2013). The need for annotated training data could be avoided
by using weakly supervised or even unsupervised learning methods (Clarke
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et al., 2010; Goldwasser et al., 2011; Poon, 2013). More recently, successful
approaches included neural sequence-to-sequence (Xiao et al., 2016; Jia and
Liang, 2016) and sequence-to-tree (Dong and Lapata, 2016) models.

2.2.3 Open Domain Semantic Parsing

Most of the previous parsers were only developed to work on a single do-
main. In the context of this thesis, however, we are interested in parsers
that produce general purpose deepmeaning representations on open domain
natural language sentences. For example, the ATIS and GeoQuery data sets
contain only sentences about either flight information or geography in the
United States, which is of course a huge simplification of natural language.
We also consider semantic role labelling (Gildea and Jurafsky, 2000) to be
shallow, though it is an integral part of both the AMR and DRS representa-
tions. Other semantically annotated corpora do not combine their semantic
annotations in a single representation, such as FrameNet (Baker et al., 1998),
PropBank (Palmer et al., 2005), the Penn Discourse Treebank (Prasad et al.,
2008) and OntoNotes (Hovy et al., 2006). In this section, we will discuss ap-
proaches that aimed to produce a single meaning representation that con-
tains a variety of semantic phenomena on open domain texts.

Initial approaches Initial approaches that pursued open domain semantic
parsing were based on the Combinatory Categorial Grammar (CCG) formal-
ism (Bos et al., 2004; Bos, 2005), which led to the development of the seman-
tic parser Boxer (Bos, 2008b). Boxer is a combination of statistical (tokeniza-
tion, POS-tagging, named entity recognition and CCGparsing) and rule-based
methods that produces Discourse Representation Structures (DRSs, Kamp
and Reyle 1993). A similar approach was taken by Allen et al. (2008), in that
it used statistical methods to provide features to a hand-built grammar with
semantic restrictions, using logical form language (Allen et al., 2007) as the se-
mantic formalism. Another approach within this tradition was Minimal Re-
cursion Semantics (Copestake et al., 2005), for which grammar based parsers
were proposed (Copestake, 2007).

Evaluation An issue with these approaches was that it was not immedi-
ately clear how to evaluate them (Bos, 2008a). An attractive option is to com-
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pare the produced semantic structures to a gold standard (glass box evalua-
tion). However, creating such a gold standard is not straightforward, as se-
mantic annotation is a hard and time-consuming task. Moreover, while this
gives us an accuracy of parsers for a certain formalism, we cannot compare
the adequacy of the formalisms themselves. Another option is black-box
evaluation, in which the performance of models is judged on how well they
do on a downstream task, such as Recognizing Textual Entailment (Dagan
et al., 2005). Currently, glass-box evaluation is the commonmethod of evalu-
ating semantic parsers. AMRhas awell-defined glass-box evaluationmethod
(Cai and Knight, 2013), while we develop a glass-box evaluation method for
DRSs in Chapter 6.

AMR parsing In 2013, the Abstract Meaning Representation (AMR) corpus
was released (Banarescu et al., 2013). In Section 2.1.1, we gave a more de-
tailed overview of AMR, but in short, AMR aims to give a structured repre-
sentation of the meaning of a sentence in a single rooted, directed graph,
consisting of relations (edges) and concepts (nodes). The first AMR parsing
approaches were heavily based on syntactic parsing techniques. Flanigan
et al. (2014) and Flanigan et al. (2016) use a two-step model that identifies
concepts and relations separately, with relation prediction based on themax-
imum spanning tree algorithm used in dependency parsing (McDonald et al.,
2005). A transition-based method was proposed by Wang et al. (2015a,b), in
which a dependency parse is transformed to an AMR graph. Extensions to
this method were proposed by Goodman et al. (2016) who used imitation
learning and Damonte et al. (2017) who processed the sentence left-to-right
based on the Arc-Eager dependency parser (Nivre, 2004). Peng et al. (2015)
used hyperedge replacement grammar to produce the AMR graphs, while
other approacheswere based onCCG (Artzi et al., 2015;Misra andArtzi, 2016)
or statistical machine translation (Pust et al., 2015).

Neural AMR parsing The previous approaches have in common that
they are dependent on syntactic parsers, grammars or specific alignment
between the words and graph fragments. We would prefer a method that
does not have such dependencies, as they (i) introduce an extra step of
complexity and possible errors, (ii) are often not available for non-English
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languages and (iii) can be hard to transfer to other domains. Barzdins and
Gosko (2016) proposed such a method: a character-level neural sequence-to-
sequence model for AMR parsing, which does not depend on any linguistic
information. However, it was quite far removed from state-of-the-art
performance. Our AMR parser in Chapter 4 is based on this approach, with
an overview of the model given in the next chapter. Contemporary to our
work in Chapter 4, Peng et al. (2017b) and Konstas et al. (2017) also apply
sequence-to-sequence models to AMR parsing. However, both models are
word-based instead of character-based and depend on extensive anonymiza-
tion of the input to reach good performance, which was still not close to
the state-of-the-art. Foland and Martin (2017) did obtain state-of-the-art by
using five bi-LSTM networks to produce the AMRs, though they are still
dependent on specific alignments. Also, a number of AMR parsers were
developed through the course of this thesis. We describe and compare to
those approaches in Chapter 9.

DRS parsing Early DRS parsing approaches were either fully rule-based
(Johnson and Klein, 1986; Wada and Asher, 1986) or relied on rules in combi-
nation with statistical methods (Bos, 2008b). The introduction of the Gronin-
gen Meaning Bank (GMB, Basile et al. 2012a,b; Bos et al. 2017)3 allowed for
the emergence of parsers based on supervised learning. The first parser on
GMB data was proposed by Le and Zuidema (2012) who converted the DRSs
to graphs and trained a parser with dependency parsing techniques to com-
bine partial graphs to a full graph. They also use a probabilistic model to
learn the lexicon with partial graphs, as opposed to having a fixed lexicon
whenusing lambda calculus. TheGMBwas followed-up by the ParallelMean-
ing Bank (PMB, Abzianidze et al. 2017), which annotates parallel texts in En-
glish, German, Italian and Dutch with DRSs. An initial release of this data
was used by the cross-lingual CCG-based parser of Evang and Bos (2016). The
PMB is described inmore detail in Chapter 6, whilewe describe our ownDRS
parsers trained on PMB data in Chapters 7, 8 and 9, as well as other (con-
temporary) developed DRS parsers (Liu et al., 2018a, 2019a; Fancellu et al.,
2019; Fu et al., 2020).

3See Section 2.1.2 for a more detailed description of the GMB.
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Other formalisms There are a number of semantically annotated corpora
that consist of semantic dependencies, which are somewhere in between se-
mantic role labelling and full, deep meaning representations (Hajič et al.,
2012; Ivanova et al., 2012). These were the target meaning representations
in two consecutive shared tasks (Oepen et al., 2014, 2015), in which the best
systems used an extension of an existing dependency parser (Martins and
Almeida, 2014) and an SVM-based sequence labelling approach (Kanerva
et al., 2015). Later, neural models improved performance by applying multi-
task learning (Peng et al., 2017a, 2018; Stanovsky and Dagan, 2018). The
composition-based parser of Lindemann et al. (2019) achieved state-of-the-
art on a number of semantic graph banks and is described in more detail in
Chapter 9. Another formalism is Universal Cognitive Conceptual Annotation
(UCCA, Abend and Rappoport 2013), a graph-based semantic formalism that
is not based on a syntactic foundation, similar as AMR. It consists of multiple
layers, in which each layer represents a semantic distinction. The first UCCA
parser was a neural transition-based approach (Hershcovich et al., 2017), on
which they later improved by using multi-task learning (Hershcovich et al.,
2018).





CHAPTER 3

Sequence-to-sequence Architecture
In this chapter we give a detailed description of the artificial neural net-
work (NN) model that we will be using throughout the thesis. To put that
in a wider context, we will also give a brief overview of the history of NNs,
though the reader is assumed to have some background knowledge in the
workings of supervisedmachine learning and basic feed-forward neural net-
works. There are many excellent resources available that explain machine
learning (Hastie et al., 2009) and NNs (Goodfellow et al., 2016; Goldberg and
Hirst, 2017) in detail.

3.1 Neural Networks

In a very basic sense, neural networks are systems that, given a set of func-
tions and weights, automatically convert a certain input to a certain output.
The first work that is considered to be neural is the McCulloch-Pitts neuron
(McCulloch and Pitts, 1943), which was an early model of brain function. For
the model to work, a human operator had to manually set the weights. The
first models that could actually learn the respective weights were the per-
ceptron (Rosenblatt, 1958) and ADALINE (Widrow and Hoff, 1960). The lat-
ter modified the weights by using stochastic gradient descent (SGD), which is
still a commonly usedmethod of training deep learningmodels. These linear
models had severe limitations, though, as they famously could notmodel the
XOR-function (Minsky and Papert, 1969). The first real breakthrough took
place in the 1980s, with the introduction of non-linear activation functions
combined with backwards propagation of errors (backpropagation, Rumel-
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hart et al. 1986). This paper gave us the definition of the well-known feed-
forward neural network (FFNN) with 1 hidden layer:1

FFNN(x) = g(W1x)W2 (3.1)

Here W1 and W2 are weight matrices for the linear transformations, x
the input vector, and g a non-linear activation function that is applied ele-
ment wise. Common activation functions are the (logistic) sigmoid (σ) and
hyperbolic tangent (tanh), which are defined as follows:

σ (x) =
ex

ex + 1

tanh (x) =
ex − e−x

ex + e−x

(3.2)

This non-linearity is crucial, since it allowed the modelling of more com-
plex phenomena, such as the XOR-function and most real-world problems.
Without the non-linearity it does not matter how many matrices (layers)
there are, the resulting model will always be linear.

Backpropagation works by calculating the gradient of the loss function
and is still the backbone of all current neural network systems. The loss func-
tionmeasures howwell our network is able tomodel the training set. During
training, it calculates the difference between what the network would have
predicted and the ground truth output labels. More intuitively, it sees the
total loss as a geometric area, as is shown in Figure 3.1. By calculating the
gradient of where we currently are, we can update the weights in such a
fashion that the loss moves towards a local or global minimum.

Loss

Global
Minimum

Local
Minimum

Local
Minimum

Figure 3.1: Geometric representation of a (non-convex) loss function.

1Throughout this thesis, biases are omitted for brevity.
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In other words, training is performed by feeding input vectors to the
model for which we know the correct outcome, calculating what it would
have predicted in its current state, and measuring how far off we are (i.e.,
the loss function). The gradient of the loss function is then used in combina-
tion with an optimizer to change the weight matrices. This is how learning
takes place: the network automatically changes its weight matrices to make
more accurate predictions. Optimizers are functions that tell us how to up-
date the weight matrices. They are discussed in more detail in Section 3.4.

In practice, we calculate the loss and update the weights over a sample
of k input examples (x1,x2, . . . ,xk) at each time step, since this is both more
efficient and more stable. This is referred to as the batch size. Moreover, we
can specify howmuchwewant to update theweights by setting a predefined
learning rate. In essence, the gradient gives us the direction of the step we
want to take, while the learning rate determines how big of a step this is.
Setting this value is an important step of training a model. If the learning
rate is too small, we might get stuck in an undesirable local minimum, or
the model will take too long to converge. If the learning rate is too large, we
might miss desirable (local) minima.

Note that we are not simply interested in learning to model the training
input; we want our trained model to be able to generalize to unseen exam-
ples. Therefore, we need to stop training at a certain point, as otherwise our
systemmight only learn to perfectly model the training set (usually referred
to as overfitting). The most common method is to have a held out validation
set that is not used during training. After each i training examples or itera-
tions over the training data, we calculate the loss on this held out set. If the
loss stopped decreasing, we stop training and have our final model. This is
often checked per epoch, which is a full iteration over the training set.
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3.2 Recurrent Neural Networks

We have left the output of the model unspecified so far, but it can only pre-
dict a single value or single vector given a fixed size input vector. This is
problematic for our purposes, since we are working with sequences, in both
natural language and semantic structures. Therefore, we would like to have
a model that can handle sequences of data. Elman (1990) proposed exactly
this, an extension to FFNNs that can handle sequences of arbitrary lengths,
called Recurrent Neural Networks (RNNs).2 An RNN is basically a sequence
of copies of the same FFNN, with connections between the steps in the se-
quence, which are referred to as time steps. An example of this network is
shown in Figure 3.2.

s0 +

x1

tanh

y1

s1 +

x2

tanh

y2

. . .sk-1 +

xk

tanh

yk

Figure 3.2: Schematic overview of the simple RNN (Elman, 1990).

For each time step t over a sequence of input vectors (x1,x2, . . . ,xk), the
network takes the current input vector xt into account, as well as the previ-
ous state of the RNN st−1, and calculates the new state st by applying a tanh

non-linearity:

yt = st = RNN(st−1,xt) = tanh ([st−1;xt]W) (3.3)

The initial vector s0 is usually the zero vector. Importantly, the weights
of this network are shared across all time steps. The loss is backpropagated
through the network using backpropagation through time (Werbos, 1990).

2We describe the Elman (1990) RNN since this is most similar to the model we will be
using, but note that there is earlier work describing (variants of) RNNs (Hopfield, 1982;
Jordan, 1986).
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A nice feature of an RNN is that we can easily stack layers on top of each
other. The output of each time step of RNNn-1 is simply fed as input to the
corresponding time step of RNNn, with the loss backpropagating through the
n layers.

However, there are two problems with this simple RNN architecture. For
one, it suffers from vanishing gradients. Since, for long sequences, the out-
put layer is quite far away from the first elements of the RNN, the gradient of
those initial layers depends on a multiplication of a lot of numbers smaller
than 1, resulting in such a small gradient that no learning takes place.3 Sec-
ond, it has a hard time learning long term dependencies (Bengio et al., 1994),
i.e., at the end of the sequence, the model did not retain enough information
from the beginning of the sequence, which is clearly a problem when pro-
cessing language. To get around these issues, Hochreiter and Schmidhuber
(1997) introduced a method that became very popular in the field of natural
language processing (NLP): Long Short Term Memory (LSTM).

The LSTM has two state vectors that are passed through the sequence:
the cell state c and the hidden state h. Intuitively, the cell state functions as
a long term memory cell, while the hidden state can be seen as the current
workingmemory. Access to these cells is controlled by gates, which are train-

X

tanh

X

+

X

tanh

xj

hj-1

cj-1

hj

cj

yj

f i o

Figure 3.3: Schematic overview of the LSTM architecture.

3If we initialize the weights to be very large, we get the opposite problem, exploding
gradients.
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able sigmoidal layers that determine how much information is passed on to
the next step. The forget gate f controls how much of the previous memory
cj−1 we keep after seeing a new instance xj . The input gate i determines to
what extent we add the new information to cj−1, while the output gate o con-
trols what we will actually output as our new hidden state hj . An overview
of a single LSTM block is shown in Figure 3.3. Mathematically, an LSTM is
defined as follows:

sj = LSTM
(
sj−1,xj

)
=
[
hj ; cj

]
fj = σ

(
Wfxj +Vfhj−1

)
ij = σ

(
Wixj +Vihj−1

)
oj = σ

(
Woxj +Vohj−1

)
zj = tanh

(
Wzxj +Vzhj−1

)
cj = fj � cj−1 + ij � zj

hj = oj � tanh
(
cj
)

(3.4)

Here, W and V are learnable weight matrices, σ is the sigmoid function
and � denotes element wise multiplication. The described architecture is
the one that is commonly used currently and is the default implementation
in the popular deep learning libraries Keras (Chollet et al., 2015) and Pytorch
(Paszke et al., 2019). However, there exist many variants of this architecture.
For example, the forget gate was not part of the original LSTM, but was in-
troduced in subsequent work (Gers et al., 1999). Peephole connections (Gers
and Schmidhuber, 2000) were added to improve on precise timing predic-
tions, but were later found to not significantly improve the scores across a
range of tasks (Greff et al., 2016). Cho et al. (2014b) introduced a simpler
variant of the LSTM: Gated Recurrent Unit (GRU). This variant does not use
the output activation function, and merges the input and forget gate into an
update gate. GRU was found to generally not outperform LSTM (Chung et al.,
2014; Jozefowicz et al., 2015), though can be an attractive choice in practice
as it is faster and more memory efficient.
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3.3 Sequence-to-sequence Models

There is still one final hurdle that we need to overcome before we can use
this network for our semantic parsing tasks. This LSTM-based RNN can at
most output one vector for each input vector it processes. This works per-
fectly well for sequence tagging tasks such as part-of-speech (POS) tagging,
for which we need an output tag for each input word. However, in our case,
the input sequence does not (necessarily) have the same length as the output
sequence. Sutskever et al. (2014) proposed a sequence-to-sequence model to
deal with this problem, often also referred to as the encoder-decoder archi-
tecture. They tested their approach on machine translation, but it quickly
turned out to be useful for other tasks as well, such as syntactic parsing
(Vinyals et al., 2015), text summarization (Rush et al., 2015) and (closed do-
main) semantic parsing (Xiao et al., 2016; Dong and Lapata, 2016).

LSTM LSTM LSTM. . .

LSTM LSTM LSTM. . .

s1 s2
sk

d0

y1 y2 ym

x1 x2 xk

t1 t2 tm

s0

Figure 3.4: Schematic overview of the basic sequence-to-sequence architec-
ture using LSTMs.

In this model, an LSTM is run over a sequence of input vectors (encod-
ing), after which its final vector sk (often referred to as the context vector) is
fed to a different LSTM, which produces the output (decoding). A schematic
overview of the basic architecture is shown in Figure 3.4. During training,
the decoder at time step j is fed with the previous decoder state dj−1 and
the vector pj−1 of the previous target symbol tj−1. This is known as teacher-
forcing (Williams and Zipser, 1989). We can do this during training, but dur-
ing prediction we obviously do not have access to these ground truth target
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symbols. In that case, we use the output vector yj−1 of the previous step.4

Thoughwe can now train amodel for our semantic parsing tasks, there is
an important extra mechanism that we will use to boost performance: atten-
tion (Bahdanau et al., 2015). The previously described encoder-decodermod-
els have a clear bottleneck: all the information of the input sequence needs
to be encoded in a single vector. This turned out to be a problem, especially
for processing longer sequences (Cho et al., 2014a). Attention addresses this
problem by allowing the decoder to have access to all encoder states s1 . . . sk
at each time step. The model is asked to align the input and target sequences
(an analogy that works well inmachine translation), but essentially learns to
only pay attention to parts of the input sequence that are relevant for the cur-
rent prediction. It calculates an attention vector a′j by comparing the current
hidden decoder state dj to all encoder states as follows:

a′j = (b1 . . . bk)

bi = f
(
dj , si

)
f
(
dj , si

)
=

exp
(
score

(
dj , si

))
k∑

l=1

exp
(
score

(
dj , sl

)) (3.5)

For the score function, we will be using either general or dot-product as
defined by Luong et al. (2015):

scoregen
(
dj , sl

)
= d>j sl

scoredot
(
dj , sl

)
= d>j Wasl

(3.6)

The resulting vector a′j is of length k and is then used to calculate a
weighted average over the encoder states to calculate the final attention
vector aj :

aj =

k∑
i=1

a′jisk (3.7)

4We can do this in a clever way using beam search, which will be explained on page 39.
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This final attention vector aj is then concatenated to the current hidden
state dj and put through a linear layer with tanh non-linearity to produce
the output vector yj :

yj = tanh
(
Wc[dj ;aj ]

)
(3.8)

An overview of our current architecture is shown in Figure 3.5, with in-
put vectors x1 . . .xk and, during training, target vectors t1 . . . tm.

LSTM LSTM LSTM. . .

LSTM LSTM LSTM. . .
Attention

x1 x2 xk

t1 t2 tm

y1 y2 ym

s1 s2 sk

d1d0
d2 dm

s1 ... sk

s0

Figure 3.5: Schematic overview of the sequence-to-sequence model with at-
tention.

So far, we have only worked with input and output vectors. However, we
will working with natural language, so we have to find a way to (i) convert
our input words5 to vectors and (ii) output words instead of vectors. For (i),
we will be using an embedding layer that transforms each word to a vector.
This ideawas initially proposed by Rumelhart et al. (1986), though got its first
breakthrough in Bengio et al. (2003). First, each word in our source vocab-
ulary is converted to a randomly initialized vector. These vectors together
form the weight matrix Ww during training, which we can update just as
the other weight matrices, by applying backpropagation. This weight matrix

5Note that we are not limited to using words, we can also use characters as our pre-
ferred representation. We will discuss this in Section 3.5.
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also functions as a lookup table during training, e.g., if we need a vector for
the third word in the sequence, which is the 57th word in the vocabulary, we
have e3 = Ww

57
. The loss is backpropagated all the way back to this layer,

so the representation of each word is thus pushed to be as useful as possible,
relevant to the task at hand.

There exist better methods than simply randomly initializing the initial
word vectors. This is known as the concept of pretrained word embeddings
(Mikolov et al., 2013; Pennington et al., 2014). Here, we train our weight
matrix of words Ww on a different task for which lots of data is available
(usually language modelling) and use those weights as a starting point when
training our own model. The idea is that these learned weights represent
knowledge about language in general, for example, words that are similar
in meaning should have similar vectors. An issue with this type of embed-
ding is that it completely ignores the context in which the words occur, i.e., it
cannot differentiate between different senses of a word. This was addressed
by contextual embeddings (Peters et al., 2018; Devlin et al., 2019), which do
take the context into account, and had amajor influence on the field. Wewill
describe them in more detail in Chapter 9.

To be able to produce words as output (ii), we add a softmax layer as our
final layer after decoding. First, we create a linear layer with a weight ma-
trix Wt which contains a vector for each word in the target vocabulary. The
output of this layer is a vector with the size of the number of words in the tar-
get vocabulary. This vector is then put through the softmax function, which
forces the vector to sum to 1 and in essence creates a probability distribution
over the full target vocabulary. At each decoding step, we can then simply
take the word with the highest probability as our output, which is known as
greedy decoding. Mathematically, it works as follows:

oj = argmax
(
softmax

(
vj

))
softmax

(
vj

)
i
=

exp
(
vji

)
k∑

l=1

exp
(
vjl

)
vj = Wtyj

(3.9)
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Here, oj is the final output word and yj is the output of the LSTM decoder
(with attention) at timestep j. In practice, greedy decoding has been super-
seded by the use of beam search.6 Instead of only keeping a single prediction,
it always keeps b predictions with the highest probability in memory. For ex-
ample, for a beam size b of 3, we select the 3 best output words at timestep
1. We continue decoding at timestep 2 and calculate 3 new predictions for
each of the initial predictions, giving us 9 current predictions. We then only
select the 3 predictions with highest probability of those 9, and continue to
timestep 3. We apply the same process there, and continue doing so, until we
stop decoding. At this point, we simply take the sequence with the highest
probability as our final prediction.

This process does not have a stopping criterion yet. We follow the com-
mon practical solution by appending a special end of sequence token (<EOS>)
to the target sequences of the training set. The model then learns to pro-
duce this token, and we then stop the process if we have produced this token
during decoding. Similarly, we add a special beginning of sequence token
(<BOS>), so that we can feed a target embedding vector to the decoder when
processing our first actual target symbol.

We have two final tricks to improve the performance of our sequence-
to-sequence model. First, instead of only running the encoder LSTM from
left-to-right, we run an LSTM in both directions, and concatenate the result-
ing vector at each timestep: sj = [−→sj ;←−sj ]. This is what’s called a bidirectional
model, and has been proposed by Schuster and Paliwal (1997) for a standard
RNN, while Graves (2008) extended it to the bidirectional LSTM (bi-LSTM).
Second, we apply dropout (Srivastava et al., 2014), a regularization technique
that works on the output of a certain layer, and sets individual output cells to
0with a certain probability p.7 The intuition is that themodel cannot learn to
rely on only a few individual weights (as they can be dropped out), which in
turn prevents overfitting. In RNNs, dropout is usually applied on the output
of recurrent layers (naive dropout, Zaremba et al. 2014), but can also be ap-
plied within the recurrent layers (variational dropout, Gal and Ghahramani

6First uses in combination with RNNs include Graves (2012), Boulanger-Lewandowski
et al. (2013) and Sutskever et al. (2014).

7This is not applied during prediction.
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2016). We will describe the type of dropout we use for each experiment in
the respective chapters.

This is the general model that we will be using for the semantic parsing
experiments described in Chapters 4, 5 and 7. A schematic overview of the fi-
nal model is shown in Figure 3.6. In Chapter 8 and 9we extend this model by
employing an extra encoder. Moreover, in Chapter 9wewill also experiment
with the Transformer architecture (Vaswani et al., 2017) and pretrained con-
textual word embeddings (Peters et al., 2018; Devlin et al., 2019). Details of
those architectures can be found in the respective chapters.

LSTM LSTM LSTM. . .

LSTM LSTM LSTM. . .
Attention

He bragged it

s1 s2 sk

d1d0
d2 dm

s1 ... sk

Embedding layer
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b1 REF <EOS>

b1 x2

. . .

. . .

y1 y2 ym

x1 x2 xk

t1 t2 tm

<BOS>

Figure 3.6: Schematic overview of the full sequence-to-sequence model with
attention, for encoding the sentence He bragged about it. The first LSTM is
the encoder, the second is the decoder. They can contain multiple layers,
though only one is depicted here.
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3.4 Hyper-parameters

The weights in the weight matrices are often described as the model param-
eters (usually referred to as θ) and they contain the values that the model
learns. However, there are certain model settings that need to be set in ad-
vance, and are not learned by the model. These settings are usually referred
to as hyper-parameters. It is crucial to set them (close) to their optimal value,
but it is impossible to know these values in advance. That is why training a
neural network always comes with a tuning stage, in which different combi-
nations of hyper-parameter settings are tried out, until we are satisfied with
the result. During tuning, we evaluate performance on a held out validation
or development set (usually the same one that tells us when to stop train-
ing). These values can already tell us a lot about the performance of our
model, but it is likely that we (at least partially) overfit on this validation set,
especially if we run a large number of tuning experiments. That is why we
measure the final performance on a second held out test set, whichwe never
looked at during tuning.

There are also certain parts of the architecture that we can treat as hyper-
parameters, i.e., we try multiple architectures and go with the architecture
that has the best validation performance. This can include the type of RNN
(LSTM or GRU), the type of attention (general or dot-product) or the addition
of an extra linear between the encoder and decoder (see Chapter 8).

Perhaps the most important hyper-parameter is the optimizer, which is
the function that determines how we update the weight matrices. The most
common optimizer is SGD, which is also at the core of the other optimiza-
tion functions. As explained above, SGD updates each parameter by looking
at the gradient of the loss function, while using the predefined learning rate
to determine how big each update must be. A problemwith SGD is that each
individual parameter is updated in the sameway. However, wewould prefer
larger updates for the weights of infrequent tokens, while very frequent to-
kens do not need large updates, especially near the end of training. This prin-
ciple was implemented by the AdaGrad algorithm (Duchi et al., 2011), which
was shown to improve the robustness of SGDwhen training deep neural net-
works (Dean et al., 2012). However, a remaining issue with this algorithm
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is that the learning rate keeps shrinking until it reaches practically zero, at
which no learning is taking place anymore. Two approaches independently
aimed tofix this problem (Zeiler, 2012; TielemanandHinton, 2012), andwere
later combined to form the currently most popular optimization function
Adam (Kingma and Ba, 2015).8 In Chapter 4, 5 and 7 we will use the SGD op-
timizer, while in Chapter 8 and 9 we found Adam to be preferable.9 Please
see Ruder (2016) for a more extensive and detailed overview of optimiza-
tion functions. Specific settings for all hyper-parameters are reported in the
respective chapters.

3.5 Characters versus Words

The input to a sequence-to-sequence model is a sequence of tokens. One of
the main aims of this thesis is to determine what the best method of rep-
resenting the input sentence is for neural semantic parsing: splitting the
sentence into a sequence of characters, words, or somewhere in between.
But, why would we even bother with individual characters, given that the
more commonword-level representations surely are a better general unit of
meaning? There are a number of common arguments. For one (i), character-
level models are potentially able to recognize that certain words are differ-
ent morphological inflections of the same lexeme (e.g., win, wins, won, win-
ning), while word-level models treat these as individual, non-related words.
In other words, pure word-level models are completely blind to any prefixes,
suffixes and stems. Second (ii), character-levelmodels can handlewords that
the model did not see before. For example, even if it never saw sprinting be-
fore, it can form a representation based on the times it saw sprint or sprinted
during training, while word-level models have to treat it as an unknown
word. This is especially useful for languages in which compound nouns are
combined in a single word (such as Dutch), as well as for noisy texts that
contain a lot of spelling errors. A related third (iii) argument is that there
are no unknown words in general for character-level models, while this can

8This is a quickly moving research field; there exist a number of newer variations on
Adam, such as AMSGrad (Reddi et al., 2018), AdamW (Loshchilov and Hutter, 2019) and
QHAdam (Ma and Yarats, 2019). We will not be experimenting with those.

9This was found during tuning of the respective systems.
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be a problem for word-level models. This is more likely to be a problem for
relatively small training sets, such as in semantic parsing. Fourth (iv), there
is no need for explicit segmentation of the document in meaningful tokens,
which simplifies preprocessing. Indeed, in practice, character-level models
have had successes across a range of other NLP tasks. We will discuss those
in the next section.

To be fair, arguments (i) and (ii) are already (partially) addressed by us-
ing pretrained word embeddings, be it static (Mikolov et al., 2013; Penning-
ton et al., 2014) or contextual (Peters et al., 2018; Devlin et al., 2019). When
trained on a very large corpus, the model will recognize that win, wins, won,
winning are similar in meaning, as they always occur in similar contexts.
Moreover, thiswill also reduce the number of unknownwords, aswe are not
reliant on our training set to form our vocabulary, but can use all words that
the model saw during pretraining. For contextual embeddings this often ap-
plies even more, as they use automatically learned subword units (Sennrich
et al., 2016b) instead of full words. The idea of thismethod is that it, for exam-
ple, splits sprinting to lexeme sprint andmorphological inflection ing, reduc-
ing the data sparsity. This is not always what happens in practice, though, as
the method is purely frequency-based. We will compare our character-level
model to word-level models that use static embeddings in Chapter 4 and 7,
and to models that use contextual embeddings in Chapter 9.

Of course, using character-level representations instead of word-level
representations also has disadvantages. Most importantly, it greatly in-
creases the average sequence length. This is not only more resource
intensive, it also makes them harder to model, since capturing long term
dependencies is a known problem of LSTMs (Cho et al., 2014a). Especially if
we want to move to document-level analysis, only using characters might
be infeasible. Moreover, the characters themselves do not carry meaning.
The meaning of car cannot be compositionally inferred by looking at the
meaning of c, a and r individually. This means the model has to be more
aware of the meaning of combinations of sequences than it has to be for
word-level models. Another disadvantage is the fact that we now have to
explicitly model spaces to indicate word boundaries. Lastly, the fact that
related words consist of the same characters is a potential advantage, but
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there are of course also many words that are orthographically similar, but
not related at all.

Note that the arguments in the previous paragraphs only hold for lan-
guages that use the Latin alphabet, as this thesis will only be concerned with
such languages. We will mostly be using English data sets, though in Chap-
ter 9 we experiment with DRS parsing for German, Italian and Dutch. For
writing systems that use a different alphabet (e.g., Chinese, Japanese), a dif-
ferent story has to be told.

Previous Character-level Models

The power of character-level representations has long been known in the
field. In earlier work, they were successfully used in a text-to-speech neu-
ral network (Sejnowski and Rosenberg, 1987) and a finite state transducer
for grapheme to phoneme conversion (Kaplan and Kay, 1994). It must be
noted, though, that using characters was the clear choice in these tasks, as
their models had to produce phonemes. Church (1993), on the other hand,
used character representations to align parallel texts, which worked well
for noisy (and more realistic) texts. Dunning (1994) used character n-grams
in his Bayesian model for automatically identifying languages. This type
of character n-grams also worked well in information (document) retrieval
(Cavnar, 1995; Damashek, 1995), named entity recognition (Cucerzan and
Yarowsky, 1999; Klein et al., 2003) and authorship attribution (Peng et al.,
2003). Vilar et al. (2007) trained an end-to-end statisticalmachine translation
systemwith just characters as input (and not character n-grams), but did not
get close to word-level performance. A similar system of Nakov and Tiede-
mann (2012), on the other hand, did outperform a word-level model, though
they only evaluated on Macedonian-Bulgarian translation. Character-level
models were presumed to be a good fit here, since the languages are closely
related, and not many other resources are available.

More recently, character-level representations regained popularity as in-
put representations for neural networks, starting with success in general
language modelling with Recurrent Neural Networks (Sutskever et al., 2011).
Santos and Zadrozny (2014) were the first to combine character and word-
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level representation in a deep neural network, getting state-of-the-art results
on POS-tagging. Ling et al. (2015) introduced an LSTM-based method that
uses characters to obtainword-level representations, which in turnwas used
by Ballesteros et al. (2015) in their neural dependency parser. Plank et al.
(2016) created a similar method for POS-tagging, evaluating on 22 differ-
ent languages, noting that character-representations especially helped for
Indoeuropean and Slavic languages.

Kim et al. (2016) introduced the char-CNN model, which uses characters
to obtain word-level representations using a Convolutional Neural Network.
Instead of seeing theword as just a sequence of characters (as in the previous
LSTM-based models), this network can also look at n-grams of characters by
applying different filters, making it a lot more powerful. Bojanowski et al.
(2017) also applied this idea of exploiting character n-grams in their language
modelling work, in which the final word representation is the sum of all n-
gram representations of a word.

Chung et al. (2016b) showed that a character-level decoder can be bene-
ficial in neural machine translation (NMT), without taking word-level infor-
mation into account. Interestingly, Costa-jussà and Fonollosa (2016) changed
the encoder of their NMT system to use the char-CNN, but did not change the
decoder. Luong and Manning (2016) did use characters in both the encoder
and decoder, but only used this information for unknown words, otherwise
still relying on word representations.

In semantic parsing, if character-level representations are employed,
they are commonly used in combination with non-contextual word-level
representations, and not in an end-to-end fashion. For example, Balles-
teros and Al-Onaizan (2017) and Groschwitz et al. (2018) concatenated a
character-based representation to the word representation for each word.
Barzdins and Gosko (2016) did use an end-to-end character-level model
for AMR parsing, though their results were quite far from state-of-the-art
performance. Our work in Chapter 4 is based on their approach.
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Hybrid representation Sennrich et al. (2016b) applied the byte-pair en-
coding (BPE, Gage 1994) method to NMT, which can automatically convert
words into sequences of subword units, without having to specify morpho-
logical information of a given language. It starts with the training set as a
sequence of characters, and then iteratively replaces the most frequent pair
of characters (e.g., ’t’, ’h’) with the combined characters (’th’) for a prede-
fined number of iterations. This way, frequent words are still represented as
full words, while less frequent words can be formed by multiple subword
units. There are no unknown words anymore, at worst the model repre-
sents a word as a sequence of characters, thus seemingly eliminating the
need for explicit character-level representations. The final representation
can be seen as a hybrid between characters and words. Though this method
quickly became the standard method in NMT, it was not until the release of
BERT (Devlin et al., 2019) that it became the standard method for most NLP
applications.10 We will compare our character-level model to a BPE-based
model in Chapter 7, while in Chapter 9 we compare to a model based on
BERT, as well as combination of BERT and characters.

10BERT used WordPiece during training, which is very similar to BPE. In Chapter 9 we
describe BERT and its impact on the field in more detail.
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CHAPTER 4

Neural AMR Parsing
We evaluate a character-level sequence-to-sequence model for neural se-

mantic parsing on a large corpus of sentences annotatedwith AbstractMean-
ing Representations (AMRs). With some trivial preprocessing and postpro-
cessing of AMRs, we obtain a baseline accuracy of 53.1. We examine five
different approaches to improve this baseline result: (i) reordering AMR
branches to match the word order of the input sentence increases perfor-
mance to 58.3; (ii) adding part-of-speech tags (automatically produced) to
the input shows improvement as well (57.2); (iii) So does the introduction
of super characters (conflating frequent sequences of characters to a sin-
gle character), reaching 57.4; (iv) optimizing the training process by using
pre-training and averaging a set of models increases performance to 58.7;
(v) adding silver-standard training data obtained by an off-the-shelf parser
yields the biggest improvement, resulting in an F-score of 64.0. Combining
all five techniques leads to an F-score of 71.0 on holdout data. This is remark-
able because of the relative simplicity of the approach.

Chapter adapted from:

van Noord, R. and Bos, J. (2017b). The Meaning Factory at SemEval-2017
task 9: Producing AMRs with neural semantic parsing. In SemEval, pages
929–933, Vancouver, Canada

vanNoord, R. andBos, J. (2017c). Neural semantic parsing by character-based
translation: Experiments with abstract meaning representations. Computa-
tional Linguistics in the Netherlands Journal, 7:93–108
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4.1 Introduction

Various approaches to open-domain semantic parsing have been proposed
in the last years. What we now could refer to as “traditional” approaches are
semantic parsers that use supervised learning to create a syntactic analysis
onwhich themeaning representations are constructed, usually in a composi-
tional way. Research in this area comprises Bos et al. (2004), Copestake et al.
(2005), Butler (2010), Le and Zuidema (2012), Lewis and Steedman (2013),
Bos (2015), Artzi et al. (2015), and many others. Efforts to create data sets of
sentences paired withmeaning representations have stimulated research in
semantic parsing (Banarescu et al., 2013; Bos et al., 2017), especially those us-
ing the formalism of Abstract Meaning Representation (AMR), for which also
shared tasks have been organized (May, 2016). In this chapter, therefore, we
concentrate on semantic parsing of AMRs, because large gold-standard data
sets are available and various different approaches can be compared.

In contrast to the traditional approaches mentioned above, there have
been interesting attempts recently to view semantic parsing as a transla-
tion task, mapping English expressions to logical forms under supervision
of some deep learning method. Dong and Lapata (2016) used sequence-to-
sequence (seq2seq) and sequence-to-tree (seq2tree) neural translation mod-
els to produce logical forms from sentences for four different data sets (but
not AMRs). Barzdins and Gosko (2016) used a similar method to produce
AMRs in the context of the previously mentioned shared task, but the perfor-
mance of their neural parser was still far below the state-of-the-art. Despite
this, theirmethod inspired other researchers to adopt this seq2seq approach
(Peng et al., 2017b; Konstas et al., 2017). But, even though they got substan-
tial improvements over Barzdins and Gosko (2016), their systems still did
not come close to state-of-the-art. The neural approach of Foland and Mar-
tin (2017) did reach state-of-the-art performance, but they used five bi-LSTM
networks instead of a single seq2seq model.

What all these attempts have in common, and why they are fascinat-
ing, is that they completely avoid complex models of the syntactic and
semantic parsing process and therefore do not rely on heavily engineered
features. However, except for Barzdins and Gosko (2016), they also only
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use word-level input. This is interesting, because Barzdins and Gosko (2016)
obtained a substantial improvement for their character-level model over
their word-level model. Character-embeddings, since they were introduced
by Sutskever et al. (2011), have also shown improvements in a number
of areas, such as POS-tagging (Santos and Zadrozny, 2014; Plank et al.,
2016), text classification (Zhang et al., 2015), and, most importantly, Neural
Machine Translation (Chung et al., 2016b).

The aim of this chapter is to find out how far we can push character-level
neural semantic parsing: canwe reach accuracy scores comparable with tra-
ditional approaches to semantic parsing? More specifically, our objectives
are (1) reproducing the results of Barzdins and Gosko (2016); (2) improving
on their results by employing several novel techniques; and (3) investigating
whether adding silver standard data can improve neural semantic parsing.

We make three main contributions. First, we show that character-level
models can obtain good performance on neural semantic parsing. Second,
we introduce a number of novel techniques to improve performance. Third,
we show that adding silver standard to the training data makes a consider-
able (positive) difference for neural AMR parsing. Our final model reaches
an F-score of 71.0, which is the current state-of-the-art in AMR parsing.1

4.2 Method and Data

Wefirst give a bit of background on AMRs. Thenwe outline the basic ideas of
the character-based translation model with English sentences as input and
AMRs as output. We then establish a baseline systemwith the aim to improve
it in the next section.

4.2.1 Abstract Meaning Representations

In our experiments utilizing neural semantic parsing we will focus on pars-
ing Abstract Meaning Representations (AMRs). AMRs were introduced by
Banarescu et al. (2013) and are acyclic, directed graphs that represent the

1Thiswas at the time ofwriting (May 2017). Current state-of-the-art scores andmethods
(as of August 2020) are discussed in Chapter 9.
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meaning of a sentence. There are, in fact, three ways to display an AMR: as a
graph, as a set of triples, or as a tree in string format. An example of an AMR
is shown in Figure 4.1, here displayed as a tree, the format that is used in the
annotated corpora.

(a / affect-01

:ARG0 (w / wave-04

:ARG1 (h2 / heat)

:location (c / country

:wiki "France"

:name (n / name

:op1 "France")))

:ARG1 (p / person

:ARG0-of (s / strike-02

:mod (h / hunger-01

:ARG0 p))))

Figure 4.1: AMR representing the meaning of Hunger strikers were affected
by France’s heat wave.

An AMR consists of concepts that are linked to variable names with a
slash. In the example above we have that a is an instance of the concept
affect-01, and p is an instance of the concept person. Note that the names
of the variables are not important. Concepts can be related to each other by
using two-place relations, which are indicated by a colon. So, the first :ARG0
is an ordered relation between a and w. Inverse relations are denoted by the
suffix -of. Note that, if one concept relates to more than one other concept
(for instance, in the example above, the node a is related to w via :ARG0, and
to p via :ARG1), the order of these relations within the AMR is not important.
AMRs also allow for a re-occurrence of variables: the concept person with
variable p stands in a relation with affect-01 as well as with hunger-01.
For a more extensive overview of AMR, see Section 2.1.1.

For evaluation purposes, AMRs are converted into triples. The accuracy
of an AMR parser is computed by precision and recall on matching triples
between gold standard AMRs and system-produced AMRs, using the Smatch
system (Cai and Knight, 2013). For the evaluation of our experiments we
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use the sentences annotated with AMRs from LDC release LDC2017T102,
consisting of 36,521 training AMRs, 1,368 development AMRs and 1,371 test
AMRs. This release also includes the PropBank frameset and comes with
pre-aligned AMRs and sentences. In all results shown in this chapter, the
models are trained on the training data. As development and test data we
use the designated dev and test set from LDC2017T10, which are the exact
same sets that are used in LDC2015E89. We remove HTML-tags from the
input sentences, but URLs are kept in.

Setting Value Setting Value

Layers 2 RNN type brnn
Nodes 500 Dropout 0.3
Epochs 20–25 Vocabulary 100–200
Optimizer sgd Max length 750
Learning rate 0.1 Beam size 5
Decay 0.7 Replace unk true

Table 4.1: Hyper-parameter settings of the seq2seq model.

4.2.2 The Basic Translation Model

To create our sequence-to-sequence translation model, we use OpenNMT
(Klein et al., 2017). We train a model with bidirectional encoding and gen-
eral attention (Luong et al., 2015). This model is described in detail in see
Section 3.3. Since training a full model takes two to three days on a GPU, we
perform a heuristic hyper-parameter search instead of an exhaustive one.
We started out with a default model and changed only one hyper-parameter
value in separate experiments. If we improved over the default, the set-
ting was kept and combined with other hyper-parameter settings that im-
proved performance. All models were only tested on the development set.
Ultimately, we arrived at the settings shown in Table 4.1. All our described
models in this chapter are trained with these settings. Training is stopped 3
epochs after there is no improvement in validation perplexity on the devel-
opment set anymore. The best performing model on the development set is
then used to decode the test set.

2https://catalog.ldc.upenn.edu/LDC2017T10

https://catalog.ldc.upenn.edu/LDC2017T10
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In contrast to Peng et al. (2017b) and Konstas et al. (2017), who use word-
level input, we use character-level input. We did experiment with word-
basedmodels, but they never obtained F-scores higher than 30.0, evenwhen
using the GloVe pretrained word embeddings (Pennington et al., 2014). This
is in line with Peng et al. (2017b) and Konstas et al. (2017), who only arrived
at their final F-scores by applying extensive anonymization methods. These
methods are heavily rule-based, so we prefer not to be dependent on them.
We will compare our scores to their word-based models in Section 4.4.

(m / material (material

:mod (r / raw) :mod (raw)

:domain (o / opium) :domain (opium)

:ARG1-of (u / use-01 :ARG1-of (use-01

:ARG2 (p / make-01 :ARG2 (make-01

:ARG1 (h / heroin) :ARG1 (heroin)

:ARG2 o))) :ARG2 (opium))))

Figure 4.2: Example of the original AMR (left) and the variable-free AMR
(right) displaying the meaning of Opium is the raw material used to make
heroin.

Following Barzdins and Gosko (2016), we do not want our model to learn
the arbitrary characters that are used to represent variables. The characters
itself do not carry any semantic information and are only necessary to indi-
cate co-referring nodes. Therefore we remove all variables from the AMRs
and simply duplicate co-referring nodes from the input. An example of such
a preprocessed AMR is shown in Figure 4.2. Note that thismeans that we lose
information, since the variables cannot be put back perfectly. We describe
an approach to restore the co-referring nodes in the output in the next sec-
tion. In Chapter 5, we will describe a more principled approach of handling
coreference. All wikification relations present in AMRs in the training set
are also removed and restored in a postprocessing step. Newlines present in
an AMR are replaced by spaces, andmultiple spaces are squeezed into single
ones (so the input AMR is represented on a single line).3

3Pre- and postprocessing scripts available at https://github.com/RikVN/AMR

https://github.com/RikVN/AMR
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4.2.3 Postprocessing and Restoring Information

The output of the seq2seq model is, of course, an AMR without variables,
without wiki-links, and without co-occurrent variables. Furthermore, be-
cause of the character-based seq2seq model, it could well be that there are
brackets in the output that do not match, or that some nodes representing
concepts are incomplete. This, obviously, needs to be fixed. First, the vari-
ables in the AMRs are restored by assigning a unique variable to each con-
cept. We also try to fix invalidly produced AMRs by applying a few heuristics,
such as inserting parentheses and quotes, or by removing unfinished nodes.
This is done by using the restoring script from Barzdins and Gosko (2016).4

Then, we apply three methods to increase the quality of the AMRs. They are
described below.

Model # Nodes # AMRs F-score
pruned changed

Baseline 0 0 54.8

Removing all re-occurrent nodes (RCNs) 1426 689 55.4
Removing all RCNs with same parent 135 95 55.0
Removing all RCNs with frequency >2 427 249 55.3
Removing all RCNs with same
parent, but also nodes with frequency >2 496 302 55.5

Table 4.2: Statistics of the different pruning methods. Methods were applied
on the output of our baseline model on the dev set.

Pruning

Aproblemwith ourmodel is the fact that the decoder does not explicitly keep
track of what it has already produced. As a consequence, we sometimes end
up with duplicated, redundant material in our generated AMRs. This hurts
precision. We propose four different methods to remove this redundant
material. This is done on node level, where nodes are defined as relation-
concept pairs without children, e.g., :mod (raw) and :domain (opium).
The statistics of applying these four methods on our baseline model (dev set)
are shown in Table 4.2. Note that all these processes are trade-offs: usually

4Taken from https://github.com/didzis/tensorflowAMR/

https://github.com/didzis/tensorflowAMR/
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duplicates are correctly recognized as redundant and can be removed, but
sometimes we erroneously remove actual re-occurrent nodes.

The first method simply removes all re-occurrent nodes and is already
quite effective: the F-score increases by 0.6. The second method is more
careful and only removes duplicate nodes if they have the same parent. This
helps, but only by a smallmargin. The thirdmethod does not consider parent
nodes, but removes nodes if they occurmore than twice in the full AMR. This
method also increases the F-score, but does not outperform the first method
yet. The fourth method is a combination of the second and third method.
All re-occurrent nodes with the same parent are removed, but also nodes
occurring more than twice are removed. This results in the best F-score, an
increase of 0.7 over the baseline. Two example AMRs whose branches are
pruned using the fourth method are shown in Figure 4.3.

(material

:mod (raw)

:mod (raw)
:domain (opium)

:ARG1-of (use-01

:ARG2 (make-01

:ARG1 (heroin)

:ARG2 (opium))))

(material

:mod (raw)

:domain (opium

:mod (raw))

:ARG1-of (use-01

:ARG2 (make-01

:ARG1 (heroin)

:mod (raw)
:ARG2 (opium))))

Figure 4.3: Example of pruned branches for the produced AMRs of Opium is
the rawmaterial used to make heroin. In the left AMR, the second occurrence
of :mod (raw) is already removed, because both branches are children of
material. However, in the right AMR, none of the :mod (raw) branches
share the same parent, so only the third occurrence is removed.

Wikification

Since we removed wikification relations in preprocessing, our model will
never output such a link. We restore wiki links in the output AMR by using
an off-the-shelf system (Daiber et al., 2013), following the method presented
by Bjerva et al. (2016a). They look at the :name relations in an AMR and try
to find this name on Wikipedia. If it has a page, the corresponding link gets
added; otherwise the AMR remains unaltered.
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Restoring co-referring nodes

Our system also tries to restore co-referring nodes. If we output a duplicate
node (a node already produced for this AMR), it replaces the node by the
variable name of the node encountered first. This can only happen once per
unique node, since the third instance of such a node is already removed in
the pruning phase. An example of how the co-referring nodes are restored
is shown in Figure 4.4.

(m / material

:mod (r / raw)

:domain (o / opium

:mod (r2 / raw))

:ARG1-of (u / use-01

:ARG2 (m2 / make-01

:ARG1 (h / heroin)

:ARG2 (o2 / opium))))

(m / material

:mod (r / raw)

:domain (o / opium

:mod r)
:ARG1-of (u / use-01

:ARG2 (m2 / make-01

:ARG1 (h / heroin)

:ARG2 o)))

Figure 4.4: Example of how co-referring nodes are restored. On the left an
example of a producedAMR, on the right the AMRwith coreference restored.

4.2.4 Baseline Results

Our first objective was to reproduce the results obtained by Barzdins and
Gosko (2016). We did so, arriving at an F-score of 53.1 (see Table 4.3). Com-
pared to the F-score of 43.0 by Barzdins and Gosko (2016), our score is signifi-
cantly higher. This is probably due to the higher amount of training data and
the fact that they used Tensorflow instead of OpenNMT. We also reproduced
their results by using the exact same data, software and hyper-parameter
settings as they did, obtaining an F1-score of 42.3.5

As is shown in Table 4.3, concept pruning, restoring coreference vari-
ables, and wikification all increase the F-score by about a percentage point
each. This small gain of performance is what one could expect as each single
operation has only a small impact on the overall contents of an AMR.

5We did not possess their wikification and coreference restoring scripts, so differences
might be attributed to that.
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Type Dev Diff Test Diff

Baseline seq2seq 54.8 53.1

Postprocessing Pruning 55.5 + 0.7 53.7 + 0.6
Restoring coref 55.7 + 0.9 54.2 + 1.1
Wikification 55.8 + 1.0 54.1 + 1.0

All postprocessing 57.3 +2.5 55.5 + 2.4

Table 4.3: Results of our baseline seq2seq AMR parsing model, with for each
postprocessing method its respective improvement.

4.3 Improving the Basic Translation Model

In the previous section we outlined our basic method of producing AMRs
using a seq2seq model based on characters. In this section, we look at five
different techniques to move beyond the F-score that we obtain with our
basic method, that we will consider in this section as a baseline.

4.3.1 AMR Re-ordering

Although AMRs are unordered by definition, in our textual representation
of the AMRs there is an order of the branches. However, these branches
do not necessarily follow the word order in the corresponding English sen-
tence. It has been shown that for (statistical) machine translation reordering
improves translation quality (Collins et al., 2005). We use the provided align-
ments to permute the AMR in such a way that it best matches the word or-
der. We do this both on sub-tree level and on individual node level. The best
matching AMR is defined as the AMR in which the order of the nodes (when
traversing over the AMRdepth-first) is the closest to the order of thewords in
the English sentence, following the alignments. An example of an AMR with
a branch order best matching the input sentence is shown in Figure 4.5.

We are also able to use this approach to augment the training data, since
each reordering of the AMR provides us with a new AMR-sentence pair. Due
to the exponential increase, large AMRs often have thousands of possible or-
ders. We performed a number of experiments to find out howwe could best
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(material

:mod (raw)

:domain (opium)

:ARG1-of (use-01

:ARG2 (make-01

:ARG1 (heroin)

:ARG2 (opium))))

(material

:domain (opium)
:mod (raw)
:ARG1-of (use-01

:ARG2 (make-01

:ARG2 (opium)
:ARG1 (heroin))))

Figure 4.5: Example of a variable-freeAMRbefore (left) and after re-ordering
(right) for the sentence Opium is the raw material used to make heroin.

exploit this surplus of data. Ultimately, we found that it is most beneficial to
“double” the training data by adding the best matching AMR to the existing
data set.

Negative results Instead of ordering the AMRnodes reflected by theword
order of sentence, we also tried two different experiments based on consis-
tency. The first experiment simply ordered the nodes alphabetically, without
any other influence. This decreased the result of our baseline model by 2.0.
Our second experiment was focused on fixing irregularities: if two nodes oc-
cur in a different order than they usually do (based on the full training set),
we simply switch them around. Thismethod did not change the order as con-
siderably as the alphabetical ordering, but the result of the baseline model
still decreased by 1.0. Hence we discarded both reordering techniques.

4.3.2 Introducing Super Characters

We are not necessarily restricted to only using characters as input. For ex-
ample, we can view the AMR relations (e.g., :ARG0, :mod) as atomic instead
of a set of characters. This ensures that the characters for relations (e.g., :,m,
o and d for :mod) do not influence the general character embeddings of the
concepts, which might improve performance. This way, we create a hybrid
model that is a combination of word and character level input at the target
side. An example of the AMRand sentence level input using super characters
is shown in Figure 4.6 and Figure 4.7.
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AMR, chars: ( t h i n g + : q u a n t + 1 + : p o l a r i t y + - )

AMR, super chars: ( t h i n g + :quant + 1 + :polarity + - )

Figure 4.6: Input for the AMR (t / thing :quant 1 :polarity -) rep-
resenting the sentenceNot one thing, with andwithout super characters. The
+-symbols represent spaces.

sentence: I + a m + n o t + t h a t + r i c h + .

sentence + POS: I PRP + a m VBP + n o t RB + t h a t IN + r i c h JJ + .

Figure 4.7: Input for the sentence I am not that rich, without and with POS-
tags. POS-tags are inserted as super characters. The +-symbols represent
spaces (word boundaries).

Negative result We also tried various ways to explicitly encode the tree
structure by using super characters. In our basic model, the parentheses ’(’
and ’)’ are simply characters. Thismeans that themodel cannot differentiate
between a parenthesis that opens the full AMR and a parenthesis that opens,
say, the fifth subtree of the AMR. One would expect it would help the model
if it has this information explicitly encoded in the input. For example, in an
experiment we replaced each parenthesis in the structure by a super charac-
ter that also provides the subtree information (e.g., an opening parenthesis
on the fifth level becomes *5*(, while a closing bracket on the third level
becomes *3*). However this resulted in an F-score lower than the baseline
and we discarded the technique.

4.3.3 Adding Part-of-Speech Information

We might still be able to benefit from syntactic information, even though
we use a character-level neural semantic parser. To show this, we parse the
sentences with the POS-tagger of the C&C tools (Clark et al., 2003), employ-
ing the Penn POS tagset. Each tag is represented as a single character and
placed after the last character representation of the word that matches the
tag (see Figure 4.7). Put differently, we create a new super character for each
unique tag and add this to the input sentence. On the one hand, this will in-
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crease the size of the input. On the other hand, just a single character will
add a lot of general, potentially useful, information. For example, proper
nouns correlate with the :name relation, while adjectives correlate with the
:mod relation. Note that thismakes us reliant on an external resource (a POS-
tagger), which is what we intended to avoid. However, it is still interesting
to know how much our model can benefit from such a resource.

4.3.4 Adding Silver Standard Data

A problem with semantic parsing approaches is data sparsity, since a lot of
manual effort is required to create gold standard data. This is especially a
problem for data-hungry neural models. Peng et al. (2017b) tried to over-
come this by extensive generalization of the training data, but did not get
near state-of-the-art results. Konstas et al. (2017) applied a similar method,
but also used the GigaWord corpus to self-train their system. They use their
own pre-trained parser to parse the previously unseen sentences and add
those to the training data in a series of iterations. Ultimately, their system is
trained on 20 million additional data AMR-sentence pairs and obtains an F-
score of 62.1. Without this additional data, they obtain a score of 55.5, which is
better than Peng et al. (2017b), but not close to state-of-the-art performance.

Our method of obtaining new training data mainly differs from Konstas
et al. (2017) in two ways: (i) we use two off-the-shelf parsers to create the
training data instead of self-training; (ii) we employ a method to exclude
lower-quality AMRs instead of using all available data. We therefore refer to
this data as silver standard data, by which we mean something in between
unchecked automatically produced data and gold standard data.

Instead of self-training our parser, we use the off-the-shelf AMR parsers
CAMR (Wang et al., 2015b) and JAMR (Flanigan et al., 2014) to create silver
standard data for our system. Both are non-neural, syntax-based parsers.
CAMR works by first generating a dependency tree for the English sentence,
after which it uses a transition-based algorithm to create the AMR graph.
JAMR is the first published AMR parser and does the parsing in two stages:
first identifying the concepts by using a semi-Markov model, and then iden-
tifying the relations between these concepts by searching for the maximum
spanning connected subgraph.
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Both systems are trained on the LDC2015E86AMRcorpus, which contains
16,833 training instances. We parse 1,303,419 sentences from the Gronin-
gen Meaning Bank (Basile et al., 2012a), which mainly consists of newswire
text. AMRs that are either invalid or include null-tag or null-edge (this
is what the CAMR parser outputs when it is not able to find a suitable candi-
date parse) are removed. We do not simply add the other AMRs to our data
set. To ensure that the AMRs are at least of decent quality, we compare the
produced AMRswith each other using Smatch (Cai and Knight, 2013). If their
pairwise score does not exceed 55.0, the AMRs are not considered for adding
to our training set. This value was picked to filter out AMRs that would only
hurt the training process, but to also still include a large variety of AMRs
and sentences.6 Our final set contained 530,450 sentences, that have both a
CAMR and JAMR parse.

Wenowhave to determinewhichAMR to add to our silver data set. CAMR
produces higher quality AMRs in general (64.0 vs 55.0 on the test set), but it
might be beneficial to introduce some variety by also adding JAMR-parsed
AMRs. We never add both CAMR and JAMR for the same sentence. We per-
formed five experiments in which we added 100k silver AMRs, either con-
taining 100%, 75%, 67%, 50% or 0% CAMR-parsed AMRs. The results of test-
ing on the development set are shown in Table 4.4.

# CAMR AMRs # JAMR AMRs F-score

100,000 0 65.8
75,000 25,000 65.8
66,667 33,333 65.7
50,000 50,000 65.3

0 100,000 61.4

Table 4.4: F-scores on the dev set for adding different ratios of CAMR and
JAMR parsed AMRs to our initial data set. All scores are without postprocess-
ing improvement methods.

6We did not experiment with this value, but it did outperform adding CAMR or JAMR
produced AMRs randomly (i.e., not having a minimal score).
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As would be expected, we see that only adding CAMR scores is consid-
erably better than only adding JAMR. However, the scores for adding 67%
and 75% CAMR are very similar to adding 100% CAMR. But, since this does
not indicate that adding JAMR actually helps performance, we only add the
CAMR-parsed AMRs in our silver data experiments. We randomly selected
20k, 50k, 75k, 100k and 500k instances for these experiments.

4.3.5 Optimizing Training

Aside from the pre- and postprocessing methods described, we can also opti-
mize the training process itself. The first method we employ is pre-training
onour full data set including silverAMRs, afterwhich themodel is fine-tuned
on the gold data only. Both phases use the same hyper-parameter settings.
We experimentedwith different learning rates for the fine-tuning phase, but
this resulted in lower performance. A similar procedurewasusedbyKonstas
et al. (2017) and in general this is a method widely used in Neural Machine
Translation (Denkowski and Neubig, 2017).

The second method is averaging a set of models to decode the test set,
instead of using a single model. This was first applied by Junczys-Dowmunt
et al. (2016) as an alternative to the usual ensembling of models, which is
known to give substantial improvements in Neural Machine Translation
(Sutskever et al., 2014). Ensembling, however, is very resource intensive,
since the predictions of different models are averaged at decoding time.
This as opposed to averaging, where the parameters of models are averaged
to create a single model. This means that averaging, say, four models is four
times faster than ensembling four models, while also using only a quarter
of the memory the ensemble method uses. We tested with both ensembling
and averaging and obtained similar results on the development set, thus
opting to only use averaging in our experiments.
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4.4 Results and Discussion

Table 4.5 shows the results of our improvement methods in isolation, mean-
ing that only that individual method is added to our baseline model. Re-
ordering has a clear positive effect, both for using the best re-ordering (+2.0)
and adding that re-ordering to the existing data set (+5.2). Constructing su-
per characters and adding POS-tags both lead to a similar increase in perfor-
mance. Pre-training and subsequently fine-tuning also results in a substan-
tial improvement, but creating an average model only has a slight positive
effect. The biggest improvement comes from adding silver standard data to
our training set, reaching a maximum of 65.8 on the dev set. However, there
is a limit with regards to adding silver data, since adding 500k silver AMRs
performed worse than adding 50k, 75k or 100k silver AMRs. Finding the op-
timal number of silver AMRs is difficult due to the long training times and is
therefore left for future work.

Type Dev Diff Test Diff

Baseline seq2seq 54.8 53.1

AMR Re-ordering Best 56.8 + 2.0 55.1 + 2.0
Doubling 60.0 + 5.2 58.3 + 5.2

Super Characters Relations 58.3 + 3.5 57.4 + 4.3

POS Tags PTB 58.2 + 3.4 57.2 + 4.1

Training optimization Averaging 54.9 + 0.1 53.4 + 0.3
Pre-training 59.4 + 4.6 58.6 + 5.5
Both 59.5 + 4.7 58.7 + 5.6

Silver Standard Data Adding 20k 62.2 + 7.4 60.0 + 6.9
Adding 50k 64.7 + 9.9 62.9 + 9.8
Adding 75k 65.7 + 10.9 63.7 + 10.6
Adding 100k 65.8 + 11.0 64.0 + 10.9
Adding 500k 63.8 + 9.0 62.1 + 9.0

Table 4.5: Results of the improvements in isolation (without postprocessing).
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Since the previous experimentswere all in isolation, wenow testwhether
a combination of our methods still increases performance. The tested com-
binations are shown in Table 4.6. Even after adding the silver data, the addi-
tion of POS-tags and super characters still increased the performance, albeit
by a smaller margin. Interestingly, the best result (71.0) was not obtained by
combining all improvement methods, since re-ordering the AMRs does not
show an increase anymore after adding POS-tags and super characters. The
best model without using any silver data obtains an F-score of 64.0, which is
considerably higher than the AMR-only score (55.5) of Konstas et al. (2017).

Post-
proc

+ 100k
Silver

POS
Tags

Super
Chars

Best
Order

Optimize
Training Dev Test

6 6 6 6 6 6 54.8 53.1
4 6 6 6 6 6 57.3 55.5
4 6 4 4 4 4 65.2 64.0
4 4 6 6 6 6 68.0 66.4
4 4 4 6 6 6 68.9 67.3
4 4 4 4 6 6 70.4 69.0
4 4 4 4 4 6 69.0 68.0
4 4 4 4 6 4 71.9 71.0

Table 4.6: F-scores for our neural models, combining the different improve-
ment methods.

Table 4.7 shows the results of the most notable previous AMR parsing
systems. Our best model outperforms all these previous parsers and reaches
state-of-the-art results. However, we are also the first approach that uses the
LDC2017T10 data set, which contains slightly more than double the num-
ber of gold standard training instances compared to the LDC2015E86 data
set.7 Therefore, we also trained the best performing model in Table 4.6 on
the LDC2015E86 data set, while still applying all our improvement methods.
This model still obtains an F-score of 68.5, outperforming all previous AMR
parsers, except for the parser of Foland and Martin (2017).

7LDC2015E86 only contains 16,833 instances, as opposed to the 36,521 of LDC2017T10.
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Authors Model Train set F1

Flanigan et al. (2014) JAMR-14 LDC2013 58.0
Damonte et al. (2017) AMR-eager LDC2015 64.0
Artzi et al. (2015) CCG parsing LDC2014 66.3
Wang et al. (2015b) CAMR LDC2015 66.5
Flanigan et al. (2016) JAMR-16 LDC2015 67.0
Pust et al. (2015) SBMT LDC2015 67.1

Barzdins and Gosko (2016) seq2seq (char) LDC2015 43.0
Peng et al. (2017b) seq2seq (word) LDC2015 52.0
Konstas et al. (2017) seq2seq (word) LDC2015 55.5
Konstas et al. (2017) seq2seq (word) + giga LDC2015 62.1
Foland and Martin (2017) 5 bi-LSTMs (word) LDC2015 70.7

This chapter seq2seq (char) + silver LDC2015 68.5
This chapter seq2seq (char) + silver LDC2017 71.0

Table 4.7: F-scores for AMR parsing. Comparison with previously published
results on the test set.

Damonte et al. (2017) presented a way to evaluate system output in a
more detailed way, by focusing on various aspects that are present in an
AMR: role labelling, word sense disambiguation, named entity recognition,
wikification, detecting negation, and so on. These detailed results of our best
system are shown in Table 4.8, in which the results of the other parsers are
taken from Damonte et al. (2017). Unfortunately, Foland and Martin (2017)
did not publish these specific scores. As the table shows, our system scores
higher than the other parsers on five of the eight metrics other than Smatch.
In general, our system is quite conservative, obtaining a higher precision
than recall for each metric. Given the results in Table 4.8, one would think
that detecting negation and re-entrancy would be ways to get an improve-
ment in accuracy. Note that the other parsers also score relatively bad at
these metrics. Compared to the other systems, our system scores worse on
concepts, named entities, and wikification. A possible method to increase
performance in the first two of those metrics is to adopt an anonymization
or generalization approach for named entities and concepts, similar to Peng
et al. (2017b) or Konstas et al. (2017).
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CAMR JAMR-16 AMR-eager Our system

Metric F F F Pr. Rec. F

Smatch 63 67 64 76 67 71
Unlabeled 69 69 69 79 70 74
No WSD 64 68 65 76 67 72
Re-entrancy 41 42 41 57 48 52
Concepts 80 83 83 87 78 82
Named entities 75 79 83 83 76 79
Wikification 0 75 64 82 54 65
Negations 18 45 48 67 58 62
SRL 60 60 56 70 62 66

Table 4.8: Comparison with previous parsers using the evaluation suite of
Damonte et al. (2017). Our system also includes precision and recall scores.

4.5 Conclusions and Future Work

This chapter introduced a character-based neural sequence-to-sequence
model for AMR parsing. It outperformed previous word-based sequence-
to-sequence models, without being dependent on pretrained word embed-
dings or extensive anonymization techniques. Applying re-ordering of AMR
branches, introducing super characters, and adding POS-tags are techniques
that substantially improved performance. However, the biggest increase of
performance is triggered by adding a large quantity of silver standard AMRs
produced by existing (traditional) parsers. This is in line with the findings
of Konstas et al. (2017), who used the Gigaword corpus to get extra training
data, although their training method is different from ours.

The obtained results are promising. Our best model, with an F-score of
71.0, outperformed any known previously published result on AMR parsing.
This is remarkable, for traditional approaches are often based on extensive,
manually crafted lexicons using linguistic knowledge. It should be noted,
of course, that we use some linguistic knowledge in the form of POS-tags in
our best models, and that we employ existing parsers trained on extensive
linguistic annotations. In fact, one could consider the use of silver standard
AMRdata as a disadvantage, as there is still a need of an existing high-quality
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AMR parser to get the silver data in the first place. In our approach we rely
even on two different off-the-shelf parsers. It would therefore be interesting
to explore other opportunities, such as self-learning (Konstas et al., 2017).

We have the feeling that there are still a lot of techniques that one could
try to increase the performance of neural AMR parsing. From amore estheti-
cal perspective, it would be nice if one could eliminate the AMR repair strate-
gies that are used to resolve unbalanced brackets. An interesting candidate
that could master this problem would be the seq2tree model (Dong and La-
pata, 2016). Similarly, a more principled approach to deal with co-occurring
variables would be desirable. We will experiment with this in Chapter 5.

Another possible next step in semantic parsing is to change the target
meaning representation. AMRs are unscoped meaning representations, and
have no quantifiers. It would be challenging to transfer the techniques of
neural semantic parsing to scoped meaning representations, such as those
used in the Groningen Meaning Bank (Basile et al., 2012a) or the Parallel
Meaning Bank (Abzianidze et al., 2017). The experiments in Chapters 7 and
8 will focus on the latter.



CHAPTER 5

Dealing with Coreference
in Neural AMR Parsing

Linguistic phenomena like pronouns, control constructions, or corefer-
ence give rise to co-indexed variables in meaning representations. This is
known to be a challenging problem for neural semantic parsers, as the vari-
able names themselves are arbitrary and meaningless. We review three dif-
ferent methods for dealing with co-indexed variables for our character-level
sequence-to-sequence model trained on abstract meaning representations:
(a) copying concepts during training and restoring co-indexation in a post-
processing step; (b) explicit indexing of co-indexation; and (c) using absolute
paths to designate co-indexing. The second method gives the best results,
outperforming our baseline model by 2.9 and our best model by 1.0 F-score
points. These findings shed some light on the impact of different methods in
handling co-indexed variables in neural semantic parsing.

Chapter adapted from:

van Noord, R. and Bos, J. (2017a). Dealing with co-reference in neural seman-
tic parsing. In Proceedings of the 2nd Workshop on Semantic Deep Learning
(SemDeep-2), pages 41–49, Montpellier, France
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5.1 Introduction

Semantic parsing is the task of mapping a natural language sentence into a
meaning representation (a logical form). One of the problems a semantic
parser has to deal with is co-indexed variables, which arise in antecedent-
anaphor relations, proper name coreference, control constructions and
other linguistic phenomena. Examples of such constructions are given in
(1)–(4):

(1) Bobi likes himselfi.
(2) Jacki wants εi to buy an ice-cream.
(3) Peteri sold hisi car.
(4) Suei saw Maryj , but Maryj did not see Suei.

We represent meanings using the formalism of Abstract Meaning Repre-
sentation (AMR), as introduced by Banarescu et al. (2013). AMRs can be seen
as graphs connecting concepts by relations. Each concept is represented by a
named instance. Coreference is established by re-using these instances. For
example, the AMRs corresponding to examples (1) and (2) above are given in
Figure 5.1. Note that, due to the bracketing, the variable b encapsulates the
whole entity person :name "Bob" and not just person, i.e., b stands for a
person with the name Bob.

(l / like-01 (w / want-01

:ARG0 (b / person :ARG1 (p / person

:name "Bob") :name "Jack")

:ARG1 b) :ARG3 (b / buy-01

:ARG1 p

:ARG2 (i / ice-cream)))

Figure 5.1: AMRs representing the meaning of examples (1) and (2).

That there is a lot to gain in this area can be seen by applying the AMR
evaluation suite of Damonte et al. (2017), which calculates nine differentmet-
rics to evaluate AMR parsing, re-entrancy being one of them. Out of the four
systems that made these scores available (all scores reported in Chapter 4),
the re-entrancy metric obtained the lowest F-score for three of them.
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Various methods have been proposed to automatically parse AMRs, rang-
ing from syntax-based approaches (Flanigan et al., 2014; Wang et al., 2015b;
Pust et al., 2015; Damonte et al., 2017) to the more recent neural approaches
(Peng et al., 2017b; Buys and Blunsom, 2017; Konstas et al., 2017; Foland and
Martin, 2017). Especially theneural approaches are interesting, since they all
use some sort of linearization method and therefore need a predefined way
to handle re-entrancy. Peng et al. (2017b) and Buys and Blunsom (2017) use a
special character to indicate re-entrancy and restore co-referring variables
in a postprocessing step. Konstas et al. (2017) simply replace re-entrancy vari-
ables by their co-referring concept in the input andnever output co-referring
nodes. Foland and Martin (2017) use the same input transformation as Kon-
stas et al. (2017), but do try to restore co-referring nodes bymerging all equal
concepts into a single concept in a postprocessing step. This is similar as we
did in Chapter 4. All thesemethods have in common that they are not very so-
phisticated, but more importantly, that it is not clear what the exact impact
of these methods is on the final performance of the model. This makes it
unclear what the best implementation is for future neural semantic parsers.

In this chapter we present three methods to handle re-entrancy for AMR
parsing. The first two methods are based on the previous work described
above, while the third is a new, more principled method. These methods
are applied on the character-level sequence-to-sequence model as described
in Chapter 4. The aim of this chapter is to find the best method to handle
re-entrancy in neural semantic parsing and to show the specific impact that
each of the methods have on general performance.

5.2 Abstract Meaning Representations

AMRs, as introduced by Banarescu et al. (2013), are acyclic, directed graphs
that show a representation of the meaning of a sentence. There are three
ways to display an AMR: as a graph, as a tree, or as a set of triples. The AMRs
in Figure 5.1 are shown as trees, which is also the input for our neural seman-
tic parser. AMR concepts (e.g., like, person) are relating to each other by the
use of two-place relations (e.g., :ARG0, :ARG1, :name). For example, in the
right AMR in Figure 5.1, want and buy are connected by the :ARG3 relation.
See Section 2.1.1 for a more extensive overview of AMR.
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For our experiments, we use the annotated AMR corpus LDC2017T10,
which contains 36,521 training, 1,368 development and 1,371 test AMRs. Co-
indexed variables occur frequently in this data set, as can be seen in Ta-
ble 5.1. About half of the AMRs contain at least one co-indexed variable,
while about 20% of the total number of triples1 contains a variable that has
at least one anaphor in the AMR. This is the number of triples that is used
in the re-entrancy evaluation metric by Damonte et al. (2017). This number,
however, also includes triples that would be present regardless of whether
the variable is co-indexed (e.g., the instance triple of the antecedent). Amore
fair number might be the relation triples that contain an anaphor variable,
which is exactly equal to the number of total co-indexed variables. This is
still 3.4 to 4.2% of all triples in the data set.

# AMRs # AMRs w/
re-entrancy # re-entrancies Total

triples
Triples w/
co-index

Train 36,520 17,589 40,582 968,512 189,426
Dev 1,368 706 1,590 46,737 8,704
Test 1,371 749 2,033 48,252 9,686
Silver 100,00 16,235 18,865 3,001,169 109,676

Table 5.1: Statistics about the co-indexed variables in the AMR data set.

5.3 Method

5.3.1 Variable-free AMRs

The actual names of the variables for AMR instances are unimportant.
Hence, one can rename variables in an AMR as long as re-occurrences of
variables are preserved. If variables are used only once in an AMR, they
can therefore be completely eliminated. This insight was used by Barzdins
and Gosko (2016) in the first approach to neural semantic parsing of AMRs,
because particular names of variables are very hard to learn for a neural
model given the limited amount of data available. We present three ways to
encode coreference in variable-free AMRs.2

1Triples are used to evaluate AMR parsers, see Section 2.1.1 and Cai and Knight (2013).
2Pre- and postprocessing scripts available at https://github.com/RikVN/AMR.

https://github.com/RikVN/AMR
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Method 1A: Baseline Note that if there are co-indexed variables, there is
always exactly one instance of the variable that carries semantic informa-
tion. In our baseline method, similar to Barzdins and Gosko (2016) and Kon-
stas et al. (2017), we simply copy this semantic information, while removing
the variables, as is shown below. This method never outputs re-entrancy
nodes and therefore functions as a baseline. An example is shown in Fig-
ure 5.2.

(like-01 (want-01

:ARG0 (person :ARG1 (person

:name "Bob") :name "Jack")

:ARG1 (person :ARG3 (buy-01

:name "Bob")) :ARG1 (person

:name "Jack")

:ARG2 (ice-cream)))

Figure 5.2: Baseline representations of examples (1) and (2).

Method 1B: Re-entrancy Restoring This method is created to restore re-
entrancy nodes in the output of the baseline model. It operates on a very
ad hoc principle: if two nodes have the same concept, the second one was
actually a reference to the first one. We therefore replace each node that has
already occurred in the AMR by the variable of the antecedent node. This
approach was applied in Chapter 4 and also by Foland and Martin (2017).

The model thus never learns to output re-entrancy, but the co-indexed
variables are restored in a postprocessing step. An example is shown in Fig-
ure 5.3. Note that this process can also erroneously insert re-entrancieswhen
two separate entities would be correct. For example, if the sentence Bobi
likes Bobj refers to two different Bobs, the initial AMR in Figure 5.3 would
have been correct.



74 5. Dealing with Coreference in Neural AMR Parsing

(l / like-01 (l / like-01

:ARG0 (p / person :ARG0 (p / person

:name "Bob") :name "Bob")

:ARG1 (p2 / person :ARG1 p)
:name "Bob"))

Figure 5.3: Example of the Re-entrancy Restoring method for example (1).
Initial AMR on the left, re-entrancy restored AMR on the right.

(like-01 (want-01

:ARG0 (*1* person :ARG1 (*1* person

:name "Bob") :name "Jack")

:ARG1 (*1*)) :ARG3 (buy-01

:ARG1 *1*
:ARG2 (ice-cream)))

Figure 5.4: Representations of examples (1) and (2) when applying the Index-
ing method.

Method 2: Indexing This method comprises of removing all variables
fromanAMR, exceptwhen they are co-indexed. The remaining variables are
normalized by converting them to numbers, so that each unique co-indexed
variable has a unique identifier. Similar approaches were applied by Peng
et al. (2017b) and Buys and Blunsom (2017), and an example is shown in Fig-
ure 5.4. In this approach the model actually learns where it should output
re-entrancy nodes, instead of restoring them in a postprocessing step.

However, we do still need some postprocessing, as is shown in Figure 5.5
(after variables are restored). In this AMR, there is an index that is never
instantiated (*3*) and an instantiated index that is never referred to (*2* b

/ buy). The superfluous *2* can simply be removed, but for *3* we have
multiple options. Algorithm 1 shows how we handle these cases.

For each referent that was never instantiated, we first check if there is
also an instantiated index that is never referred to. If that it is the case, we
replace it by that variable. This assumes that the model merely mismatched
the index symbols. This works for *3* in Figure 5.5, even though the re-
sulting node is still incorrect. If that was not the case, we try to replace the
referent by an instantiated index that already did have a referent. Since this
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index already has a referent, we assume it is likely that a mismatched refer-
ent actually referred to this index (in Figure 5.5, *3*would then be replaced
by p) . In the case that both previous options failed, we simply pick the vari-
able of the concept that is most often a referent in the training set.

(w / want-01 (w / want-01

:ARG1 (*1* p / person :ARG1 (p / person

:name "Jack") :name "Jack")

:ARG3 (*2* b / buy-01 :ARG3 (b / buy-01

:ARG1 (*1*) :ARG1 p

:ARG2 (i / ice-cream) :ARG2 (i / ice-cream)

:ARG3 (*3*))) :ARG3 b))

Figure 5.5: Possible output of the model for example (2) on the left, while the
fixed AMR after applying Algorithm 1 is shown on the right.

Algorithm 1 Postprocessing algorithm used to replace indexes by variables.

R: all referent indexes in output (e.g., *1*, *3*)
X: all instantiated indexes that do not have a referent (e.g. *2* b / buy-01

)
Y: all instantiated indexes that have a referent (e.g., *1* person :name

"Jack" )
C: all concept-variable pairs (e.g., w / want-01)
most_freq: function that, given a list of concepts, selects the concept that is
most frequently a referent in the training set

for all ref in R do
if ref ⊆ X then

replace ref by X(ref)
else if X 6= ∅ then

replace ref by most_freq(X)
else if Y 6= ∅ then

replace ref by most_freq(Y)
else

replace ref by most_freq(C)
end if

end for
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Method 3: Absolute Paths In this method re-entrancy is established by re-
placing a co-indexed variable by an absolute path that describes a position
within an AMR. Absolute paths start from the top (root) of the AMR. The ex-
amples in Figure 5.6 show an example of these paths. In the first AMR, the
path :ARG0 describes that the node refers to the value of the relation :ARG0.
In the secondAMR, the path :ARG1 refers in a similarway to :ARG1. Note that
although these examples are straightforward, the paths can become quite
long for larger AMRs, e.g., :op1 :ARG0 :ARG0-of :mod. The longest path
in the training set even contains 14 relations.

(like-01 (want-01

:ARG0 (person :ARG1 (person

:name "Bob") :name "Jack")

:ARG1 {:ARG0}) :ARG3 (buy-01

:ARG1 {:ARG1}

:ARG2 (ice-cream)))

Figure 5.6: Representations of examples (1) and (2) when applying the Abso-
lute Paths method.

This method is perhaps the most attractive from a theoretical point of
view. Note, however, that not every node in an AMR can be described by a
unique path, as ambiguities might occur when there are two edges with the
same name (this can occur, for instance, when more than one modifier is
present). To solve these ambiguities an index (e.g., |1|, |2|) is added to each
relation in the path.3 This was necessary for 632 out of the 40,582 paths in
the training set. In total, there are 5,760 unique paths, of which 3,447 only
occur once. The most frequent path is :ARG0|1|, occurring 5,405 times.

Similar to the Indexing method, a problem with this approach is the fact
that we have no control over what the model will output. Especially for
larger AMRs it is likely that the model will output impossible paths without
destination. For example, the model might output :ARG2 instead of :ARG0
in the left example in Figure 5.6. These impossible paths still need to be re-

3For clarity, this was omitted in the example in Figure 5.6.
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placed by a variable to get a valid AMR. The strategywe opt for here is similar
to one used in the Indexing method, namely replacing the path by the vari-
able of the concept in the AMR that most frequently has a referent in the
training set.

5.3.2 Neural Model

We implement a bi-LSTM sequence-to-sequence model with general atten-
tion that takes characters as input, using the OpenNMT software (Klein et al.,
2017). This is the samemodel as in Chapter 4, with the samehyper-parameter
settings (see Table 4.1). It is trained for 20 epochs, after which themodel that
performs best on the development set is used to decode the test set.

5.3.3 Experiments

We test the impact of the different methods on two of our earlier models, de-
scribed in Chapter 4. The first is a simple baseline model that only takes the
characters into account without any additional methods to improve perfor-
mance. This model is referred to as the char-only model. The second is the
approach that produced one of the best results so far in the literature. This
model uses POS-tagged input, clusters together groups of characters (super
characters) and exploits 100,000 “silver” AMRs that were obtained by using
the off-the-shelf AMR parsers CAMR (Wang et al., 2015b) and JAMR (Flani-
gan et al., 2014).4 The added AMRs are all CAMR-produced. We must note
that CAMR is not particularly keen on outputting coreference, as the 100,000
silver AMRs only produced 18,865 new re-entrancy nodes.

The second approach also employs the postprocessing methods Wikifi-
cation and pruning. The Wikification step simply adds wiki links to :name

nodes, since those links were removed in the input. Pruning is used to re-
move erroneously produced duplicate output. This is a common problem for
sequence-to-sequencemodels, since themodel does not keep track of what it
has already output. No pretraining or ensemble methods are used for both
approaches, as opposed to the approach of Chapter 4.5

4Please see Chapter 4 for a full explanation of this process.
5This is because the initial papers for Chapter 4 and this chapter partly overlapped in

development. We thought it best to stick to the originally reported scores.
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5.4 Results and Discussion

5.4.1 Main Results

The results of applying our three methods on the baseline and best model
are shown in Table 5.2. All reported numbers are F-scores obtained by using
Smatch (Cai andKnight, 2013). All threemethods offer an improvement over
the baseline, for both the baseline and the bestmodel. Indexing is the highest
scoring method, except for the test set of the best model, since Re-entrancy
Restoring obtains the same F-score there. Explicitly encoding the absolute
paths resulted in an increase over the baseline, but did not outperform both
Re-entrancy Restoring and Indexing, although only by a small margin.

Char-only Best model

Dev Test Dev Test

Baseline 54.8 53.1 69.3 68.0
Re-entrancy Restoring 55.7 54.2 70.0 69.0
Indexing 55.9 56.0 70.5 69.0
Absolute Paths 54.9 53.9 70.3 68.7

Table 5.2: Results of the different methods in comparison to the char-only
and best model.

Char-only Best model

Coref No coref Coref No Coref

Dev Test Dev Test Dev Test Dev Test

Baseline 52.1 50.3 61.6 60.6 66.9 65.1 73.8 74.8
Restoring 53.4 52.0 61.2 60.8 68.3 66.8 73.8 74.8
Indexing 54.2 53.5 60.5 61.6 68.6 66.5 74.8 74.8
Absolute Paths 52.8 51.5 59.6 59.2 68.2 66.3 74.6 74.5

Table 5.3: Results for each method on AMRs with (coref) and without (no
coref) re-entrancy nodes.
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It is interesting to look at whether we indeed improve on parsing AMRs
that have co-indexed variables, in comparison to AMRs that do not contain
them. This is shown in Table 5.3. We see that, in general, we indeed only
improve on both baselines for AMRs that have co-indexed variables. This is
the case for both the dev and the test set. This is the desired scenario: we
improve on AMRs with re-entrancy, while performance does not decrease
on AMRs without re-entrancy. Only applying the Absolute Paths method on
the baseline model scores lower on the test set on AMRs without re-entrancy
nodes. Similar to the results in Table 5.2, Indexing outperforms Re-entrancy
Restoring for the baseline model, but has similar scores when applied to the
best model.

5.4.2 Detailed Analysis

Table 5.4 shows the how often themodel outputs possible paths for the Abso-
lute Paths method. Unfortunately, about 50% of the time, the model output
a path that did not lead to a possible referent, leaving us to rely on the fre-
quency heuristic. This problem is not as severe for our best model, though,
since about 75%of pathswere actually possible. The addition of extra (silver)
data thus helped the model in learning the paths, suggesting that the base-
line results might merely be an effect of sparse data. However, the very long
paths still proved to be challenging for the best model. This might mean that,
even when adding more gold data, learning such sophisticated structures is
too difficult for end-to-end sequence-to-sequence models in general.

Char-only Best model

Dev Test Dev Test

Pos Imp Pos Imp Pos Imp Pos Imp

Total paths produced 455 464 534 533 636 200 783 328
Paths of length 1 160 30 148 32 231 12 193 13
Paths of length 2 211 202 265 194 268 68 398 108
Paths of length 3 76 156 106 210 130 80 167 123
Paths of length >3 8 76 15 97 7 40 25 84

Table 5.4: Number of possible (pos) and impossible (imp) paths in the output,
when using the Absolute Paths method.
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Table 5.5 shows more detailed results of the Indexing method. In the ma-
jority of cases, the model does what it is supposed to do: first instantiating
an index, then referring to it. However, for finding the correct variable re-
placement for the baseline model, we still have to fall back on heuristics in
approximately 30% of the cases. Most of these instances are then solved by
referring to the concept that is most frequently a referent in the training set.
However, for our best model, this reliance is not there anymore. The model
generally only outputs an index when it was instantiated first, which is ex-
actly what was intended.

Char-only Best model

Replace index by # Dev # Test # Dev # Test

Instantiated variable 749 984 770 1,122
Instantiated variable that was never referred to 25 28 0 0
Most frequent instantiated index 8 8 3 9
Variable of most frequent concept 248 217 3 10

Table 5.5: Number of times each step in Algorithm 1 was responsible for
replacing an index in the output when using the Indexing method.

5.5 Conclusions

We proposed three methods to handle co-indexed variables for neural
semantic (AMR) parsing. The best results were obtained by the Indexing
method, which explicitly encodes co-indexing nodes in the data set. The
perhaps theoretically most attractive Absolute Paths performed the worst,
although it did still offer an improvement over the baseline. Perhaps an
interesting direction for future research is to use relative instead of absolute
paths, encoding the path relative to the re-entrancy node instead of starting
at the top of the AMR, because this will make the paths shorter and more
local. This is especially interesting for parsing Discourse Representation
Structures, as they contain more variables as well as more re-entrancies.
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Discourse Representation Structures





CHAPTER 6

An Evaluation Method
for DRS Parsing

The task of Abstract Meaning Representation (AMR) parsing has a clear
and well-defined method of evaluation, but there is no such method for the
task of Discourse Representation Structure (DRS) parsing. In this chapter, we
construct a similar tool as for AMR parsing by translating the DRSs to a set of
clauses, which we can then use to calculate a precision, recall and F1-score
based on the number of matching clauses in DRS pairs. To be able to eval-
uate this tool and to be able to later train supervised DRS parsing systems,
we use a semantically annotated parallel corpus for English, German, Ital-
ian, and Dutch where sentences are annotated with DRSs. The formalism
captures, among others, the semantics of negation, modals, quantification,
and presupposition triggers. Using this data set, we show that our evalua-
tion tool is both accurate and efficient, yielding F-scores between 43 and 54
for three baseline semantic parsers. Moreover, as this is a parallel corpus,
we are able to perform a pilot study to automatically find changes in mean-
ing by comparingmeaning representations of translations. This comparison
turns out to be an additional way of (i) finding annotation mistakes and (ii)
finding instances where our semantic analysis needs to be improved.

Chapter adapted from:

van Noord, R., Abzianidze, L., Haagsma, H., and Bos, J. (2018a). Evaluating
scoped meaning representations. In LREC, pages 1685–1693, Paris, France.
ELRA
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6.1 Introduction

Semantic parsing is the task of assigning meaning representations to natu-
ral language expressions. The availability of open-domain, wide coverage se-
mantic parsers has the potential to add new functionality, such as detecting
contradictions, verifying translations, and getting more accurate search re-
sults. Current research on open-domain semantic parsing focuses on super-
vised learningmethods, using large semantically annotated corpora as train-
ing data. A popular corpus is the Abstract Meaning Representation corpus
(AMR; Banarescu et al. 2013), which we experimented with in the previous
chapters. However, we are now interested in whether ourmodel can handle
meaning representations based on formal semantics, such as Discourse Rep-
resentation Structures (DRSs, Kamp and Reyle, 1993). In this chapter, we lay
the groundwork for this approach by (i) presenting an annotated corpus of
DRSs and (ii) introducing an evaluation tool for semantic DRS parsers that is
able to evaluate the quality of machine-generated meaning representations
by comparing them to gold standard annotations

Our corpus with annotated DRSs is a parallel corpus annotated with
formal meaning representations for English, Dutch, German, and Italian.
Our work shows many similarities with recent annotation and parsing
efforts around AMR, in that we abstract away from syntax, use first-order
meaning representations, and use an adapted version of Smatch (Cai and
Knight, 2013) for evaluation. However, we deviate from AMR on several
points: meanings are represented by scoped meaning representations
(arriving at a more linguistically motivated treatment of modals, negation,
presupposition, and quantification), and the non-logical symbols that we
use are grounded in WordNet (concepts) and VerbNet (thematic roles),
rather than PropBank (Palmer et al., 2005). We also provide a syntactic
analysis in the annotated corpus, in order to derive the semantic analyses
in a compositional way. We make two main contributions:

• Presenting the first release of an annotated parallel corpus of formal
meaning representations for four languages (Section 6.3).

• A tool that is able to compare scoped meaning representations for the
purpose of evaluation (Section 6.4 and Section 6.5).
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24/3221: No one can resist.

¬

x1

person.n.01(x1)

3
e1

resist.v.02(e1)

Agent(e1, x1)

k0 NOT b2
b2 REF x1
b2 person n.01 x1
b2 POS b3
b3 Agent e1 x1
b3 REF e1
b3 resist v.02 e1

00/2302: È tutto nuovo.

x1

thing.n.12(x1)
⇒

s1 t1

new.a.01(s1)

Time(s1, t1)

Theme(s1, x1)

time.n.08(t1)

t1 = now

k0 IMP b2 b3
b2 REF x1
b2 thing n.12 x1
b3 REF s1
b3 Theme s1 x1
b3 new a.01 s1
b3 Time s1 t1
b4 REF t1
b4 time n.08 t1
b4 EQU t1 "now"

Figure 6.1: Two examples of a PMB document with their scoped meaning
representations and the corresponding clausal form. These two structures
are basic DRSs. The English translation of the bottom sentence is Everything
is new.

6.2 Scoped Meaning Representations

In this section, we first describe how we convert the scoped meaning repre-
sentations (DRSs) to a clausal form, which can more easily be used during
evaluation. This is followed by a detailed comparison with AMR in terms of
number of clauses and variables.
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6.2.1 Discourse Representation Structures

The backbone of the meaning representations in our annotated corpus is
formed by the Discourse Representation Structures (DRS) of Discourse Rep-
resentation Theory (DRT, Kamp, 1984; Kamp and Reyle, 1993). Our version of
DRS integrates WordNet senses (Fellbaum, 1998), adopts a neo-Davidsonian
analysis of events by employing VerbNet roles (Bonial et al., 2011), and in-
cludes an extensive set of comparison operators. Presuppositions are explic-
itly represented (Vander Sandt, 1992; Venhuizen et al., 2018), while discourse
structure is modeled by Segmented DRT (Asher, 1993; Asher and Lascarides,
2003). For a more detailed overview of DRT and DRS, see Section 2.1.2.

DRSs can be visualized in different ways. While the compact linear for-
mat saves space, the box notation increases readability. In this chapter we
use the latter notation. The examples of DRSs in the box notation are pre-
sented in Figure 6.1. However, for evaluation and comparison purposes, we
convert a DRS into a flat clausal form, i.e., a set of clauses. This is carried
out by using the labels for DRSs as introduced in Venhuizen (2015) and Ven-
huizen et al. (2018), and breaking down the recursive structure of DRS by
assigning them a label of the DRS in which they appear. Let t, t’, and t” be
meta-variables ranging over DRSs or terms. Let C be a set of WordNet con-
cepts, T a set of the thematic roles, andO the set of DRS operators (REF, NOT,
POS, NEC, EQU, NEQ, APX, LES, LEQ, TPR, TAB, IMP, DIS, PRP, DRS). The result-
ing clauses are then of the form t R t’ or t R t’ t” where R ∈ C∪T ∪O. The result
of translating DRSs to sets of clauses is shown in Figure 6.1. In a clausal form,
it is assumed that different variables are representedwith different variable
names and vice versa. Due to this, before translating a DRS to a clausal form,
different discourse referents in the DRS must be represented with different
variable names. This assumption significantly simplifies the matching pro-
cess between clausal forms (Section 6.4) andmakes it possible to recover the
original box notation of a DRS from its clausal form.
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00/3008: Hij speelde piano en zij zong.

k1 ::

x1 x2 e1 t1

male.n.02(x1)

play.v.03(e1)

Time(e1, t1)

Theme(e1, x2)

Agent(e1, x1)

time.n.08(t1)

t1 ≺ now

piano.n.01(x2)

k2 ::

x3 e2 t2

female.n.02(x3)

time.n.08(t2)

t2 ≺ now

sing.v.01(e2)

Time(e2, t2)

Agent(e2, x3)

CONTINUATION(k1, k2)

k0 DRS k1 k0 DRS k2
b1 REF x1 b4 REF x3
b1 male n.02 x1 b4 female n.02 x3
k1 REF e1 k2 REF e2
k1 play v.03 e1 k2 sing v.01 e2
k1 Agent e1 x1 k2 Agent e2 x3
k1 Theme e1 x2 b5 REF t2
k1 REF x2 b5 time n.08 t2
k1 piano n.01 x2 b5 TPR t2 "now"
b3 REF t1 k2 Time e2 t2
b3 time n.08 t1 k0 CONTINUATION k1 k2
b3 TPR t1 "now" k1 Time e1 t1

Figure 6.2: An example of a segmented DRS, both in box format and clausal
form. English: He played the piano and she sang.

6.2.2 Comparing DRSs to AMRs

Since DRSs in a clausal form come close to the triple notation of AMRs (Cai
and Knight, 2013), and both aim to model meaning of natural language ex-
pressions, it is instructive to compare these two meaning representations.
The main difference between AMRs and DRSs is that the latter ones have
explicit scopes (boxes) and scopal operators such as negation. Due to the
presence of scope in DRSs, their clauses are more complex than AMR triples.
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Type Description Example Total

REF Discourse referent b3 REF x2 7,592
NOT Negation b1 NOT b2 204
POS Possibility (3) b4 POS b5 55
NEC Necessity (2) b2 NEC b3 14
IMP Implication (⇒) b1 IMP b2 b3 104
PRP Proposition (:) b1 PRP x6 50
REL Discourse relation b1 CONTINUATION b2 71
DRS DRS as a condition b4 DRS b5 84
Compare Comparison operators x1 APX x2 2,100
Concept WordNet senses b2 hurt v.02 e3 7,545
Role Semantic roles b2 Agent e3 x4 7,516

Table 6.1: Distribution of clause types for 2,049 gold DRSs.

The length of DRS clauses varies from three to four, in contrast to the con-
stant length of AMR triples. Additionally, DRS clauses contain two different
types of variables, for scopes and discourse referents, whereas AMR triples
have just one type. Lastly, DRS clauses can have three variables, while AMRs
have two at most.

UnlikeAMRs, DRSsmodel tense. In general, the tense-related information
is encoded in a clausal form with three additional clauses, which express
a WordNet concept, semantic role and a comparison operator. In order to
give an intuition about the diversity of clauses in DRSs, Table 6.1 shows a
distribution of various types of clauses in a corpus of DRSs (see Section6.3).
Since every logical operator carries a scope, their number represents a lower
bound of the number of scopes in the meaning representations. In addition
to logical operators, scopes are introduced by presupposition triggers like
proper names or pronouns.

To make a meaningful comparison between AMRs and DRSs in terms of
size, we compare the DRSs of 250,000 English sentences from the Parallel
Meaning Bank (PMB; Abzianidze et al. 2017) to AMRs of the same sentences,
produced by the AMR parser from Chapter 4. Note that the DRSs are also
automatically generated for the most part (see Section 6.3). Statistics of the
comparison are shown in Figure 6.3. On average, DRSs are about twice as
large as AMRs, in terms of the number of clauses as well as the number of
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Figure 6.3: Comparison of the number of triples/clauses and variables be-
tween AMRs and DRSs for sentences of different length.

unique variables. This is obviously due to the explicit presence of scope in
the meaning representation. However, for both meaning representations
the number of clauses and variables increase linearly with sentence length.

6.3 The Parallel Meaning Bank

The scoped meaning representations, integrating word senses, thematic
roles, and the list of operators, form the final product of our semantically
annotated corpus: the Parallel Meaning Bank. The PMB is a semantically
annotated corpus of English texts aligned with translations in Dutch, Ger-
man and Italian (Abzianidze et al., 2017). It uses the same framework as
the Groningen Meaning Bank (Bos et al., 2017), but aims to abstract away
from language-specific annotation models. There are five annotation layers
present in the PMB: segmentation of words, multi-word expressions and
sentences (Evang et al., 2013), semantic tagging (Bjerva et al., 2016b; Abzian-
idze and Bos, 2017), syntactic analysis based on CCG (Lewis and Steedman,
2014), word senses based on WordNet (Fellbaum, 1998), and thematic role
labelling (Bos et al., 2012). The semantic analysis for English is projected on
the other languages, to save manual annotation efforts (Evang, 2016; Evang
and Bos, 2016). All the information provided by these layers is combined
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Documents Sentences Tokens

English 2,049 2,057 11,664
German 641 642 3,430
Italian 387 387 1,944
Dutch 394 395 2,268

Table 6.2: Statistics of the first PMB release.

into a single meaning representation using the semantic parser Boxer (Bos,
2015), in the form of Discourse Representation Structures. Note that the goal
is to produce annotations that capture the most probable interpretation of
a sentence; no ambiguities or under-specification techniques are employed.

At each step in this pipeline, a single component produces the automatic
annotation for all four languages, using language-specific models. Human
annotators can correct machine output by adding “Bits of Wisdom” (Basile
et al., 2012b). These corrections serve as data for training better models, and
create a gold standard annotated subset of the data. Annotation quality is de-
fined per layer and language, at three levels: bronze (fully automatic), silver
(automaticwith somemanual corrections), and gold (fullymanually checked
and corrected). If all layers are marked as gold, it follows that the resulting
DRS can be considered gold standard, too.

The first public release1 of the PMB contains gold standard scoped mean-
ing representations for over 3,000 sentences in total (see Table 6.2). The re-
lease includes mainly relatively short sentences involving several semantic
scope phenomena. A detailed distribution of clause types in the data set is
given in Table 6.1. A larger amount of texts and more complex linguistic
phenomena will be included in future releases.

In addition to the released data, the PMB documents are publicly acces-
sible through a web interface, called the PMB explorer.2 In the explorer,
visitors can view natural language texts with several layers of annotations
and compositionally derived meaning representations, and, after registra-
tion, edit the annotations. It is also possible to use a word or a phrase search
to find certain words or constructions with their semantic analyses.

1http://pmb.let.rug.nl/data.php
2http://pmb.let.rug.nl/explorer

http://pmb.let.rug.nl/data.php
http://pmb.let.rug.nl/explorer
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6.4 Matching Scoped Representations

6.4.1 Evaluation by Matching

In the context of the Parallel Meaning Bank there are two main reasons to
verifywhether two scopedmeaning representations capture the samemean-
ing or not: (1) to be able to evaluate semantic parsers that produce scoped
meaning representations by comparing gold-standard DRSs to system out-
put; and (2) to checkwhether translations aremeaning-preserving; a discrep-
ancy in meaning between source and target could indicate a mistranslation.

The ideal way to compare two meaning representations would be
one based on inference. This can be implemented by translating DRSs
to first-order formulas and using an off-the-shelf theorem prover to find
out whether the two meanings are logically equivalent (Blackburn and
Bos, 2005). This method can compare meaning representation that have
different syntactic structures but still are equivalent in meaning. The
disadvantage of this approach is that it yields just a binary answer: if a
proof is found the meanings are the same, else they are not. For semantic
parsing, we prefer a method that can produce more fine-grained scores.

An alternative way of comparing meaning representations is compar-
ing the corresponding clausal forms by computing precision and recall over
matched clauses (Allen et al., 2008). The advantage of this approach is that
it returns a score between 0 and 1, preferring meaning representations that
better approximate the gold standard over those that are completely differ-
ent. Since the variables of different clausal forms are independent from
each other, the comparison of two clausal forms boils down to finding a (par-
tial) one-to-one variable mapping that maximizes intersection of the clausal
forms. For example, the maximal matching for the clausal forms in Figure
6.4 is achieved by the following partial mapping from the variables of the
left form into the variables of the right one: {k07→b0, e17→v1, t17→t1}.

For AMRs, finding a maximal matching is done using a hill-climbing al-
gorithm called Smatch (Cai and Knight, 2013). This algorithm is based on
a simple principle: it checks if a single change in the current mapping re-
sults in a better matching mapping. If this is the case, it continues with the
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01/3445: He smiled. 00/3514: She fled Australia.

x1 e1 t1

male.n.02(x1)

smile.v.01(e1)

Time(e1, t1)

Agent(e1, x1)

time.n.08(t1)

t1 ≺ now

x1 x2 v1 t1

female.n.02(x1)

flee.v.01(v1)

Time(v1, t1)

Source(v1, x2)

Theme(v1, x1)

time.n.08(t1)

t1 ≺ now

country.n.02(x2)

Name(x2, australia)

b1 REF x1
b1 male n.02 x1
b3 REF t1
b3 TPR t1 "now"

b3 time n.08 t1
k0 Agent e1 x1
k0 REF e1
k0 Time e1 t1
k0 smile v.01 e1

b1 REF x1
b1 female n.02 x1
b3 REF t1
b3 TPR t1 "now"

b3 time n.08 t1
b0 Theme v1 x1
b0 Source v1 x2
b0 REF v1
b0 Time v1 t1
b0 flee v.01 v1
b2 REF x2
b2 Name x2 "australia"

b2 country n.02 x2

Figure 6.4: The Spar DRS (Section6.5.1) on the left matches the DRS of
00/3514 PMB document with an F-score of 54.5. If redundant REF-clauses are
ignored, the F-score drops to 40. These results are achieved with the help of
the mapping {k07→b0, e17→v1, t1 7→t1}.

new mapping. Otherwise, if not a single change results in a better mapping,
the algorithm stops and has arrived at the final mapping. This means that it
can easily get stuck in local optima. To avoid this, Smatch does a predefined
number of restarts of this process, where each restart starts with a new and
random initial mapping. The first restart always uses a smart initial map-
ping, based on matching concepts.
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Our evaluation system, called Counter3, is a modified version of Smatch.
Even though clausal forms do not form a graph and clauses consist of either
three or four components, the principle behind the variable matching is the
same. The actual implementation differs, mainly because Smatch was not
designed to handle clauses with three variables, e.g., 〈k0 Agent e1 x1〉.

In contrast to Smatch, Counter takes a set of clauses directly as input.
Counter also uses two smart initial mappings, based on either role-clauses,
like 〈k0 Agent e1 x1〉, or concept-clauses, like 〈k0 smile v.01 e1〉.
Moreover, it makes sure that box variables can never match with discourse
variables, while for AMR all variables can potentially match. Another
addition of Counter is that it abstracts over WordNet synsets, i.e., a system
is not penalized for predicting a sense that it is in the same synset as the
gold standard sense. Moreover, in Chapter 7 we will add a component that
checks DRSs for semantic well-formedness.

Also specific to this method is the treatment of REF-clauses in the match-
ing process. Beforematching twoDRSs, redundant REF-clauses are removed.
A REF-clause 〈b1 REF x1〉 is redundant if its discourse referent x1 occurs in
some basic condition of the sameDRS b1. Figure 6.4 shows some examples of
redundant REF-clauses. Not removing these redundant clauses would lead
to inflated matching scores since for each matched variable the correspond-
ing REF-clausewill alsomatch. Comparison of the clausal forms in Figure 6.4
demonstrates this fact. Note that not all REF-clauses are redundant: if a dis-
course referent is declared outside the scope of negation or an other scope
operator, the REF-clause is kept. This is very infrequent in our data, since
only a single REF-clause was preserved in 2,049 examples.

6.4.2 Evaluating the Matching Procedure

As we showed in Figure 6.3, DRSs are about twice as large as AMRs. This
increase in sizemight be problematic, since it increases the average runtime
for comparing DRSs. Moreover, if there are more variables, more restarts
might be needed to ensure a reliable score, again increasing runtime.

3Available at http://github.com/RikVN/DRS_parsing/

http://github.com/RikVN/DRS_parsing/
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She removed the dishes from the table.

(r / remove-01
:ARG0 (s / she)
:ARG1 (d / dish)
:ARG2 (t / table))

à

b0 REF x1
b0 remove v.01 x1
b4 REF x5
b4 TPR x5 "now"

b4 time n.08 x5
b0 Time x1 x5
b0 Agent x1 x2
b1 REF x2
b1 female n.02 x2
b0 Patient x1 x3
b2 REF x3
b2 dish n.01 x3
b0 Theme x1 x4
b3 REF x4
b3 table n.01 x4

Figure 6.5: A clausal form obtained from an automatically generated AMR
of the PMB document 14/0849.

Therefore, our goal is that Counter gets close to optimal performance in
reasonable time. Since we want to be sure that this also holds for longer
sentences, we use a balanced data set. We take 1,000 DRSs produced by
the semantic parser Boxer for each sentence length from 2 to 20 (punctu-
ation excluded), resulting in a set of 19,000 DRSs. To test Counter in a re-
alistic setting, we cannot compare the DRSs to themselves or to a DRS of
the translation, since those are too similar. Therefore, the 19,000 English
sentences of the DRS are parsed by the AMR parser of Chapter 4 and sub-
sequently converted into a DRS by a rule-based system, Amr2drs, as moti-
vated by Bos (2016). An example of translating an AMR to a clausal form
of a DRS is shown in Figure 6.5. We convert AMR relations to DRS roles
by employing a manually created translation dictionary, including rules for
semantic roles (e.g., :ARG0 7→ Agent and :ARG1 7→ Patient) and pronouns
(e.g., she 7→ female.n.02). Since AMRs do not contain tense information,
past tense clauses4 are produced for the first verb in the AMR (see the four
tense-related clauses in Figure 6.5). Also, since AMRs do not use WordNet
synsets, all concepts get a default first sense, except for concepts that are
added by concept-specific rules, such as female.n.02 and time.n.08.

4Past tense was chosen because it is the most frequent tense in the data set.
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Restarts P R F1 Time (h:m:s)

(random) 1 27.20 22.71 24.75 4:19
(smart concepts) 1 27.45 22.92 24.98 4:35

(smart roles) 1 27.27 22.76 24.81 4:37
5 30.25 25.25 27.53 19:33

10 30.65 25.59 27.89 37:08
20 30.84 25.75 28.07 1:10:13
30 30.90 25.80 28.12 1:41:43
50 30.94 25.83 28.16 2:41:38
75 30.96 25.85 28.17 3:53:01

100 30.97 25.85 28.18 5:01:25

Optimal 30.98 25.86 28.19 > 12h

Table 6.3: Results of comparing 19,000 Boxer-produced DRSs to DRSs pro-
duced by Amr2drs, for different number of restarts. For three or more
restarts, we always use the smart role and concept mapping.

Restarts→ 4 10 20 30 50 100

Baseline 54.56 54.82 54.97 55.03 55.09 55.14
Baseline + postprocessing 56.94 57.17 57.29 57.34 57.39 57.43
Best gold-only 65.06 65.19 65.24 65.26 65.28 65.30
Best model 71.83 71.89 71.92 71.93 71.94 71.95

Table 6.4: AMR parsing F-scores over different numbers of restarts for four
selected models from Chapter 4. Each F-score is an average of 25 runs and is
calculated using Smatch.

We compare the sets of DRSs using different numbers of restarts to find
the best trade-off between speed and accuracy. The results are shown in
Table 6.3. The optimal scores are obtainedusing a Prolog script that performs
an exhaustive search for the optimal mapping. As expected, increasing the
number of restarts benefits performance. Cai and Knight (2013) consider
four restarts the optimal trade-off between accuracy and speed, showing no
improvement in F-score when using more than ten restarts. However, in
Table 6.4 we show that, in practice, Smatch still improves when using more
restarts, especially for lower quality models.
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Performance for Counter also still increases with more than 4 restarts.
In our case, it is a bit harder to select an optimal number of restarts, since
this number depends on the length of the sentence, as shown in Figure 6.6.
We see that for long sentences, 5 and 10 restarts are not sufficient to get close
to the optimal mapping, while for short sentences 5 restarts might be consid-
ered enough. In general, the best trade-off between speed and accuracy is
approximately 20 restarts.

After the publication this chapter was based on (van Noord et al., 2018a),
a newevaluationmetricwas proposed: D-scorer (Liu et al., 2020). Thismetric
converts the DRSs to graphs, after which it calculates an F1-score based on
n-gram overlap of partial graphs, similar to the BLEUmetric (Papineni et al.,
2002) for machine translation. It was mainly developed to replace Counter
for DRS parsing on GMB data (e.g., Liu et al., 2019a), as the latter was too
slow for multi-sentence DRSs. We evaluate our DRS parsing models using
D-scorer in Chapter 9.
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Figure 6.6: Comparison of the differences to the optimal F-score per sentence
length for different number of restarts.
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6.5 Counter in Action

6.5.1 Semantic Parsing

The first purpose of Counter is to evaluate semantic parsers for DRSs. Since
this is a new task, there are no existing systems that are able to do this. There-
fore, we show the results of three baseline systems pmb-pipeline, Spar,
and Amr2drs (Subsection6.4.2).5

The pmb-pipeline produces a DRS via the pipeline of the tools used for
automatic annotation of the PMB.6 Thismeans that it has no access tomanual
corrections, and hence it uses the most frequent word senses and default
VerbNet roles. Spar is a trivial semantic “parser” which always outputs the
DRS that is most similar to all other DRSs in the most recent PMB release (for
1.0.0, this is the left-hand DRS in Figure 6.4).

Precision Recall F-score

Spar 53.1 36.6 43.3
Amr2drs 46.5 48.2 47.3
pmb-pipeline 53.0 54.8 53.9

Table 6.5: Comparison of three baseline DRS parsers to the gold-standard
data set.

The results of the three baseline parsers are shown in Table 6.5.
All parsers are far removed from optimal performance. The score of
pmb-pipeline, though the highest of the three, shows that manual anno-
tation is still required to obtain gold standard meaning representations.
The surprisingly high score of Spar is explained by the fact that the first
PMB release mainly contains relatively short sentences with little structural
diversity. The average number of clauses per clausal form (excluding
redundant REF-clauses) is 8.7, where a substantial share (approximately
3) comes from tense-related clauses. Due to this fact, guessing temporal
clauses for short sentences has a big impact on F-score. This is illustrated

5Spar and Amr2drs are available at: https://github.com/RikVN/DRS_parsing/
6http://pmb.let.rug.nl/software.php

https://github.com/RikVN/DRS_parsing/
http://pmb.let.rug.nl/software.php
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by the comparison of the clausal forms in Figure 6.4, where matching only
temporal clauses results in an F-score of 40.

This points out a general weakness of thematching tool. All clauses carry
equal weight during calculation of the score, while it is clear that, intuitively,
certain clauses should havemore impact on the score than others (e.g., nega-
tion versus tense). On the other hand, it is hard (if not impossible) to come
upwith a weight scheme that fairly evaluates all (types) of clauses regarding
their perceived impact on the final semantic analysis. Moreover, evaluating
these weight schemes only seems possible by asking human annotators to
somehow judge the similarity of DRSs, who would need specific directions
in how to judge them, which is what we wanted to test in the first place. Also,
the current method at least ensures a transparent score for each DRS-pair,
i.e., we can easily check what went wrong in any given parse and how we
ended up at the final F-score.

In addition, though the scores are now perhaps inflated, this is not nec-
essarily a problem. For one, we know the scores are inflated, so we can ac-
count for this in judging how far off we are from “solving” DRS parsing. In
other words, an F-score of 70 for DRS parsing cannot be compared to an F-
score of 70 for AMR parsing. Second, due to the specific clause matching,
we can easily check whether some systems do better on clauses we consider
(un)important. So, even if the final F-score has flaws, we can create sub-
metrics that calculate scores for different (types) of clauses, similar as in Da-
monte et al. (2017) for AMR parsing. This is done in Chapter 7 and 9.
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6.5.2 Comparing Translations

The second purpose of Counter is checking whether translations are
meaning-preserving. As a pilot study, we compare the gold standard
meaning representations of non-English translations in the release to their
English counterparts. The results are shown in Table 6.6. The high F-scores
indicate that the meaning representations are often syntactically very
similar, if not identical. However, there is a considerable subset of meaning
representations which are different from the English ones, indicating that
there is at least a slight discrepancy in meaning for those translations.

F-score Docs F<1.0 % total

German 98.4 579 61 10.5
Italian 97.6 341 46 13.5
Dutch 98.3 355 37 10.4

Table 6.6: Comparing meaning representations of English texts to those of
German, Italian and Dutch translations.

Manual analysis of these discrepancies showed that there are several dif-
ferent causes for a discrepancy to arise. In most of the cases (38%), a hu-
man annotation error was made. In 34% of cases, a definite description was
used in one language but not in the other. Examples are ‘has long hair’ with
the Italian translation ‘ha i capelli lunghi’, and ‘escape from prison’ with the
Dutch translation ‘vluchtte uit de gevangenis’. In 15% of cases proper names
were translated (e.g., ‘United States’ and ‘Stati Uniti’). This is not accounted
for, since we do not currently make use of grounding proper names to a
unique identifier, for instance by wikification (Cucerzan, 2007), or by using
a language-independent transliteration of names. In 13%of cases the transla-
tion was either non-literal or incorrect. Examples are Tom lacks experience
with the Dutch translation Tom heeft geen ervaring (lit. Tom has no experi-
ence), can’t use chopsticks with the German kann nicht mit Stäbchen essen
(lit. cannot eat with sticks), and remove the dishes from the table with the
Dutch translation ruimde de tafel af (lit. uncluttered the table).
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The mapping of clausal forms involving non-literal translations is illus-
trated in Figure 6.7. This preliminary analysis shows that this comparison
of meaning representations provides an an additional method for detecting
mistakes in annotation. It also showed that there are caseswhere our seman-
tic analysis needs to be revised and improved.

She removed the dishes from the table. Ze ruimde de tafel af.

x1 x2 e1 x3 t1

female.n.02(x1)

remove.v.01(e1)

Time(e1, t1)

Source(e1, x3)

Theme(e1, x2)

Agent(e1, x1)

time.n.08(t1)

t1 ≺ now

dish.n.01(x2)

table.n.03(x3)

x1 x2 e1 t1

female.n.02(x1)

unclutter.v.01(e1)

Time(e1, t1)

Source(e1, x2)

Agent(e1, x1)

time.n.08(t1)

t1 ≺ now

table.n.03(x2)

b1 REF x1
b1 female n.02 x1
b5 REF t1
b5 TPR t1 "now"

b5 time n.08 t1
k0 Agent e1 x1
k0 REF e1
k0 Theme e1 x2
k0 Time e1 t1
k0 remove v.01 e1
b2 REF x2
b2 dish n.01 x2
k0 Source e1 x3
b4 REF x3
b4 table n.03 x3

b1 REF x1
b1 female n.02 x1
b4 REF t1
b4 TPR t1 "now"

b4 time n.08 t1
k0 Agent e1 x1
k0 REF e1
k0 Source e1 x2
k0 Time e1 t1
k0 unclutter v.01 e1
b2 REF x2
b2 table n.03 x2

Figure 6.7: English and Dutch non-literal translations of the document
14/0849. Their clausal formsmatch each other (excl. redundant REF-clauses)
with an F-score of 77.8. This matching is achieved by the mapping of vari-
ables {b57→b4, b4 7→b2}.
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6.6 Conclusions and Future Work

Large semantically annotated corpora are rare. Within the Parallel Meaning
Bank project, we aim to create a large, open-domain corpus annotated with
formal meaning representations. We take advantage of parallel corpora, en-
abling the production of meaning representations for several languages at
the same time. Currently, these are languages similar to English, two Ger-
manic languages (Dutch and German) and one Romance language (Italian).
Ideally, future work would include more non-Germanic languages.

The DRSs that we present are meaning representations with substan-
tial expressive power. They deal with negation, universal quantification,
modals, tense, and presupposition. As a consequence, semantic parsing for
DRSs is a challenging task. Compared to Abstract Meaning Representations,
the number of clauses and variables in a DRS is about two times larger on
average. Moreover, compared to AMRs, DRSs rarely contain clauses with
single variables. All non-logical symbols used in DRSs are grounded in
WordNet and VerbNet (with a few extensions). This makes evaluation using
matching computationally challenging, in particular for long sentences, but
our matching system Counter achieves a reasonable trade-off between
speed and accuracy.

Several extensions to the annotation scheme are possible. Currently, the
DRSs for the non-English languages contain references to synsets of the En-
glishWordNet. Conceptually, there is nothingwrongwith this (as synsets can
be viewed as identifiers for concepts that are language-independent), but for
practical reasons it makes more sense to provide links to synsets of the origi-
nal language (e.g. HampandFeldweg, 1997; Postma et al., 2016). Other future
work could focus on a more fine-grained matching regarding WordNet con-
cepts, since the current evaluation tool normalizes over synsets, but does not
take graded similarity into account. For example, producing the concept cat
instead of the concept tiger should be rewarded over producing a less similar
concept, such as house or car. Finally, now that we presented an annotated
DRS corpus and evaluation tool, we can focus on DRS parsing. In the next
chapter, we describe the first DRS parser trained on PMB data.





CHAPTER 7

Neural DRS Parsing
Neural methods have had several recent successes in semantic parsing,

though they have yet to face the challenge of producingmeaning representa-
tions based on formal semantics. We present a sequence-to-sequence neural
semantic parser that is able to produce Discourse Representation Structures
(DRSs) for English sentences with high accuracy, outperforming traditional
DRS parsers. To facilitate the learning of the output, we represent DRSs as a
sequence of flat clauses and introduce amethod to verify that producedDRSs
are well-formed and interpretable. We compare models using characters
and words as input and see that the former performs better than the latter.
We show that eliminating variable names from the output using De Bruijn-
indices increases parser performance. Adding silver training data boosts per-
formance even further. Our final model outperformed the semantic parser
Boxer, which is a combination of rule-based and statistical approaches. How-
ever, a manual analysis showed that Boxer still outperformed our model on
a set of semantic phenomena, such as scope ambiguity, pronoun resolution
and identifying discourse relations.

Chapter adapted from:

van Noord, R., Abzianidze, L., Toral, A., and Bos, J. (2018b). Exploring neural
methods for parsing discourse representation structures. TACL, 6:619–633
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7.1 Introduction

Semantic parsing is the task of mapping a natural language expression to
an interpretable meaning representation. Semantic parsing used to be the
domain of symbolic and statistical approaches (Pereira and Shieber, 1987;
Zelle andMooney, 1996; Blackburn andBos, 2005). Recently however, neural
methods, and in particular sequence-to-sequencemodels, have been success-
fully applied to a wide range of semantic parsing tasks. These include code
generation (Ling et al., 2016), question-answering (Dong and Lapata, 2016;
He and Golub, 2016) and Abstract Meaning Representation parsing (Konstas
et al., 2017). Since these models have no intrinsic knowledge of the structure
(tree, graph, set) they have to produce, recent work also focused on struc-
tured decoding methods, creating neural architectures that always output a
graph or a tree (Buys and Blunsom, 2017; Alvarez-Melis and Jaakkola, 2017).
These methods often outperform the more general sequence-to-sequence
models but are tailored to specific meaning representations.

This chapter will focus on parsing Discourse Representation Structures
(DRSs) proposed in Discourse Representation Theory (DRT), a well-studied
formalism developed in formal semantics (Kamp, 1984; Van der Sandt, 1992;
Kamp and Reyle, 1993; Asher, 1993; Muskens, 1996; van Eijck and Kamp,
1997; Kadmon, 2001; Asher and Lascarides, 2003), dealing withmany seman-
tic phenomena: quantifiers, negation, scope ambiguities, pronouns, presup-
positions, and discourse structure (see Figure 7.1). DRSs are recursive struc-
tures and form therefore a challenge for sequence-to-sequence models be-
cause they need to generate a well-formed structure and not something that
looks like one but is not interpretable.

The problem that we try to tackle bears similarities with the recently in-
troduced task of mapping sentences to an Abstract Meaning Representation
(AMR, Banarescu et al. 2013). But there are notable differences between DRS
and AMR. Firstly, DRSs contain scope, which results in a more linguistically
motivated treatment of modals, quantification, and negation. And secondly,
DRSs contain a substantially higher number of variable bindings (re-entrant
nodes in AMR terminology), which are known to be challenging for learning
(Damonte et al., 2017).
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DRS parsing has been attempted already in the 1980s for small fragments
of English (Johnson and Klein, 1986; Wada and Asher, 1986). Wide-coverage
DRS parsers based on supervised machine learning emerged later (Bos,
2008b; Le and Zuidema, 2012; Bos, 2015; Liu et al., 2018a). The objectives of
this chapter are to apply neural methods to DRS parsing. In particular, we
are interested in answers to the following questions:

1. Are sequence-to-sequencemodels able to produce formalmeaning rep-
resentations (DRSs)?

2. What is better for input: sequences of characters or sequences of
words; does tokenization help; and what kind of casing is best used?

3. What is the best way of dealing with variables that occur in DRSs?
4. Does adding silver data increase the performance of the neural parser?
5. What parts of semantics are learned and what parts of semantics are

still challenging?

Wemake the following contributions to semantic parsing:1 (a) The output of
our parser consists of interpretable scoped meaning representations, guar-
anteed by a specially designed checking tool (Section7.3); (b) We compare
different methods of representing input and output in Section 7.4; (c) We
show in Section 7.5 that employing additional, non-gold standard data can
improve performance; (d) We perform a thorough analysis of the produced
output and compare our methods to symbolic/statistical approaches (Sec-
tion 7.6).

7.2 Discourse Representation Structures

The Structure of DRS

DRSs are meaning representations introduced by DRT (Kamp and Reyle,
1993). In general, a DRS can be seen as an ordered pair 〈A, l : B〉, where A
is a set of presuppositional DRSs, and B a DRS with a label l. The presuppo-
sitional DRSs A can be viewed as propositions that need to be anchored in
the context in order to make the main DRS B true, where presuppositions

1The code is available here: https://github.com/RikVN/Neural_DRS.

https://github.com/RikVN/Neural_DRS
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Raw input:

Tom isn’t afraid of anything.

System output of a DRS in a clausal form:

b1 REF x1 b3 REF s1
b1 male "n.02" x1 b3 Time s1 t1
b1 Name x1 "tom" b3 Experiencer s1 x1
b2 REF t1 b3 afraid "a.01" s1
b2 EQU t1 "now" b3 Stimulus s1 x2
b2 time "n.08" t1 b3 REF x2
b0 NOT b3 b3 entity "n.01" x2

The same DRS in a box format:

b0

¬
s1 x2 b3

afraid.a.01(s1)
Time(s1, t1)
Stimulus(s1, x2)
Experiencer(s1, x1)

entity.n.01(x2)

x1 b1

male.n.02(x1)
Name(x1, tom)

t1 b2

time.n.08(t1)
t1 = now

Figure 7.1: DRS parsing in a nutshell: given a raw text, a system has to gen-
erate a DRS in the clause format, a flat version of the standard box notation.
The semantic representation formats are made more readable by using var-
ious letters for variables: the letters x, e, s, and t are used for discourse
referents denoting individuals, events, states and time, respectively, while b
is used for variables denoting DRS boxes.

comprise anaphoric phenomena too (Van der Sandt, 1992; Geurts, 1999;
Beaver, 2002).

DRSs are either elementary DRSs or segmented DRSs. An elementary DRS
is an ordered pair of a set of discourse referents and a set of conditions.
There are basic conditions and complex conditions. A basic condition is a
predicate applied to constants or discourse referents while a complex con-
dition can introduce boolean operators ranging over DRSs (negation, condi-
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tionals, disjunction). Segmented DRSs capture discourse structure by con-
necting two units of discourse by a discourse relation (Asher and Lascarides,
2003). Please see Section 2.1.2 for a more detailed overview of DRT and DRS.

Annotated Corpora

Despite a long tradition of formal interest in DRT, it is only since recently that
textual corpora annotated with DRSs have beenmade available. The Gronin-
gen Meaning Bank (GMB) is a large corpus with DRS annotation for mostly
short English newspaper texts (Basile et al., 2012a; Bos et al., 2017). The DRSs
in this corpus are produced by an existing semantic parser and then partially
corrected. The DRSs in the GMB are therefore not gold standard.

A similar corpus is the Parallel Meaning Bank (PMB), that provides DRSs
for English, German, Dutch and Italian sentences based on a parallel corpus
(Abzianidze et al. 2017; also see Chapter 6). The PMB, too, is constructed
using an existing semantic parser, but a part of it is completely manually
checked and corrected (i.e., gold standard). In contrast to the GMB, the PMB
involves two major additions: (a) its semantics are refined by modelling
tense and employing semantic tagging (Bjerva et al., 2016b; Abzianidze and
Bos, 2017), and (b) the non-logical symbols of the DRSs corresponding to con-
cepts and semantic roles are grounded in WordNet (Fellbaum, 1998) and
VerbNet (Bonial et al., 2011) respectively.

These above-mentioned additions make the DRSs of the PMB more fine-
grained meaning representations. For this reason we choose the PMB (over
the GMB) as our corpus for evaluating our semantic parser. Even though
the sentences in the current release of the PMB are relatively short, they
contain many hard semantic phenomena that a semantic parser has to deal
with: pronoun resolution, quantifiers, scope of modals and negation, multi-
word expressions, word senses, semantic roles, presupposition, tense, and
discourse relations. As far as we know, we are the first that employs the
PMB corpus for semantic parsing.
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Formatting DRSs with Boxes and Clauses

The usual way to represent DRSs is the well-known box-format. In order to
facilitate reading a DRS with unresolved presuppositions, it can be depicted
as a network of boxes, where a non-presuppositional (i.e., main) DRS l : B
is connected to the presuppositional DRSs A with arrows. Each box comes
with a unique label and has two rows. In case of elementary DRSs these rows
contain discourse referents in the top row and conditions in the bottom row
(Figure 7.1). A segmented DRS has a row with labeled DRSs and a row with
discourse relations (Figure 7.2).

The DRS in Figure 7.1 consists of a main box b0 and two presuppositional
boxes, b1 and b2. Note that b0 has no discourse referents but introduces
negation via a single condition ¬b3 with a nested box b3. The conditions of
b3 represent unary and binary relations over discourse referents that are
introduced either by b3 or the presuppositional DRSs.

A clausal form is another way of formatting DRSs. It represents a DRS
as a set of clauses (see Figure 7.1 and 7.2). This format is better suitable for
machine learning than the box-format as it has a simple, flat structure and
facilitates partial matching of DRSs which is useful for evaluation (see Chap-
ter 6). Conversion from the box-notation to the clausal form and vice versa is
transparent: discourse referents, conditions, and discourse relations in the
clausal form are preceded by the label of the box they occur in. Notice that
the variable letters in the semantic representations are automatically set and
they simply serve for readability purposes. Throughout the experiments de-
scribed in this chapter, we employ clausal form DRSs.

7.3 Method

7.3.1 Annotated Data

We use the English DRSs from release 2.1.0 of the PMB (Abzianidze et al.,
2017).2 The release suggests to use the parts 00, 10, 20 and 30 as the devel-
opment set, resulting in 3,998 train and 557 development instances. Basic

2http://pmb.let.rug.nl/data.php

http://pmb.let.rug.nl/data.php
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00/3008: He played the piano and she sang.

b0 DRS b1 b0 DRS b5
b2 REF x1 b6 REF x3
b2 male "n.02" x1 b6 female "n.02" x3
b1 REF e1 b5 REF e2
b1 play "v.03" e1 b5 sing "v.01" e2
b1 Agent e1 x1 b5 Agent e2 x3
b1 Theme e1 x2 b5 Time e2 t2
b3 REF x2 b7 REF t2
b3 piano "n.01" x2 b7 TPR t2 "now"

b4 REF t1 b7 time "n.08" t2
b4 time "n.08" t1 b0 CONTINUATION b1 b5
b4 TPR t1 "now" b1 Time e1 t1

b0

e1 b1

play.v.03(e1)

Time(e1, t1)

Theme(e1, x2)

Agent(e1, x1)

e2 b5

sing.v.01(e2)

Time(e2, t2)

Agent(e2, x3)

CONTINUATION(b1, b5)

t1 b4

time.n.08(t1)

t1 ≺ now

t2 b7

time.n.08(t2)

t2 ≺ now

x1 b2

male.n.02(x1)
x2 b3

piano.n.01(x2)

x3 b6

female.n.02(x3)

Figure 7.2: An example of a segmented DRS. Discourse relations are format-
ted with uppercase characters.

statistics are shown in Table 7.1, while the number of occurrences of some
of the semantic phenomena mentioned in Section 7.2 are given in Table 7.2.

Since this is a rather small training set, we tune our model using 10-fold
cross-validation (CV) on the training set, instead of tuning on a separate de-
velopment set. This means that we will use the suggested development set
as a test set (and refer to it as such). When testing on this set, we train a
model on all available training data. The employed PMB release also comes

http://pmb.let.rug.nl/explorer/explore.php?part=00&doc_id=3008&type=der.xml
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Sentences Tokens Avg tok/sent

Gold train 3,998 24,917 6.2
Gold test 557 3,180 5.7
Silver 73,778 638,610 8.7

Table 7.1: Number of documents, sentences and tokens for the English part
of PMB release 2.1.0. Note that the number of tokens is based on the PMB
tokenization, treating multi-word expressions as a single token.

Phenomenon Train Test Silver

negation & modals 442 73 17,527
scope ambiguity ≈67 15 ≈3,108
pronoun resolution ≈291 31 ≈3,893
discourse rel. & imp. 254 33 16,654
embedded clauses ≈160 30 ≈46,458

Table 7.2: Counts of relevant semantic phenomena for PMB release 2.1.0.3
These phenomena are described and further discussed in Section7.6.3.

with “silver” data, namely, 71,308 DRSs that are only partially manually cor-
rected. In addition, we employ the DRSs from the silver data but without the
manual corrections, which makes them “bronze” DRSs following the PMB
terminology. Our experiments will initially use only the gold standard data,
afterwhichwewill employ the silver or bronze data to further push the score
of our best systems.

7.3.2 Clausal Form Checker

The clausal form of a DRS needs to satisfy a set of constraints in order to
correspond to a semantically interpretable DRS, i.e., translatable into a first-
order logic formula without free occurrences of a variable (Kamp and Reyle,
1993). For example, all discourse referents need to be explicitly introduced
with a REF clause to avoid free occurrences of variables.

3The phenomena are automatically counted based on clausal forms. The counting al-
gorithm does not guarantee the exact number for certain phenomena, though it returned
the exact counts of all the phenomena on the test data except for pronoun resolution (30).
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We implemented a clausal form checker that validates the clausal form
if and only if it represents a semantically interpretable DRS. Distinguishing
box variables fromentity variables is crucial for the validity checking, but au-
tomatically learned clausal forms are not expected to differentiate variable
types. First, the checker separately parses each clause in the form to induce
variable types based on the fixed set of comparison and DRS operators. After
typing all the variables, the checker verifies whether the clauses collectively
correspond to a DRS with well-formed semantics. For each box variable in a
discourse relation, existence of the corresponding box inside the same seg-
mented DRS is checked. For each entity variable in a condition, an introduc-
tion of the binder (i.e., accessible) discourse variable is found. The goal of
these two steps is to prevent free occurrences of variables in DRSs. While
binding the entity variables, necessary accessibility relations between the
boxes are induced. In the end, the checker verifies the transitive closure of
the induced accessibility relation on loops and checks existence of a unique
main box of the DRS.

The checker is applied to every automatically obtained clausal form. If a
clausal form fails the test, it is considered as ill-formed and will not have a
single clause matched with the gold standard when calculating the F-score.

7.3.3 Evaluation

A DRS parser is evaluated by comparing its output DRS to a gold standard
DRS using the Counter tool (see Chapter 6). Counter calculates an F-score
overmatching clauses by applying a hill-climbing search to find the best vari-
able mapping between two sets of clauses. This is similar to the Smatch tool
for AMR parsing.4 Counter generalizes over WordNet synsets, i.e., a system
is not penalized for predicting a word sense that is in the same synset as
the gold standard word sense. To calculate whether there is a significant
difference between two systems, we perform approximate randomization
(Noreen, 1989) with α = 0.05, R = 1000 and F (model1) > F (model2) as test statis-
tic for each individual DRS pair.

4Counter ignores REF clauses in the calculation of the F-score since they are usually
redundant and therefore inflate the final score (see Chapter 6).
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7.3.4 Neural Architecture

We employ a recurrent sequence-to-sequence neural network (henceforth
seq2seq) with two bidirectional LSTM layers and 300 nodes, implemented
in OpenNMT (Klein et al., 2017). The network encodes a sequence repre-
sentation of the natural language utterance, while the decoder produces the
sequences of the meaning representation. We apply naive dropout (Srivas-
tava et al., 2014; Zaremba et al., 2014) between both the recurrent encoding
and decoding layers to prevent over-fitting, and use general attention (Luong
et al., 2015) to selectively give more weight to certain parts of the input sen-
tence. During decoding we perform beam search with length normalization,
which in neural machine translation (NMT) is crucial to obtaining good re-
sults (Britz et al., 2017). This is the samemodelweused in Chapters 4 and 5, of
which a detailed overview is given in Section 3.3. The hyper-parameters are
different, though. We experimented with a wide range of hyper-parameter
settings, of which the final settings can be found in Table 7.3.

We opted against trying to find the best hyper-parameter settings for each
individual experiment (next to impossible in terms of computing time nec-
essary as a single 10-fold CV experiment takes 12 hours on GPU), but se-
lected settings that showed good performance for both the initial charac-
ter and word-level representations (see Section 7.4 for details). The hyper-
parameter search was performed using 10-fold CV on the training set. Train-
ing is stopped when there is no more improvement in perplexity on the val-
idation set, which in our case occurred after 13–15 epochs.

A powerful, well-known technique in the field of NMT is to use an ensem-
ble of models during decoding (Sutskever et al., 2014; Sennrich et al., 2016a).
The resulting model averages over the predictions of the individual models,
which can balance out some of the errors. In our experiments, we apply this
methodwhen decoding on the test set, but not for our experiments of 10-fold
CV, as this would take too much computation time.

7.4 Experiments with Data Representations

This section describes the experiments we conduct regarding the data repre-
sentations of the input (sentences) and output (DRSs) during training.
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Setting Value Setting Value

RNN-type LSTM dropout 0.2
encoder-type brnn dropout type naive
optimizer sgd bridge copy
layers 2 learning rate 0.7
nodes 300 learning rate decay 0.7
min freq source 3 max grad norm 5
min freq target 3 beam size 10
vector size 300 length normalization 0.9

Table 7.3: Hyper-parameters explored during training and testing with their
final values. All other hyper-parameters have default values.

7.4.1 Between Characters and Words

We first try two (default) representations: character-level and word-level.
Most semantic parsers use word-level representations for the input, but as
a result are often dependent on pretrained word embeddings or anonymiza-
tion of the input5 to obtain good results. Character-level models avoid this
issue but might be at a higher risk of producing ill-formed output.

Character-based model In the character-level model, the input (an
English sentence) is represented as a sequence of individual characters.
The output (a DRS in clause format) is linearized, with special characters
indicating spaces and clause separators. The semantic roles (e.g., Agent,
Theme), DRS operators (e.g., REF, NOT, POS) and deictic constants (e.g., "now",
"speaker", "hearer") are not represented as character sequences, but
treated as compound characters, meaning that REF is not treated as a
sequence of R, E and F, but directly as REF. All proper names, WordNet
senses, time/date expressions, and numerals are represented as character
sequences.

Word-based model In the word-level model, the input is represented as
a sequence of words, using spaces as a separator (i.e., the original words

5This is done to keep the vocabulary small. An example is to change all proper names to
NAME in both the sentence and meaning representation during training. When producing
output, the original names are restored by switching NAME with a proper name found in
the input sentence (Konstas et al., 2017).
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are kept). The output is the same as for the character-based model, except
that the character sequences are represented as words. We use pretrained
GloVe embeddings (Pennington et al., 2014)6 to initialize the encoder and de-
coder representations. In the DRS representation, there are semantic roles
and DRS operators that might look like English words, but should not be in-
terpreted as such (e.g., Agent, NOT). These entities are removed from the set
of pretrained embeddings, so that the model will learn them from scratch
(starting from a random initialization).

Hybrid representations: BPE We do not necessarily have to restrict our-
selves to using only characters or words as input representation. In NMT,
byte-pair encoding (BPE, Sennrich et al. 2016b) is currently the de facto stan-
dard (Bojar et al., 2017). This is a frequency-based method that automati-
cally finds a representation that is in between character and word-level. It
starts out with the character-level format and then does a predefined num-
ber of merges of frequently co-occurring characters. Tuning this number of
merges determines if the resulting representation is closer to character or
word-level. We explore a large range of merges (1k–100k), while applying
a corresponding set of pretrained BPE embeddings (Heinzerling and Strube,
2018). However, none of the BPE experiments improved on the character-
level or word-level score (F-scores between 57 and 68), only coming close
when using a small number of merges (which is very close to character-level
anyway). Therefore this techniquewas disregarded for further experiments.

Combined char and word There is also a fourth possible representation
of the input: combining the character and word-level representations. This
is uncommon in NMT due to the large size of the embedding space (hence
their preference for BPE), but possible here since the PMB data contains rel-
atively short sentences. We simply add the word embedding vector after the
sequence of character-embeddings for eachword in the input and still initial-
ize these embeddings using the pretrained GloVe embeddings. In Chapter 9
we will experiment more with other methods of combining character and
word-level representations, including using contextual embeddings (Peters
et al., 2018; Devlin et al., 2019).

6The Common Crawl version trained on 840 billion tokens, vector size 300.



7.4. Experiments with Data Representations 115

Representation results The results of the experiments (10-fold CV) for
finding the best representation are shown in Table 7.4. Character represen-
tations are clearly better than word representations, though the word-level
representation produces fewer ill-formed DRSs. Both representations are
maintained for our further experiments. Although the combination of char-
acters andwords did lead to a small increase in performance over characters
only (Table 7.4), this difference is not significant. Hence, this representation
is discarded in further experiments described in this chapter.

Model Prec Rec F-score % ill

Char 78.1 69.7 73.7 6.2
Word 73.2 65.9 69.4 5.8
Char + Word 78.9 69.7 74.0 7.5

Table 7.4: Evaluating different input representations. The percentage of ill-
formed DRSs is denoted by % ill.

7.4.2 Tokenization

An interesting aspect of the PMB data is the way the input sentences are
tokenized. In the data set, multi-word expressions are tokenized as single
words, for example, “New York” is tokenized to “New∼York”. Unfortunately,
most off-the-shelf tokenizers (e.g., the Moses tokenizer) are not equipped to
deal with this. We experiment with using Elephant (Evang et al., 2013), a to-
kenizer that can be (re-)trained on individual data sets, using the tokenized
sentences of the published silver and gold PMB data set.7 Simultaneously,
we are interested in whether character-level models need tokenization at
all, which would be a possible advantage of this type of representation.

Results of the experiment are shown in Table 7.5. None of the two to-
kenization methods yielded a significant advantage for the character-level
models, so they will not be employed further. The word-level models, how-
ever, did benefit from tokenization, but Elephant did not give us an advan-
tage over theMoses tokenizer. Therefore, for word-level models, we will use
Moses (Koehn et al., 2007) in our next experiments.

7Gold tokenization is available in the data set, but using this would not reflect practical
applications of DRS parsing, as we want raw text as input for a realistic setting.
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7.4.3 Representing Variables

So far we did not attempt to do anything special with the variables that occur
in DRSs, as we simply tried to learn them as supplied in the PMB data set. Ob-
viously, DRSs constitute a challenge for seq2seq models because of the high
number of multiple occurrences of the same variables, in particular com-
pared to AMR. AMR parsers do not deal well with this, since the re-entrancy
metric (Damonte et al., 2017) is among the lowestmetrics for all AMR parsers
that reported them or are publicly available (see Chapter 4). Moreover, for
AMR, only 50% of the representations contain at least one re-entrant node,
and only 20% of the triples in AMR contain a re-entrant node (as we saw in
Chapter 5), but for DRSs these are both virtually 100%. While seq2seq AMR
parsers could get away with ignoring variables during training and reinstat-
ing them in a postprocessing step, for DRSs this is unfeasible.

b1 REF x1
b1 male "n.02" x1
b1 Name x1 "tom"
b2 REF t1
b2 EQU t1 "now"
b2 time "n.08" t1
b0 NOT b3
b3 REF s1
b3 Time s1 t1
b3 Experiencer s1 x1
b3 afraid "a.01" s1
b3 Stimulus s1 x2
b3 REF x2
b3 entity "n.01" x2

(a) Standard

$1 REF @1
$1 male "n.02" @1
$1 Name @1 "tom"
$2 REF @2
$2 EQU @2 "now"
$2 time "n.08" @2
$0 NOT $3
$3 REF @3
$3 Time @3 @2
$3 Experiencer @3 @1
$3 afraid "a.01" @3
$3 Stimulus @3 @4
$3 REF @4
$3 entity "n.01" @4

(b) Absolute

[NEW] REF 〈NEW〉
[0] male "n.02" 〈0〉
[0] Name 〈0〉 "tom"
[NEW] REF 〈NEW〉
[0] EQU 〈0〉 "now"
[0] time "n.08" 〈0〉
[NEW] NOT [NEW]
[0] REF 〈NEW〉
[0] Time 〈0〉 〈-1〉
[0] Experiencer 〈0〉 〈-2〉
[0] afraid "a.01" 〈0〉
[0] Stimulus 〈0〉 〈1〉
[0] REF 〈NEW〉
[0] entity "n.01" 〈0〉

(c) Relative

Figure 7.3: Different methods of variable naming exemplified on the clausal
form of Figure 7.1. For (c), positive numbers refer to introductions that have
yet to occur, while negative numbers refer to known introductions. A zero
refers to the previous introduction for that variable type.
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However, since variable names are chosen arbitrarily, they will be hard
for a seq2seq model to learn. We will therefore experiment with two meth-
ods of rewriting the variables to a more general representation, distinguish-
ing between box variables and discourse variables. Our first method (ab-
solute) traverses down the list of clauses, rewriting each new variable to a
unique representation, taking the order into account. The second method
(relative) is more sophisticated; it rewrites variables based on when they
were introduced, inspired by De Bruijn index (de Bruijn, 1972). We view box
variables as introduced when they are first mentioned, while we take the
REF clause of a discourse referent as their introduction. The two rewriting
methods are illustrated in Figure 7.3.

The results are shown in Table 7.5. For both characters and words, the
relative rewriting method significantly outperforms the absolute method
and the baseline, though the absolute method produces fewer ill-formed
DRSs. Interestingly, the character-level model still obtains a higher F1-score
compared to the word-level model, even though it produces more ill-formed
DRSs.

Char parser Word parser

F1 % ill F1 % ill

Baseline (bs) 73.7 6.2 69.4 5.8

Moses (mos) 74.1 4.8 71.8 5.8
Elephant (ele) 74.0 5.4 71.1 7.5

bs/mos + absolute (abs) 75.3 3.5 73.5 2.0
bs/mos + relative (rel) 76.3 4.2 74.2 3.1

bs/mos + rel + lowercase 75.8 3.6 74.9 3.1
bs/mos + rel + truecase 76.2 4.0 73.3 3.3
bs/mos + rel + feature 76.9 3.7 74.9 2.9

Table 7.5: Results of the 10-fold CV experiments regarding tokenization, vari-
able rewriting and casing. bs/mosmeans that we use no tokenization for the
character-level parser, while we use Moses for the word-level parser.
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7.4.4 Casing

Casing is a writing device mostly used for punctuation purposes. On the one
hand, it increases the set of characters (hence adding more redundant vari-
ation to the input). On the other hand, case can be a useful feature to recog-
nize proper names as names of individuals are semantically analysed as pre-
suppositions. Explicitly encoding uppercase with a feature could therefore
prevent us from including a named-entity recognizer, often used in other se-
mantic parsers. Although we do not expect dealing with case is a major chal-
lenge, we try out different techniques to find an optimal balance between
abstracting over input characters and parsing performance. The results, in
Table 7.5, show that the featureworkswell for the character-levelmodel, but
for the word-level model, it does not outperform lowercasing. These settings
are used in further experiments.

7.5 Experiments with Additional Data

Since semantic annotation is a difficult and time-consuming task, gold stan-
dard data sets are usually relatively small. This means that semantic parsers
(and data-hungry neural methods in particular) can often benefit frommore
training data. Some examples in semantic parsing are data recombination
(Jia and Liang, 2016), paraphrasing (Berant and Liang, 2014) or exploiting
machine-generated output (Konstas et al., 2017). However, before we do any
experiments using extra training data, we want to be sure that we can still
benefit frommore gold training data. For both the character-level and word-
level we plot the learning curve, adding 500 training instances at a time, in
Figure 7.4. For both models the F-score clearly still improves when using
more training instances, which shows that there is at least the potential for
additional data to improve the score.

For DRSs, the PMB-2.1.0 release already contains a large set of silver stan-
dard data (71,308 instances), containing DRSs that are only partially manu-
ally corrected. We then train a model on both the gold and silver standard
data, making no distinction between them during training. After trainingwe
take the last model and restart the training on only the gold data, in a similar
process as described in Chapter 4.
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Figure 7.4: Learning curve for different number of gold instances for both
the character-level andword-level neural parsers (10-fold CV experiment for
every 500 instances).

We are aware that there are many methods to obtain and employ addi-
tional data. However, our main aim is not to find the optimal method for
DRS parsing, but to demonstrate that using additional data is indeed benefi-
cial for neural DRS parsing. Since we are not further fine-tuning our model,
wewill show results on the test set in this section. Table 7.6 shows the results
of adding the silver data. This results in a large increase in performance, for
both the character and word-level models. We are still reliant on manually
annotated data, however, since without the gold data (so training on only
the silver data), we score even lower than our baseline model (68.4 and 68.1
for the char and word parser). Similarly, we are reliant on the fine-tuning
procedure, as we also score below our baseline models without it (71.6 and
71.0 for the char and word parsers, respectively).

We believe there are two possible factors that could explain why adding
silver data resulted in such a large improvement: (i) the fact that the data is
silver instead of bronze or (ii) the fact that a different DRS parser (Boxer, see
Section 7.6), is used to create the silver data instead of our own parser.
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Char parser Word parser

F1 % ill F1 % ill

Best gold-only 75.9 2.9 72.8 2.0
+ ensemble 77.9 1.8 75.1 0.9

Gold + silver 82.9 1.8 82.7 1.1
+ ensemble 83.6 1.3 83.1 0.7

Table 7.6: F1-score and percentage of ill-formed DRSs on the test set, for the
experiments with the PMB-released silver data. The scores without using an
ensemble are an average of five runs of the model.

Char parser Word parser

Data F1 % ill F1 % ill

Silver (Boxer-generated) 83.6 1.3 83.1 0.7
Bronze (Boxer-generated) 83.8 1.1 82.4 0.9
Bronze (NN-generated) 77.9 2.7 74.5 2.2
without ill-formed DRSs 78.6 1.6 74.9 0.9

Table 7.7: Test set results of the experiments that analyse the impact of the
silver data.

We conduct an experiment to find out the impact on performance of sil-
ver vs bronze and Boxer vs our parser. The results are shown in Table 7.7.
Note that these experiments are performed to analyse the impact of the sil-
ver data, not to further push the score, meaning Silver (Boxer-generated) is
our final model that will be compared to other approaches in Section 7.6.

For (i), we compare the performance of the model trained on silver and
bronze versions of the exact same documents (so leaving out the manual
corrections). Interestingly, we score slightly higher for the character-level
model with bronze than with silver (though the difference is not statistically
significant), meaning that the extramanual corrections are not beneficial (in
their current format). This suggests that the silver data is closer to bronze
than to gold standard.
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Prec Rec F-score

spar 48.0 33.9 39.7
sim-spar 55.6 57.9 56.8

amr2drs 43.3 43.0 43.2
Boxer 75.7 72.9 74.3

Neural Char 79.7 76.2 77.9
Neural Word 77.1 73.3 75.1
Neural Char + silver 84.7 82.4 83.6
Neural Word + silver 84.0 82.3 83.1

Table 7.8: Test set results of our best neuralmodels compared to two baseline
models and two parsers.

For (ii), we use our ownbest gold-only parser to parse the sentences in the
PMB silver data release and use that as additional training data.8 Since the
silver data contains longer and more complicated sentences than the gold
data, our best parser produces more ill-formed DRSs (13.7% for char and
15.6% forword). We can either discard those instances or stillmaintain them
for the model to learn from. For Boxer this is not an issue since only 0.3% of
DRSs produced were ill-formed. We observe that a full self-training pipeline
results in lower performance compared to using Boxer-produced DRSs. In
fact, this does not seem to be beneficial over only using the gold standard
data. Most likely, since Boxer combines symbolic and statistical methods, it
learns very different things than our neural parsers, which in turn provides
more valuable information to themodel. A different explanation is that, pos-
sibly, self-training only works when the model can exploit larger quantities
of bronze data. We will not be experimenting with this in this chapter, but
will do so for AMR parsing in Chapter 9. A more detailed analysis on the
difference in (semantic) output is performed in Section 7.6.2 and 7.6.3. Re-
moving ill-formed DRSs before training leads to higher F-scores for both the
char and word parser, as well as a lower number of ill-formed DRSs.

8Note that we cannot apply the manual corrections, so in PMB terminology, this data is
bronze instead of silver.
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7.6 Discussion

7.6.1 Comparison

In this section, we compare our best neural models (with and without sil-
ver data, see Table 7.6) to two baseline systems and to two DRS parsers:
Amr2drs and Boxer. Amr2drs is a parser that obtains DRSs from AMRs by
applying a set of rules (Chapter 6), in our case using AMRs produced by the
AMR parser of Chapter 4. Boxer is an existing DRS parser using a statistical
CCG parser for syntactic analysis and a compositional semantics based on λ-
calculus, followed by pronoun and presupposition resolution (Curran et al.,
2007; Bos, 2008b). Spar is a baseline parser that outputs the same (fixed) de-
fault DRS for each input sentence. We also implemented a second baseline
model, Sim-spar, which outputs, for each sentence in the test set, the DRS of
the most similar sentence in the training set. This similarity is calculated by
taking the cosine similarity of the average word embedding vector (with re-
moved stopwords) based on the Glove embeddings (Pennington et al., 2014).

Table 7.8 show the result of the comparison. The neural models comfort-
ably outperform the baselines. We see that both our neural models outper-
formBoxer by a largemarginwhen using the Boxer labeled silver data. How-
ever, evenwithout this dependence, the neuralmodels perform significantly
better than Boxer. It is worth noting that the character-level model signifi-
cantly outperforms theword-levelmodel, even though it cannot benefit from
pretrained word embeddings and from a tokenizer.

Concurrently with this work, a neural DRS parser has been developed
by Liu et al. (2018a). They convert the DRSs to a tree representation and ap-
ply a customised neural encoder-decoder model with a structured decoder.
Their system produces the DRS in three stages, similar to the coarse-to-fine
approach of Dong and Lapata (2018). It first predicts the general (deep) struc-
ture of the DRSs, after which the conditions and referents are filled in. Unfor-
tunately, they train and evaluate their parser on annotated (sentence-level)
data from the GMB rather than from the PMB. The GMB does not contain
word senses, tense information and the evaluation sets are not gold stan-
dard. This makes it difficult to compare the approaches. However, they do



7.6. Discussion 123

Char Word Boxer

All clauses 83.6 83.1 74.3

DRS Operators 93.2 93.3 88.0
VerbNet roles 84.1 82.5 71.4
WordNet synsets 79.7 79.4 72.5
nouns 86.1 88.5 82.5
verbs, adverbs, adj. 65.1 58.7 49.3

Oracle sense numbers 86.7 85.7 78.1
Oracle synsets 90.7 90.9 83.8
Oracle roles 87.4 87.2 82.0

Table 7.9: F-scores of fine-grained evaluation on the test set of the three se-
mantic parsers.

compare to a similar model as the one we are using in this chapter, and out-
perform it by a large margin. They do not apply a format checker to check if
the final DRSs are well-formed, though it is more likely that this would be a
disadvantage for more vanilla sequence-to-sequence models, such as ours.

7.6.2 Analysis

An intriguing question is what our models actually learn, and what parts of
meaning are still challenging for neural methods. We do this in two ways,
by performing an automatic analysis and by doing a manual inspection on a
variety of semantic phenomena. Table 7.9 shows anoverviewof the different
automatic evaluationmetrics we implementedwith corresponding scores of
the three models.

The character- and word-level systems perform comparably in all cate-
gories except for VerbNet roles, where the character-based parser shows a
clear advantage (1.6% absolute). The score for WordNet synsets is similar,
but the word-level model has more difficulty predicting synsets that are in-
troduced by verbs than for nouns. It is clear that the neural models outper-
formBoxer consistently on each of thesemetrics (partly because Boxer picks
the first sense by default). What also stands out is the impact of the word
senses: with a perfect word sense disambiguation module (oracle senses)
large improvements can be gained for all three parsers.
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Figure 7.5: Performance of each parser for sentences of different length.

It is interesting to look at what errors the model makes in terms of pro-
ducing ill-formed output. For both the neural parsers, only about 2% of the
ill-formed DRSs are ill-formed because of a syntactic error in an individual
clause (e.g., b1 Agent x1, where a fourth argument is missing), while all
the other errors are due to a violated semantic constraint (see Section 7.3.2).
In other words, the produced output is a syntactically well-formed DRS but
is not interpretable.

Tofindout how sentence length affects performance, weplot in Figure 7.5
the mean F-score obtained by each parser on input sentences of different
lengths, from 3 to 10 words.9 We observe that all the parsers degrade with
sentence length. To find out whether any of the parsers degrades signifi-
cantly more than any other, we build a regression model, in which we pre-
dict the F-score using as predictors the parser (char, word and Boxer), the
sentence length and the number of clauses produced. According to the re-
gression model, (i) the performance of all the three systems decreases with

9Shorter and longer sentences are excluded as there are fewer than 10 input sentences
for any such length, e.g., there are only 3 sentences that have 2 words.
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sentence length, thus corroborating the trends shown in Figure 7.5 and (ii)
the interaction between parser and sentence length is not significant, i.e.,
none of the parsers decreases significantly more than any other with sen-
tence length. The fact that the performance of the neural parsers degrades
with sentence length is not surprising, since they are based on the seq2seq
architecture, and models built on this architecture for other tasks, such as
machine translation, have been shown to have the same issue (Toral and
Sánchez-Cartagena, 2017).

7.6.3 Manual Inspection

The automatic evaluation metrics provide overall scores but do not capture
how the models perform on certain semantic phenomena present in the
DRSs. Therefore, we manually inspected the test set output of the three
parsers for the semantic phenomena listed in Table 7.2. Below we describe
each phenomenon and explain how the parser output is evaluated on them.

The negation & modals phenomenon covers possibility (POS), necessity
(NEC), and negation (NOT). The phenomenon is considered successfully
captured if an automatically produced clausal form has the clause with
the modal operator and the main concept is correctly put under the scope
of the modal operator. For example, to capture the negation in Figure 7.1,
the presence of b0 NOT b3 and b3 afraid "a.01" s1 is sufficient. Scope
ambiguity counts nested pairs of scopal operators such as possibility (POS),
necessity (NEC), negation (NOT), and implication (IMP). Pronoun resolution
checks if an anaphoric pronoun and its antecedent are represented by
the same discourse referent. Discourse relation & implication involves
determining a discourse relation or an implication with a main concept in
each of their scopes (i.e., boxes). For instance, to get the discourse relation in
Figure 7.2 correctly, a clausal form needs to include b0 CONTINUATION b1 b5,
b1 play "v.03" e1, and b5 sing "v.01" e2. Finally, the embedded clauses
phenomenon verifies whether the main verb concept of an embedded
clause is placed inside the propositional box (PRP). This phenomenon also
covers control verbs: it checks if a controlled argument of a subordinate
verb is correctly identified as an argument of a control verb.
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Phenomenon # Char Word Boxer

negation & modals 73 0.90 0.81 0.89
scope ambiguity 15 0.73 0.57 0.80
pronoun resolution 31 0.84 0.77 0.90
discourse rel. & imp. 33 0.64 0.67 0.82
embedded clauses 30 0.77 0.70 0.87

Table 7.10: Manual evaluation of the output of the three semantic parsers on
several semantic phenomena. Reported numbers are accuracies.

The results of the semantic evaluation of the parsers on the test set is
given in Table 7.10. The character-level parser performs better than the
word-level parser on all the phenomena except one. Even though both
our neural parsers clearly outperformed Boxer in terms of F-score, they
perform worse than Boxer on the selected semantic phenomena. Although
the differences are not big, Boxer obtained the highest score for four out
of five phenomena. This suggests that just the F-score is perhaps not good
enough as an evaluation metric, or that the final F-score should perhaps
be weighted towards certain clauses. For example, it is arguably more im-
portant to capture a negation correctly than tense. Our current metric only
gives a rough indication about the contents, but not about the inferential
capabilities of the meaning representation.

7.7 Conclusions and Future Work

We implemented a general, end-to-end neural seq2seq model that is able to
produce well-formed DRSs with high accuracy (RQ1). Character-level mod-
els can outperform word-level models, even though they are not dependent
on tokenization and pretrained word embeddings (RQ2). It is beneficial to
rewrite DRS variables to a more general representation (RQ3). Obtaining
and employing additional data can benefit performance as well, though it
might be better to use an external parser instead of doing a full self-training
pipeline (RQ4). F-score is only a roughmeasure for semantic accuracy: Boxer
still outperformed our best neural models on a subset of specific semantic
phenomena (RQ5).
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Future work We think there are a lot of opportunities for future work.
Since the sentences in the PMB data set are relatively short, it makes sense
to investigate seq2seq models performing well for longer texts. There are a
fewpromising directions here that could combat the degrading performance
on longer sentences. First, the Transformer model (Vaswani et al., 2017) is
an interesting candidate for exploration, a state-of-the-art neural model de-
veloped for MT that does not have worse performance for longer sentences.
This will be explored in Chapter 9. Second, a seq2seq model that is able to
first predict the general structure of the DRS, after which it can fill in the
details, similar to Liu et al. (2018a), is something that could be explored. A
third possibility is a neural parser that tries to build the DRS incrementally,
producing clauses for different parts of the sentence individually, and then
combining them to a final DRS. Fourth, the neural parser might benefit from
using linguistic information, such as a syntactic analysis, which could help
in parsing longer sentences. We will explore this in Chapter 8.





CHAPTER 8

Linguistic Information in
Neural DRS Parsing

Recently, character-level sequence-to-sequencemodels have achieved im-
pressive performance on anumber of semantic parsing tasks. However, they
often do not exploit available linguistic resources, while these, when em-
ployed correctly, are likely to increase performance even further. Research
in neural machine translation has shown that employing this information
has a lot of potential, especially when using a multi-encoder setup. We em-
ploy a range of semantic and syntactic resources to improve performance
for the task of Discourse Representation Structure Parsing. This informa-
tion could be especially helpful for parsing longer sentences, which were
challenging for the DRS parser described in Chapter 7. We show that (i) lin-
guistic features can be beneficial for neural semantic parsing and (ii) the
best method of adding these features to the character-level model is by us-
ing multiple encoders. We also participated in the first shared task on DRS
parsing, for which we improved model performance by creating a number
of repairing strategies for ill-formed DRSs.

Chapter adapted from:

van Noord, R., Toral, A., and Bos, J. (2019). Linguistic information in neural
semantic parsing with multiple encoders. In IWCS - Short Papers, pages 24–31,
Gothenburg, Sweden

van Noord, R. (2019). Neural Boxer at the IWCS shared task on DRS parsing. In
Proceedings of the IWCS Shared Task on Semantic Parsing, Gothenburg, Sweden
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8.1 Introduction

Sequence-to-sequence neural networks have shown remarkable perfor-
mance in semantic parsing (Ling et al., 2016; Jia and Liang, 2016; Konstas
et al., 2017; Dong and Lapata, 2018; Liu et al., 2018a). As we also observed
in the previous chapters, this architecture is able to learn meaning repre-
sentations for a range of semantic phenomena, usually without resorting to
any linguistic information such as part-of-speech or syntax. Though this is
an impressive feat in itself, there is no reason to abandon these resources.
Even in machine translation, where models can be trained on relatively
large data sets, it has been shown that sequence-to-sequence models can
benefit from external syntactic and semantic resources (Sennrich and
Haddow, 2016; Aharoni and Goldberg, 2017) and a multi-source approach
has proven particularly successful for adding syntactic information (Currey
and Heafield, 2018). This could be an effective method for increasing the
performance on longer sentences, which are often challenging for neural
semantic parsers. The current approaches in neural semantic parsing
either include (some) linguistic information in a single encoder (POS-tags
in Chapter 4 and 5, lemmas in Liu et al. 2018a), or use multiple encoders
to represent multiple languages rather than different sources of linguistic
knowledge (Duong et al., 2017; Susanto and Lu, 2017). To our knowledge, we
are the first to investigate the potential of exploiting linguistic information
in a multi-encoder setup for (neural) semantic parsing.

Specifically, the aims of this chapter are to investigate (i) whether
exploiting linguistic information can improve neural semantic parsing and
(ii) whether it is better to include this linguistic information in the same
encoder or in an additional one. We take as baseline the character-level
neural semantic parser for Discourse Representation Structures (DRS, Kamp
and Reyle, 1993) developed in Chapter 7. During encoding we add linguis-
tic information in a multi-encoder setup, including various wide-spread
automatic linguistic analyses for the input texts, such as lemmatization,
POS-tagging, syntactic analysis and semantic tagging. We then empirically
determine whether using a multi-encoder setup is preferable over merging
all input features in a single encoder. We also discuss our submission to
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the first shared task on DRS parsing (Abzianidze et al., 2019), based on this
method and in which we apply a few postprocessing methods to improve
the scores. We hope the insight gained from these experiments will provide
suggestions to improve future neural semantic parsing for DRSs and other
semantic formalisms.

8.2 Data and Methodology

8.2.1 Discourse Representation Structures

DRSs are formal meaning representations based on Discourse Representa-
tion Theory (Kamp and Reyle, 1993). We use the version of DRT provided in
the ParallelMeaningBank (PMB,Abzianidze et al. 2017), a semantically anno-
tated parallel corpus, with texts in English, Italian, German and Dutch. DRSs
are rich meaning representations containing quantification, negation, refer-
ence resolution, comparison operators, discourse relations, concepts based
on WordNet, and semantic roles based on VerbNet. For a more extensive
overview, see Section 2.1.2 and Chapter 6.

All experiments are performed using the data of the PMB. In our experi-
ments, we only use the English texts and corresponding DRSs. We use PMB
release 2.2.0, which contains gold standard (fully manually annotated) data
of which we use 4,597 as train, 682 as dev and 650 as test instances. It also
contains 67,965 silver (partially manually annotated) and 120,662 bronze
(no manual annotations) instances. Most sentences are between 5 and 15
tokens in length. Since we will compare our results mainly to the sequence-
to-sequencemodel of Chapter 7, wewill only employ the gold and silver data.

8.2.2 Representing Input and Output

We represent the source and target data in the same way as in Chapter 7,
i.e., the source sentence as a sequence of characters, with a special charac-
ter indicating uppercase characters. The target DRS is also represented as a
sequence of characters, with the exception of DRS operators, thematic roles
andDRSvariables, which are represented as super characters (see Chapter 4),
i.e., individual tokens. TheDRS variables are rewritten to amore general rep-
resentation, using the De Bruijn index (de Bruijn, 1972). In a postprocessing
step, the original clause structured is restored.
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(a) (b) (c)
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e1 x1 t1

time.n.08(t1)

t1 = now

work.v.02(e1)

Time(e1, t1)

Co− Agent(e1, x1)

Agent(e1, speaker)

male.n.02 (x1)

Name(x1, tom)

b1 REF t1

b1 EQU t1 "now"

b1 time "n.08" t1

b2 Time e1 t1

b1 NOT b2

b2 REF e1

b2 Agent e1 "speaker"

b2 work "v.02 e1

b2 Co-Agent e1 x1

b3 REF x1

b3 Name x1 "tom"

b3 male "n.02" x1

b2 REF x1

b2 EQU x1 "now"

b2 time "n.08" x1

b1 Time x2 x1

b2 NOT b1

b1 REF x2

b1 Agent x2 x3

b1 work "v.01 x2

b1 Goal x2 x3

b1 REF x3

b1 Name x3 "tom"

Figure 8.1: DRS in box format (a), gold clause representation (b) and example
system output (c) for I am not working for Tom, with precision of 4/8 and
recall of 4/9, resulting in an F-score of 47.1.

To include morphological and syntactic information, we apply a lemma-
tizer, POS-tagger and dependency parser using Stanford CoreNLP (Manning
et al., 2014), similar to Sennrich and Haddow (2016) for machine translation.
The lemmas and POS-tags are added as a token after each word. For the de-
pendency parse, we add the incoming arc for each word. We also apply the
easyCCG parser of Lewis and Steedman (2014), using the supertags.1 Finally,
we exploit semantic information by using semantic tags (Bjerva et al., 2016b;
Abzianidze and Bos, 2017). Semantic tags are language-neutral semantic cat-
egories, which get assigned to a word in a similar fashion as part-of-speech
tags. Semantic tags are able to express important semantic distinctions, such
as negation, modals and types of quantification. We train a semantic tagger
with the TnT tagger (Brants, 2000) on the gold and silver standard data in the
PMB release.2 Examples of the input to the model for each source of infor-
mation are shown in Table 8.1.

1We segment the supertags, e.g., (S\NP)\(S\NP) is represented as ( S \ NP ) \ ( S \ NP )
2This tagger is also used in the PMB pipeline, see Abzianidze and Bos (2017). It out-

performed an ngram-based CRF-tagger (Lafferty et al., 2001) we also tried, obtaining an
accuracy of 94.4% on the dev set.
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Sent. I am not working for Tom

POS PRP VBP RB VBG IN NNP

SEM PRO NOW NOT EXG REL PER

LEM I be not work for Tom

DEP nsubj aux neg ROOT case nmod

CCG NP (S\NP)/(S\NP) (S\NP)\(S\NP) (S\NP)/PP PP/NP N

Table 8.1: Example representations for each source of input information.

8.2.3 Neural Architecture

We employ a recurrent sequence-to-sequence neural networkwith attention
(Bahdanau et al., 2015) and twobi-LSTM layers, similar to themodels in Chap-
ters 4 and 7. However, thosemodelswere trainedwithOpenNMT (Klein et al.,
2017), which does not support multiple encoders. Therefore, we switch to a
sequence-to-sequence framework that implements multiple encoders, Mar-
ian (Junczys-Dowmunt et al., 2018). We use model-type s2s (for a single en-
coder) ormulti-s2s (for multiple encoders).

This architecture differs from the previous in four main ways: (i) the ini-
tial decoder hidden state is defined as the mean of all encoder states, (ii) an
extra linear layer is added between this mean encoder state and the initial
decoder state, (iii) a conditional LSTM is used instead of a regular LSTM dur-
ing decoding and (iv) an extra linear layer is added after each decoder state.

Specifically, given a source sequence (v1, . . . , vk) of length k, and a target
sequence (t1, . . . , tl) of length l, let ei be the embedding of source symbol i, let
si be the encoder hidden state at source position i and let dj be the decoder
state at target position j. A single forward encoder state is obtained as fol-
lows: −→s i = LSTM(−→s i−1, ei). The final state is obtained by concatenating the
forward and backward hidden states, si = [−→s i;

←−s i]. The decoder is initialized
with the average over all encoder states:

c =

(
l∑

i=1

si

)
/k

d0 = tanh (Winit c)

(8.1)
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The conditional LSTM with attention is defined as follows:

d′j = LSTM1

(
dj−1,yj−1

)
aj = ATT(C,d′j)

dj = LSTM2

(
dj−1,aj

) (8.2)

Here, C is the set of all encoder states and ATT is the attention function
(see Section 3.3). When using two encoders, this means that multiple inputs
are encoded separately by an identical RNN, without sharing parameters.
We simply concatenate the resulting (averaged) context vectors before feed-
ing it to the decoder:

d0 = tanh (Winit [cenc1 ; cenc2 ])

During decoding, the calculation of final attention vector aj is now depen-
dent on both sets of encoder states:

aenc1j = ATT(Cenc1 ,d′j)

aenc2j = ATT(Cenc2 ,d′j)

aj =
[
aenc1j ;aenc2j

] (8.3)

Decoder

... Enc 2...

Average Enc 2 (cenc1)

Linear (d0)

I SEP

Learned embedding (eenc1)

a m ...

Learned embedding (eenc2)

m PRP

$NEW REF $NEW SEP

Average Enc 2 (cenc2)Attention Enc 1 (aenc1) Attention Enc 2 (aenc2)

Enc 1

...

...
@0

...PRO VBP PER

Figure 8.2: Schematic overview of our neural architecture when using two
encoders, in this case characters and POS-tags.
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Setting Value Setting Value Setting Value

RNN type LSTM Dropout RNN 0.2 Learning rate (LR) 0.002
Enc type bi-direc Dropout src/tgt 0.0 LR decay 0.8
Enc/dec layers 2 Batch size 12 LR decay strategy epoch
Embedding size 300 Optimization crit ce-mean LR decay start 9
RNN size 300 Vocab size src/tgt 80/150 Clip normalization 3
Epochs 15 Optimizer adam Beam size 10
Length norm 0.9 Label smoothing 0.1 Skip connections True
Layer norm True

Table 8.2: Hyper-parameter settings for our model, found after a search on
the development set. Settings not mentioned are left at default.

See Figure 8.2 for a schematic overview of our model. Our hyper-
parameter settings, found after a search on the development set, can be
found in Table 8.2. When only using gold data, training is stopped after 15
epochs. For gold + silver data, we stop training after 6 epochs, after which
we restart the training process from that checkpoint to fine-tune on only the
gold data, also for 6 epochs.3

Wewill compare ourmethod of using extra encoders to represent linguis-
tic information to adding the linguistic information in a single encoder. The
common method of adding this information in one encoder is to add it to
the token representation before feeding this larger vector to the LSTM, e.g.,
ej = [eword; epos] for adding POS-tags. This is also how the linguistic infor-
mation is added in Sennrich and Haddow (2016). However, since we have a
character-level model there is no single tag per individual character. There-
fore, we merge the representations in the text itself, similar as we added
POS-tags in Chapter 4. Table 8.3 shows examples of how the input is struc-
tured for using one or more encoders. Experiments showed that using more
than two encoders drastically decreased performance. Therefore, we merge
all the linguistic information in a single encoder if we want to use multiple
sources of linguistic information in a multi-encoder model (see last row of
Table 8.3).4

3We empirically found the best number of epochs during tuning, by looking at perfor-
mance on the development set for the baseline model.

4Concatenating the linguistic information on token-level in a second encoder, e.g.,
eling = [epos; esem], is not supported by Marian, but we experiment with this in Chapter 9.
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Source Enc. Representation

POS - 1 enc Enc 1 I PRP am VBP not RB working VBG for IN Tom NNP . .

POS - 2 enc Enc 1 I am not working for Tom .
Enc 2 PRP VBP RB VBG IN NNP .

POS + Sem Enc 1 I PRP PRO am VBP NOW not RB NOT working VBG EXG
(1 enc) for IN REL Tom NNP PER . . NIL

POS + Sem Enc 1 I am not working for Tom .
(2 enc) Enc 2 PRP PRO VBP NOW RB NOT VBG EXG IN REL NNP PER . NIL

Table 8.3: Example representation when using one or two encoders, for ei-
ther a single source of information (POS) or multiple sources (POS + Sem) for
the sentence I am notworking for Tom. For readability purposeswe show the
word-level instead of character-level representation of the source words.

8.2.4 Evaluation Procedure

Produced DRSs are compared with the gold standard representations by us-
ing Counter. An example of the matching procedure is shown in Figure 8.1,
whilemore details can be found in Chapter 6. The produced DRSs go through
a strict syntactic and semantic validation process, as is described in Chap-
ter 7. If a produced DRS is invalid, it is replaced by a dummy DRS, which gets
an F-score of 0.0. We check whether two systems differ significantly by per-
forming approximate randomization (Noreen, 1989), with α = 0.05, R = 1000

and F (model1) > F (model2) as test statistic for each DRS pair. This is the same
procedure we applied in Chapter 7.

8.3 Results

We perform all our experiments twice: (i) only using gold data for training
and (ii) with both gold (fully manually annotated) and silver (partially man-
ually annotated) data. We differentiate between two types of experiments:
single type experiments inwhich only a single source of information is added,
and stacking experiments in which we add multiple sources of information,
one by one, based on how much they improved the scores in the single type
experiments.
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Gold-only The results of the gold-only experiments are shown in Table 8.4.
We clearly see that using an additional encoder for the linguistic informa-
tion is superior to merging all the information in a single encoder. For two
encoders, the scores increase by at least 0.7 for each source of information
individually. Lemmatization shows the highest improvement, most likely
because the DRS concepts that need to be produced are often lemmatized
versions of the source words. When we stack the linguistic features, we ob-
serve an improvement for each addition, resulting in a final 2.7 point F-score
increase over the baseline.

Gold + silver Ifwe also employ silver data, we again observe that themulti-
encoder setup is preferable over a single encoder (Table 8.5), for both isolat-
ing and stacking the linguistic features. For single type, the results are sim-
ilar to only using gold data, with the exception of the semantic tags, which
even hurt the performance now. Interestingly, when stacking the linguistic
features, there is no improvement over only using the lemma of the source
words. The lemmas give us a significant improvement of 0.9 over the base-
line. Since we only use lemmas, we unfortunately do not expect that this
model is particularly better at parsing longer sentences than our baseline
model. In Section 8.4.3 (Figure 8.4) we find that this is indeed not the case. In
summary, linguistic informationmainly helps when there is limited training
data, though can still be helpful when more training data is available.

(a) Gold only: single type

Model 1 enc 2 enc

Baseline 78.6 ± 0.6 NA
POS-tags 79.5 ± 0.8 79.3 ± 0.6
Semantic tags 79.0 ± 0.9 79.3 ± 0.4
Lemma 78.6 ± 0.4 79.9 ± 0.4
Dep. parse 78.9 ± 0.7 79.3 ± 0.8
CCG supertags 78.6 ± 1.1 79.4 ± 0.9

(b) Gold only: stacking

Model 1 enc 2 enc

Baseline 78.6 ± 0.6 NA
+ Lemma 78.6 ± 0.4 79.9 ± 0.4
+ Semantic tags 79.4 ± 0.6 80.5 ± 0.6
+ POS tags 79.4 ± 0.3 80.8 ± 0.3
+ CCG supertags 79.4 ± 0.6 81.0 ± 0.6
+ Dep. parse 78.8 ± 0.7 81.3 ± 0.9

Table 8.4: Tables (a) and (b) show the results of adding a single type of lin-
guistic information or stacking the linguistic information for using gold data
only. Reported scores are F-scores on the development set, averaged over 5
runs of the system, with confidence scores.
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(c) Gold + silver: single type

Model 1 enc 2 enc

Baseline 84.5 ± 0.3 NA
POS tags 84.8 ± 0.3 84.9 ± 0.4
Semantic tags 83.5 ± 0.6 84.0 ± 0.4
Lemma 84.0 ± 0.2 85.6 ± 0.4
Dep. parse 83.9 ± 0.4 84.6 ± 0.3
CCG supertags 83.8 ± 0.3 84.8 ± 0.5

(d) Gold + silver: stacking

Model 1 enc 2 enc

Baseline 84.5 ± 0.3 NA
+ Lemma 84.0 ± 0.2 85.6 ± 0.4
+ POS-tags 84.3 ± 0.4 85.5 ± 0.3
+ CCG supertags 84.5 ± 0.2 85.6 ± 0.6
+ Dep. parse 84.5 ± 0.2 85.4 ± 0.4
+ Semantic tags 83.7 ± 0.4 85.1 ± 0.2

Table 8.5: Table (c) and (d) show the results of adding a single type of linguis-
tic information or stacking the linguistic information for using gold + silver
data. Reported scores are F-scores on the development set, averaged over 5
runs of the system, with confidence scores.

Comparison We now compare our best models to previous parsers intro-
duced in Chapter 75: the two baseline systems Spar and Sim-spar, Boxer
(Bos, 2015) and our previous sequence-to-sequence model without linguis-
tic features. Boxer (Bos, 2008b, 2015) is a DRS parser that uses a statisti-
cal CCG parser for syntactic analysis and a compositional semantics based
on λ-calculus, followed by pronoun and presupposition resolution. Spar is
a baseline system that outputs the same DRS for each test instance6, while
Sim-spar outputs the DRS of the most similar sentence in the training set,
based on a simple word embedding metric.7 The results are shown in Ta-
ble 8.6. Our model clearly outperforms the previous systems, even when
only using gold standard data. When compared to our previous sequence-to-
sequencemodel (Chapter 7), retrained on the same data used in our systems,
the largest improvement (3.6 and 3.5 for dev and test) comes from the im-
proved neural architecture (see Section 8.2.3). However, the linguistic fea-
tures are clearly still beneficial when using only gold data (increase of 2.7
and 1.9 for dev and test), and also still help when employing additional sil-
ver data (1.1 and 0.3 increase for dev and test, both significant).

5Since Liu et al. (2018a) used data from the Groningen Meaning Bank instead of the
PMB, we cannot make a comparison.

6For PMB release 2.2.0 this is the DRS for Tom voted for himself.
7See Section 6.5 for an explanation of the high baseline scores.
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Dev Test

Prec Rec F-score Prec Rec F-score

Spar 42.3 37.9 40.0 44.4 37.8 40.8
Sim-spar 52.4 54.2 53.3 57.0 58.4 57.7
Boxer (Bos, 2015) 72.5 72.0 72.2 72.1 72.3 72.2
Seq2seq (Chapter 7) 83.5 78.5 80.9 85.0 81.4 83.2

This chapter: gold only 81.9 75.6 78.6 ± 0.6 85.1 78.1 81.5 ± 0.2
This chapter: gold only + all ling 84.3 78.5 81.3 ± 0.9 86.6 80.4 83.4 ± 0.4

This chapter: gold + silver 85.9 83.2 84.5 ± 0.3 87.4 86.0 86.7 ± 0.2
This chapter: gold + silver + lemma 86.5 84.8 85.6 ± 0.4 87.6 86.3 87.0 ± 0.4

Table 8.6: Results on the test set compared to a number of baseline parsers
and our previous seq2seq model in OpenNMT (Chapter 7). Our scores are
averages of 5 runs, with confidence scores.

8.4 Shared Task Participation

We also participated with our system in the first shared task on DRS pars-
ing (Abzianidze et al., 2019). This motivated us to try and push the scores by
looking at the learning curves of the model and by applying a few extra post-
processing steps. Moreover, we analyse which documents were particularly
easy or hard for our model, compared to the other shared task participants.
These extra analyses coupledwith the final shared task results are described
below.

8.4.1 Learning Curves

Since manual DRS annotation is a hard and time consuming task, it is in-
teresting to know how much we can still benefit from extra silver and gold
standard examples. Concurrently, we can also observe the impact of the lin-
guistic features across different amounts of training data. We show the learn-
ing curves of two models: the baseline model and the best model. The best
model employs the linguistic features in a separate encoder.

How much gold is needed? The left graph of Figure 8.3 shows the per-
formance of our two models when only using gold training data. It is clear
that additional gold data still improves performance. This is no surprise, of
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Figure 8.3: Performance of our baseline and best system for training on dif-
ferent amounts of gold data on the left. A similar comparison, but now for
varying amounts of silver data is shown on the right.

course, since even silver data still helped improve performance. The linguis-
tic features are beneficial for all amounts of data. Moreover, the improve-
ments do not seem to diminish for larger amounts of gold training data.

How much silver is needed? The effect of varying the amount of silver
data is shown in the right graph of Figure 8.3. The initial addition of silver
data is clearly beneficial. However, the effect seems to diminish a bit for the
best model after 40,000 silver instances. The baseline model, though, still
improves after 40,000 instances. In general, it seems that additional silver
data could be beneficial, though the extra benefit is likely to be small. Here,
we also find the linguistic features (only lemmas in this case) to be benefi-
cial. Interestingly, the linguistic features seem to havemore impact for larger
amounts of silver data. Presumably, the model can only learn accurate rep-
resentations for the lemmas if enough data is available.

8.4.2 Improvement Methods

There are a number of syntactic and semantic requirements for a set of
clauses to be considered a well-formed DRS (see Chapter 7). Among others,
there should be a singlemain box and there should be no loop in the subordi-
nation of boxes. Since we do not restrict our model when producing clauses,
these errors can occur. However, they can often be (easily) fixed, by chang-
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ing a single clause or a set of clauses. We apply a few simple methods to fix
these ill-formed DRSs. Moreover, we improve performance on word sense
disambiguation, by changing senses that never occurred in the training set
to its most frequent sense in the training set. Details of these methods, along
with specific improvements per method, are shown in Appendix A. Apply-
ing all these methods on the development set gave us an improvement of 0.8,
while test set performance improved by 0.4. The total number of ill-formed
DRSs decreased from ∼1% to less than 0.1%. All in all, these methods give
us a modest improvement, having slightly less impact than adding sources
of linguistic information. Note that, preferably, we have a model that does
not need these methods, and will always produce well-formed DRSs. On the
other hand, it seems unfair to punish our model with a score of 0.0 for an
ill-formed DRS, if the DRS can easily be fixed.

8.4.3 Competition Results

The results on the final shared task evaluation set are shown in Table 8.7.
Aside from our own two systems, there were three participating teams. Fan-
cellu et al. (2019) proposed a graph-aware recurrent sequencemodel that can
explicitly model graphs instead of the string representations. This reduced
the number of ill-formed DRSs (especially without postprocessing), though it
was quite far from state-of-the-art performance.8 Evang (2019) aimed to find
a middle-ground between traditional symbolic approaches and the recent

Prec. Rec. F1

Amr2drs 36.7 42.2 38.8
Spar 44.3 35.4 39.4
Sim-spar 55.7 53.0 54.3

Bi-LSTM graph decoder (Fancellu et al., 2019) 71.9 64.1 67.8
Stack-LSTMs (Evang, 2019) 71.9 69.9 70.9
Seq2seq bi-LSTM (Chapter 7) 80.8 78.6 79.7
Seq2seq bi-LSTM + ling (this chapter) 85.5 83.6 84.5
Seq2seq Transformer (Liu et al., 2019b) 84.8 84.8 84.8

Table 8.7: Official results of the shared task for the 5 participating systems.
8Their submitted system here is not the final version described in Fancellu et al. (2019),

though also there they do not outperform our model from Chapter 7.
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neural (sequence-to-sequence) models. They employed a transition-based
parser that relied on explicit word-meaning pairs that are found in the train-
ing set. Parsing decisions aremadebased onvector representations of parser
states, which are encoded using stack-LSTMs. Lastly, Liu et al. (2019b) cre-
ated a system based on our model of Chapter 7, but swapped the bi-LSTM
architecture for a Transformer (Vaswani et al., 2017) and also trained on
bronze data, which increased performance. This is the highest scoring sys-
tem, though the difference between their work and our current model is not
significant.
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Figure 8.4: Performance of the 5 shared task systems over document length.
Noord18 is the model of Chapter 7, while Noord19 is our current work.

We deem it interesting to compare the participating systems over docu-
ment length. One could hypothesise that the more principled approaches of
Fancellu et al. (2019) and Evang (2019) do better on longer documents, while
the character-level seq2seq models have trouble handling longer sequences.
The comparison shown in Figure 8.4 (taken fromAbzianidze et al., 2019) tells
us that, so far, this is not the case. All systems seem to degrade more or less
equally over document length. On the other hand, a document of 12 tokens
(the largest length forwhich at least 8 documentswere available) is still quite
short, so perhaps for longer documents we would see a different trend.
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Relatively good performance Relatively poor performance

(a) Tom died when he was 97. (f) These bananas are not ripe.
(b) I read comic books. (g) A book about dancing is lying on the desk.
(c) We should drink 64 ounces (h) Approximately seven billion people

of fluids a day. inhabit our planet.
(d) I look down on liars and cheats. (i) The trip will take approximately five hours.
(e) You can’t run away. (j) Tom was too tired to speak.

Table 8.8: Sentences for which our model performed well and poor.

8.4.4 Error Analysis
Participating systems were provided with five sentences in the evaluation
set for which their model did relatively well, and five for which the model
performed relatively poor. The sentences for our system are shown in Ta-
ble 8.8.9 Interestingly, the model does well on sentences containing num-
bers, (a) and (c), but fails to capture the correct interpretation of approx-
imately in (h) and (i). For (b) and (d), our model correctly identified the
multi-word expressions comic_book and look_down_on, perhaps due to the
character-level input. For (e), ourmodel produced a perfect DRS, while other
approaches had trouble either producing run_away, or the fact that the sen-
tence was addressed to a hearer. Sentence (j) is interpreted in the gold stan-
dard as Tom could not speak because he was tired, but our model produced a
DRS more similar to the meaning of Tom spoke and was tired.

8.5 Conclusions

In this chapterwehave shown that a range of linguistic features can improve
performance of character-level sequence-to-sequence models for the task of
parsing Discourse Representation Structures. We have shown empirically
that the best method of adding these features is by using a multi-encoder
setup, as opposed tomerging the sources of linguistic information in a single
encoder. This method can potentially also be beneficial for other semantic
parsing tasks in which sequence-to-sequence models do well. We also par-
ticipated in the first shared task on DRS parsing, for which we improved our
model by devising a number of repairing strategies for ill-formed DRSs. We
ended second out of five teams in the competition.

9DRSs available at: https://urd2.let.rug.nl/~rikvannoord/DRS/IWCS/

https://urd2.let.rug.nl/~rikvannoord/DRS/IWCS/
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CHAPTER 9

Combining Characters with
Contextual Embeddings

The introduction of large, pretrained contextual language models has
had an enormous impact on the field of Natural Language Processing (NLP).
The use of these representations improved performance on virtually all
tasks they were tried on. This leads us to ask the question: are character-
level representations still useful in this new era of NLP? In this chapter
we argue that the answer to this question is a clear yes. We combine
character-level and contextual language model representations to improve
performance on Discourse Representation Structure and Abstract Meaning
Representation parsing. Character representations can easily be added in a
sequence-to-sequence model in either one encoder or as a fully separate en-
coder, with improvements that are robust to different formalisms, language
models, languages and data sets. For English DRS parsing, these improve-
ments are larger than adding individual sources of linguistic information
or adding non-contextual embeddings. A new method of analysis based
on semantic tags demonstrates that the character-level representations
improve performance on a subset of selected semantic phenomena.

Chapter is an extended version of:

van Noord, R., Toral, A., and Bos, J. (2020). Character-level representations
improve DRS-based semantic parsing even in the age of BERT. In EMNLP,
pages 4587–4603, Online. ACL
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9.1 Introduction

Character-level models have obtained impressive performance on a num-
ber of natural language processing (NLP) tasks, ranging from the classic POS-
tagging (Santos and Zadrozny, 2014) to complex tasks such as open domain
semantic parsing, as we saw in the previous chapters. However, this was
before the introduction of large pretrained language models (Peters et al.,
2018; Devlin et al., 2019). These models solved the issue of static word em-
beddings always assigning the same vector to a source word, independent
of the context this source word occurred in. Moreover, these models are not
just useful for initializing the word vectors of a system. The trained weights
of the models themselves can be used during training of a different task, in
a process that is called fine-tuning (Howard and Ruder, 2018).

It is hard to understate the impact of these models on the field of NLP.
The most famous model Bert1 (Devlin et al., 2019) already outperformed
the state-of-the-art on 11 NLP tasks by a wide margin, and in general, state-
of-the-art performance is currently virtually always obtained by fine-tuning
a pre-trained language model (e.g., Conneau et al., 2020). It inspired a new
line of research that tries to understand what these models actually learn
(BERTology, see Rogers et al. 2020), as well as multiple even larger models,
with better performance (e.g., Yang et al. 2019; Raffel et al. 2020).

Does this mean that, despite a long tradition of being used in language-
related tasks (see Section 3.5), character-level representations are no longer
useful? We try to answer this question by looking at semantic parsing, specif-
ically Discourse Representation Structure (DRS, Kamp and Reyle, 1993) and
Abstract Meaning Representation (AMR, Banarescu et al., 2013) parsing. We
aim to answer the following research questions:

1. Do pretrained languagemodels (LMs) outperform character-levelmod-
els for DRS and AMR parsing?

2. Can character and LM representations be combined to improve perfor-
mance, and if so, what is the best method of combining them?

3. How do these improvements compare to adding linguistic features?

1To give an impression: Bert has already been cited over 8,500 times (as of August
2020) since it first got posted on arXiv in October 2018.
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4. Are the improvements robust across different pretrained language
models, languages, and data sets?

5. On what type of sentences do character-level representations specifi-
cally help?

Why semantic parsing? Semantic parsing is the task of automatically map-
ping natural language utterances to interpretable meaning representations.
The produced meaning representations can then potentially be used to im-
prove downstream NLP applications (Issa et al., 2018; Song et al., 2019; Mi-
haylov and Frank, 2019), though the introduction of large pretrained lan-
guagemodels has shown that explicit formalmeaning representationsmight
not be a necessary component to achieve high accuracy. However, it is now
known that these models lack reasoning capabilities, often simply exploit-
ing statistical artifacts in the data sets, instead of actually understanding lan-
guage (Niven and Kao, 2019; McCoy et al., 2019). Moreover, Ettinger (2020)
found that the popular Bert model completely failed to acquire a general
understanding of negation. Related, Bender and Koller (2020) contend that
meaning cannot be learned from form alone, and argue for approaches that
focus on grounding the language (communication) in the real world. We be-
lieve formal meaning representations therefore have an important role to
play in future semantic applications, as semantic parsers produce an explicit
model of a real-world interpretation.

9.2 Background

9.2.1 Transformers & BERT

The LSTM-based sequence-to-sequence model we used in the previous
chapters has a clear bottleneck: we can only calculate the model’s internal
state st after we calculated st−1. This is not very efficient, while also making
long-range dependencies harder to model. This problem was addressed
by the Transformer (Vaswani et al., 2017), which has no recurrent (or
convolutional) layers. Transformers are sequence-to-sequence models that
mainly rely on self-attention to do the learning, which can be calculated fully
in parallel. The remaining issue was that this architecture was insensitive to
the order of the input sequence (quite a problemwhen processing language),
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but this was solved by adding positional embeddings, which only purpose
is to indicate the position of a word in the sentence. We will compare the
performance of this architecture with our bi-LSTM model.2

The Transformer is also the backbone of the Bert contextual language
model (Devlin et al., 2019). Bert is trained using Transformers on masked
languagemodelling, i.e., it is tasked to predict words that are obscured in the
input sentence. This method of language modelling allowed them to train a
bi-directional model, which, in ablation experiments, was shown to be an
important factor for the improved performance. They combine the masked
languagemodelling taskwith next sentence prediction, i.e., themodel is given
two sentences A and B and has to predict whether B followed A.3 In essence,
these tasks were picked so that themodel learns representations of language
in general, which can be useful for a number of downstream applications.
A 3.3 billion word corpus (books and Wikipedia) was used for training the
model. In fact, they trained two models: one with 12 Transformer layers
(Bert-base) and one with 24 layers (Bert-large).

There are two ways to use these trained Bert models. For one, we can
use the representations as features, that is, we run the full model on our in-
put sentence, and take the representations of the last hidden layer as the in-
put vectors for our sequence-to-sequence model. These representations are
contextual, i.e., the vector of a word can differ based on the context of the
sentence it occurs in. We can go one step further, though, and also keep the
full model (with all the weights) during the training of our own task-specific
model. The pretrained Bertweights themselves are then also updated based
on the current loss, instead of only the new weights of our own model. This
process is called fine-tuning and is the method that resulted in the best per-
formance in the original Bert paper. Using this fine-tuning method, they
considerably improved performance on a large variety of NLP tasks. Wewill
experiment with both methods in this chapter.

2Wewill not provide a detailed description of the Transformermodel in this thesis. For
such a description, we refer to the original paper (Vaswani et al., 2017) or this excellent
blog post: http://www.peterbloem.nl/blog/transformers

3A more efficient alternative for masked language modelling might be replaced token
detection (Clark et al., 2020), while sentence order prediction was shown to be preferable
over next sentence prediction (Lan et al., 2020).

http://www.peterbloem.nl/blog/transformers
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9.2.2 Character-level Models

As we saw in Section 3.5, the power of character-level representations has
long been known in the field. In earlier work, they were successfully used
across a range of tasks in statistical models (e.g., Sejnowski and Rosenberg,
1987; Church, 1993; Klein et al., 2003). More recently, they also proved use-
ful as input representations for neural networks, starting with success in
general language modelling (Sutskever et al., 2011), but also for a variety of
other tasks, including tokenization (Evang et al., 2013), POS-tagging (Santos
and Zadrozny, 2014), dependency parsing (Ballesteros et al., 2015) and neu-
ral machine translation (Chung et al., 2016a).

In previous chapters, we successfully trained a character-level end-to-
end sequence-to-sequence-model for AMR and DRS parsing. However, in se-
mantic parsing, character-level representations are also often used in combi-
nation with non-contextual word-level representations (e.g., Ballesteros and
Al-Onaizan, 2017; Groschwitz et al., 2018; Cai and Lam, 2019). In recent work,
they are also employed in combination with Bert (Zhang et al., 2019a,b; Cai
and Lam, 2020), by using a char-CNN (Kim et al. 2016, also see Section 9.3.1).
However, only Zhang et al. (2019a) provide an ablation score without the
characters, and it is not clear if their small improvement is significant.

9.2.3 Discourse Representation Structures

DRSs are formal meaning representations introduced by Discourse Repre-
sentation Theory (Kamp and Reyle, 1993) with the aim to capture the mean-
ing of texts (Figure 9.1). Many variants of DRS have been proposed through-
out the years. We adopt Venhuizen et al. (2018)’s version of DRT, which is
close to Kamp’s original ideas, but has a neo-Davidsonian view of event se-
mantics and explicitly represents presuppositions. The Groningen Meaning
Bank (GMB, Basile et al., 2012b; Bos et al., 2017) and the Parallel Meaning
Bank (PMB, Abzianidze et al., 2017) are releases of open domain texts an-
notated with DRS. We will be using the PMB data in this chapter, since it
contains gold standard evaluation sets and covers languages for which the
distinction between characters and words is meaningful (English, German,
Italian and Dutch). See Section 2.1.2 for a more detailed description of DRS
and Chapter 6 for more information on the PMB.
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Sent: I haven’t been to Boston since 2013.
b1 NEGATION b2 b3 REF x1
b1 REF t1 b3 Name x1 "boston"

b1 TPR t1 "now" b3 PRESUPPOSITION b2
b1 time "n.08" t1 b3 city "n.01" x1
b2 REF e1 b2 Start e1 t2
b2 Theme e1 "speaker" b2 REF t2
b2 Time e1 t1 b2 time "n.08" t2
b2 be "v.03" e1 b2 Location e1 x1
b2 YearOfCentury t2 "2013"

	city.n.01	(x1)
				Name	(x1,	"boston")
		

					x1																

	

		be.v.03	(e1)
						Theme	(e1,	"speaker")
						Time	(e1,	t1)
						Location	(e1,	x1)	
						Start	(e1,	t2)
		time.n.08	(t2)
						YearOfCentury	(t2,	"2013")
		

						t1																													

¬

		
time.n.08	(t1)
				t1	<	"now"

b3

b1

b2			e1			t2 b2

Figure 9.1: Example DRS in clause (top) and box (bottom) representation.

DRS parsing Early approaches to DRS parsing employed rule-based sys-
tems for small English texts (Johnson and Klein, 1986;Wada and Asher, 1986;
Bos, 2001). The first open domain DRS parser is Boxer (Bos, 2008b, 2015),
which is a combination of rule-based and statistical models. Le and Zuidema
(2012) used a probabilistic parsingmodel that used dependency structures to
parse GMB data as graphs. More recently, Liu et al. (2018a) proposed a neu-
ralmodel that produces (tree-structured) DRSs in three steps byfirst learning
the general (box) structure of a DRS, after which specific conditions and ref-
erents are filled in. In follow-upwork (Liu et al., 2019a) they extend thiswork
by adding an improved attention mechanism and constraining the decoder
to ensurewell-formed output. Thismodel achieved impressive performance
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on both sentence-level and document-level DRS parsing based on GMB data.
Fu et al. (2020) in turn improve on this work by employing a Graph Attention
Network during both encoding and decoding.

The introduction of gold standard DRSs in the PMB enabled a principled
comparison of approaches. In Chapter 7, we showed that sequence-to-
sequence models can successfully learn to produce DRSs, with characters
as the preferred representation. In Chapter 8, we improved on these scores
by adding linguistic information. The first shared task on DRS parsing
(Abzianidze et al., 2019) sparked more interested in the topic, with a system
based on stack-LSTMs (Evang, 2019) and a neural graph-based system
(Fancellu et al., 2019). The best system (Liu et al., 2019b) used a similar
approach as our model of Chapter 7, but swapped the bi-LSTM encoder for a
Transformer. We will compare our approach to these models in Section 9.4.

9.2.4 Abstract Meaning Representations

Abstract Meaning Representation (AMR, Banarescu et al. 2013) is a broad-
coverage semantic formalism that aims to capture sentence level semantics.
AMRs are rooted, directed, acyclic graphs that encode, among others,
information about semantic relations, coreference, named entities (often
grounded withWikipedia links) and negation. In AMR graphs, the nodes are
concepts, while the edges are the (semantic) relations. There is no specific
alignment between concepts in the graph and words in the sentence. An
example AMR is shown in Figure 9.2 (left). For a more detailed overview of
AMR, see Section 2.1.1.

Initial AMR parsers either used two-stage graph-based methods to split
the task in relation and concept identification (Flanigan et al., 2014; Wer-
ling et al., 2015; Flanigan et al., 2016; Zhou et al., 2016) or a transition-based
parser based on shift-reduce dependency parsing (Wang et al., 2015b; Da-
monte et al., 2017). These two approaches are still dominant, though com-
monly extended by using powerful neural networks. Lyu and Titov (2018)
use bi-LSTM networks in their graph-based method and extend the model
by explicitly modelling alignment between concepts and words. Zhang et al.
(2019a) also use a two-stage method that treats AMR parsing as sequence-
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I haven't been to Boston since 2013. I haven't been to CITY_1 since DATE_1.

Figure 9.2: Example AMR in graph format on the left. The same AMR after
applying graph recategorization and anonymization on the right (see Sec-
tion 9.3.2).

to-graph transduction, which is not reliant on alignments. Transition-based
methods were improved by using stack-LSTMs (Ballesteros and Al-Onaizan,
2017; Naseem et al., 2019), better alignment methods (Liu et al., 2018b) and
using a different, more compact graph representation (Guo and Lu, 2018).

Groschwitz et al. (2018) introduced a new graph-based method based on
the AM-algebra (Groschwitz et al., 2017). Thiswork views AMRs as consisting
of atomic graphs, which can be combined by using linguistically motivated
operations. These structures can be seen as dependency trees, allowing them
to borrow techniques from neural dependency parsing to produce the AMRs.
Follow-up work improved on their scores by using multi-task learning on
different graph-banks and using contextual word embeddings (Lindemann
et al., 2019). The current best approaches combine parts of the two-stage and
transition-basedmethods by doing incremental sequence-to-graph transduc-
tion (Zhang et al., 2019b; Cai and Lam, 2019, 2020; Zhou et al., 2020). In these
models, the final graph is built incrementally in a top-down fashion, by span-
ning one node at every step, each decision being informed by previous deci-
sions of the model. We will compare to these systems in Section 9.4.2.
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9.3 Method

In this section we describe our neural architectures: the baseline sequence-
to-sequence model and the two methods of adding character-level represen-
tations. We then describe the data sets under consideration, along with the
sources of linguistic information we will be employing. Lastly, we outline
the evaluation metrics and statistical tests used in our experiments. All our
code is released at https://github.com/RikVN/Neural_DRS.

9.3.1 Neural Architecture

As our baseline system, we use a sequence-to-sequencemodel with attention
(Bahdanau et al., 2015), with modifications based on the Nematus (Sennrich
et al., 2017) and Marian (Junczys-Dowmunt et al., 2018) architectures. This
is described in more detail in Chapter 8, but shortly: (i) we initialize the de-
coder hidden statewith themeanof all encoder states, (ii)we addan extra lin-
ear layer between this mean encoder state and the initial decoder state and
(iii) we add an extra linear layer after each decoder state. We re-implement
this model in AllenNLP (Gardner et al., 2017), as there is no option to use
contextual embeddings in Marian.

More formally, given a source sequence (s1, . . . , sl) of length l, and a target
sequence (t1, . . . , tk) of length k, let ei be the embedding of source symbol i,
let hi be the encoder hidden state at source position i and let dj be the de-
coder state at target position j. A single forward encoder state is obtained
as follows: −→h i = LSTM(

−→
h i−1, ei). The final state is obtained by concatenat-

ing the forward and backward hidden states, hi = [
−→
h i;
←−
h i]. The decoder is

initialized with the average over all encoder states: ctok =
(∑l

i=1 hi

)
/ l and

d0 = tanh (Winit ctok). We will experiment with adding character informa-
tion in either one or two encoders. The implementations are outlined below.

Characters in one encoder For one encoder, we use char-CNN (Kim
et al., 2016), which runs a Convolutional Neural Network (LeCun et al., 1990)
over the characters for each token. It applies convolution layers for certain
widths, which in essence select n-grams of characters. For eachwidth, it does
this a predefined number of times, referred to as the number of filters. An
overview of the network for encoding the word have is shown in Figure 9.3.

https://github.com/RikVN/Neural_DRS
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Figure 9.3: Overview of the char-CNN encoder, encoding the word havewith
bigrams (width = 2) for n filters.

A width of 2 selects the bigrams ha, av and ve, returning a scalar for each
bigram operation, which in turn form a vector f1 for filter 1. We then take
the max value of this vector to obtain the first value of our width 2 (w2)
char-CNN embedding ew21 . The final vector ew2 is thus of length n. However,
we usually do not look at only a single width, but at a range of widths, e.g.,
[1, 2, 3, 4, 5]. In that case, we simply concatenate the resulting vectors to
obtain our final char-CNN embedding: echar = [ew1; ew2; ew3; ew4; ew5]. Each
width-filter combination has independent learnable parameters, which
get updated by the loss and optimization function, similar to all other
network parameters. Finally, the char-CNN embedding is concatenated to
the token-level representation, which is fed to the encoder: ei = [etoki

; echari ].
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This method has two main advantages. For one, it is able to specifically
model n-grams of characters instead of only individual characters. Second,
the characters donot influence the total number of encoder states (still token-
level), which can grow quite large for character-level encoders. On the other
hand, it introduces a lot of new parameters, which increase the size and com-
plexity of themodel. Moreover, it increases the number of hyper-parameters
(filters, widths, character embedding size), which is a costly extra tuning step,
and might make the model more prone to overfitting.

Characters in two encoders Our two encoder set-up is the same as de-
scribed in Chapter 8, but with a contextual language model as first encoder,
and the characters in a second encoder. We run separate (but structurally
identical) bi-LSTMencoders over the tokens and characters, and concatenate
the resulting context vector before we feed it to the decoder:

d0 = tanh (Winit [ctok; cchar])

In the decoder, we replace the LSTMwith a doubly-attentive LSTM, based
on the doubly-attentive GRU (Calixto et al., 2017). We apply soft-dual atten-
tion (Junczys-Dowmunt and Grundkiewicz, 2017) to be able to attend over
both encoders in the decoder (also see Figure 9.4):

d′j = LSTM1

(
dj−1, etj−1

)
aj =

[
ATT

(
Ctok,d

′
j

)
;ATT

(
Cchar,d

′
j

)]
dj = LSTM2

(
d′j ,aj

)
Here, etj−1 is the embedding of the previously decoded symbol t, C the

set of encoder hidden states for either the tokens or characters, ATT the at-
tention function (dot-product) and dj the final decoder hidden state at step
j. This model can easily be extended to more than two encoders, which we
will experiment with in Section 9.4.

This type of multi-source model is commonly used to represent different
languages, e.g., in machine translation (Zoph and Knight, 2016; Firat et al.,
2016) and semantic parsing (Susanto and Lu, 2017; Duong et al., 2017),
though it has also been successfully applied in multi-modal translation
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Figure 9.4: Schematic overview of our neural architecture when using two
encoders (Bert and characters).

(Libovický and Helcl, 2017), multi-framework semantic parsing (Stanovsky
and Dagan, 2018) and adding linguistic information (Currey and Heafield,
2018 and our own work in Chapter 8). To the best of our knowledge, we
are the first to represent the characters as a source of extra information
(when combined with a contextual language model) in a multi-source
sequence-to-sequence model.

Transformer We also experiment with the Transformer model (Vaswani
et al., 2017), using the stacked self attention model as implemented in Al-
lenNLP. A possible advantage of this model is that it might handle longer
sentences and documents better. However, it might be harder to tune (Popel
and Bojar, 2018)4 and its improved performance has mainly been shown for
large data sets, as opposed to the generally smaller semantic parsing data
sets (Section 9.3.3). Indeed, we cannot outperform the LSTM architecture
(see Section 9.4), even when tuning more extensively. We therefore do not
experiment with adding character-level representations to this architecture,
though the char-CNN can be added similarly as for the LSTM model.

4Also see: https://twitter.com/srush_nlp/status/1245825437240102913

https://twitter.com/srush_nlp/status/1245825437240102913
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DRS parsing AMR parsing

Setting LSTM Transf. Range LSTM Range

Hidden RNN size 300 NA 200 - 600 300 300 - 700
Decoder RNN size 300 NA 300 300 300

Num heads NA 6 2, 4, 6, 10 NA NA
hidden_dim NA 300 300 - 600 NA NA
ff_hidden_dim NA 900 300 - 1,200 NA NA
dropout: layer NA 0.1 0.1, 0.2 NA NA

residual NA 0.2 0.1, 0.2 NA NA
attention NA 0.1 0.1, 0.2 NA NA

target emb dim 300 300 300 (GloVe) 300 300 (GloVe)
max src tokens 125 50 30 - no max 100 100
max tgt tokens 1,160 560 300 - no max 300 300
layers 1 6 1-3 LSTM, 1-10 Tr. 1 1, 2, 3
max_norm 3 3 3, 4, 5 3 3
scale_grad_by_freq False False True/False False True/False
label_smoothing 0.0 0.1 0.0, 0.05, 0.1, 0.2 0.1 0.0 - 0.2
beam size 10 10 10 10 10
max decoding steps 1,000 500 500, 1000 300 300
scheduled sampling 0.2 0.0 0.0, 0,1, 0.2, 0.3, 0.4 0.0 0.0, 0.1, 0.2
batch size 48 32 12, 24, 32, 48, 64, 128 32 16 - 128
optimizer adam adam adam, sgd adam adam, sgd
learning rate 0.001 0.0002 0.0001 - 0.01 0.001 0.0001 - 0.01
grad norm 0.9 0.9 0.7 - 0.95 0.9 0.7 - 0.95
min target occ 3 3 1, 3, 5, 10, 20 5 1, 3, 5, 10, 20

Table 9.1: An overviewof the hyper-parameters used for the LSTMandTrans-
former architecture, that use the Bert-base representations. Settings not
specified are left at their default value.

Hyper-parameters To make a fair comparison, we conduct an indepen-
dent hyper-parameter search on the development set for all eight input text
representations (see Section 9.3.2) across the two neural architectures, start-
ing from the settings we found in Chapter 8. We found that the best set-
tings were very close for all systems, with the only notable difference that
the learning rate of the Transformer models is considerably smaller than
for the bi-LSTM models (0.0002 vs 0.001). Table 9.1 gives an overview of the
hyper-parameters we used and/or experimented with in the tuning stage
for both formalisms. This table only gives an overview of the settings for
the Bert-basemodel, though the settings for the other representations (de-
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scribed in 9.3.2) are very similar.5 We performed manual tuning, with be-
tween 10 and 40 tuning runs for each representation type and model combi-
nation (see Table 9.4).

For the char-CNN model, we use 100 filters, a character embedding size
of 75 and n-gram filter sizes of [1, 2, 3] for English and [1, 2, 3, 4, 5] for German,
Italian and Dutch. For experiments where we add characters or linguistic
features, the only extra search we do is the size of the hidden vector of the
RNN encoder (300−600 for DRS, 500−700 for AMR), since this vector now has
to containmore information, and could potentially benefit from a larger size.
Note that (possible) improved performance is not simply due to largermodel
capacity, since during tuning of the baselinemodels a larger RNNhidden size
did not result in better performance.

9.3.2 Representations

We will experiment with five well-known pretrained language models:
Elmo (Peters et al., 2018), Bert base/large (Devlin et al., 2019) and Roberta

base/large (Liu et al., 2019c).6 Elmo calculates contextual embeddings
based on a bi-LSTM language model, while Roberta was designed as an
improved version of Bert by making small changes in its training regime.
The performance of these five large LMs is contrasted with results of a
character-level model and a token-based model with either non-contextual
GloVe (Pennington et al., 2014) or FastText (Grave et al., 2018) embeddings.

DRSparsing Pre- and postprocessing of theDRSs is done using the steps de-
scribed in Chapter 7. The DRSs are linearized, after which the variables are
rewritten to a relative representation based on the order of their introduc-
tion. The character-level model has character representations for the DRS
concepts and constants, but not for variables, roles and operators. For all
word-level models, the DRS concepts are initialized with GloVe embeddings,
while the other target tokens are learned from scratch.

5Specific configuration files are available here: https://github.com/RikVN/

Neural_DRS/
6We are aware that there exist several other large pretrained language models (e.g.,

Yang et al., 2019; Raffel et al., 2020; Clark et al., 2020), but we consider that the models we
used have had the largest impact on the field.

https://github.com/RikVN/Neural_DRS/
https://github.com/RikVN/Neural_DRS/
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AMR parsing The AMRs are pre- and postprocessed by the methods de-
scribed in Chapter 4, extended by using the indexingmethod from Chapter 5
to handle coreference. We use character-level representations, with super
characters at the target side. Wiki links are removed before training and re-
stored in a postprocessing step, following Bjerva et al. (2016a). There are a
few differences with the work in Chapter 4. We do not use ensembling or
averaging of models. Also, we do not add POS-tags as features. Lastly, since
the target side is now word-based, we separate the concepts from its sense
during training to make learning easier, e.g., say-01 is represented as say
*SPLIT* -01. The senses are then restored in a postprocessing step.

AMR recategorization Previous AMR parsers were often reliant on graph
recategorization to achieve high accuracy (e.g., Werling et al., 2015; Konstas
et al., 2017; Lyu and Titov, 2018; Zhang et al., 2019a). This method merges
specific subgraphs of an AMR to a new single compound node. Often, this
method also anonymizes parts of the graph and input sentence to deal with
the sparsity of named entities, e.g., changingGermany to Country_1. These re-
categorizations are then restored in a postprocessing step. An example recat-
egorized graph (with corresponding sentence) is shown in Figure 9.2 (right).
This approach depends on a large number of handcrafted rules, which are
non-trivial and differ between approaches, making it hard to distinguish
modelling advancements from simply using a better set of rules (Cai and
Lam, 2019). We would prefer a model that is not dependent on these meth-
ods, but we will test with both settings to assess their impact. We use the
graph recategorization method of Zhang et al. (2019a).7

BERT specifics For the Bertmodels, we obtained the best performance by
only keeping the vector of the first WordPiece per original token (e.g., only
keep play out of play ##ing). For Roberta, it was best to use the Word-
Piece tokenization as is. Since linguistic features are added on token level,
we duplicate the semantic tags formulti-piece tokens of Roberta in Table 9.6.
We found that for both Bert and Roberta, it was best to keep the pretrained
weights frozen (requires_grad = False).8 This was not a small difference:

7https://github.com/sheng-z/stog
8Using the last hidden layer as input features. We did not experiment with taking a

different layer or taking a (pooled) mix of different layers.

https://github.com/sheng-z/stog
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models using fine-tuning obtained scores in the range of 45−60. Interestingly,
the above findings were the same for both DRS and AMR parsing.

9.3.3 Data and Evaluation

DRS data We use PMB releases 2.2.0 and 3.0.09 in our DRS parsing exper-
iments (see Table 9.2). The latter is a larger and more diverse extension
of 2.2.0, which will be used for most of our experiments. We use 2.2.0 to
compare to previous work and to verify that our results are robust across
data sets. The PMB releases contain DRSs for four languages (English, Ger-
man, Italian and Dutch) for three levels of annotation: gold (fully manually
checked), silver (partially manually corrected) and bronze (no manual cor-
rections). To make a fair comparison to previous work, we only employ the
gold and silver data, by pretraining on gold + silver data and subsequently
fine-tuning on only the gold data. If there is no gold train data available, we
train on silver + bronze and fine-tune on silver. Unless otherwise indicated,
our results are on the English development set of release 3.0.0.

Gold Silver Bronze
Train Dev Test Train Train

2.2.0 English 4,597 682 650 67,965 120,662
German 0 727 747 4,235 102,998
Italian 0 374 400 2,515 61,504
Dutch 0 370 341 1,051 20,554

3.0.0 English 6,620 885 898 97,598 146,371
German 1,159 417 403 5,250 121,111
Italian 0 515 547 2,772 64,305
Dutch 0 529 483 1,301 21,550

Table 9.2: Document statistics over the four languages, for the two PMB re-
leases considered.

AMRdata Similar as in Chapters 4 and 5, we use AMR release LDC2017T10
in our experiments. It contains 36,521 training, 1,368 development and 1,371
test AMRs. This release only contains English data.

9https://pmb.let.rug.nl/data.php

https://pmb.let.rug.nl/data.php
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Data filtering We filtered ill-formed DRSs from the PMB data sets, which
only occurs for silver and bronze data (< 0.1%of DRSs). Similarly, wefilter ill-
formed AMRswhen using silver data, which is only< 0.01% of AMRs. For the
bi-LSTMmodels, the filtering of source and target tokens (see Table 9.1) only
filters out three very large documents from training for DRS parsing. This
was done for efficiency and memory purposes; it did not make a difference
in terms of F1-score. For the Transformer model, this improved F1-score by
around 0.5. We apply a similar filtering for AMR parsing.

Linguistic features We want to contrast our method of character-level
information to adding sources of linguistic information. Weemploy the same
five sources as in Chapter 8: part-of-speech tags (POS), dependency parses
(DEP), lemmas (LEM), CCG supertags (CCG) and semantic tags (SEM). For the
first three sources, we use Stanford CoreNLP (Manning et al., 2014) to parse
the documents. The CCG supertags are obtained by using easyCCG (Lewis
and Steedman, 2014). For semantic tagging, we train our own trigram-based
tagger using TnT (Brants, 2000). Table 9.3 shows a tagged example sentence
for all five sources of information. Moreover, we also include non-contextual
GloVe and FastText embeddings as an extra source of information.

We add these sources of linguistic information in the sameway aswe add
the character-level information, in either one or two encoders (see Section
9.3.1). In two encoders, we use the exact same architecture. For one encoder,
we (obviously) do not use the char-CNN, but learn a separate embedding for
the tags (of size 200), that is then concatenated to the token-level representa-

Sent I have n’t been to Boston since 2013

POS PRP VBP RB VBN TO NNP IN CD

SEM PRO NOW NOT EXT REL GPE REL YOC

LEM I have not be to Boston since 2013

DEP nsubj aux neg cop case ROOT case nmod

CCG NP VP\VP VPVP VP/PP PP/NP N (VP\VP)/NP N

Table 9.3: Example representation for each source of linguistic information
(PMB document p00/d1489).
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tion, i.e., ei = [etoki
; elingi ]. If we use two encoders with a LM, characters and

linguistic information (e.g., Table 9.5), the characters are added separately in
the second encoder, while the LMand linguistic information representations
are added in the first encoder.

DRS evaluation We compare the produced DRSs to the gold standard us-
ing Counter10 (see Chapter 6), which calculates micro precision, recall and
F1-score based on the number of matching clauses. We use an updated ver-
sion of Referee (see Chapter 7) to ensure that the produced DRSs are syn-
tactically and semantically well-formed (i.e., no free variables, no loops in
subordinate relations) and form a connected graph. All shown scores are
averaged F1-scores over five training runs of the system, in which the same
five random seeds are used.11 Reported scores are calculated using Counter,
unless otherwise indicated. For significance testing we use approximate ran-
domization (Noreen, 1989), with α = 0.05 and R = 1000.

Moreover, we also evaluate our final models using the recently proposed
metric D-scorer (Liu et al., 2020). This metric converts the DRSs to graphs,
after which an F1-score is calculated based on n-gram overlap, similar to
BLEU (Papineni et al., 2002). Since there are no human judgements for DRS
pairs available we do not know if this metric better captures DRS similarity
than Counter, but it will be interesting to know whether our findings will
be robust across different metrics.

We also introduce and release drs-jury.12 This program provides a de-
tailed overview of the performance of a DRS parser, but can also compare ex-
periments, possibly overmultiple runs. Features include significance testing,
semantic tag analysis (Section 9.5.1), sentence length plotting (Section 9.5.2),
new detailed Counter scores (Appendix B), and analysing which DRSs were
relatively easy or hard for the respective models (Appendix C). We hope this
is a step in the direction of a more principled way of evaluating DRS parsers.

AMR evaluation The produced AMRs are evaluated by using Smatch (Cai
and Knight, 2013), which also calculates micro precision, recall and F1-score,
in this case based on matching triples (see Section 4.2.1). Note, though, that

10https://github.com/RikVN/DRS_parsing/
11Standard deviations are omitted for brevity, though usually in range 0.1− 0.6.
12Available at https://github.com/RikVN/Neural_DRS/

https://github.com/RikVN/DRS_parsing/
https://github.com/RikVN/Neural_DRS/
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a few bugs were fixed in Smatch over the years, resulting in slightly higher
scores now than reported in previous papers. In Table 9.10, we report both
the reported score as well as the current score, wherever possible. More-
over, we evaluate our final models based on four newmetrics. First, we look
at SemBleu (Song and Gildea, 2019), also a metric based on BLEU, that can
catch higher-order relations instead of only node-to-node correspondences.
Second, we use s2match (Opitz et al., 2020), an extension to Smatch that can
account for graded similarity of concepts by using static word embeddings.
Lastly, we compare our models with smatch-weighted and smatch-core

(Cai and Lam, 2019), which either gives higherweight to triples that compose
the core idea of the graph (smatch-weighted), or only takes those triples
into account (smatch-core). These methods were introduced to evaluate
models on their ability to capture the core semantics of a given sentence. We
apply the same method of significance testing as for DRS parsing.

9.4 Results

In this section we will discuss the results of adding character-level represen-
tations to contextual language models on DRS parsing and AMR parsing. For
DRSparsing, we compare the impact of characters to using linguistic features
and test the robustness across multiple languages. For AMR parsing, we an-
alyze the impact of adding more silver standard data, as well as different
sources of silver standard data.

9.4.1 DRS Results

LMsvs char-levelmodels DRSparsing is no exception to the general trend
in NLP: it is indeed the case that pretrained language models outperform
models based only on characters (Table 9.4). Interestingly, the Transformer
model has worse performance for all representations.13 Surprisingly, we
find that Bert-base is the best model, though there is no significant differ-
encewith Bert-large. We choose to use Bert-base in further experiments
(referred to as Bert).

13The Transformer models were even tuned longer, since they were more sensitive to
small hyper-parameter changes.
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bi-LSTM Transformer

char 86.1 79.7
GloVe 85.4 84.6
FastText 85.5 84.0
Elmo 87.3 84.3
Bert-base 87.6 85.4
Bert-large 87.5 84.7
Roberta-base 87.0 82.7
Roberta-large 86.8 81.9

Table 9.4: DRS parsing: Baseline model for the eight input representations
considered, for the bi-LSTM and Transformer architectures. Best score in
each column shown in bold.

No chars + characters
1-enc 2-enc 1-enc 2-enc 3-enc

Bert 87.6 – 88.1 88.1 –

Bert + GloVe 87.9 87.2 88.1 88.0 86.9
Bert + FastText 87.8 87.7 87.9 87.9 87.0
Bert + pos 87.6 87.6 87.4 87.6 87.8
Bert + sem 87.9 88.0 88.0 88.4 88.1
Bert + lem 87.8 88.0 88.1 88.0 87.4
Bert + dep 87.9 87.5 88.0 87.8 87.8
Bert + ccg 87.8 87.3 87.9 87.8 87.6

Table 9.5: DRS parsing: Results for adding characters, linguistic information
and a combination of the two to the bi-LSTM Bert-basemodel.

Adding characters to BERT We can see the impact of adding characters to
Bert in the first row of results in Table 9.5. For both methods, it results in a
clear and significant improvement over the Bert-only baseline, 87.6 versus
88.1. Of course, in an absolute sense these improvements are modest, but
given that the Bert model improved only by 1.5 over the char-only model,
we consider an improvement of 0.5 to be a meaningful difference.
Adding linguistic features to BERT However, another common method
of improving performance is adding linguistic features to the token-level rep-
resentations. We try a range of linguistic features (described in Section 9.3.3),
that are added in either one or two encoders. We see in the first two columns
of results of Table 9.5 that even though linguistic information sources indeed
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do improve performance (up to 0.4 absolute), there is no single source that
can beat adding just the character-level representations (88.1).

Combining characters and linguistic features An obvious follow-up
question is whether we still see improvements for character-level mod-
els when also adding linguistic information. In a single encoder, adding
characters (third column of results in Table 9.5) is beneficial for 6 out of 7
linguistic sources (i.e., compare to the first column of results). The scores are,
however, not higher than simply adding characters on their own, suggesting
that linguistic features are not always beneficial if character-level features
are also included. For two encoders, the pattern is less clear, but we do find
our highest score thus far when we combine characters and semantic tags
(88.4).14 Since using three encoders did not yield clear improvements over
two encoders, we do not experiment with using more than three encoders.

Robustness to different LMs We want to verify that the character im-
provements are robust to using different language models (Table 9.6). We
see that adding characters results in improvement for all the LMs under con-
sideration, even for Elmo, which already incorporates characters in creating
the initial embeddings. Moreover, combining characters and semantic tags
also results in an improvement over just using characters for all the LMs
considered.

No char +char
(1 enc)

+char
(2 enc)

+char +sem
(2 enc)

Elmo 87.3 87.6 87.8 88.0
Bert-base 87.6 88.1 88.1 88.4
Bert-large 87.5 88.2 87.8 88.3
Roberta-base 87.0 87.3 87.8 88.0
Roberta-large 86.8 86.8 87.0 87.3

Table 9.6: DRS parsing: Results on 3.0.0 English dev of five LMs for adding
characters and both characters and semtags.

14With gold semantic tags (ceiling performance) we score 88.6.
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Figure 9.5: DRS parsing: Dev and test scores (F1) for the four models we
trained for three languages (German, Italian and Dutch). For 2.2.0, we com-
pare our results to Fancellu et al. (2019).
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Robustness across languages We train DRS parsing systems for German,
Italian and Dutch for four models: char-only, Bert-only, Bert + char in
1 encoder, and Bert + char in two encoders.15 The Bert model we use is
bert-multilingual-uncased. The results for both releases are shown in
Figure 9.5. For all languages, adding characters leads to a clear improve-
ment for both one and two encoders, though for Dutch the improvement is
smaller than for German and Italian. For 3.0.0, the char-only model is even
on par with the Bert-onlymodel for German and Italian. Interestingly, the
two-encoder setup seems to be generally preferable for these smaller, non-
English data sets. For 2.2.0, we outperform the systemof Fancellu et al. (2019)
for German and Italian and obtain competitive scores for Dutch. An interest-
ing direction for future work is to check whether these conclusions hold on
language-specific Bertmodels (e.g., de Vries et al., 2019).

Comparison to previous work To check whether the improvements hold
on unseen data, we run our best models on the test set and compare the
scores to previous work (first two columns with content in Table 9.7).16 We
see that adding the character-level information has similar (significant) im-
provements for dev and test on both data sets. The addition of semantic tags
might be questionable: for 2.2.0, both the Bert + char models outperform
this model, while for 3.0.0 the 0.1 improvement over Bert + char in one en-
coder is not significant. Despite this, we reach state-of-the-art performance
on both data sets, significantly outperforming the previous best scores by Liu
et al. (2019b) and our model from Chapter 8. We also compare to the seman-
tic parser Boxer, which needs input for 6 different PMB layers (Abzianidze
et al., 2017). Amateur Boxer is trained with internal PMB taggers, while Pro
Boxer uses the output of a neural multi-task learning system based on Bert

(van der Goot et al., 2020). Even though this is an unfair comparison to our
system, since the rule-based components of Boxer are (partly) optimized on
the dev and test sets, our best model still improves slightly over Pro Boxer
(significantly on test).

15We do not train a model that uses semantic tags as features, since there is not enough
gold semantic tag data available to train a good tagger for any of these languages.

16See Appendix B for the detailed Counter scores.
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Counter D-scorer

2.2.0 3.0.0 2.2.0 3.0.0
Model Dev Test Dev Test Dev Test Dev Test

Amateur Boxer 72.2 72.2 78.2 78.8 53.1 57.5 61.1 66.9
Pro Boxer – – 88.2 88.9 – – 76.8 82.1
Fancellu et al. (2019) – 76.4 – – – – – –
Evang (2019) 74.4 74.4 – – 63.7 65.8 – –
Char seq2seq (Chapter 7) 81.2 83.3 84.3 84.9 70.0 74.6 74.1 76.2
Char seq2seq + ling (Chapter 8) 86.5 86.8 86.8 87.7 74.7 79.5 78.0 80.1
Liu et al. (2019b) 85.5 87.1 – – – 80.9 – –

This chapter - Bert 85.4 87.9 87.6 88.5 76.3 81.7 79.5 82.0
This chapter - Bert + char (1 enc) 86.1 88.3 88.1 89.2 77.4 81.9 80.4 82.6
This chapter - Bert + char (2 enc) 85.6 88.1 88.1 89.0 77.1 81.7 80.0 82.7
This chapter - Best model 85.5 87.7 88.4 89.3 76.8 81.2 80.6 82.8

Table 9.7: DRS parsing: comparison of our four main models to previous
work for PMB 2.2.0 and 3.0.0 (English only). We use the metrics Counter
(Chapter 6) and D-scorer (Liu et al., 2020).

We also compare performance of the models using the D-scorer metric
(Liu et al., 2020). Generally, we see that the results hold up: using Bert im-
proves performance over just characters, while using characters in combi-
nation with Bert results in modest improvements as well. The main differ-
ence is that on the 2.2.0 test set, combining Bert, characters and semtags has
worse performance than just using Bert.

DRS parsing on GMB data The most recently developed neural DRS
parsers (Liu et al., 2018a, 2019a; Fu et al., 2020) only evaluate on the GMB,
making a comparison difficult. However, we consider it highly likely that
their more structured models (based on the coarse-to-fine approach of
Dong and Lapata, 2018) would outperform our more vanilla sequence-to-
sequence models. Therefore, even though we reach state-of-the-art PMB
performance, we consider the improvement of character-level representa-
tion the main takeaway of these experiments. Since the GMB models also
employ an encoder-decoder framework, our character-level method could
potentially be used to improve those systems.
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9.4.2 AMR Results

Let us now turn to AMR parsing. Here, we also first select the best language
model out of the Elmo, Bert and Robertamodels (shown in Table 9.8). These
experiments only used gold standard data. Interestingly, we see the same
pattern as for DRS parsing: Bert-base is the best model, while the Roberta
models have worse performance. The models also clearly outperform the
char-only model from Chapter 4, as well as the word-level models combined
with static embeddings. We will use the Bert-basemodel in further exper-
iments. We did a lot of tuning experiments with the Transformer model for
both Bert-base and Roberta-base, but could not score higher than 62.0

(Bert-base). Therefore, we do not consider running more Transformer ex-
periments a good use of our resources, and only focus on the bi-LSTM archi-
tecture for the rest of our experiments.

Representation bi-LSTM

char-only (Chapter 4) 65.2
GloVe 62.1
FastText 62.2
Elmo 66.7
Bert-base 69.5
Bert-large 68.5
Roberta-base 67.1
Roberta-large 66.2

Table 9.8: Baseline model scores for AMR parsing with our bi-LSTM
sequence-to-sequence model, when trained only on the gold standard data.

Adding characters to BERT We now test our two methods of adding
character-level representations here as well. We do this for our baseline
model as well as for models that exploit additional training data, both with
and without the recategorization method of Zhang et al. (2019a). This is
shown in Table 9.9. In general, adding characters in one encoder signifi-
cantly improves performance for all models, except for the self-training
model with graph recategorization. This was the case even when the model
had access to additional training data. Moreover, adding this data does not
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Bert-base baseline Bert-base + recat

Model Bert +char +char Bert +char +char
(1 enc) (2 enc) (1 enc) (2 enc)

Gold-only 69.5 70.3 69.6 71.5 71.9 71.6
Gold + 100k self-training 70.5 71.0 70.4 72.1 72.3 71.7

Gold + 100k (Wang et al., 2015b) 72.0 72.5 71.4 74.6 74.9 74.5
Gold + 100k (Lindemann et al., 2019) 73.2 73.6 72.4 76.0 76.3 75.9
Gold + 100k (Zhang et al., 2019a) 72.9 73.1 72.3 75.2 75.7 75.4

Table 9.9: AMR parsing: F-scores for using characters in combination with
our seq2seq Bert-basemodel. Scores are compared for gold data only and
different sources of silver data.

seem to diminish the effect of adding characters, with consistent improve-
ments of 0.2 − 0.5 for the one encoder model. The recategorization method
clearly helps as well, with improvements between 1.3 and 3.5 F-score points.
Again, even with this method, we still see an improvement for adding
character-level representations in one encoder. On the other hand, using
two encoders does not seem to improve performance over the baseline
model. This might be due to the longer AMR sentences as compared to the
shorter sentences in the PMB.

Self-training We also employ self-training, i.e., we obtain 100,000 silver
AMRs by parsing them with our best gold-only model (both baseline and re-
categorized). The advantage of this approach is thatwe are not dependent on
an external parser. Using self-training does not work as well as using silver
data from a different source, unfortunately, though we still get a meaningful
and significant improvement over the gold-only baseline. Using silver AMRs
fromhigher quality AMRparsers (Zhang et al., 2019a; Lindemann et al., 2019)
is preferable over using theWang et al. (2015b) AMRs fromChapter 4, though
the difference is smaller than one would perhaps expect (see Table 9.9). No-
tably, we do not outperform themodels that provided us with the silver data,
as opposed to the model in Chapter 4. Therefore, we will discard the models
that are dependent on previous models, and only consider the self-training
models going forward.
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Figure 9.6: AMR parsing: F-scores for self-training with different amounts
of silver data for the Bert-base bi-LSTM with recategorization. Scores are
on the development set and averaged over 5 runs.

Limits of silver data First, we want to knowwhether we can improve the
self-training process by employing more silver data. If so, we want to know
if adding characters is still beneficial, or if this improvement disappears. We
add silver data in batches of 50k until no further improvement is reached.
This is shown in Figure 9.6. The model can clearly still benefit from more
silver data. We reach the highest baseline score for 350k silver data (73.2),
at which point adding characters in one encoder significantly improves the
score by 0.3 (73.5). We consider this model as our final model. In general,
adding characters is beneficial for different amounts of silver data, though
the differences are small.

Performance on test set In the bottom 8 rows of Table 9.10 we show the
performance of 8 of our models on the test set. We see that the improve-
ments of using character-level representations hold up when using silver
data, graph recategorization, or both. These improvements, though small,
are also consistent across the different metrics under consideration. Our
best model obtains a final Smatch F-score of 73.9.
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Model GR S-paper S-cur S-w S-core s2match SemBleu

Cai and Lam (2020) 4 80.2 80.6 78.1 77.0 81.6 64.1
Cai and Lam (2020) 6 78.7 79.0 77.5 76.2 80.0 63.1
Zhou et al. (2020) 4 77.5 77.9 74.6 73.5 79.0 61.3
Zhang et al. (2019b) 4 77.0 77.3 74.1 72.9 78.9 60.7
Zhang et al. (2019a) 4 76.3 76.6 73.4 72.3 77.9 59.7
Lindemann et al. (2019) 4 76.3 76.7 73.6 72.7 77.8 56.7
Naseem et al. (2019) 4 75.5 75.9 72.3 71.5 77.3 57.0
Lyu and Titov (2018) 4 74.4 75.2 67.1 67.3 76.3 53.6
Cai and Lam (2019) 6 73.2 73.6 71.3 70.3 75.0 54.0
Groschwitz et al. (2018) 4 71.0 71.4 67.9 67.0 72.7 50.9
Char seq2seq + 100k (Chapter 4) 6 71.0 71.3 69.0 67.7 72.6 52.3

BERT seq2seq gold-only 6 - 68.9 67.7 68.9 70.1 46.8
BERT seq2seq gold-only + char (1e) 6 - 69.7 68.7 66.7 70.9 47.3

BERT seq2seq gold-only 4 - 71.3 69.4 67.8 72.7 50.0
BERT seq2seq gold-only + char (1e) 4 - 71.8 69.8 68.1 73.0 50.4

BERT seq2seq + 350k 6 - 70.7 70.0 68.0 71.9 47.1
BERT seq2seq + 350k + char (1e) 6 - 71.0 70.4 68.2 72.2 47.4

BERT seq2seq + 350k 4 - 73.6 71.9 70.3 74.7 52.9
BERT seq2seq + 350k + char (1e) 4 - 73.9 72.0 70.5 75.0 53.3

Table 9.10: AMR parsing: comparison of our best model to the previous best
systems. S-paper is the F-score reported in the respective papers, S-cur the
score for the current version of Smatch. S-w is smatch-weighted, whileGR
is short for graph recategorization.

Comparison to previous work We compare our final models to the best
previous systems on the test set (Table 9.10).17 Our Bert based seq2seq
model does not come close to state-of-the-art performance. However, if we
do not want to rely on the rule-based graph recategorization, our system
is only outperformed by the recent work of Cai and Lam (2019, 2020).
Interestingly, the end-to-end character-level seq2seq model from Chap-
ter 4 outperforms the Lyu and Titov (2018) model for smatch-weighted

and smatch-core, even though there is a considerable difference in
general Smatch score. We see a similar trend when comparing with

17Lindemann et al. (2019) reported an F-score of 75.3 in the paper, but later fixed a bug
in postprocessing that improved their score to 76.3. We report the latter score.
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Groschwitz et al. (2018): no difference in original Smatch score, but a clear
difference for the “core semantics” metrics. In other words, even though the
seq2seq model does not make linguistically informed decisions, that does
not necessarily mean it will do worse on capturing the core meaning of a
sentence. A possible explanation is that the extensive graph recategoriza-
tion mainly helps in capturing triples that are not vital to the full meaning
representation (e.g., named entities), which is not reflected in the general
Smatch score.

9.5 Analysis

In this section we analyze on what (semantic) phenomena the characters
improve performance themost by introducing a new analysis method based
on semantic tags (Section 9.5.1). Moreover, we evaluate the performance
of the parsers over document length, and try to estimate performance over
longer documents. For DRS parsing, we evaluate on a newly constructed set
of higher quality silver standard documents (Section 9.5.2).

9.5.1 Semantic Tag Analysis

We deem it insightful to find out on what type of sentences and semantic
phenomena the character representations are the most beneficial. We intro-
duce a novel method of analysis: selecting subsets of sentences based on the

Modality NOT NEC POS

Logical ALT XCL DIS AND IMP BUT

Pronouns PRO HAS REF EMP

Attributes QUC QUV COL IST SST PRI DEG INT REL SCO

Comparatives EQU APX MOR LES TOP BOT ORD

Named entities PER GPE GPO GEO ORG ART HAP UOM CTC LIT NTH

Numerals QUC MOY SCO ORD DAT DOM YOC DEC CLO

Table 9.11: Semantic tags that were used to select sentences that contain a
certain phenomenon. The example sentence in Table 9.3 is included in the
categoriesModality, Pronouns, Named Entities and Numerals.
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occurrence of certain semantic tags. In the PMB release, each token is also
annotated with a semantic tag, which indicates the semantic properties of
the token in the given context (Abzianidze and Bos, 2017). This allows us to
easily select all sentences that contain certain (semantic) phenomena and
evaluate the performance of the different models on those sentences. For
AMR parsing, we use the semantic tagger described in Section 9.3.2 to get
the list of semantic tags per document.

Table 9.11 shows which semtags were used per phenomenon. The cor-
responding F-scores per phenomenon for our best models are shown in Ta-
ble 9.12. Our best DRS parsingmodel (+ch+sem) has the best performance on
six of the seven phenomena selected, even though the differences are small.
For AMR parsing, adding characters in one encoder outperformed the base-
line model on all phenomena selected. In general, the character-level repre-
sentations seem to help across the board: the +char models improve on the
baseline (Bert) in almost all instances.

DRS parsing AMR parsing

# Docs Bert +char +char +ch+sem # Docs Bert +char +char
(1 enc) (2 enc) (2 enc) (1 enc) (2 enc)

All sentences 1,783 88.1 88.7 88.5 88.8 2,739 73.2 73.5 73.1

Modality 188 86.8 +0.1 +0.1 +0.4 697 69.4 +0.7 +0.5
Negation 156 88.8 +0.2 -0.1 +0.4 469 67.2 +0.5 +0.7
Possibility 38 81.3 0.0 +1.0 +1.5 251 69.5 +1.2 +1.0
Necessity 13 74.5 -1.6 +1.4 -0.2 103 67.3 +1.0 +0.2

Logical 449 86.3 +0.7 +0.2 +0.5 1,676 71.2 +0.4 0.0
Pronouns 996 88.9 +0.4 +0.4 +0.6 1,123 68.6 +0.3 +0.3
Attributes 1,063 87.6 +0.7 +0.4 +0.8 2,576 72.9 +0.3 0.0
Comparatives 45 84.5 +1.6 +0.2 -0.2 576 68.5 +0.8 +0.5
Named entities 673 88.1 +0.5 +0.3 +0.6 1,890 74.0 +0.2 0.0
Numerals 186 85.8 +1.1 +1.2 +1.5 1,001 72.7 +0.4 +0.2

Table 9.12: F-scores on subsets of sentences that contain a certain phe-
nomenon, based on semantic tags. For DRS parsing, scores are for the com-
bined English dev and test set of PMB release 3.0.0. For AMR parsing, the
scores are also for the combined dev and test set. Absolute scores shown for
Bert and relative differences for the remaining systems.
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For Numerals and Named Entities we expected the characters to help
specifically, since (i) Bert representations might not be as optimal for all
individual numerals (Wallace et al., 2019), and (ii) the character representa-
tionsmight attendmore to capital letters, which often indicates the presence
of a named entity. Relatively speaking, the character representations clearly
help for Numerals, but less so for Named Entities.

9.5.2 Sentence Length Analysis

We are also interested in finding out which model performs well on longer
documents. When the Transformermodel was introduced, one of the advan-
tages was less decrease in performance for longer sentences (Vaswani et al.,
2017). Also, since Boxer is partly rule-based and not trained in an end-to-end
fashion, it might be able to handle longer sentences better. Figure 9.7 shows
the performance over sentence length for seven of our DRS parsing systems.
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Figure 9.7: DRS parsing: F-scores over document length (tokens) on the com-
bined English dev and test set of 3.0.0. X-axis shows the document length
(top) and the number of documents for that length (bottom).
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We see a similar trend for all models: a decrease in performance for longer
sentences. We also create a regression model that predicts F-score, with as
predictors parser and document length in tokens, similar to the procedure
described in Chapter 7. We do not find a significant interaction of anymodel
with sentence length, i.e., none of the models decreases significantly less or
more than any other model.

To get some idea howwell ourmodelswould do on longer (possiblymulti-
sentence) documents, we create a new evaluation set for DRS parsing, as all
gold standard documents are relatively short. We select all silver documents
with 15 or more and less than 51 tokens that have at least the semtagging or
CCG layer marked as gold standard. This resulted in a set of 128 DRSs, which
should contain the higher quality silver documents. We retrain our mod-
els with those sentences removed and plot the performance over sentence
length in Figure 9.8. Note that in this case we do not perform fine-tuning on

15-20
# 53

20-30
# 43

30-50
# 32

40

45

50

55

60

65

70

75

F1
-s

co
re

65
.2

59
.5

65
.6

68
.3

64
.3

69
.0

52
.8

49
.3

53
.0

55
.4

53
.2

55
.9

48
.8

44
.1

52
.5

54
.3

50
.9

54
.1

char only
bert (transformer)
bert (bi-LSTM)
bert + char (1e)
bert + char (2e)
bert + char + sem (2e)

Figure 9.8: DRS parsing: F-scores over document length (tokens) on the sil-
ver standard evaluation set of longer documents. X-axis shows the sentence
length bins (top) and the number of documents for that length (bottom).



9.5. Analysis 179

the gold standard data. Also, we run Counter with the -default-sense set-
ting (not punishing models that get the word sense wrong), since the word
senses of the evaluation set are not gold standard. This has a similar increase
of around 1.0 for all models. We see that performance still decreases for
longer sentences, though not as much after 30 tokens per document. The
Transformermodel does not seem to catch upwith the bi-LSTMmodels, even
for longer documents. The addition of characters is still beneficial for longer
documents, though only in one encoder.

For AMR parsing, we do not have to create a new evaluation set, as the
development and test set contain quite a few longer sentences. The perfor-
mance over sentence length is plotted in Figure 9.9. Interestingly, the char-
acter representations seem to help more for longer documents, though the
differences are relatively small. Moreover, there is no indication that the
longer sequence length hurts performance of the two-encoder model.
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9.5.3 Discussion

We found that character-level representations generally improved perfor-
mance, though we did not find a clear preference for either the one-encoder
or two-encoder model. We believe that given the better performance of the
two-encoder DRS parsing model on the fairly short documents of the non-
English languages (see Figure 9.5), this model is likely the most useful in se-
mantic parsing tasks with single sentences, such as SQL parsing (Zelle and
Mooney, 1996; Iyer et al., 2017; Finegan-Dollak et al., 2018). The one encoder
char-CNNmodel, on the other hand, hasmore potential for tasks with longer
sentences/documents, such as UCCA (Abend and Rappoport, 2013) and DRS
parsing on GMB data (Bos et al., 2017; Liu et al., 2018a, 2019a). The latter
model also has more potential to be applicable for other (semantic parsing)
systems as it can be applied to all systems that form a token-level representa-
tion from a document. In this sense, we hope that our findings here are also
applicable for other, more structured, encoder-decoder models developed
for semantic parsing (e.g., Yin and Neubig, 2017; Krishnamurthy et al., 2017;
Dong and Lapata, 2018; Liu et al., 2019a).

A curious finding is that, for both AMR and DRS parsing, Bert-base out-
performed the larger Bert-large and Roberta models. In both cases, it
was also preferable to use Bert only as initial token embedder, instead of
fine-tuning using the full model. This serves as some indication that certain
NLP tasks cannot be solved by simply training ever larger language models.
Moreover, the Transformer model did not improve performance for both
tasks, while being harder to tune as well. We are a bit hesitant with drawing
strong conclusions here, though, since we only experimented with a vanilla
Transformer, while other extensions (e.g., Dehghani et al., 2019; Guo et al.,
2019; Press et al., 2020) might be more promising for smaller data sets.
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9.6 Conclusions

We performed a range of experiments on Discourse Representation Struc-
ture and Abstract Meaning Representation Parsing using neural sequence-
to-sequence models, in which we vary the neural representation of the in-
put documents. We show that, not surprisingly, using pretrained contextual
language models is better than simply using characters as input (RQ1). How-
ever, characters can still be used to improve performance, in both a single
encoder and two encoders (RQ2). The improvements are higher than us-
ing individual sources of linguistic information, and performance still im-
proves in combinationwith these sources (RQ3). The improvements are also
robust across different formalisms, languages models, languages and data
sets (RQ4) and improve performance across a range of semantic phenom-
ena (RQ5). These methods should be applicable to other semantic parsing
and perhaps other natural language analysis tasks.
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CHAPTER 10

Conclusions

Semantic parsing is the task of automatically assigning formal, struc-
tured meaning representations to natural language utterances. These
representations can then potentially be used to improve human-computer
communication. What are now considered traditional semantic parsing
approaches rely on linguistic resources, such as manually constructed gram-
mars, syntactic analyses and predefined lexicons. In this thesis, we used a
neural network sequence-to-sequence model that is not dependent on any
such resource; it can automatically produce meaning representations by
only looking at the input text. We performed a large number of experiments
on the graph-based semantic formalism Abstract Meaning Representation
(AMR, Banarescu et al., 2013) and the more expressive Discourse Represen-
tation Structures (DRS, Kamp and Reyle, 1993). Specifically, we posed seven
research questions, which we are now ready to answer.

RQ1: Can neural sequence-to-sequence models be used to produce accurate
meaning representations?

The answer to this question is a clear yes. Throughout our semantic parsing
experiments on AMR and DRS, our sequence-to-sequence models achieved
good performance, even without being dependent on any additional
resources.
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RQ2: How can we best represent the input texts for these models: characters or
words?

Perhaps surprisingly, we found characters to be the preferred representa-
tion in our experiments. For AMR there was quite a margin to word-level
models, while for DRS this wasmodest, but still significant. Moreover, exper-
iments using a representation that is in betweenwords and characters (byte-
pair encoding) did not achieve better performance than simply using char-
acters. However, this was before the introduction of contextual language
models (see RQ7).

RQ3: To what extent can we improve performance by employing silver standard
data?

Again, we obtained similar results for AMR and DRS: additional silver data
was clearly beneficial in both cases. This was especially the case when the
data came from a different source than our own system, but also when us-
ing a self-training pipeline. Moreover, we found it to be a vital component
for reaching state-of-the-art performance for AMR parsing. We believe this
puts some work on multi-task semantic parsing (e.g., Peng et al., 2017a; Her-
shcovich et al., 2018; Lindemann et al., 2019) in perspective, as multi-task
learning is in essence also a data augmentation technique. Perhaps the often
modest benefits of multi-task learning will diminish if a parser has access to
large amounts of silver data.

RQ4: How can we best deal with the variables in the meaning representations?

The variables in a meaning representation represent a significant challenge
to sequence-to-sequence models. While the variable names are arbitrary
and meaningless, they are vital to correctly modelling semantic phenomena
such as coreference, pronouns and control constructions. For AMR, we pro-
posed a novel method to handle variable re-entrancies, but found a more
simplemethod to be preferable (Chapter 5). ForDRS (Chapter 7), we obtained
best performance by rewriting the variables to a more general representa-
tion based on De Bruijn indexing (de Bruijn, 1972).
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RQ5: AMR has a well-established evaluation method. Can we construct a similar
method to evaluate Discourse Representation Structures?

In Chapter 6 we presented our DRS evaluation metric that is based on the
AMR evaluation metric (Cai and Knight, 2013). This metric calculates an F-
score based on the number of matching clauses and is the current standard
metric for DRS parsing (Abzianidze et al., 2019). The clause matching system
also allowed for the calculation of a number of more detailed scores, which
can give more insight in parser performance than only a single F-score. This
is outlined in Chapters 7 and 9. The downside of this metric is that it assigns
equal weight to all clauses, while, intuitively, certain clauses should carry
more weight than others (e.g., negation versus tense).

RQ6: Can we improve neural semantic parsers by injecting linguistic knowledge?

The injection of linguistic information might help our model achieve better
performance, especially on longer sentences. This is not straightforward for
character-level neural models, however, as we cannot simply concatenate
the information at token-level. In Chapter 8, we presented a neural method
that is able to exploit linguistic information in a second encoder. In our DRS
parsing experiments, this outperformed simply adding the information in
the input text. This information was mainly beneficial for the model that
only used gold standard data.

RQ7: Can we combine character-level representations with representations from
a contextual languagemodel to improve neural semantic parsing? If so, what is the
best method of combining them?

The rise of contextual language models in NLP has been undeniable. Not
surprisingly, we found that using representations based on these models re-
sulted in better performance than only using character-level representations
(Chapter 9). However, for both AMR and DRS, we found that character-level
representations can still be useful. We found modest, but consistent, im-
provements across different formalisms, language models, languages and
data sets. In a detailed analysis, we found that character-level representa-
tions improved performance across a range of semantic phenomena.
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Reflection

This thesis took a different approach than most research in semantic pars-
ing. Instead of developing a new model for a specific formalism, we took a
successful, generally applicablemodel and applied it to two considerably dif-
ferent open domain semantic parsing tasks. We thenmostly focused on how
to improve the accuracy of this model, with experiments regarding input
representation, variable representation, silver standard data and linguistic
knowledge. We hope that, this way, our conclusions will be more generally
applicable (perhaps also outside semantic parsing) and will continue to be
relevant even if a newer, fancier model has conquered NLP. To an extent,
this already happened throughout the course of this thesis, with the intro-
duction of the Transformer model, though the vanilla variant of this model
did not outperform our model yet (Chapter 9).

Research on AMR parsing is now at a critical stage. The most accurate
AMR parser (Cai and Lam, 2020) more or less reached human-level perfor-
mance. There seems to be no need to develop an even better parser. It is
time to look at the original goal of AMR: being useful for downstream appli-
cations. There is exploratory work that showed the potential of AMR in this
regard for summarization (Hardy and Vlachos, 2018; Liao et al., 2018) and
paraphrase detection (Issa et al., 2018), though they did not make use of con-
textual language models (LMs). Even if it turns out to be hard to improve on
using these LMs, these downstream tasks will make for an interesting black
box (Bos, 2008a) evaluation suite for AMR, which could tell us more than a
single F-score.

This focus on downstream applications could also shed light on what se-
mantic formalism ismore generally useful for representingmeanings of nat-
ural language texts. We can list the respective advantages and disadvantages
of AMR, DRS and other semantic formalisms (e.g., Abend and Rappoport,
2013; White et al., 2016), but at the end of the day, we do not knowwhich for-
malism is leading us in the most promising direction. Evaluating semantic
parsers on downstream applications will give us some indication of the gen-
eral usefulness of a formalism, at the same time providing insight in which
formalism is best suited for which type of task.
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A Postprocessing Improvement Methods

In Chapter 8, we proposed a number of postprocessing methods to improve
performance on DRS parsing. They are described in detail below.

Removing clauses One of the problems of the neural model is that it can
get stuck in a loop producing (more or less) the same output. It does not
happen often, but if it does, it can hurt performance quite a bit, since all
the wrongly produced clauses hurt precision. We apply two straightforward
methods to fix these instances. For one, we remove all clauses after clause
number 75. Second, we remove clauses of concepts, roles and operators (ex-
cept REF) if they occur more than three times. We only look at the second
argument of a clause (the identifier), for example, if a full DRS contains five
Theme clauses, we remove the last two, no matter the other values in those
clauses.

No main box found If there is no main box found, this means that there
are multiple independent boxes. For two independent boxes, we first try to
remedy this by changing a single discourse variable in one of these boxes.
We change a discourse variable that is unique in b1 to a unique variable in
b2 (and vice versa), to establish a connection between the boxes. For each of
these possible changes we check whether the DRS is well-formed now, and if
so, return the new DRS. For multiple independent boxes, and if the previous
method failed for two independent boxes, we start merging boxes together
(e.g. replace each occurrence of b1 by b2), until we find a well-formed DRS.
If this does not result in a well-formed DRS, we return a dummy DRS.

Subordinate relation has a loop This error can occur if boxes indirectly
subordinate themselves, e.g. b0 subordinates b1, b1 subordinates b2 and b2
subordinates b0. To solve this, we first try to merge the offending box with
each of the other boxes in the DRS. If this does notwork, we try to remove the
offending box from the DRS. If the DRS is still ill-formed, we start the process
again if the error is Subordinate relation has a loop (but now with the of-
fending box removed) or apply the previously described fix for No main box
found. A non-matching dummy DRS is returned if the DRS is still ill-formed
after these steps.
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Fixing senses In Chapter 7 we showed that the neural model often pro-
duced the wrong word sense for the correct concept. It even often outputs
senses that were never observed in the training set. We apply a simple
method to fix these instances. If a concept + sense is not present in the
gold standard training set, we replace the sense by the most frequent sense
for this concept in the training set. For example, we change grow.v.01 to
grow.v.07 and fast.n.02 to fast.a.02. Note that this method does not
influence whether a DRS is well-formed or not.

Negative result We also tried to exploit the n-best list the parser outputs
when using beam search. We simply took the first well-formedDRS in the list
and considered that to be the final DRS. We found that the repairing strate-
gies performed better, with almost no improvement for this method. There-
fore, this method was discarded in further experiments.

Improvement Results We can check by how much the scores in Sec-
tion 8.3 improve if we apply these methods. The results of adding the
improvement methods incrementally are shown in Table A.1. We see that
simply removing clauses returns only modest gains, but fixing ill-formed
DRSs gives a substantial improvement, even for our best model. The im-
provements are similar with and without using linguistic information. The
method for fixing word senses also proved quite effective, improving the
final F-score by 0.2 to 0.4. When we apply these improvements on the test
set, our best model improves from 87.0 to 87.4.

Initial + Removing + Solving + Fixing
clauses ill-formed senses

ill (%) F1 ill (%) F1 ill (%) F1 ill (%) F1

Gold-only baseline 2.6 78.6 2.6 78.8 0.2 79.5 0.2 79.8
Gold-only + ling 2.7 81.3 2.7 81.4 0.1 82.2 0.1 82.4
Gold + silver 1.5 84.5 1.5 84.5 0.0 85.1 0.0 85.4
Gold + silver + ling 0.9 85.6 0.9 85.7 0.0 86.1 0.0 86.4

Table A.1: Impact of incrementally adding the new postprocessing methods
on the development set results of Section 8.3.
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B Detailed Scores

Tables B.1, B.2, B.3, B.4, B.5, B.6, B.7 and B.8 show the detailed F-scores for
the English, German, Italian and Dutch development and test sets of release
2.2.0 and 3.0.0. Infreq. sense is the F-score on all concept clauses that were
not the most frequent sense for that word in the training set (e.g., be.v.01,
like.v.03), which can only be reliably calculated for English. This gives us
an idea of how well the model does on word-sense disambiguation. Perfect
sense, on the other hand, is the F-score when we ignore word senses during
matching, i.e. be.v.01 can match with be.v.02. The last 9 rows are not in
the original detailed Counter scores, but are produced by drs-jury. We ob-
serve that character-level representations help to produce fewer ill-formed
and more perfect DRSs, especially on 3.0.0.

In Tables B.9, B.10 and B.11 we show F-scores per individual clause type,
for the English development and test of set of release 3.0.0, as calculated
by drs-jury.1 The models perform quite well on all operators (Table B.9),
without any considerable differences between the models. For the individ-
ual roles in Table B.10, it is interesting to note that the models have some
trouble with Theme, even though it is the second most frequent role in the
data set. On the other hand, the scores for Degree and Unit are surprisingly
high, given their moderate frequency. Here, we can also observe an effect
of the character-level representations: the models that employ them get con-
siderably higher scores on ClockTime and YearOfCentury, likely because
the characters can represent individual numbers. Lastly, in Table B.11 we
see the F-scores of individual concepts. The models indeed learn to perform
word-sense disambiguation, as the scores for the three senses of be are still
relatively high. An effect of the characters might be visible for the scores
of measure.n.02, perhaps because measurements are often indicated by
using numbers.

1Scores for the non-English languages and release 2.2.0 can be easily generated by fol-
lowing the instructions here: https://github.com/RikVN/Neural_DRS/blob/master/
DRS_jury.md

https://github.com/RikVN/Neural_DRS/blob/master/DRS_jury.md
https://github.com/RikVN/Neural_DRS/blob/master/DRS_jury.md
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PMB release 2.2.0 - English

Development set Test set

bert +ch +ch +ch bert +ch +ch +ch
(1e) (2e) +sem (1e) (2e) +sem

Prec 87.3 87.8 87.4 87.6 89.8 89.9 89.9 89.5
Rec 83.6 84.4 83.6 83.5 86.2 86.7 86.4 86.0
F1 85.4 86.1 85.5 85.5 87.9 88.3 88.1 87.7
Operators 94.7 95.2 94.7 94.4 94.8 94.7 94.4 94.7
Roles 88.0 88.4 88.2 88.0 90.3 90.3 90.5 89.8
Concepts 83.9 84.5 84.0 84.8 87.4 87.9 87.6 87.4
Nouns 90.8 91.5 91.1 91.4 92.4 92.8 92.4 92.5
Verbs 65.6 65.4 64.8 67.6 75.7 76.4 76.3 75.5
Adjectives 70.4 74.0 72.7 71.5 70.9 72.3 70.8 71.5
Adverbs 90.0 67.7 83.3 63.3 70.0 71.7 73.3 61.0
Events 66.7 67.3 66.5 68.4 74.8 75.7 75.4 74.7

Perfect sense 87.3 88.1 87.6 87.4 89.3 89.7 89.5 89.1
Infreq. sense 50.5 50.5 46.7 52.3 57.2 58.3 58.8 59.1

F1 std dev 0.30 0.30 0.17 0.05 0.22 0.22 0.16 0.19
F1 confidence 85.0 85.6 85.2 85.4 87.6 88.0 87.9 87.5
interval 85.8 86.5 85.7 85.5 88.2 88.6 88.3 88.0

# illformed 0.4 0.0 0.2 0.2 0.2 0.0 0.2 0.0
# perfect (avg) 235.4 237.4 239.0 239.8 267.0 265.8 266.4 267.2
# perfect (all 5) 180 187 183 188 206 213 212 205
# zero (avg) 4.4 3.4 4.2 4.2 1.6 1.8 1.2 1.8
# zero (all 5) 4 3 3 3 1 1 0 1
# same (all 5) 368 398 379 384 356 368 361 352

Table B.1: Detailed Counter scores for our models on the English dev and
test sets of release 2.2.0. All scores are averages of 5 runs.
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PMB release 2.2.0 - German

Development set Test set

bert +ch (1e) +ch (2e) bert +ch (1e) +ch (2e)

Prec 71.3 73.5 74.1 73.7 75.2 76.3
Rec 62.6 65.6 65.9 64.9 66.9 67.8
F1 66.6 69.3 69.8 69.0 70.8 71.8
Operators 73.1 78.2 81.0 74.0 76.3 79.2
Roles 69.9 71.3 71.3 73.9 73.7 74.7
Concepts 72.1 74.0 74.4 73.3 76.3 76.8
Nouns 82.0 82.8 83.1 83.2 84.5 85.0
Verbs 40.6 45.2 45.9 45.5 50.8 50.8
Adjectives 49.5 57.4 57.4 45.4 56.5 59.1
Adverbs 0.0 0.0 0.0 56.7 50.0 86.7
Events 42.2 47.5 48.0 45.5 51.9 52.5

Perfect sense 68.3 71.3 71.8 75.4 76.9 78.0

F1 std dev 0.51 0.32 0.51 0.55 0.23 0.54
F1 conf interval 65.9 68.9 69.1 68.2 70.5 71.0
interval 67.4 69.8 70.5 69.8 71.1 72.5

# illformed 0.0 1.4 0.6 1.4 1.8 0.4
# perfect (avg) 53.2 73.6 73.0 68.8 75.2 79.2
# perfect (all 5) 30 50 50 43 49 53
# zero (avg) 17.8 17.6 15.6 17.6 13.8 15.2
# zero (all 5) 8 12 10 7 8 9
# same (all 5) 254 307 331 276 310 330

Table B.2: Detailed Counter scores for our models on the German dev and
test sets of release 2.2.0. All scores are averages of 5 runs.
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PMB release 2.2.0 - Italian

Development set Test set

bert +ch (1e) +ch (2e) bert +ch (1e) +ch (2e)

Prec 76.1 78.2 78.3 77.3 79.6 80.7
Rec 68.0 70.0 70.1 69.7 73.2 73.8
F1 71.9 73.8 74.0 73.3 76.3 77.1
Operators 81.3 86.9 84.3 79.9 86.3 86.9
Roles 76.2 77.3 78.3 77.6 79.6 80.5
Concepts 74.2 75.9 76.1 76.0 77.2 78.6
Nouns 82.6 82.9 82.9 84.6 84.2 85.9
Verbs 45.8 53.4 55.0 47.4 53.8 56.1
Adjectives 57.4 55.2 57.5 58.8 61.6 60.4
Adverbs 0.0 0.0 0.0 0.0 0.0 0.0
Events 48.4 53.8 55.6 50.2 55.7 57.1

Perfect sense 73.4 75.5 75.7 75.1 78.1 79.1

F1 std dev 0.49 0.34 0.16 0.49 0.29 0.38
F1 confidence 71.2 73.4 73.8 72.6 75.9 76.6
interval 72.5 74.3 74.2 74.0 76.7 77.7

# illformed 0.2 0.4 0.0 0.0 0.4 0.0
# perfect (avg) 38.6 49.4 47.4 53.6 61.6 69.4
# perfect (all 5) 19 29 30 40 48 50
# zero (avg) 10.0 10.0 11.6 8.6 6.8 5.2
# zero (all 5) 6 5 6 5 5 3
# same (all 5) 139 163 172 185 193 212

Table B.3: Detailed Counter scores for ourmodels on the Italian dev and test
sets of release 2.2.0. All scores are averages of 5 runs.
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PMB release 2.2.0 - Dutch

Development set Test set

bert +ch (1e) +ch (2e) bert +ch (1e) +ch (2e)

Prec 70.5 70.6 71.3 69.2 70.8 71.1
Rec 62.0 62.5 62.9 58.9 60.5 61.0
F1 66.0 66.3 66.8 63.7 65.2 65.7
Operators 75.6 76.4 77.3 68.0 71.0 73.4
Roles 67.4 66.8 68.3 66.3 67.6 67.8
Concepts 71.6 72.3 71.9 72.9 74.0 73.6
Nouns 78.5 79.1 79.1 81.7 81.4 81.7
Verbs 45.2 47.0 43.1 42.2 50.0 45.8
Adjectives 62.7 64.7 69.5 51.2 48.0 57.4
Adverbs 0.0 0.0 80.0 0.0 40.0 80.0
Events 49.2 50.8 48.6 44.1 49.7 48.1

Perfect sense 67.9 68.1 68.9 65.3 67.0 67.5

F1 std dev 0.68 0.13 0.6 0.63 0.56 0.17
F1 confidence 65.0 66.1 66.0 62.8 64.4 65.5
interval 66.9 66.5 67.7 64.5 66.0 65.9

# illformed 0.0 1.0 0.0 0.2 0.0 0.0
# perfect (avg) 31.8 30.6 29.4 25.2 29.4 29.2
# perfect (all 5) 22 24 23 20 21 25
# zero (avg) 6.8 10.0 10.6 8.6 11.0 9.4
# zero (all 5) 5 7 7 7 9 7
# same (all 5) 143 161 160 140 167 145

Table B.4: Detailed Counter scores for our models on the Dutch dev and test
sets of release 2.2.0. All scores are averages of 5 runs.
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PMB release 3.0.0 - English

Development set Test set

bert +ch +ch +ch bert +ch +ch +ch
(1e) (2e) +sem (1e) (2e) +sem

Prec 88.8 88.9 89.3 89.5 90.0 90.6 90.3 90.5
Rec 86.4 87.3 86.9 87.2 87.1 87.9 87.6 88.0
F1 87.6 88.1 88.1 88.4 88.5 89.2 88.9 89.3
Operators 95.0 95.4 95.4 95.7 95.7 95.7 95.7 96.1
Roles 89.0 89.0 89.2 89.9 89.4 90.1 89.9 90.0
Concepts 84.7 84.9 85.6 85.4 87.3 87.9 87.4 87.7
Nouns 90.6 91.0 91.4 91.5 92.0 92.5 91.8 92.5
Verbs 69.1 68.9 70.4 69.2 75.3 76.0 76.4 75.3
Adjectives 76.1 75.3 76.6 75.5 75.8 77.5 76.2 76.0
Adverbs 78.1 77.7 78.7 80.1 88.0 88.2 87.7 88.9
Events 70.8 70.5 71.9 70.7 75.4 76.3 76.4 75.4

Perfect sense 89.6 90.3 90.2 90.4 91.6 92.2 92.0 92.1
Infreq. sense 54.9 57.6 56.5 56.0 62.0 62.8 62.7 63.1

F1 std dev 0.19 0.25 0.30 0.34 0.26 0.24 0.29 0.22
F1 confidence 87.3 87.8 87.7 87.9 88.2 88.9 88.5 89.0
interval 87.9 88.5 88.5 88.8 88.9 89.5 89.4 89.6

# illformed 3.2 0.8 2.8 2.0 4.6 3.0 2.8 2.0
# perfect (avg) 336.2 350.6 352.4 352.8 358.0 372.4 365.0 367.8
# perfect (all 5) 212 238 229 226 242 255 239 241
# zero (avg) 6.6 3.6 5.0 3.6 5.0 3.2 3.6 2.6
# zero (all 5) 2 2 1 1 0 0 0 0
# same (all 5) 347 387 386 365 364 378 361 361

Table B.5: Detailed Counter scores for our models on the English dev and
test sets of release 3.0.0. All scores are averages of 5 runs.
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PMB release 3.0.0 - German

Development set Test set

bert +ch (1e) +ch (2e) bert +ch (1e) +ch (2e)

Prec 82.8 84.4 84.9 81.3 83.5 84.0
Rec 77.8 79.6 80.2 77.7 79.1 80.1
F1 80.2 81.9 82.4 79.5 81.3 82.0
Operators 90.2 90.8 91.6 88.4 89.6 90.6
Roles 84.4 84.7 85.1 81.2 82.5 82.7
Concepts 76.5 79.8 80.3 76.7 80.6 80.8
Nouns 86.4 88.4 88.3 84.8 87.0 87.6
Verbs 51.2 58.5 59.8 55.4 61.5 61.5
Adjectives 52.2 55.4 59.4 46.8 62.6 60.2
Adverbs 64.7 59.4 61.4 98.0 98.2 100.0
Events 51.5 57.6 59.7 53.8 61.7 61.2

Perfect sense 81.5 83.3 83.8 80.5 82.6 83.2

F1 std dev 0.37 0.4 0.55 0.2 0.28 0.25
F1 confidence 79.7 81.3 81.7 79.2 80.9 81.6
interval 80.7 82.5 83.21 79.7 81.7 82.3

# illformed 0.2 0.6 0.2 0.6 1.4 0.2
# perfect (avg) 80.2 89.6 101.8 61.8 75.8 82.4
# perfect (all 5) 54 62 72 35 47 58
# zero (avg) 5.2 4.4 4.2 1.0 3.0 1.4
# zero (all 5) 4 3 4 0 1 0
# same (all 5) 176 175 189 133 153 169

Table B.6: Detailed Counter scores for our models on the German dev and
test sets of release 3.0.0. All scores are averages of 5 runs.
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PMB release 3.0.0 - Italian

Development set Test set

bert +ch (1e) +ch (2e) bert +ch (1e) +ch (2e)

Prec 79.7 81.9 82.4 80.7 82.4 82.4
Rec 75.3 76.7 77.8 77.2 78.7 78.7
F1 77.4 79.2 80.0 78.9 80.5 80.5
Operators 88.6 91.2 91.9 89.9 92.6 92.5
Roles 80.6 82.0 82.6 81.3 82.8 82.8
Concepts 72.9 75.5 76.0 73.9 75.2 75.2
Nouns 82.5 83.8 83.8 83.0 82.9 82.9
Verbs 44.4 51.0 54.7 43.2 49.5 50.9
Adjectives 54.1 53.5 53.5 63.2 59.7 59.5
Adverbs 66.7 66.7 66.0 82.7 79.9 83.1
Events 46.7 51.6 54.4 48.4 52.3 53.2

Perfect sense 79.1 80.8 81.7 80.5 82.1 82.3

F1 std dev 0.4 0.28 0.29 0.37 0.4 0.33
F1 confidence 76.9 78.8 79.6 78.4 79.4 80.0
interval 78.0 79.6 80.5 79.4 81.1 81.0

# illformed 2.0 2.8 2.4 0.6 1.6 1.2
# perfect (avg) 74.6 91.6 95.8 97.6 106.6 106.8
# perfect (all 5) 45 58 66 60 72 75
# zero (avg) 5.8 7.0 5.6 5.6 7.2 6.8
# zero (all 5) 3 3 3 4 5 5
# same (all 5) 165 193 212 203 225 250

Table B.7: Detailed Counter scores for ourmodels on the Italian dev and test
sets of release 3.0.0. All scores are averages of 5 runs.



B. Detailed Scores 201

PMB release 3.0.0 - Dutch

Development set Test set

bert +ch (1e) +ch (2e) bert +ch (1e) +ch (2e)

Prec 75.1 75.3 74.8 74.7 75.5 74.5
Rec 68.1 68.5 68.6 68.1 68.5 68.2
F1 71.4 71.8 71.6 71.2 71.8 71.2
Operators 83.7 84.4 84.0 84.1 84.2 83.9
Roles 74.2 74.4 74.1 73.0 73.8 72.7
Concepts 69.9 69.7 69.1 69.9 70.9 69.7
Nouns 78.3 78.3 77.8 78.4 79.2 78.2
Verbs 41.1 40.2 40.2 42.3 42.7 40.4
Adjectives 55.1 52.1 52.2 51.1 53.5 54.1
Adverbs 81.1 78.8 77.3 74.2 74.1 86.4
Events 44.4 43.1 43.0 44.5 45.4 43.7

Perfect sense 73.3 73.7 73.8 73.3 73.8 73.2

F1 std dev 0.52 0.27 0.26 0.39 0.3 0.18
F1 confidence 70.7 71.4 71.2 70.7 71.4 71.0
interval 72.1 72.1 72.0 71.8 72.2 71.4

# illformed 5.4 4.2 6.2 2.4 2.6 4.0
# perfect (avg) 55.0 52.4 58.4 47.4 49.8 47.6
# perfect (all 5) 38 33 39 29 35 35
# zero (avg) 11.8 13.2 15.0 9.4 6.0 9.6
# zero (all 5) 4 7 5 3 2 3
# same (all 5) 135 154 153 145 131 158

Table B.8: Detailed Counter scores for our models on the Dutch dev and test
sets of release 3.0.0. All scores are averages of 5 runs.
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PMB release 3.0.0 - English

Development set Test set

# bert +ch +ch +ch # bert +ch +ch +ch
(1e) (2e) +sem (1e) (2e) +sem

PRESUPPOSITION 977 96.1 96.6 96.0 96.8 1,074 96.2 96.5 96.0 97.0
EQU 460 93.3 93.4 93.8 93.7 454 92.7 93.5 93.6 93.7
TPR 414 97.7 97.9 97.5 98.0 468 97.1 97.1 97.4 97.4
NEGATION 73 95.2 95.6 94.7 96.3 80 99.0 98.0 97.4 97.7
CONSEQUENCE 33 88.3 92.1 89.9 87.6 33 81.5 86.1 85.8 84.6
CONDITION 33 83.8 84.9 86.4 86.5 33 80.0 86.2 83.6 88.0
ATTRIBUTION 27 93.8 95.6 95.6 94.4 18 89.7 89.4 91.2 92.3
POSSIBILITY 24 79.0 83.2 83.2 85.7 18 95.5 95.5 95.5 96.6
TAB 17 95.1 97.0 97.6 98.2 16 100 92.5 98.8 98.8
TIN 16 92.1 94.4 92.1 92.6 4 72.7 100 97.5 92.7
CONTINUATION 14 89.7 91.1 92.4 90.1 15 95.9 93.9 94.5 95.8
NECESSITY 9 86.4 87.6 90.9 78.6 4 82.0 84.2 94.7 92.3
APX 5 100 86.8 90.2 90.6 9 94.1 94.1 94.1 94.1
LES 3 100 100 93.7 100 5 78.4 73.1 76.0 80.0
CONTRAST 2 80.0 86.9 86.9 80.0 5 87.3 92.3 94.1 94.1

Table B.9: F-scores per individual operator on the English development and
test sets of release 3.0.0. All scores are averages of 5 runs. Operators are
included if they occur at least 5 times in either the development or test set.
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PMB release 3.0.0 - English

Development set Test set

# bert +ch +ch +ch # bert +ch +ch +ch
(1e) (2e) +sem (1e) (2e) +sem

Time 870 96.8 97.3 96.9 96.7 916 96.8 97.0 96.9 97.2
Theme 463 83.0 84.2 85.1 85.2 539 86.2 87.1 86.9 86.6
Agent 373 92.2 92.7 91.6 92.4 399 95.1 95.1 94.8 95.4
Name 365 88.3 88.2 88.4 89.0 393 83.3 84.1 84.0 84.0
Attribute 193 86.5 88.0 86.6 87.4 134 86.2 87.0 86.7 84.6
Experiencer 106 83.4 85.7 84.5 83.8 128 92.3 94.4 93.7 93.8
Role 99 92.9 92.5 93.0 94.9 91 92.7 94.3 92.9 94.3
Patient 97 79.4 82.4 85.0 83.8 121 81.2 84.1 84.1 82.6
Stimulus 87 86.1 86.6 85.6 88.2 99 89.9 92.2 90.7 90.5
Location 83 81.5 80.8 78.0 79.3 109 81.6 79.3 79.1 80.4
Quantity 81 92.8 92.0 92.7 92.8 113 85.0 84.5 86.8 86.9
Co-Theme 77 82.1 85.2 82.4 81.7 89 87.4 88.7 87.6 84.8
Of 44 83.3 85.1 84.8 88.0 36 79.2 81.8 81.2 81.4
Pivot 43 91.2 94.2 90.8 95.2 33 80.1 77.9 79.6 78.5
Source 42 78.7 77.7 80.0 76.7 55 79.5 81.5 79.7 80.8
Destination 42 77.8 76.7 81.4 80.0 51 74.4 74.7 75.5 77.1
User 37 76.5 74.1 75.5 79.1 53 78.2 78.1 80.0 79.2
Part 36 79.7 79.0 80.6 78.9 51 85.0 83.5 85.4 86.9
Value 35 72.6 75.2 70.4 79.0 48 79.5 80.3 78.8 83.3
Sub 31 93.8 91.1 92.6 94.6 18 80.4 79.1 70.0 71.7
Degree 30 88.0 89.7 84.8 87.3 20 94.5 96.4 93.6 95.4
Unit 27 86.5 89.8 88.7 86.4 48 90.1 91.1 91.0 91.9
Result 22 72.0 79.7 75.0 78.7 22 69.0 75.4 75.1 71.9
Recipient 22 89.8 86.5 87.2 89.1 16 72.1 74.1 76.7 75.3
Topic 18 65.9 61.7 65.5 67.4 13 57.6 63.6 63.0 64.3
Creator 17 77.5 73.2 62.9 75.0 14 68.8 65.2 59.9 71.7
Beneficiary 15 65.6 62.6 55.8 61.7 19 66.7 66.0 68.0 66.3
Manner 15 64.1 71.3 63.6 76.7 14 54.9 66.7 76.3 81.8
Owner 14 63.2 60.5 58.8 71.2 18 62.9 61.8 63.5 61.1
ClockTime 13 77.4 59.2 81.3 78.4 22 53.4 61.0 57.1 64.2
YearOfCentury 12 62.1 76.4 78.5 74.8 18 56.6 76.2 75.0 77.8

Table B.10: F-scores per individual role on the English development and test
sets of release 3.0.0. All scores are averages of 5 runs. Roles are included if
they occur at least 15 times in either the development or test set.
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PMB release 3.0.0 - English

Development set Test set

# bert +ch +ch +ch # bert +ch +ch +ch
(1e) (2e) +sem (1e) (2e) +sem

time.n.08 846 97.3 97.7 97.3 97.4 884 97.4 97.6 97.5 97.8
male.n.02 303 96.3 96.8 96.5 97.3 294 97.1 97.7 97.1 97.0
person.n.01 159 93.8 92.9 93.4 94.2 150 92.5 93.3 93.1 96.1
female.n.02 112 95.9 96.6 95.8 96.8 145 94.7 95.4 93.9 93.6
entity.n.01 98 92.8 91.1 93.0 91.8 71 85.5 85.4 86.7 85.9
measure.n.02 42 93.7 96.8 95.5 94.4 70 96.8 97.3 98.2 98.7
be.v.03 32 86.3 84.5 86.0 87.5 39 93.9 95.9 91.8 93.2
country.n.02 32 83.1 82.0 80.1 83.4 38 88.3 86.7 85.0 89.0
be.v.02 30 81.7 84.1 83.9 83.4 27 86.2 86.8 86.7 87.7
proposition.n.01 22 93.4 94.7 95.5 94.9 16 88.3 88.0 92.6 92.6
be.v.01 20 63.9 65.9 59.5 66.7 26 69.8 71.4 69.6 67.4
very.r.01 16 90.4 93.9 90.4 91.6 14 97.1 97.8 97.1 96.4
city.n.01 15 66.3 68.7 78.4 73.2 30 83.7 88.9 88.6 87.6
location.n.01 15 91.0 82.3 85.9 86.8 17 84.0 80.9 82.4 74.9
dog.n.01 13 100 100 93.8 99.2 15 90.5 96.0 92.6 89.9
money.n.01 11 99.1 97.2 99.1 100 9 93.6 90.5 92.6 92.6
desire.v.01 10 78.8 90.9 89.9 88.9 6 96.5 100 100 100
buy.v.01 9 100 100 100 100 13 100 100 100 99.2
company.n.01 9 71.0 61.7 68.6 77.8 8 51.3 84.5 72.7 79.5
travel.v.01 8 88.9 86.7 88.9 92.0 9 90.9 94.1 86.4 93.2
have.v.02 8 66.7 60.3 55.7 61.8 8 52.5 32.0 44.1 49.2
die.v.01 7 91.4 100 94.3 95.7 8 94.1 92.8 94.1 93.0
name.n.01 6 66.7 57.2 55.3 68.0 18 83.5 82.0 82.7 80.2
populate.v.01 6 85.7 90.6 92.3 92.3 12 100 99.1 100 100
man.n.01 6 85.7 84.5 85.7 85.7 9 100 100 100 100
put.v.01 6 91.5 90.3 96.8 89.7 6 93.7 92.3 88.2 100

Table B.11: F-scores per individual concept on the English development and
test sets of release 3.0.0. All scores are averages of 5 runs. Concepts are in-
cluded if they occur at least 6 times in both the development and test set.
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C Sentence Analysis

Table C.1 shows the sentences forwhich our bestmodel (on 3.0.0 English dev)
produced the lowest quality DRSs, with a possible explanation. In Table C.2,
we show the sentences for which our best model has the best performance
(relative to the Bert-only baseline model). It is harder to give an explana-
tion in this case, though we indicate which clauses were (in)correctly pre-
dicted by the models.

Document F1 Comment

Look out! 0.00 Imperative
The dove symbolizes peace. 0.13 Condition + consequence
HBV Union Criticizes Deutsche Bank 0.25 Two multi-word expressions
You can buy stamps at any post office. 0.32 Possibility and quantifier
Fire burns. 0.33 Generic, short
How’s Lanzarote? 0.36 How-question
I’d better drive you home. 0.37 Necessity, infreq. sense of drive
What a lot of books! 0.38 Multi-sentence

Do they belong to the university library?
Maybe he is Italian or Spanish. 0.40 Possibility and conjunction
I always get up at 6 o’clock in the morning. 0.40 Necessity + clocktime

Table C.1: Sentences of the English 3.0.0 dev set for which our best model
(+char +sem) produced the worst DRSs.

Document Diff Comment

Fish surface for air. 0.554 Correctly produced Goal
Oil this bicycle. 0.482 Correctly produced oil as a verb
I’m fed up with this winter, 0.404 Correctly produced CONTINUATION and Pivot

I want spring right now!
He’s Argentinian. 0.386 Bert-only failed to produce country and Name
Alas! 0.364 Odd sentence, but correctly produced state.v.01
Fire burns. 0.300 Bad performance for both, Bert-only got 0.0
All journeys begin with a first step. 0.300 Bert-only produced many non-matching clauses
How heavy you are! 0.299 Bert-only produced many non-matching clauses
One plus two is equal to three. 0.252 Correctly produced summation.n.04
He’s not like us. 0.246 Correctly produced Theme and Co-Theme

Table C.2: Sentences of the English 3.0.0 dev set for which our best model
(+char +sem) produced the best DRSs, relative to the Bert-only baseline.
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Samenvatting

Mensen en computers spreken niet dezelfde taal. Het zou echter heel handig zijn
als we wél in natuurlijke taal met computers zouden kunnen communiceren. In
dat geval moet de computer taal niet zien als slechts een verzameling woorden,
maar ook de diepere betekenis zien te begrijpen. Een manier om dit voor elkaar
te krijgen is semantisch ontleden, of in andere woorden, het automatisch toeken-
nen van een gestructureerde representatie van de betekenis aan iedere tekst. Dit
soort representaties zijn gemakkelijker te begrijpen voor een computer.

Eerder onderzoek probeerde dit in eerste instantie op te lossen aan de hand
van de syntactische ontleding van de tekst. Hiermee werd succes geboekt, maar
al snel werd duidelijk dat de betekenis meer is dan alleen de syntactische ontled-
ing. Zie bijvoorbeeld de volgende twee voorbeelden:

(1) Marie lag dubbel om een paal.

(2) Marie lag dubbel om een grap.

Deze twee zinnen hebben precies dezelfde syntactische ontleding, maar
hebben overduidelijk een andere betekenis. Een accurate semantische ontleder
zal rekening moeten houden met zowel de betekenis van individuele woorden,
als hoe ze gecombineerd worden in een zin. Er zijn een aantal onderzoeken die
proberen een betekenis component toe te voegen aan de syntactisch ontleding.
Dit werkte tot op zeker hoogte, maar het heeft ook een nadeel: deze betekenis
componenten moesten met de hand toegevoegd worden en werkten daarom
slecht buiten het specifieke gebied waarvoor ze gecreëerd waren. We hebben
liever een ontleder die automatisch kan leren om de betekenis representaties te
produceren.

Er zijn inderdaad een aantal studies die deze methode hanteren, met
soms indrukwekkende resultaten. Echter ze zijn nog steeds afhankelijk van
taalkundige hulpmiddelen, zoals syntactische analyses of vooraf gedefinieerde
woordenlijsten. We zouden het liefst een ontleder hebben die betekenis rep-
resentaties kan produceren zonder afhankelijk te zijn van zulke middelen.
In deze dissertatie werken we daarom met met een neuraal netwerk dat een
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sequence-to-sequence model genoemd wordt. Dit model kan automatisch leren
om een sequentie van inputs (letters of woorden) te transformeren tot een
sequentie van outputs (delen van de betekenis representatie), zonder andere
taalkundige hulpmiddelen te gebruiken. Dit model wordt in detail beschreven in
Deel I, samen met een overzicht van andere semantische ontleders tot dusver.

We passen dit sequence-to-sequence model toe op twee bekende formalis-
men van betekenis representaties: Abstract Meaning Representation (AMR, Deel
II) en Discourse Representation Structures (DRS, Deel III). Een belangrijk ver-
schil tussen de formalismen is dat DRS meer taalkundige fenomenen accuraat
probeert te modelleren, waar het ook meer variabelen voor nodig heeft. Deze
variabelen zijn een uitdaging voor ons model, aangezien de namen van de vari-
abelen willekeurig gekozen zijn en geen betekenis hebben. Een andere belan-
grijke vraag is wat voor ons model de beste representatie van de input tekst is.
Intuïtief gezien is dit een sequentie van woorden, maar het is ook mogelijk om
een sequentie van letters te gebruiken. Het gebruiken van letters heeft bijvoor-
beeld als voordeel dat het model beter kan omgaan met onbekende woorden en
spelfouten. Een laatste uitdaging is het feit dat sequence-to-sequence modellen
erom bekend te staan veel data nodig te hebben om te kunnen leren, terwijl er
voor de AMR en DRS formalismen maar relatief weinig data beschikbaar is.

We vinden uiteindelijk dat ons sequence-to-sequence model accurate beteke-
nis representaties kan genereren, voor zowel AMR als DRS. We krijgen de
beste resultaten door inderdaad letters als input sequentie te gebruiken en de
variabelen te herschrijven gebaseerd op de volgorde waarin ze geïntroduceerd
werden. Het data-probleem lossen we op door ons model ook te laten leren
van automatisch gegenereerde data van andere semantische ontleders, wat de
resultaten flink verbeterde voor zowel AMR als DRS. Onze modellen gebruikten
tot dusver geen enkel taalkundig hulpmiddel, maar voor DRS hebben we
onderzocht of we de resultaten konden verbeteren als we zulke middelen wel
zouden gebruiken. Uiteindelijk vonden we dat dit inderdaad mogelijk is, maar
slechts met een kleine marge en niet voor alle verschillende middelen.

InDeel IV houdenwe ons bezigmet een nieuwe ontwikkeling die zich tijdens
het schrijven van deze dissertatie heeft voorgedaan. Kort gezegd werd ontdekt
dat het niet verstandig is om voor elke (taal-gebaseerde) taak een nieuwmodel te
gebruiken, maar modellen die oorspronkelijk bedoeld waren voor andere taken
te hergebruiken. Het idee is dat elk model een bepaalde kennis van taal in het
algemeen heeft opgedaan, die nuttig kan zijn voor iedere andere taal-gebaseerde
taak, zoals in ons geval semantisch ontleden. Het grootste en belangrijkstemodel,
dat BERT genoemdwordt, wordt gebruikt door vrijwel iedereen in het vakgebied
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van de computationele taalkunde. Een belangrijk aspect van dit model is dat
het geen letters of woorden als input sequentie gebruikt, maar een automatisch
gegenereerde representatie die tussen woorden en letters in zit.

De vraag die we beantwoorden is de volgende: gegeven dit nieuwe BERT
model, zijn letter-representaties nog steeds nuttig voor semantisch ontleden? We
ontwikkelen tweemethodes om letters en BERT te kunnen combineren en testen
deze methodes op zowel AMR als DRS. Voor DRS kijken we nu niet alleen naar
het Engels, maar ook naar het Duits, Italiaans en Nederlands. We vinden uitein-
delijk dat de letter-representaties nog steeds nuttig zijn, met verbeterde scores
voor beide methodes. Deze verbeteringen zijn klein, maar wel significant, en we
vinden ze voor beide formalismen en alle vier talen. De toegepastemethodes zijn
niet specifiek gericht op semantisch ontleden en kunnenwellicht ook toepasbaar
zijn op andere taal-gebaseerde taken.

In Deel V reflecteren we op de belangrijkste bevindingen van deze disser-
tatie. Sequence-to-sequencemodellen kunnenbetekenis representaties vanhoge
kwaliteit produceren. De beste resultaten vinden we door letters als input se-
quentie te gebruiken. Het is ook belangrijk omop een slimmemaniermet de vari-
abelen om te gaan en te zorgen dat het model genoeg data tot zijn beschikking
heeft om van te leren. De letter-representaties kunnen zelfs nog nuttig zijn in
combinatie met het nieuwe BERT model. Tenslotte geloven we dat toekomstig
werk, gezien we nu een model hebben dat accurate betekenis representaties
kan generen, moet onderzoeken of we deze representaties inderdaad kunnen
gebruiken om mens-computer interactie te verbeteren.
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