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Abstract—The discrimination of human gestures using wear-
able solutions is extremely important as a supporting technique
for assisted living, healthcare of the elderly and neurorehabili-
tation. This paper presents a mobile electromyography (EMG)
analysis framework to be an auxiliary component in physiother-
apy sessions or as a feedback for neuroprosthesis calibration. We
implemented a framework that allows the integration of multi-
sensors, EMG and visual information, to perform sensor fusion
and to improve the accuracy of hand gesture recognition tasks.
In particular, we used an event-based camera adapted to run
on the limited computational resources of mobile phones. We
introduced a new publicly available dataset of sensor fusion for
hand gesture recognition recorded from 10 subjects and used it
to train the recognition models offline. We compare the online
results of the hand gesture recognition using the fusion approach
with the individual sensors with an improvement in the accuracy
of 13% and 11%, for EMG and vision respectively, reaching 85%.

Index Terms—Sensor fusion, surface EMG, event-based cam-
era, hand gesture classification, mobile application.

I. INTRODUCTION

Biopotentials are electrical signals that are generated by

physiological processes occurring within the body. EMG is the

measurement of the electrical potential generated by activated

motor units. When the muscle is contracted, it generates

electrical potentials that can be easily measured using non-

invasive sensor devices placed on the skin, surface EMG

(sEMG). EMG signals are very helpful in gesture recognition

for rehabilitation [1] as well as in monitoring physical and

sport performance [2].

A new generation of wearable devices allows continuous

EMG monitoring of signals which can be helpful for phys-

iotherapists to use both in diagnosis and treatment contexts.

With the ubiquity of smartphones in the society, a mobile

application represents an easy access to continuous monitoring

for personalized medicine. To meet the required needs, the

application should provide real-time biofeedback with task

performance to help the physiotherapists to define goals.

In this paper, we propose a feature extraction and fusion

methodology to perform static hand gesture classification in a

mobile application, called ’RELAX’. Sensor fusion is actually

a subcategory of data fusion and it is the process of combin-

ing sensory data from multiple sensors such that to reduce

the amount of uncertainty in the resulting information. In

particular, we consider the complementary features extracted

from a visual sensor and sEMG measurements. The visual

input comes from a neuromorphic event-based camera as the

Dynamic Vision Sensor (DVS) [3] or its advanced extension

the Dynamic and Active Pixel Vision Sensor (DAVIS) [4]. The

DVS operates at high temporal resolution and low computa-

tional power allowing a new level of performance in real-time

vision. Due to the limited computational resources of a mobile

platform, the DVS/DAVIS camera is an optimal solution for

continuous monitoring [5]. We used a complementary fusion

based on EMG and camera input, since the sensors do not

directly depend on each other and can be combined in order

to give more information about the hand gestures.

Standard methods in EMG processing and classification

focus on feature extraction that can be then fed into a remote

classifier or regression system [6]. The pre-processing for

feature extraction can be applied either in time (e.g. Mean

Absolute Value (MAV), Root Mean Square (RMS)) [7], in

frequency (e.g. Power Spectrum Density, Fast Fourier Trans-

form) [8] or in time-frequency (e.g. Wavelet Transform) [9]

domains. More recently, a new approach for classifying EMG

signals started to emerge based on the use of Spiking Neural

Networks (SNNs) on neuromorphic chips [10].

Event-based cameras have already been used for ges-

ture recognition task where a Convolutional Neural Network

(CNN) plays RoShamBo (rock, paper, scissor) against human

opponents in real-time [11]. In [5], the authors present a

mobile application that uses the output of an event-based

camera for gesture recognition. The aim of this work is to

test a data fusion method on sEMG signals recorded by the

Myo armband from the forearm, and improve the classification

rate of hand gestures with the introduction of visual input

using the computational resources of a mobile phone. Our

main contribution is the first ever development of a mobile

application where the EMG and vision sensor are effectively

fused to increase the accuracy of a hand gesture recognition

task. Moreover, we collected a dataset which we have made

publicly available. There are different ways of merging multi-

sensors data: at the feature level, fusing the feature vectors,

or at the classifier level, combining inferences decisions from

each sensor. The second approach produces better results [12],

and it is what we employed in this paper.

II. MATERIALS AND METHODS

In this section, we present the recorded dataset used for

training the recognition models and introduce our sensor

system connected to an Android mobile phone.
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A. DVS and DAVIS Camera

The DVS is an event-based camera, inspired by the mam-

malian retina [3]. The DVS encodes visual information ef-

ficiently removing redundancy. Each pixel responds asyn-

chronously to changes in brightness with the generation of

events: an ON-event when the light increases, or OFF-events

when the light decreases, above a certain threshold. Only the

active pixels transfer information and the static background

is directly removed on hardware at the front-end. The asyn-

chronous nature of the DVS makes the sensor low power, low

latency and low-bandwidth, as the amount of data transmitted

is very small, making it the best solution for a mobile app.

Each DVS event can be represented as a vector composed by

the pixel location in the pixel array (x and y coordinates),

the timestamp (with us resolution), and the polarity (ON and

OFF). Fig. 1 shows a typical output of the DAVIS camera [4],

an advanced version of the DVS [3] which is able to record

Active Pixel Sensor (APS) ”conventional” frame (Fig. 1a)

and DVS events (Fig. 1b). In this way, the sensor gives the

possibility to benefit from the two different kinds of output

modalities depending on the application.

B. Dataset description

The dataset contains muscle activity and video recordings.

The data were collected with 3 different sensors: Myo armband

records the sEMG, DVS [3] records the so call DVS events,

and DAVIS [4] collects DVS events and APS frames1. The

choice to include both DVS and DAVIS in the dataset is due

to the fact that DVS has lower resolution (128x128) and can

be easily run on a mobile application for real-time inference.

On the other hand, DAVIS offers the possibility to compare

the performance of DVS events with APS frames. An example

of the different kinds of recorded data is shown in Fig. 1. The

Myo armband is composed of 8 equally spaced non-invasive

sEMG channels that provide a sampling rate of 200Hz. The

armband was placed approximately around the middle of the

forearm. The DAVIS and DVS cameras were mounted on a

3D moving system, that was moved randomly to simulate

the saccade movements. In this way, we can generate relative

movement that can be detected by the DVS/DAVIS camera in

a more biologically realistic approach and without introducing

noise in the Myo sensor. The subjects were standing in front

of the cameras setup with a white background to avoid having

a dynamic scene. All the subjects were recorded with the

same light conditions. The EMG recording was synchronized

with the events/frames acquisition by restarting the camera

zero-timestamp at every new session. The dataset contains

recordings of 10 subjects. Each subject performed 3 sessions,

where 5 hand gestures (pinky, elle, yo, index and thumb) were

recorded 5 times, each lasting for 2s. Between the gestures, a

relaxing phase of 1s is present where the muscles could go to

the rest position, removing any residual muscular activation.

1Zenodo link: https://zenodo.org/record/3228846#.XP5 cC-B3yx

Fig. 1: Example of data from the dataset: a) APS frame

(DAVIS), the image is blurred due to the long exposition

(200ms); b) DVS frame (DAVIS), generated by accumulation

of events; c) EMG features for the 8 channels of the Myo.

C. Feature extraction

This section describes the steps of processing needed to

obtain the features used for classification. The classification

was carried out with two different classifiers, which calls

for the need of extracting different kinds of features. The

processing steps were kept to a minimum to limit overall

system’s latency during real-time operation.

1) EMG feature extraction: For the EMG signal, we se-

lected two time domain features traditionally used in the

literature [7], namely MAV and RMS which are calculated

over a certain window of length Tms.
We calculated the features for each channel separately and

concatenated the resulting values in a vector F(n):

F(n) = [F (x1), ..., F (xC)]
T

(1)

where F is MAV or RMS, n is the index of the window and

C is the number of EMG channels. The final feature vector

E(n) for window n used for the classification is obtained by

concatenating the 2 single feature vectors:

E(n) =
[
MAV(n)T ,RMS(n)T

]T
(2)

2) Event frames feature extraction: In order to use the DVS

events for gesture classification with conventional algorithms,

we need to turn the stream of events into frames, which

we refer to as event frames. These frames are generated by

accumulating the events occurring in a fixed time window of

length Tms. DVS frames can so be synchronized with the

APS frame and EMG signal. In particular, we consider all the

events within the time window (ignoring their polarity) and

count how many events occur for each of the pixels separately.

We then transform the event count frame into gray scale by

min-max normalization. The event frames obtained from the

DVS and the DAVIS sensors have a resolution of 128x128 and

180x240 pixels respectively. Since the region with the hand
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gestures does not fill the full frame, we extract a 60x60 pixels

patch that allows us to significantly decrease the amount of

computation needed during the visual feature extraction. In the

case of the DAVIS, we extract a 120x120 patch and resample

it to a 60x60 patch. This patch is extracted by detecting the

hand in the frame with the zeroth order moment. This approach

is reliable for event frames and has very low computational

complexity. The patches are used as the input for the CNN

while we extract other features for the Support Vector Machine

(SVM). In particular, we extracted Histogram of Gradients

(HOG) features [13] which have been extensively used for

hand gesture recognition.

3) Camera frames feature extraction: The camera frames

are obtained from the DAVIS sensor in gray scale and are

averaged over the time window of length Tms. In order to

extract the hand gestures and the frame features, we follow

a similar procedure to the one described in Section II-C2 for

event frames. The hand detection is performed on the DAVIS

event frames. Once the center of the hand gesture is detected,

we extract a patch of 120x120 pixels from the APS frame,

since the DAVIS resolution is much higher than that of the

DVS. We then subsample the patch to a size of 60x60 in

order to match feature size for both the event frames and the

APS frames, and have fair comparisons. As in the case of

event frames, the 60x60 patches are used by the CNN while

the SVM uses HOG features extracted from these patches.

D. Offline classification

For both the single sensors and the sensor fusion, we first

trained and tested the models offline and then ported them into

the mobile app. As stated above, we used two classifiers: an

SVM and a CNN. We trained and tested the models on all the

different modalities, namely EMG, DVS which are the frames

calculated from the DVS events, DAV which are the frames

obtained from the DAVIS events, FRM which are the APS

frames of the DAVIS, FUS-DVS which is fusion of EMG and

DVS, FUS-DAV which is fusion of EMG and DAV and finally

FUS-FRM which is fusion of EMG and FRM.

1) SVM classifier: We trained an SVM classifier for each

modality separately. In particular, classic features for the EMG

signal and HOG features for the images. In case of the fusion,

we concatenated the vectors obtained for the features of each

of the modalities. We considered both a SVM classifier with

a linear kernel and one with an Radial Basis Function (RBF)

kernel. In the case of the RBF kernel, we selected the standard

paramater γ = 1/d where d is the number of features, for

all the modalities. The slack parameter of SVM was found

by means of best average performance with 5-fold cross-

validation for each modality separately.

2) CNN classifier: We trained several CNN architectures

trying to minimize the size of the network while achieving the

best accuracy. We finally chose the LeNet-5 architecture [14]

for DVS and DAVIS data, and a slightly modified version with

one-dimensional kernels and no pooling layers for EMG data.

The fusion is then made with 5 Perceptrons (corresponding

to the 5 classes of our dataset) that are fully connected to

Android Device
DVS

U
SB

MYO

BLE

DVS Thread
Hand 

detectorData Frame
MAV

RMS

MYO Thread
Data Concatenate

Crop 
60x60 HOG

Analysis Thread

SVM

FUS

CNN

CNN

CNN

SVM

SVMEMG

FUS

Model/Features Selection

UI Thread

Fig. 2: Schematic of the Android application.

the two CNNs outputs. The training is done with TensorFlow

using Adadelta gradient descent in two steps: first, we train

the two uni-modal CNNs, then we train the Perceptrons layer

based on the trained CNNs output activities.

E. Mobile Sensor Framework

The ’RELAX’ application was developed via the standard

Android Application Framework consisting of mainly Java

routines and was run on a Pixel 3 mobile device. The connec-

tion to the DVS happens via USB using the libusb bindings

already present in the Android OS. The communication pro-

tocol follows the one defined in jAER [15]. The connection

to the Myo happens instead via Bluetooth.

Overall, the application flow, sketched in Figure2, consists

of 4 different parallel threads. Two threads for the data

collection, one processing thread and one UI thread. For the

two data threads, one thread is used to pull the data from the

DVS and construct DVS frames, while the other thread collects

the data from the Myo and calculates the EMG features. The

DVS thread communicates the frames both to the UI thread,

so that they can be displayed and to the processing thread.

The Myo data thread also communicates the features to the

UI thread, to display them, and to the processing thread.

The processing thread reads the user defined parameters

such as modality and model and does the needed processing

via either the SVM or the CNN. Finally, the processing thread

communicates to the UI thread the classification output to be

displayed.

III. RESULTS AND DISCUSSIONS

The data collected in the dataset described in Section II-B

was used to train all the classifiers offline. The results are

reported in Table I and show the classification accuracy for

the different models and features. Even though we have
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TABLE I: Performance of hand gesture classification for

different models. We report average and standard deviation

over 5-fold cross-validation.

Features
Frame

Accuracy %
SVM

CNN
(ms) Linear RBF

EMG 200 54.4± 1.0 76.9± 0.8 82.7± 0.8
DVS 200 74.5± 0.3 84.3± 0.7 90.0± 0.3
DAV 200 79.2± 1.9 85.4± 1.3 91.2± 1.3
FRM 200 81.1± 0.9 88.4± 1.6 91.9± 0.7

FUS-DVS 200 82.6± 0.5 88.7± 0.8 98.3± 3.4
FUS-DAV 200 84.5± 0.4 89.3± 0.5 98.5± 3.0
FUS-FRM 200 86.2± 0.7 93.4± 0.7 98.8± 2.3

tested all the models and features with window sizes T ∈
{100, 150, 200, 250}ms, we only show results for the win-

dow size of T = 200ms. As known from literature [16],

EMG classification benefits from longer windows. We selected

200 ms since lower windows would yield worst results while

a window of 250 ms did not significantly improve the results

and require more computation for the feature extraction. As we

can see, the results using EMG only are not satisfactory with a

linear model, but can be successfully improved with non-linear

models. The difficulty resides on the training of a multi-subject

model. Among the images, the APS frames have the best

overall performance. Nevertheless, the DAVIS frames are not

far behind. For the DVS frames, we can see that SVM yields

arguably worse results than the other two image modalities.

This is not true for the CNN which yields satisfactory and

comparable results for all image modalities, including DVS

frames. Overall, we can clearly see the advantage of the

sensor fusion which achieves better results than the single

modalities in all three fusion cases considered. Indeed, the

best fusion accuracies using CNN improve by an average of

7.5% compared to the best uni-modal accuracies. Hence, the

CNN model with FUS-DVS is the best compromise in terms

of accuracy and computational complexity.

Given the offline results, we deployed and tested the CNN

models on the smartphone. These online tests were performed

on two subjects, for a total of 200 hand gestures, one of

which was not part of the training dataset. Moreover, the tests

were carried out in a room with different lighting conditions

than the ones in which the dataset was recorded. The real-

time classification yields 72% and 74% for the single EMG

and DVS sensors respectively. Using the fusion CNN, the

classification accuracy reaches 85%, showing the benefits of

fusion in real-time classification as well. On the smartphone,

the fusion CNN has an inference time of about 18ms, a CPU

consumption of 24% and a memory consumption of 392MB
of which only 144MB are used by the CNN.

IV. CONCLUSIONS

In this work, we presented a system that allows to recog-

nize static hand gestures using a smartphone computational

capabilities. The classifier fuses the complementary signals

of EMG and images (event and camera frames) to improve

the classification accuracy. The mobile application can be

useful for close-loop systems in calibration and prosthetic

control for personalize medicine. To demonstrate the systems’s

capability, we recorded a new dataset for offline training where

we confronted SVM to CNN, then we performed online test

achieving 85% of gesture recognition accuracy.
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