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ABSTRACT

We determine the mass of the Milky Way bar and the torque it causes, using Gaia DR2, by
applying the orbital arc method. Based on this, we have found that the gravitational acceleration
is not directed towards the centre of our Galaxy but a few degrees away from it. We propose
that the tangential acceleration component is caused by the bar of the Galaxy. Calculations
based on our model suggest that the torque experienced by the region around the Sun is
~ 2400km? s=2 per solar mass. The mass estimate for the bar is ~ 1.6 £ 0.3 x 10! M.
Using greatly improved data from Gaia DR2, we have computed the acceleration field to great
accuracy by adapting the orbital Probability Density Function (0PDF) method (Han et al. 2016)
locally and used the phase space coordinates of ~4 x 10° stars within a distance of 0.5 kpc
from the Sun. In the orbital arc method, the first step is to guess an acceleration field and then
reconstruct the stellar orbits using this acceleration for all the stars within a specified region.
Next, the stars are redistributed along orbits to check if the overall phase space distribution has
changed. We repeat this process until we find an acceleration field that results in a new phase
space distribution that is the same as the one that we started with; we have then recovered the
true underlying acceleration.

Key words: Galaxy: fundamental parameters — Galaxy: kinematics and dynamics — Galaxy:

structure.

1 INTRODUCTION

Gaia satellite data releases allow us to construct quite detailed
models for the Milky Way (MW) stellar density distribution and its
kinematics. The latest Data Release 2 (Lindegren et al. 2018) gives
us an excellent opportunity to explore the solar neighbourhood
(SN) and somewhat more distant regions. In the present paper, we
calculate the gravitational acceleration of the MW using the Gaia
DR2 data, in an ellipsoidal region within a distance of 0.5 kpc from
the Sun in the Galactic plane.

Modelling the MW is very different from modelling other disc
galaxies since we make observations from within the MW. Although
our location within the MW can make modelling easier, (e.g.
individual stars are resolved) it can also add complications to it, e.g.
dust attenuation and selection function can have a strong influence
on modelling. For example, it was only at the beginning of the 1980s
that the first direct hints that the MW may be a barred spiral galaxy
came to light (Matsumoto et al. 1982). This was possible because
of near-IR observations. Due to dust attenuation and our position
inside the MW, it was difficult to draw such a conclusion on the
morphology of MW before that.

* E-mail: rain.kipper@ut.ee

On the other hand, we are at a great advantage because of the
wealth of observational data available for the MW, unmatched and
unavailable for other galaxies. For instance, axisymmetric models
developed by Piffl et al. (2014), McMillan (2017), Binney & Wong
(2017) use H1 and CO velocities, maser data, Sgr Ax proper
motions, the globular cluster system, the velocity distribution in the
SN, SDSS star counts in different colours, RAVE data, detailed MW
satellite data and N-body simulation data. Additional constraints on
the mass distribution were derived from cold stellar streams (Bovy
et al. 2016) and Gaia DR2 proper motions of globular clusters
(Watkins et al. 2019). However, the assumption of axisymmetry in
mass distribution models is only a first approximation.

The existence of the central bar of the MW was first confirmed
by Weiland et al. (1994), by analysing asymmetries in the near-
IR surface brightness distribution of the central bulge from the
COBE/DIRBE data. This was further confirmed by correcting the
data for extinction (Dwek et al. 1995; Binney, Gerhard & Spergel
1997).

There are currently two contrasting scenarios — a fast rotating
bar and a slow rotating bar. In the first case (e.g. Binney et al.
1997; Bissantz, Englmaier & Gerhard 2003; Monari et al. 2017)
the bar is rotating with pattern speed Q, = 50-70km s~ kpc~!;
in the second case (Wegg & Gerhard 2013; Wegg, Gerhard &
Portail 2015; Portail et al. 2015; Dias et al. 2019) the calculated
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pattern speed is 25-30kms~! kpc~'. Intermediate pattern speed

values were derived by Li et al. (2016), Portail et al. (2017),
Pérez-Villegas et al. (2017), Sanders, Smith & Evans (2019), Bovy
etal. (2019) as €, = 35-40kms~" kpc~'. These calculated pattern
speeds vary by about two times and as a result their corotation
radii and outer Lindblad radii vary quite significantly. Both these
scenarios agree that the angle between the major axis of the bar and
the line connecting the Sun and the Galactic centre (GC) is about
20-30deg.

According to the axisymmetric models, the stars in orbits are
phase-mixed. According to the non-axisymmetric models, stellar
orbits are somewhat perturbed and phases of stars in orbits may
not be completely mixed (Dehnen 2000; Fux 2001; Monari et al.
2017; Binney 2018; Trick, Coronado & Rix 2019) and thus orbital
structure is more complicated (i.e. there are resonances). For
example, using the Gaia DR2 data, Ramos, Antoja & Figueras
(2018) found that, in the case of the MW, some orbit phases are
mixed. Similar arcs and ridges were also found by Antoja et al.
(2018), Kawata et al. (2018), Trick et al. (2019). Gravitational
potential disturbances due to the bar may have caused deviations
of stars from their initial orbits in the case of several cold stellar
streams (Hattori, Erkal & Sanders 2016; Pearson, Price-Whelan &
Johnston 2017; Banik & Bovy 2019) that originate from small stellar
systems. The torque from the bar is not the only reason (see e.g.
Kipper et al. 2019b). These disturbances can create observed gaps
in stream surface density distributions.

Unfortunately, the structural parameters of the bar and its contri-
bution to the gravitational acceleration are still rather poorly con-
strained. Thus, it is important to know the gravitational acceleration
distribution in the Galactic plane and also to study how this allows
one to constrain the bar properties. The Gaia satellite data provide
an excellent opportunity to do this.

In the present paper we calculate all three acceleration com-
ponents in the SN. We use the orbital arc method, developed in
Kipper, Tempel & Tenjes (2019a). The method and its specific
implementation details are described in Section 2. The method is
used on the Gaia DR2 data. We use two different versions of the
data, from the StarHorse project (Anders et al. 2019) and from
the Schonrich catalogue (Schonrich, McMillan & Eyer 2019). The
selection of the data used is described in Section 3. We demonstrate
in Section 4 that the derived acceleration components cannot be
explained within an axisymmetric model. The final section is
dedicated to the summary and discussion.

We denote (x, y, z) as Galactocentric rectangular coordinates
and (R, 0, z) as corresponding cylindrical coordinates, where
6 = 0 corresponds to the opposite direction from the Sun.
Transformations of sky coordinates, proper motions and radial
velocities to Galactocentric coordinates and velocities were carried
out using the ASTROPY package (Astropy Collaboration et al.
2013; Price-Whelan et al. 2018). For the solar velocity, we used
the values (Ug, Vg, Wg) = (11.1, 12.24, 7.25) km s~ and Vo o=
V..o + Vo, with the circular velocity V. o = 240kms~! (Lépez-
Corredoira & Sylos Labini 2019).

2 METHOD AND IMPLEMENTATION

2.1 Orbital arc method

In this section, we provide a brief overview of the orbital arc
method, which we have implemented in this paper to compute the
gravitational acceleration, mass and torque estimates of the Galactic
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bar. For a detailed and thorough description of the formulation and
tests of the model, please see Kipper et al. (2019a). We will refer
to this particular method as the orbital arc method, since its most
crucial step is the reconstruction of stellar orbits to accurately obtain
the acceleration in the Milky Way, using the phase space information
of stars. This has already been successfully applied to a simulation
in Kipper et al. (2019a) and for the observational data in a simplified
form (Kipper, Tempel & Tenjes 2018). Here we apply it for the Gaia
DR?2 data. The orbital arc method has five important steps.

Step 1 — Acceleration field: We first select a region with a suf-
ficiently large number of stars and known phase space coordinates.
Next, we guess an acceleration field and use this to get the orbits.
In the orbital arc method, the acceleration field is a free function of
the model and contains free parameters. For instance, we can take
advantage of the axisymmetric property of a galaxy, and choose an
acceleration field described by the cylindrical coordinates:

a, = agcoso, (D)
ay =agsinf + A,, )
a. =a.. (3)

Components ag and a, are taken in the form of functions

a; = Az + AZ,ZZ + Az,RAR + Az.RzZARv 4)
agr = Ar + AR rAR, Q)
AR =R —Rg, (6)

where Ay, A, Ag, A. -, Ag r, Az r. A r. and in some cases also R
are free parameters obtained via fitting.

If we do not assume axisymmetry, acceleration vector compo-
nents are taken in the form of their first-order Taylor expansion:

ay =A, + A Ax + Ay Ay + AL LAz @)
ay=A, + A, Ax + A, Ay + A, Az (8)
a, =A; +A Ax+A Ay + A, Az )

Here Ax, Ay, Az denote the distances from the region’s centre.

(i) Step 2 — Orbital arc reconstruction: Using the initial
conditions, which is the phase space information from the data, and
the acceleration field from the previous step, we solve the equations
of motion to obtain stellar orbits for each star. A schematic of the
reconstructed orbit arcs is represented as coloured arcs in Fig. 1.

(ii) Step 3 — Randomizing star position: The core of the
proposed method lies in the oPDF, according to which the time
of observing a star is random. This means that we can reposition
a star along its orbit by picking a random time from a uniform
distribution of time. By picking infinitely many times from this
distribution, we reach a continuous distribution of the star along its
orbit (a similar description to the procedure can be found in Han
etal. 2016). Following this, we reposition every star in its orbit and
get a new distribution of stars in the region. This is relevant in the
last step where we will compare the old and new distributions.

(iii) Step 4 — Phase space density: In order to compute the
probability of finding a star in its orbit, we need to first specify a
small segment of the star’s orbit. For this, we construct Voronoi
tessellations by considering small subsets of data, such that in each
Voronoi cell there are similar numbers of stars; this reduces the
Poisson error. The Voronoi cells are shown in the schematic diagram

MNRAS 494, 3358-3367 (2020)
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A

Galactic centre

Figure 1. An illustration of the region where the orbital arc method is
applied. The central point represents the Sun and the circular region up to a
distance of 0.5 kpc from the Sun is the region used in this paper. The black
triangle points towards the Galactic centre. The coloured arcs for star 1 and
star 2 represent the reconstructed orbits for these two stars. Orbital arcs are
reconstructed for all stars in this region. The grey cells are the Voronoi cells,
each of which contains a similar number of stars. The time interval, Az;, is
the time a star spends in the ith Voronoi cell. The times at which the star
enters and exits the region are feper and fexit, respectively.

in Fig. 1. To compute the probability of finding a star in its orbit,
we use the Voronoi cells as the orbital segments. For example, for
star 1 in Fig. 1, the time spent by the star in each Voronoi cell along
its orbit is given as At;. So, the probability of finding that star in the
ith Voronoi cell is the time spent in that Voronoi cell, Az;, divided
by the time spent in the entire region, which is, Af;/(fexit — fenter) a8
seen in Fig. 1. Eventually, a combined probability is calculated for
each Voronoi cell, which is the sum of probabilities of all stars in
each cell.

(iv) Step 5 — Comparing phase space density distributions: In
this final step we compare the phase space distribution of the original
data and the phase space distribution of the newly positioned stars.
The phase space distribution comparison is done statistically by
computing the likelihood. If the likelihood is not maximum then the
entire process is repeated with new acceleration field parameters.

Eventually, the orbital arc method will give the acceleration
field corresponding to the maximum likelihood, which is the field
that describes the true underlying acceleration of the MW. The
distribution of likelihoods gives the statistical uncertainty.

Since the level of accuracy relies on the available data, we need
the phase space coordinates of a sufficiently large number of stars.
Hence, Gaia DR2 is aptly suited for the study.

2.2 Implementation: the smoothing kernel

In order to compare the phase space distributions of the original
data and the repositioned stars, we have used Voronoi cells to get
a smooth phase space density. This is achieved by computing the
time stars spend in each Voronoi cell, as described in step 4 in
Section 2.1. In Fig. 1, At represents the time a star spends in a cell.
The ratio of the time spent by a star in a Voronoi cell, Az, to the
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time that it spends in the entire region (see feper and . in Fig. 1)
gives the phase space density of this model.

The shapes and sizes of the regions in which we intend to calculate
the accelerations are mainly motivated by the quality of 6D data.
The shapes of these regions and the Voronoi cells used to smooth
phase space' should be complementary to each other. For example,
if the available data are of a spherical region, then a rectangular
grid or cell is not the most optimal. Therefore, the best possible grid
should coarsely follow the distribution of data. One of the best ways
to achieve this is by Voronoi tessellations, and we have hence used
this method for the paper. However, in principle, any similar grid
can be used. We used a random small subset of the data of about
~100 stars to obtain the Voronoi cells.

Each grid-cell is described by two numbers: the closest tessella-
tion centre in ordinary space and the closest tessellation centre in
velocity space. These two indices are required to avoid combining
velocity and distance data into a single quantity, because this kind
of combination produces an additional free parameter that we wish
to avoid. For example, by using 100 data points to tessellate into
a grid, we will have 100> = 10000 independent cells, which is
usually sufficient to describe the phase space distribution of about
~ 420 000 stars (i.e. 42 stars per cell). For the current study, we have
selected 100 cells for each of position and velocity space, unless
noted otherwise.

2.3 Implementation: flux limitedness

Flux-limited observational data are a natural constraint in large
surveys. There are two common approaches to overcome this: a) to
construct a volume-limited sample and discard some data, or b) to
use all the data and add a weight to each point.

Most dynamical modelling methods are constructed based on the
assumption that we are able to observe everything, i.e. the volume-
limited approach. Some specifics of the present modelling allow
us to use the advantage of increased amounts of data of the flux-
limited selection, while essentially using the method constructed for
the volume-limited approach. This approach is described further in
this section.

A volume-limited selection is one in which both the stellar
distance from an observer and absolute magnitudes of its stars are
constrained by a flux limit of the sample. This grants that all of the
stars would remain observable if we randomize their position in the
region. Our aim is to combine volume-limited selections to acquire
methodology that allows us to use flux-limited data. Let us denote
Myim as the completeness limit of the flux-limited sample. Then the
corresponding absolute-magnitude limit My;,, and the distance limit
dyin are related by Slogiodim = mym — Myim + 5 (at the moment
we ignore the attenuation correction). It is possible to construct a
volume-limited sample by selecting only stars that have M < My
and d < dj,. The same applies if we use an additional cut from
higher absolute magnitudes, leaving M in the range My, — AM <
M < Myp,. Following the denotations from Kipper et al. (2019a),
the observed phase space density as a function of phase space
coordinates (q) for a volume-limited sample can now be written
as pobs(qlMlim7 dlim)7 and the model one as p(q|Mlima dlims ;) Here
My, and d;y, are not independent, but tied to the absolute-magnitude
definition. For the correct gravitational acceleration parameters ¢,
and irrespective of the absolute-magnitude limit, these distributions

IThe Voronoi tessellation of the region is done in order to compare the
original and new phase space distributions.
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must match:

p(q|M1imy dim, ;) = pobs(q|Mlimv diim). (10)

If this relation matches for each small volume-limited sample, then
the relation must hold for the sum (or integral) of these small
volume-limited samples as well:

/P(Q|M1im, dim(Miim), ¢) dMijim

= / pobs(q|Mlima diim(Miim)) dMijim. (1

This means that we may integrate an orbit until the apparent
magnitude of the corresponding star reaches the limiting magnitude
mym due to its changing distance, and smooth the position of the star
along its orbit within that limit. In Section 5.1 we test the validity
of this approach.

2.4 Requirements for data

An integral part of the method is orbit calculation. This has
two ingredients: the proposed acceleration function and initial
conditions for the orbits. As an analytical expression the first one
is infinitely precise for each likelihood evaluation. The second
one is as precise as the data allow. Imprecisions in the data are
amplified by the orbit integration, i.e. Ax ~ Axy + rAv, where
A denotes uncertainty for positions and velocities respectively.
This shows that the uncertainties accumulate with time; hence the
position of a star is unknown in some cone. Due to uncertainties
(especially heteroscedastic ones) in the Gaia data combined with
smoothing phase space, we may reconstruct imprecise orbits, which
will introduce a bias in the acceleration. The simplest way to avoid
these problems is to use maximally precise data.

The second requirement is to have a sufficient amount of data.
This is needed to describe the phase space density sufficiently
precisely. Assuming that the data are very precise, the only source
of uncertainty is the Poisson noise from the sampling.

3 OBSERVATIONAL DATA

3.1 Construction of the data sample

Six-dimensional high-quality phase space coordinates in the SN
are now available from the Gaia satellite Data Release 2 for a
significant number of stars. At present there are three catalogues
available based on the Gaia measurements and including estimated
star distances: the Gaia Collaboration catalogue (Lindegren et al.
2018), the StarHorse project catalogue, SH (Anders et al. 2019)
and the Schonrich catalogue, Sc (Schonrich et al. 2019). There is
a known issue concerning the zero point of parallaxes from the
Gaia Collaboration, which is overcome in the latter two catalogues.
Therefore we selected these two catalogues as our main sources of
input data and calculated our results for both of them separately. To
calculate gravitational acceleration, we need to know mass density
gradients. Although the main source of density gradients results
from the smooth density distribution of the MW, selection effects
can produce artificial gradients. The two dominant ingredients for
this kind of selection effects are Malmquist bias (covered in the
previous section) and dust attenuation. To suppress the effects from
dust attenuation, we use 2MASS (Skrutskie et al. 2006) catalogue
J-band magnitudes where extinction is negligible.

The cross-match between the Anders et al. (2019) SH and 2MASS
catalogues gave 6964 515 entries; between the Schonrich et al.
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Figure 2. Distribution of apparent magnitudes of all stars within 0.5 kpc
from the Sun. The G-band magnitudes are from the Gaia data and the J-
band magnitudes are from the 2MASS survey. The red horizontal line and
the green vertical line depict the spectroscopic completeness limit and the
limiting magnitude Jjip, respectively, of our main sample. The right-hand
panel shows the distribution of all stars from Gaia. The black line shows all
the stars and the green line shows only those with magnitudes brighter than
Jiim- The distribution of our sample of stars drops before reaching the Gaia
completeness limit. Only a fraction of 0.0008 stars have a higher G-band
magnitude; therefore we choose our sample based on 2MASS photometry.

(2019) Sc and 2MASS catalogues there were 6519 209 matches. We
constrained the input magnitudes in such a way that the Gaia G-band
completeness (being affected by dust attenuation) has substantially
less effect than our selection based on the J passband (being nearly
attenuation free), i.e. P(G > Gjim|J < Jiim) < 1. The apparent-
magnitude data within 0.5 kpc from the Sun for our selected sample
are shown in Fig. 2. A strong correlation between the G- and J-
band magnitudes catches the eye. The J-band limit J};,, was fixed
to a value where the distribution of brighter stars in the G band
ends before reaching the Gaia spectroscopic completeness limit
Giim. This is shown as a green line in the left-hand panel and the
corresponding probability density distribution p(G|J < Jiim)dG in
the right-hand panel. The fraction of G magnitudes crossing G, is
8 x 10~ for the adopted Jji, = 10.25; hence we conclude that our
sample is almost independent of the Gaia completeness limit and
dust attenuation.

The smooth acceleration distribution of the MW is taken as an
input in modelling process and it does not include local potential
wells of stellar clusters. Hence, we cannot describe the motion of
stars within clusters and must exclude these cluster stars from our
sample. We excluded all stars that appeared to be cluster members in
catalogues by Cantat-Gaudin et al. (2018) or the Gaia Collaboration
et al. (2018). In total, 993 stars or about 0.2 per cent of stars from
the final selection were excluded.

3.2 Selection of the region

In the paper where we presented the method and tested it on
simulation data (Kipper et al. 2019a), we aimed to use rather small
regions in order to have a simple analytical form for acceleration
vector components. In the current paper, we selected a larger region
to suppress Poisson noise and to increase the region size in the
radial direction to have a stronger basis to also estimate the first
derivative of the radial acceleration. This changes our approach
somewhat: instead of using a simple form for accelerations, we now

MNRAS 494, 3358-3367 (2020)
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try to model the underlying acceleration field with a well-motivated
analytical form.

Thus, due to available data, instead of using several small regions
as we did in Kipper et al. (2019a), we selected one larger region, as
shown in the schematic in Fig. 1. Our main aim was to recover the
acceleration field in the plane of the Galaxy; hence we constructed
a region where accelerations in the MW plane have a longer time
to act on stars. In the vertical direction, density gradients are much
steeper and one may expect that the corresponding accelerations
may have also more complex forms. To avoid using more complex
accelerations in vertical directions, we selected a thin region.

The region size is selected to balance two previous effects:
maximally small to have a simple acceleration form and maximally
close to keep the observational uncertainties low, and at the same
time maximally large to let acceleration act for a sufficiently long
time in the model. The boundary of the selected region is described
by a biaxial ellipsoid:

Ax\? Ay \? Az \?
(@) e
xmax ymax Zmax

With Xmax = Ymax = 0.494 kpc and z,.x = 0.218 kpe. Here Ax, Ay
and Az denote the coordinates from the centre of the region. The
centre of the region is at (x, y, z) = (— 8.3, 0.0, 0.0) in kpc. The
position of the Sun with respect to the region centre is (— 0.040, 0.0,
0.027) in kpc. Within this region there are 417 727 stars when using
the Schonrich et al. (2019) catalogue (Sc), and 426 767 stars when
using the StarHorse (SH) catalogue. Larger regions would require
the use of a precise selection function, which would complicate the
analysis.

4 RESULTS

We calculated gravitational acceleration in the region around the
SN as described in Section 3.2 using the method and its imple-
mentation explained in Section 2. In order to decipher various
aspects of the acceleration field (e.g. deviations from axisymmetry),
we used different functional forms to describe the underlying
acceleration.

4.1 Calculated acceleration components

In our first attempt to model the acceleration in the region we did
not specify a design-based form of an overall gravitational potential
of the MW. Instead we assumed that any acceleration form can
be approximated with their Taylor expansions equations (7)—(9)
and we fit the coefficients of this acceleration (A, Ay \, Ay . Ay -,
Ay Ay Ay Ay A AL ALy, Az ). This way of modelling is
powerful because it allows us to not only model the acceleration
in a tiny region, but in principle the entire MW if we can get the
overall gravitational potential. We fit a total of 12 free parameters,
A; and A; ; for the flux-limited samples of stars within the selected
region (see Section 3.2) for both the Sc and SH catalogues of Gaia
DR2 (for more details see Section 3.1).

We used 100 random points to describe the grid; hence, there are
~42 stars per grid bin. The fitting was done with the MULTINEST code
(Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009; Feroz et al.
2013) using 500 live points. To include the randomness caused by
the gridding, we ran the code eight times and averaged the posterior
distribution of different runs. All the modelling was done in this
way, unless noted otherwise. The priors of the Bayesian modelling
were chosen to be of uniform distribution with the limiting values
provided in Table Al. In the table we give the posterior distribution
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Figure 3. The figure shows the average matter density in the solar
neighbourhood and is compared with the results from Bienaymé et al. (2014),
McKee, Parravano & Hollenbach (2015), Kipper et al. (2018). These results
do not match very well because they use different datasets and different
assumptions of the underlying acceleration. The high uncertainty in the
calculated results is due to the optimization of the selected acceleration
form to determine accelerations in the Galactic plane. Note that this is not
the vertical component, which is usually used to determine the overall matter
density.

of each parameter ¢ with five quantiles positioned at P(¢) = {0.023,
0.159, 0.500, 0.841, 0.977}.

Previous studies have shown that the Sun is not located precisely
at the centre of the Galactic plane, but is about 25 pc away from
it (Bland-Hawthorn & Gerhard 2016). Thus, there must be an
acceleration component in the vertical direction, as confirmed ine.g.
Kipper et al. (2018) based on dynamics. In Table A1 our estimation
of the vertical acceleration A, and its gradient in the z-direction
A, . are given. Using these two values and by making a linear
approximation at distances close to the plane, we deduce that we
are located at zo, ~ A./A, . = {—111733(SH), —117135(Sc)} pe
from the vertical coordinate value defined as having zero
vertical acceleration in contrast to the symmetry-defined
centre.

The Poisson equation combines the gravitational potential and
total mass density. By using calculated acceleration components
in the Poisson equation, we can compute the average total matter
density in our selected region as:

VZCD = _Ax,x - Ay,y - Az,z = 47 G potal» (13)
where @ is the gravitational potential and p is the to-
tal mass density inside the region. Calculated Taylor ex-
pansion fit components for two different Gaia catalogues
give us P = 0.070f8:8{g Mg pc (SH catalogue) and py =
0.06970:03 M pe=3 (Sc catalogue). The full probability density
distribution of the total matter density p, can be seen in Fig. 3. One
must bear in mind, that this total density value applies as the average
in this region (extent in the z-direction is 2 x 0.22 kpc). In order to
describe the changes in the vertical component of the acceleration,
we need a more sophisticated form of acceleration as the linear
form cannot capture quick density changes along the z-direction.
Therefore, if we use another form by assuming axisymmetry with
respect to the centre, then the number of free parameters can be
significantly reduced and more concrete conclusions can be made.
Selected Taylor expansion might not fully grasp all the details of the
vertical structure, since it is described with just one free parameter

(Az2).
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4.2 Deviations from a simple axisymmetric MW model

In case of a stationary axisymmetric MW, the acceleration com-
ponent along the direction of Galactic rotation a,(Ax, Ay = 0,
Az) = 0and equipotential curves are concentric circles. The median
values of acceleration computed within the selected region using
the coordinates (x, y, z) = (— 8.3, 0, 0) kpc as the centre are 306
and 284 km? s~ kpc~! for the SH and Sc catalogues respectively.
Results of these calculations along with 1o and 20 limits are shown
in Fig. 4 and the used priors are given in Table A2. They are
designated as ‘Sc, flux’ and ‘SH, flux’. None of the 27 748 posterior
samples from MULTINEST show negative A, values. Thus, the results
are not consistent with axisymmetry.

Based on the assumption that equipotential curves are concentric
circles, we derived the radius of this circle. The radii are 3.4 kpc
for the SH catalogue and 3.2 kpc for the Sc catalogue. Most of the
posterior distribution had values lower than 8.3 kpc, i.e. P(Rg >
8.3 kpc) = {0.048(Sc), 0.11(SH)}. Hence, the ‘acceleration centre’
is most likely closer to us than the GC and equipotential curves
have higher curvature than one would expect for the distance to
the Galactic centre. Thus we conclude that axisymmetric potential
distribution is not valid at SN, and interpret it as an argument to
support the presence of a rather massive central bar.

As already explained in Section 5.1, we calculated the ac-
celeration components assuming axisymmetry, by selecting the
components ag, a, to be in the form of equations (4)—(6). During
the fitting the solar distance R, was also taken as a free parameter.
Taking the posterior in these fits close to R = 8.3 kpc, we found
the radial acceleration to be —61907]% km? s=2 kpc~!, which corre-
sponds to the circular velocity 227 kms~!. The combined estimate
of the observed circular velocity at 8.3 kpc is somewhat larger,
being 238 + 15kms~! (Bland-Hawthorn & Gerhard 2016), but it
is consistent with the calculated result within error.

4.3 Deriving the properties of the bar

To calculate the total mass of the bar, we assumed that spatial density
distribution of the bar has the same form as that derived by Wegg
et al. (2015):

My x\“ y e
o (C1E) ()]
47T X0 Y020 X0 Yo

Z R — Rout Rin - R
x exp |—— |Cut | —— | Cut | ——— (14)
20 Oout Oin
exp(—x?) ifx > 1
Cut(x) = (15)
ifx <1.

The values of the parameters xo, Yo, 20, Oins Touts CL> Rins Rout
were also taken to be the same as those derived by Wegg et al.
(2015). In this form Wegg et al. (2015) excluded symmetric parts
of the Galaxy (e.g. bulge) by cut-off. By calculating tangential
accelerations for this bar and fitting the calculated values with the
values derived by us and referred to in the previous subsection,
we derived that the mass of the bar (using the cut-off in previous
equations) will be 0.41700710'° M, for the SH catalogue and
0.40709710'° Mg, for the Sc catalogue. Without the cut-off, by
adopting their profile (and inferring their My,;) the overall bar mass
would be {1.59%02](SH), 1.557923(Sc)} 10'° M.

In the previous subsection we concluded that the assumption that
equipotential curves are circles is clearly not valid. Therefore, we
assumed that these curves are confocal ellipses in the Galactic plane

Galactic bar torque ~ 3363

T
R = 4.37 +- 3.03 kpc
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Figure 4. The central panel shows the correlation between the centre of
acceleration, R, and the component of the acceleration vector, Ay, as
described in Section 4.2. The top panel shows the distribution of Rg for
an axisymmetric fit. The brown point at 8.3 kpc shows the distance of the
Sun to the centre of our Galaxy. This indicates that the curvature of the
isopotential lines is very likely less than 8.3 kpc. The right-hand panel
shows the distribution of the A, component of the acceleration vector at the
region centre. The green lines are for the overall posterior distribution and the
red lines are for the subset where Rg ~ 8.3 kpc. This figure highlights the
necessity to include the non-axisymmetric component to fit the acceleration,
since the default for the MW at (Rp = 8.3, A, = 0) does not account for
what is observed.

and then computed the acceleration due to the bar. An analytical
form for accelerations describing the potential of the bar as confocal
ellipsoids was chosen to be

ay = agcost + Ag pur Ax(Ax', Ay (16)
ay = agsing + Ag par Ay(AX', Ay") (17)
a; = Az + Az,zz + Az,RAR + Az.RzZARv (18)

where ag and AR are given by equations (5) and (6). The normalized
vector components of the potential gradient of the confocal bar, Ax’
and Ay', are described by

AX/Z Ay/Z

+ —_
2 2 _ g2
a a Li,.

=1 (19)

Ly, is the focal length of the equipotential curves and a describes
the size of the ellipsoid. The coordinate transformation from (x, y)
to (x’, ') is done by rotating the original axes by an angle of 29.5°,
which is the position angle of the major axis of the bar (Wegg et al.
2015). The results from these calculations are given in Table A3,
they contain the coefficients obtained from the fits.

When using accelerations in the form of equations (16)—(18),
substantial correlations exist in the modelled posterior samples
(e.g. between A, and A, p,). The largest correlation coefficient
was found to be 1.0 between A, and A, v, (see Fig. 5). We also
found a strong correlation (correlation coefficient 0.85) between
bar acceleration/total acceleration and its focal length as shown in
Fig. 6. The rest of the correlations were much weaker, and the only
other noticeable correlation was between Ag and Ag p, and the
radial acceleration derivative Ag g (correlation coefficient 0.26).

MNRAS 494, 3358-3367 (2020)
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Figure 5. The relation between acceleration from the axisymmetric compo-
nent and from the bar component. The contours show 1o and 20 confidence
intervals for the Anders et al. (2019) (SH) and Schonrich et al. (2019)
(Sc) datasets. The strong correlation between them shows degeneracy of
accelerations in the functional form of equations (16)—(18).

Bar half-length from Wegg et al 2015
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Figure 6. The top panel depicts the degeneracy between the length of the
bar and the acceleration from it. The bottom panel shows the fraction of bar
acceleration. The degeneracy can be broken when additional information
such as bar length is used. We used the bar length value from Wegg et al.
(2015). The contours show 1o and 20 confidence intervals for the Anders
et al. (2019) (SH) and Schonrich et al. (2019) (Sc) datasets.

Currently we have only used the SN region to disentangle the
bar parameters; hence, we were able to determine only some of the
degenerate values. We were also able to determine that the sum of
the radial acceleration due to the bar and axisymmetric components
is constant, as seen in Fig. 5. Hence, if we know one then we can
easily estimate the other.

Based on the results from Section 4.2, we modelled the tangential
acceleration value A,. From this, we can calculate the z-component
of the torque caused by the bar per solar mass using:

T, = AyRge ~ {24507550(SH), 23901 ¢0(Sc)} km? s™2

MNRAS 494, 3358-3367 (2020)

or
T. ~ 2470km s~ kpc Gyr™'.

Here Rgc is our physical distance from the Galactic centre (instead
of the modelled radius of curvature of equipotential curves Ry). The
degeneracy is because a long bar closer to us and a short massive
bar engender the same force, making it difficult to distinguish the
two scenarios. This is seen in Fig. 6 where the acceleration value
due to the bar and the fraction of acceleration caused by the bar
as a function of the length of the bar are given. The degeneracy
can be broken when we fix the length of the bar from independent
measurements. As an example, Wegg et al. (2015) estimated that
the half-length of the bar is 4.6 = 0.3 kpc. If we fix this value as
Lyay, it gives the fraction of acceleration caused by the bar as about
a third: 0.34 £ 0.07 in the case of the SH catalogue and 0.29 4 0.09
in the case of the Sc catalogue.

5 DISCUSSION AND CONCLUSION

5.1 Validity of the sample construction

To test how well the approach described in Section 2.3 is able to
cope with flux-limited data, we applied our model to two sets: a flux-
limited sample and a volume-limited sample. The volume-limited
approach was tested with simulation data in Kipper et al. (2019a)
and was found to be consistent. Since the results for the flux-limited
sample agreed well with those of the volume-limited sample, we
are confident that our model is very suitable for the current case.

The acceleration components used for this test are in the ax-
isymmetric form of equations (4)—(5). The geometry of the region
was biaxial ellipsoid in the form of equation (12), but its selection
and modelling had some differences: the sample was limited by
the absolute J-magnitude value of 1.2™, yielding 54 819 stars. The
grid was constructed by using 70 random sample points, and fitting
was done eight times to include the uncertainty from the gridding
randomness.

The results of the test calculations for volume- and flux-limited
selections from the Sc catalogue are given in Table A2, where
calculated acceleration components are given with labels ‘Sc, vol’
and ‘Sc, flux’. The most interesting acceleration components are
radial acceleration ag and vertical acceleration a, (see their main
parameters Az and A;). For the volume-limited sample Az =
—6128 +199km?>s2kpc~! and A, = 183 + 106 km? s—2kpc~!;
for the flux-limited sample Az = —6181 4= 82km?s~2kpc~! and
A, =203 +48km?s2kpc~!. The smaller errors in the flux-
limited sample are due to the larger data sample. The results are
clearly consistent and we may conclude that our approach to cope
from here on with the flux-limited sample, described in Section 2.3,
is valid.

5.2 Time dependence of acceleration due to the bar

During calculations of stellar orbits (see selected analytical forms
for acceleration) we assume that accelerations do not have an
explicit time dependence. However, it is known that about a quarter
of galaxies contain a more or less prominent bar (Cheung et al.
2013); in the case of the MW a central bar was introduced by de
Vaucouleurs (1964). A rotating bar would violate this assumption
of our modelling.

To test how much a bar would influence our results, we used
the same simulation (the barred one) from Garbari, Read & Lake
(2011) as was used in Kipper et al. (2019a). We selected a region
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close to the solar radius, with an angle between the major axis of
the bar and direction to the centre of the region ~30° and fitted
the acceleration components (7)—(9) (Taylor expansion) with our
model. We expect that including the tangential component of the
acceleration due to the bar that is changing in time would give
us a somewhat wrong acceleration direction. We found that the
acceleration vector was directed away by 3.27 4 2.23° from the
Galactic centre. The corresponding true angle calculated directly
from the simulation gravitational potential was 2.21°. The difference
between the true and calculated values is smaller than the 1o error
of the calculated value. Hence the effect of the time dependence of
the bar in this case is not so significant.

Another approach to estimate the effect of a time-dependent
gravitational potential is to use available data from the literature.
The average angular speed of the bar is about ~ 40km s~ kpc~!,
although there is significant uncertainty in this value (see Sec-
tion 1). The angular speed of the Sun is ~ 30 kms~! kpc~! (Bland-
Hawthorn & Gerhard 2016). The strong similarity between these
two values suggests that the potential of the bar near the Sun
does not change very fast. A hypothetical star moving with a
speed of 220km s~ passes the half box-size distance of 0.5 kpc
within ~2.3 Myr. Within this time, the angle of the bar orien-
tation with respect to our comoving location changes only by
2.3Myr x (40-30)kms~'kpc™! ~ 1.4°. If we assume that the
angle between us and the major axis of the bar is 6y = 30° and
the ‘tip of the bar’ is about L = 5 kpc away from the centre of the
Galaxy? then our distance to the tip of the bar is

w? = L* + R, — 2LR;, cos 6. (20
The force due to the bar changes within 2.3 Myr maximally by
AF 1 dF dw dfy = 2LRgsinb

= At & A6y =~ 0.046. 21)
F F dw d6, dr w?

Hence, the force due to the bar changes by about 5 per cent if the
force due to the bar is not steeper than oc w2 and the bar dominates
the potential. If it does not, then the result must be multiplied by
the acceleration fraction of the bar. This can be considered as a
component of systematic uncertainty. While calculating the orbital
arcs for stars within the selected region, the time dependence of
accelerations due to the bar has quite a small effect. Therefore in
the current study we ignore this effect.

5.3 Influence of uncertainties in input data

The input to this modelling does not include uncertainties. The
resulting uncertainties are statistical in nature and include only
sampling errors seen from the likelihood equation (7) of Kipper
et al. (2019a). In order to see how observational uncertainties
influence our results, we randomized phase space coordinates of
stars according to their uncertainties, reconstructed the selection
sample as described in Section 3, and remodelled the selected
region. To account for the randomness in this process, we modelled
the SN 47 times and combined the corresponding posterior distri-
butions. The results of the calculations are shown in Table A2 with
the label ‘Sc, rnd’ after the variable name. Comparing calculated
accelerations with labels ‘Sc, rnd” and ‘Sc, flux’, it is seen that
randomization had very little effect on the results. We conclude that
uncertainties can be ignored for this selection.

2We make an approximation that the mass of the bar is a point mass at the
tip of the bar. This gives an upper limit for the bar influence.

Galactic bar torque ~ 3365

Another source of error can be due to the gridding approach
employed in this study (see Section 2.2). Since there is random-
ization, we must include the noise caused by it. We rerun each
modelling eight times to include the source of noise. All of these
runs had similar posterior distributions; hence we are certain that
gridding does not introduce large artificial uncertainties. To include
the gridding uncertainties, we combined the posterior distributions
of randomized grid runs.

5.4 Conclusions

In this paper, we have applied the orbital arc method (Kipper
et al. 2019a) to Gaia DR2 and modelled the acceleration along
the plane of the Galactic disc. We approximated the acceleration in
the solar neighbourhood with various functional forms and came to
the following conclusions:

(1) There are very few systematic biases between the Gaia DR2
datasets compiled by Schonrich et al. (2019) and Anders et al.
(2019). Both the datasets give consistent results.

(i1) The distribution of axisymmetric gravitational acceleration
does not account for the observed acceleration for the standard
distance of the Sun from the Galactic centre Ry &~ 8.3 kpc. The
curvature of the isopotential lines is smaller than the standard R,
implying that there is a component of the Galactic bar causing this
acceleration.

(iii) The acceleration vector in the solar neighbourhood is not
directed towards the centre of the Galaxy. There is a significant
component of the acceleration directed away from the Galactic
centre. We propose that this is caused by the massive central bar.
Based on our model, we calculate the torque to be ~ 2400 km? s~2
per solar mass.

(iv) Based on the assumption that isopotential surfaces of the
bar are confocal ellipses, we estimate that about a third of the total
acceleration in the solar neighbourhood is caused by the bar. In this
computation we use the estimate of the length of the bar of Wegg
et al. (2015).

(v) Finally, using our model, we estimated the mass of the bar
as (1.6 £ 0.3) x 10'° My, using the density distribution parameters
from Wegg et al. (2015).

ACKNOWLEDGEMENTS

We thank the referee for helpful comments and suggestions. We
thank the StarHorse core team (F. Anders, A. Queiroz, B. Santiago,
A. Kalathyan, C. Chiappini) for providing their data, and G. Monari
for helpful comments about the paper. This work was supported by
institutional research funding IUT26-2, IUT40-2 and PUTID907 of
the Estonian Ministry of Education and Research. We acknowledge
the support by the Centre of Excellence ‘Dark Side of the Universe’
(TK133) and by the grant MOBTP86 financed by the European
Union through the European Regional Development Fund. This
work has made use of data from the European Space Agency (ESA)
mission Gaia (https://www.cosmos.esa.int/gaia), processed by the
Gaia Data Processing and Analysis Consortium (DPAC, https:
/Iwww.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the
DPAC has been provided by national institutions, in particular the
institutions participating in the Gaia Multilateral Agreement. This
publication makes use of data products from the Two Micron All Sky
Survey, which is a joint project of the University of Massachusetts
and the Infrared Processing and Analysis Center/California Institute
of Technology, funded by the National Aeronautics and Space
Administration and the National Science Foundation.

MNRAS 494, 3358-3367 (2020)

120Z 1udy 60 uo Jasn uabuiuois) Jo AusiaAiun AqQ ¥61928S/8GEE/E/Y61/81oNIB/SBIUW/WOD dNo-olWspeoe//:sdny WoJj papeojumoq


https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium

3366  R. Kipper et al.

REFERENCES

Anders F. et al., 2019, A&A, 628, A9%4

Antoja T. et al., 2018, Nature, 561, 360

Astropy Collaboration et al., 2013, A&A, 558, A33

Banik N., Bovy J., 2019, MNRAS, 484, 2009

Bienaymé O. et al., 2014, A&A, 571, A92

Binney J., 2018, MNRAS, 474, 2706

Binney J., Wong L. K., 2017, MNRAS, 467, 2446

Binney J., Gerhard O., Spergel D., 1997, MNRAS, 288, 365

Bissantz N., Englmaier P., Gerhard O., 2003, MNRAS, 340, 949

Bland-Hawthorn J., Gerhard O., 2016, ARA&A, 54, 529

Bovy J., Bahmanyar A., Fritz T. K., Kallivayalil N., 2016, ApJ, 833, 31

Bovy J., Leung H. W., Hunt J. A. S., Mackereth J. T., Garcia-Hernandez D.
A., Roman-Lopes A., 2019, preprint (arXiv:1905.11404)

Cantat-Gaudin T. et al., 2018, A&A, 618, A93

Cheung E. et al., 2013, ApJ, 779, 162

de Vaucouleurs G., 1964, in Kerr F. J., ed., Proc. IAU Symp. 20, The Galaxy
and the Magellanic Clouds, p. 195

Dehnen W., 2000, AJ, 119, 800

Dias W. S., Monteiro H., Lépine J. R. D., Barros D. A., 2019, MNRAS, 486,
5726

Dwek E. et al., 1995, ApJ, 445,716

Feroz F., Hobson M. P., 2008, MNRAS, 384, 449

Feroz F., Hobson M. P., Bridges M., 2009, MNRAS, 398, 1601

Feroz F., Hobson M. P., Cameron E., Pettitt A. N., 2013, ApJ, 2, 10

Fux R., 2001, A&A, 373,511

Gaia Collaboration et al., 2018, A&A, 616, A10

Garbari S., Read J. I., Lake G., 2011, MNRAS, 416, 2318

Han J., Wang W., Cole S., Frenk C. S., 2016, MNRAS, 456, 1003

Hattori K., Erkal D., Sanders J. L., 2016, MNRAS, 460, 497

Kawata D., Baba J., Ciucd I., Cropper M., Grand R. J. J., Hunt J. A. S.,
Seabroke G., 2018, MNRAS, 479, L108

Kipper R., Tempel E., Tenjes P., 2018, MNRAS, 473, 2188

Kipper R., Tempel E., Tenjes P., 2019a, MNRAS, 482, 1724

Kipper R., Tenjes P., Hiitsi G., Tuvikene T., Tempel E., 2019b, MNRAS,
486, 5924

Li Z., Gerhard O., Shen J., Portail M., Wegg C., 2016, ApJ, 824, 13

Lindegren L. et al., 2018, A&A, 616, A2

Lépez-Corredoira M., Sylos Labini F., 2019, A&A, 621, A48

Matsumoto T., Hayakawa S., Koizumi H., Murakami H., Uyama K.,
Yamagami T., Thomas J. A., 1982, in Riegler G. R., Blandford R. D.,
eds, AIP Conf. Ser. Vol. 83, The Galactic Center. Am. Inst. Phys., New
York, p. 48

McKee C. F, Parravano A., Hollenbach D. J., 2015, ApJ, 814, 13

McMillan P. J., 2017, MNRAS, 465, 76

Monari G., Famaey B., Siebert A., Duchateau A., Lorscheider T., Bienaymé
0.,2017, MNRAS, 465, 1443

Pearson S., Price-Whelan A. M., Johnston K. V., 2017, Nat. Astron., 1, 633

Pérez-Villegas A., Portail M., Wegg C., Gerhard O., 2017, ApJ, 840, L2

Piffl T. et al., 2014, MNRAS, 445, 3133

Portail M., Wegg C., Gerhard O., Martinez-Valpuesta 1., 2015, MNRAS,
448,713

Portail M., Gerhard O., Wegg C., Ness M., 2017, MNRAS, 465, 1621

Price-Whelan A. M. et al., 2018, AJ, 156, 123

Ramos P., Antoja T., Figueras F., 2018, A&A, 619, A72

Sanders J. L., Smith L., Evans N. W., 2019, MNRAS, 488, 4552

Schénrich R., McMillan P., Eyer L., 2019, MNRAS, 487, 3568

Skrutskie M. F. et al., 2006, AJ, 131, 1163

Trick W. H., Coronado J., Rix H.-W., 2019, MNRAS, 484, 3291

Watkins L. L., van der Marel R. P., Sohn S. T., Evans N. W., 2019, ApJ, 873,
118

Wegg C., Gerhard O., 2013, MNRAS, 435, 1874

Wegg C., Gerhard O., Portail M., 2015, MNRAS, 450, 4050

Weiland J. L. et al., 1994, ApJ, 425, L81

APPENDIX A: TABLES

Table Al. The modelling of the acceleration function described with equations (7)—(9) and using datasets from Schonrich et al. (2019) (Sc) or Anders
et al. (2019) (SH). We use acceleration units of km? s~2 kpc_l, which differ from the more intuitive km s~ Gyr‘1 by about 2 per cent. The values of

P represent quantiles of the posterior distribution.

Variable Unit P =0.02 P=0.16 Median P=0.84 P =098 Lower prior limit Higher prior limit
A, (SH) km? s=2 kpc~! 6109.43 6178.27 6250.33 6382.74 6468.32 —10000 10000
Ay (Sc) km? s 2 kpe ™! 6026.12 6102.47 6195.79 6327.5 6420.91 —10000 10000
Ay (SH) km? s~2 kpc~! 222.24 259.31 306.37 385.33 445.89 —10000 10000
Ay (Sc) km? s~ 2 kpe ™! 189.42 238.87 283.55 339.59 412.18 —10000 10000
A. (SH) km?s~2kpc~! 138.96 175.95 211.06 254.66 295.01 —5000 5000
A, (Sc) km?s~2kpc~! 95.85 135.28 186.81 245.17 286.13 —5000 5000
A x (SH) km? s~ kpc ™2 252.69 658.7 1152.87 1764.86 2306.3 —3000 5000
Ay (Sc) km? s~ kpc 2 —498 318.77 1109.62 1631.22 2088.79 —3000 5000
Ay y (SH) km? s~2 kpc 2 —342 853.24 1867.96 2920.27 3606.84 —4000 4000
Ay y (Sc) km? s~ kpc—?2 —479.88 4943 1511.29 2379.45 3128.42 —4000 4000
A, . (SH) km?s2kpc™?2  — 194843 —1760.52  —1406.23 —860.97 —171.53 —2000 2000
Ay ; (Sc) km?s2kpc 2 —194527 —1748.13  —1339.24 —725.73 2.09 —2000 2000
Ay, x (SH) km? s~ kpc~?2 —702.07  —424.69 —59.88 253.95 538.2 —2000 2000
Ay, x (Sc) km? s~ 2 kpc—2 —541.84  —283.02 —28.31 275.48 640.52 —2000 2000
Ay, y (SH) km2s2kpc?  —3505.68 —2862.34  —214894  —1487.17 —93521 —5000 2000
Ay, y (So) km?s~2kpe?  —3662.39 —2914.14  —2154.12  —1566.75  —933.65 —5000 2000
Ay . (SH)  km?s2kpc™  —1975.02 —1885.74 —1696.72  —137229  —860.07 —2000 2000
Ay, (Sc) km?s2kpc=2  —1957.05 —1817.54  —1463.88 —864.12  —129.38 —2000 2000
A, ¢ (SH) km? s~ kpc ™2 —494.93 —145.76 155.8 428.63 700.61 —2000 2000
A (Sc) km? s~ 2 kpc 2 —48.17 184.64 429.13 669.57 906.36 —2000 2000
A,y (SH) km? s~ kpc~?2 —636.93 —50.74 562.24 1220.58 1772.55 —2000 2000
A,y (So) km? s~ 2 kpc 2 —304.58 102.45 501.94 893 1284.27 —2000 2000
A, . (SH) km?s2kpc?  —3066.65 —2536.04 —1857.43  —1224.14 —664.61 —6000 0
A, . (Sc) km?s2kpc?  —3556.61 —2789.1 —1651.53  —1081.78  —588.78 —6000 0
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Galactic bar torque ~ 3367

Table A2. The modelling of the acceleration function aiming to describe an axisymmetric disc with a possible tangential component using equations (1)—(6)
and using datasets from Schonrich et al. (2019) (Sc) or Anders et al. (2019) (SH). The extra denotations after the variable name show specifics of the modelling:
‘flux’ denotes that the sample was flux-limited and ‘vol’ volume-limited; ‘rnd’ had phase space values randomized according to observational uncertainties. In
the case of the random sample, the posterior distribution is averaged over 47 different runs. The volume-limited sample fit was done with about a tenth of the
number of data, which is the cause of reduced accuracy and precision.

Variable Unit P=0.02 P=0.16 Median P=0.84 P =0.98 Lower prior limit Higher prior limit
Ag (Sc, vol) km? s~ 2 kpc~! —6495.2 —6328.1 —6127.9 —5942.7 —5785.8 —15000 15000
Ag (Sc, flux) km?2 s=2 kpc~! —6466.8 —6300.4 —6181.2 —6110.2 —6043.4 —15000 15000
Ag (SH, flux) km? s~ 2 kpc~! —6367.9 —6294.8 — 6214 —6135.1 —6062.6 —15000 15000
Ag (Sc, rnd) km? s~ 2 kpc~! —6656.2 —6517.4 —6391.2 —6284.1 —6188.4 —15000 15000
Ro (Sc, vol) kpc 1.6 2.1 3.6 9.9 17.2 0.1 20
Ro (Sc, flux) kpe 2 24 32 5 12.1 0.1 20
Ro (SH, flux) kpc 1.7 22 3.4 6.3 14.6 0.1 20
Ro (Sc, rnd) kpc 15 1.8 22 32 6.6 0.1 20
A. (Sc, vol) km? s~ kpc~! 35 90.6 183.5 300.3 391 —5000 5000
A; (Sc, flux) km? s~ 2 kpc~! 96.7 151.6 203.5 249.2 287.7 —5000 5000
A, (SH, flux) km? s~ kpc~! 114.7 152.8 195.5 239.3 280.9 —5000 5000
A. (Sc, rnd) km? s~ kpc~! 105.7 155.8 205 256.4 299.6 —5000 5000
A (Sc, vol) km? s=2 kpc 2 —6815.1 —5339.3 —3731.1 —1644.7 —253.7 —8000 0
A, (Sc, flux) km? s~2 kpc ™2 —3590.3 —2872.3 —2083.4 —1427.1 —755.2 —8000 0
A, . (SH,flux)  km?s2kpc~> —3042.2 —2285.3 —1512 —786.5 —262.2 —8000 0
A... (Sc, nd) km? s~% kpc 2 —3478.4 —2701.8 — 1866.7 —1088.7 — 4283 —8000 0
A R (Sc, vol) km? s=2 kpc 2 —1919.5 — 1542 —991.9 —232 282.9 —5000 5000
A g (Sc, flux) km? s~ kpc ™2 —742.1 —446.4 — 1454 176.9 473 —5000 5000
A, R (SH, flux)  km?s~2kpc~> —817.1 —558.7 —299.3 -12 311.4 —5000 5000
A g (Sc, rnd) km? s~2 kpc 2 —949.9 —653.9 —3738 —435 320.3 —5000 5000
A r; (Sc, vol) km? s~2 kpc =3 —4627.4 —3272.8 —104.6 3125.1 4569 —5000 5000
A g (Sc, flux)  km?s~2kpc™? —4702.6 —3640.8 —1332.2 1973.6 4105.8 —5000 5000
A g (SH, flux)  km? s~ kpc~3 —4814.5 —3985.5 —1707.9 2408 4426 —5000 5000
A g. (Sc,mnd)  km?s 2 kpc™? —4407.6 —2608.8 788.9 3471.8 4683.1 —5000 5000
AR, r (Sc, vol) km? s~% kpc 2 —23424 —938.9 909.7 2490.4 3444 —4000 4000
Ag g (Sc, flux)  km?s~2kpc™? —2591.1 —1809.7 —995.1 —102 975.3 —4000 4000
Ag.g (SH, flux)  km?s~2kpc~2 —2726.1 —1666.2 —500.3 531 13723 —4000 4000
AR, g (Sc, rnd) km? s~ 2 kpc 2 —2591.9 — 17212 —763.8 455.6 1799.6 —4000 4000
Ay (Sc, vol) km? s~2 kpc™! —345.2 —2263 —65 67.7 177.8 —3000 3000
Ay (Sc, flux) km? s~ 2 kpc~! 157.2 208.5 288.5 341.5 385.5 —3000 3000
Ay (SH, flux) km? s~ 2 kpc~! 159.3 237.3 295.4 345.9 400.4 —3000 3000
Ay (Sc, rnd) km? s~ 2 kpc~! 134.6 187.3 247.5 309.6 393 —3000 3000

Table A3. The modelling of the acceleration function (16)—(18) aiming to describe the sum of the axisymmetric and confocal bar components. The

datasets used from Schonrich et al. (2019) and Anders et al. (2019) are abbreviated as Sc and SH.

Variable Unit P=0.02 P=0.16 Median P=0.84 P =0.98 Lower prior limit ~ Higher prior limit
Ag (SH) km?s2kpc!  —5347.36 —4713.55  —3107.82  —1291.7 —513.77 —10000 0
Ar (Sc) km?s2kpc~!  —5508.80 —4889.42  —319573  —1344.89 —513.04 —10000 0
Ag. r (SH) km? s~2 kpc 2 234.31 766.59 1248.09 1717.45 2202.51 —5000 5000
Ar. g (Sc) km? s~2 kpc 2 —1739.71 164.14 1195.15 1966.9 2599.58 —5000 5000
A (SH) km? s~ 2 kpc ™! 111.05 150.27 202.37 248.64 287.65 —5000 5000
A- (Sc) km? s~2 kpc~! 141.71 178.88 216.77 256.01 293.62 —5000 5000
A, . (SH) km?2s2kpc™>  —3331.1  —2737.24  —213529  —1479.55 —897.58 —8000 0
A, . (Sc) km?s~2kpc?  —3090.27 —2461.84  —1856.71 —1156 —582.57 —8000 0
A g (SH) km? s~2 kpc 2 —873.7 —597.21 —286.73 —6.01 237.43 —5000 5000
A, g (Sc) km? s~2 kpc 2 —933.1 —636.23 —345.07 —83.41 154.43 —5000 5000
A, g, (SH)  km?s™2kpc™>  —4352.62 —2373.53 1429.96 3747.56 471891 —5000 5000
A - (Sc) km?s~2kpc™®  —4341.86 —2571.03 399.29 3137.3 4610.42 —5000 5000
Agbar (SH)  km?s™2kpc™!  —5761.45 —4984.16  —316897  —1562.17 —952.39 6000 —6000
A bar (S¢)  km?s2kpe™!  —573829 —4899.51  —3050.55 —1367.63 —737.13 6000 —6000
Lbar (SH) kpc 2.62 3.03 3.76 5.18 6.4 0.1 7
Liar (Sc) kpc 2.16 272 3.54 5.02 6.32 0.1 7
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