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ABSTRACT

Aims. Our aim is to quantify the impact of systematic effects on the inference of cosmological parameters from cosmic shear.
Methods. We present an “end-to-end” approach that introduces sources of bias in a modelled weak lensing survey on a galaxy-by-galaxy level.
We propagated residual biases through a pipeline from galaxy properties at one end to cosmic shear power spectra and cosmological parameter
estimates at the other end. We did this to quantify how imperfect knowledge of the pipeline changes the maximum likelihood values of dark energy
parameters.
Results. We quantify the impact of an imperfect correction for charge transfer inefficiency and modelling uncertainties of the point spread function
for Euclid, and find that the biases introduced can be corrected to acceptable levels.

Key words. gravitational lensing: weak

1. Introduction

Over the past century advances in observational techniques in
cosmology have led to a number of important discoveries of
which the accelerating expansion of the Universe is perhaps the
most surprising. Moreover, a wide range of detailed observations
can be described with a model that requires a remarkably small
number of parameters, which have been constrained with a pre-
cision that was unimaginable only 30 years ago. This concor-
dance model, however, relies on two dominant ingredients of
the mass-energy content of the Universe: dark matter and dark
energy. Neither of these ingredients can be described satisfac-
torily by our current theories of particle physics and gravity.
Although a cosmological constant/vacuum energy is an excellent
fit to the current data, the measured value appears to be unnatu-
rally small. Many alternative explanations have been explored,
including modifications of the theory of general relativity on

large scales (see e.g. Amendola et al. 2013, for a review), but
a more definitive solution may require observational constraints
that are at least an order of magnitude more precise.

The concordance model can be tested by studying the expan-
sion history of the Universe and by determining the rate at which
structures grow during this expansion. This is the main objective
of the Euclid mission (Laureijs et al. 2011), which will carry out
a survey of 15 000 deg2 of the extragalactic sky. Although Euclid
will enable a wide range of science topics, it is designed with two
main probes in mind: first, the measurement of the clustering of
galaxies at z > 0.9 using near-infrared, slitless spectroscopy;
and second, the direct measurement of the distribution of mat-
ter as a function of redshift using weak gravitational lensing,
the effect whereby coherent shear distortions in the images of
distant galaxies are caused by the differential deflection of light
by intervening large-scale structures. The two-point statistics of
the weak gravitational lensing caused by large-scale structure
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is known as cosmic shear (see Kilbinger 2015, for a recent
review). In this paper we explore the impact of instrumental
effects and scanning strategy on the accuracy and precision with
which dark energy parameters w0 and wa (Chevallier & Polarski
2001; Linder 2003) can be measured using the cosmic shear
from Euclid.

The challenge of measuring the cosmic shear signal is that
the typical change in polarisation, i.e. third flattening or eccen-
tricity, caused by gravitational lensing is approximately one
percent. This value is much smaller than the intrinsic, unlensed
ellipticities of galaxies. To overcome this source of statistical
uncertainty, cosmic shear is measured by averaging over large
numbers of galaxies pairs. For the result to be meaningful,
sources of bias caused by systematic effects need to be sub-
dominant. Systematic effects can be mitigated through instru-
ment design, but some need to be modelled and removed from
the data. In order to determine how such systematic effects can
bias cosmic shear measurements – and cosmological param-
eter inference – a series of papers derived analytic expres-
sions that represented the measurement and modelling processes
involved. Following an initial study by Paulin-Henriksson et al.
(2008) that focussed on point spread function (PSF) require-
ments, Massey et al. (2013, M13 hereafter) presented a more
general analytic framework that captures how various system-
atic effects affect the measurements of galaxy shapes. This study
provided the basis for a detailed breakdown of systematic effects
for Euclid by Cropper et al. (2013, C13 hereafter), which has
been used in turn to derive requirements on the performance
of algorithms and supporting data. Another approach, based on
Monte Carlo Control Loops (MCCL), has also been presented
(Bruderer et al. 2018; Refregier & Amara 2014), which uses a
forward modelling approach to calibrate the shear measurement.

Although these previous studies provide a convenient way
to compare the impact of various sources of bias, their analytic
nature means that particular assumptions are made, and they can-
not capture the full realism of a cosmic shear survey. Therefore
we revisit the issue in this paper for a number of reasons:

(1) To avoid an implicit preference for implementation, the
derivations in M13 are scale-independent, i.e. they do not explic-
itly depend on angle θ or multipole `. In more realistic scenar-
ios, such as those we consider in this work, spurious signals are
introduced on specific spatial and angular scales on the celes-
tial sphere. For example, the PSF model is determined from
the full instrument field of view, whereas detector effects, such
as charge transfer inefficiency (CTI) occur on the scale of the
region served by a single readout register on a CCD. In addition,
the biases may depend on the observing strategy or time since
launch. This is particularly true for CTI, which is exacerbated
by radiation damage, and thus increases with time (Massey et al.
2014; Israel et al. 2015). An initial study of the implications
of scale-dependent scenarios was presented in Kitching et al.
(2016), who find that survey strategy can play a critical role
in the case of time-dependent effects. Their results suggest the
expected biases in cosmological parameters may be reduced if
the correct scale dependences are considered.

(2) The residual systematic effects may depend on the region
of the sky that is observed. For example, the model of the PSF
can be constrained to a higher precision when the density of
stars is higher. On the other, hand these effects may also have
an adverse effect on the galaxy shape measurement of the shear
(Hoekstra et al. 2017). The impact of CTI depends on the sky
background level, and thus is a function of ecliptic latitude,
whereas Galactic extinction may introduce biases in the deter-
mination of photometric redshift that depend on Galactic latitude

(and longitude). These subtle variations across the survey should
be properly accounted for, and their impact on the main science
objectives of Euclid evaluated.

(3) In the analytic results of works such as C13, a distinc-
tion was made between convolutive (i.e. caused by PSF) and
non-convolutive contributions. The impact of the former, such
as the PSF, is relatively easy to propagate because it is typi-
cally clear how these contributions depend on galaxy properties.
The latter, however, which include biases introduced by CTI, are
more complicated to capture because their dependence on galaxy
properties such as size and flux can be non-linear. Moreover,
the allocations implicitly assume that residual errors are inde-
pendent because correlations between effects could not be easily
included. Hence, the impact of a more realistic error propagation
needs to be examined.

(4) The interpretation of the requirements presented in C13 is
unclear, in particular whether they should be considered as val-
ues that are never to be exceeded, the mean of a distribution of
possible biases, or upper limits corresponding to a certain con-
fidence limit. As shown below, we expect our limited knowl-
edge of the system to result in probability density distributions
of biases that should be consistently combined to evaluate the
overall performance.

(5) Finally, in Kitching et al. (2019) we show that these pre-
vious studies made simplifying assumptions with regard to the
analytic relationship between position-dependent biases and the
cosmic shear statistics, where the correct expression involves
second and third order terms. This motivates our study in two
ways. Firstly the correct expression involves previously unstud-
ied terms. Secondly, the correct expression is computationally
demanding, meaning its calculation is intractable for realistic
cosmic shear measurements.

In this paper we present a general framework for investigat-
ing systematic effects that addresses all these issues, but does not
require full image-level, end-to-end simulations, which would
require fully realistic mock data and data processing stages.
Instead our approach starts at the object catalogue level and sys-
tematic effects are propagated through a chain of processes on
an object-by-object basis. This does not mean that systematic
effects are not in common between galaxies, but it assumes that
the measurement process is. This is a reasonable assumption for
weak lensing studies in which the shape measurement itself is
confined to a narrow angular region about the vicinity of the
galaxy on the sky. This allows us to create scenarios where sys-
tematic effects are calculated in a more realistic fashion, starting
from a catalogue of sources with appropriate parameters, and
propagated all the way to the evaluation of cosmological param-
eters. This approach may not capture all correlations between
systematic effects because this can only be achieved through
a full end-to-end simulation of the pipeline; however, it does
present a major advance over the initial studies presented in M13
and C13. The pipeline as presented also stops a number of steps
short of realistic parameter inference. This was an explicit design
choice such that we start from a very well defined and minimal-
complexity modular baseline that then allows us to expand this
on a modular-by-modular basis.

We describe the general framework in more detail in Sect. 2,
where we also discuss the properties of the input catalogue, sky
parameters, and observational characteristics. Results are pre-
sented in Sect. 3. A more complete exploration of the many pos-
sible sources of bias for Euclid is deferred to future work, but in
Sect. 4 we consider a few case studies: in Sect. 4.1 the residu-
als in the PSF correction and in Sect. 4.2 the impact of imper-
fections in the correction for CTI. Although the performance
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analysis in this paper takes Euclid as a reference mission,
the framework is sufficiently general that it can be applied to
any future Stage IV weak gravitational lensing survey (e.g.
Large Synoptic Survey Telescope Science Collaboration 2009;
Spergel et al. 2015).

2. General framework

The general framework we present is a causally connected
pipeline or transfer function-like methodology. This pipeline
modifies the values of quantities associated with each individual
galaxy according to the effects of the instrument and measure-
ment processes. These are in turn used to compute cosmic shear
power spectra to evaluate the impact on cosmological parameter
inference. The general framework is captured in Fig. 1, which
we summarise in Sect. 2.6.

2.1. Causally connected pipeline

As light propagates from a galaxy, several processes occur that
act to transform a galaxy image. We represent this as a series of
sequential processes, or a pipeline, which are causally ordered,
i.e.

I+
ini,i → I+

shr,i(I
+
ini,i)→ I+

PSF,i(I
+
shr,i)→ I+

det,i(I
+
PSF,i)→ M(I+

det,i), (1)

where I is a surface brightness and the subscripts i refer to
an object (a galaxy in our case); the other subscripts refer to
the addition of an effect (labelled as a +), where in this exam-
ple “shr” denotes shear, “PSF” denotes the PSF, det denotes
the detector, and so on. The pipeline is initiated by a projected
initial (intrinsic) surface brightness distribution I+

ini,i for object
i that is modified/transformed via a series of processes, that is,
shearing by large-scale structure and convolution by the PSF,
which depend on the preceding step. The last step M represents
a measurement process that converts the observed surface bright-
ness distribution into quantities that can be used for science anal-
yses. Equation (1) is an example, which includes shear and PSF
effects, of a more general framework that we define here in this
equation

I+
ini,i → I+

α,i(I
+
ini,i)→ I+

α+1,i(I
+
α,i)→ · · · → M(I+

α+n,i), (2)

where α is some general process that modifies the surface bright-
ness distribution of object i that precedes process α + 1, and
so forth. In this paper we only focus on the impact of PSF
and detector effects on cosmic shear analyses, but emphasise
that the approach is much more general. This approach can be
readily extended to include more effects, such as photometric
errors, spectral energy distribution (SED) dependent effects, or
the impact of masking. These will be explored in future work.

The objects in question for weak lensing measurements
are stars, which are used for PSF determination, and galax-
ies. The primary quantities of interest for these galaxies are the
quadrupole moments of their images, which can be combined
to estimate polarisations and sizes. The unweighted quadrupole
moments Qi,mn of a projected surface brightness distribution (or
image) Ii(x) are defined as

Qi,mn =
1
F

∫
d2x xm xn Ii(x), (3)

where F is the total observed flux, m and n are (1, 2) cor-
responding to orthogonal directions in the image plane, and
we assumed that the image is centred on the location where

the unweighted dipole moments vanish. We can combine the
quadrupole moments to obtain an estimate of the size R =√

Q11 + Q22, and shape of a galaxy through the complex polari-
sation, or third eccentricity1

χ =
Q11 − Q22 + 2iQ12

Q11 + Q22
· (4)

Therefore, the pipeline process for the cosmic shear case is sim-
ilar to that given by Eq. (1), but for the quadrupole moments of
the surface brightness distribution. In this case each process act-
ing on the surface brightness distribution is replaced by its equiv-
alent process acting on the quadrupole distribution, and the final
measurement process is the conversion of quadrupole moments
into polarisation,

Q+
ini,i → Q+

shr,i(Q
+
ini,i)→ Q+

PSF,i(Q
+
shr,i)

→ Q+
det,i(Q

+
PSF,i)→ χobs,i(Q

+
det,i), (5)

where we suppress the mn subscripts for clarity. In this expres-
sion χobs,i is the observed polarisation for object i that is a func-
tion of Q+

det,i, where these quantities are related by Eq. (4) in the
general case. The result is then used for cosmic shear analysis.
Importantly, at each stage in the pipeline, the relevant quanti-
ties that encode the intrinsic effects of the ellipticity, shear, PSF,
and detector, instead of being fixed for all objects, can be drawn
from distributions or functions that capture the potential varia-
tion owing to noise in the system and the natural variation of
object and instrumental properties.

2.2. Reference and perturbed scenarios

Next we introduce the concept of a reference scenario, repre-
senting the ideal case, and a perturbed scenario, which results
in biased estimates caused by mis-estimation and uncertainty in
the inferred values of the quantities that are included in the set
of causally linked processes as described in Eq. (1). We define
these below.

Reference. In this scenario the systematic effects that have
been included in the pipeline are perfectly known, so that in the
final measurement process their impact can be fully accounted
for and reversed. In this case the distribution of parameter values
that are used to undo the biases are all delta functions centred on
the reference values, that is there is no uncertainty in the system.

Perturbed. In this scenario systematic effects that have been
included in the pipeline are not known perfectly. As a conse-
quence the corrections result in biased measurements. In this
case relevant quantities that are used to undo the systematic
effects are drawn from probability distributions that represent the
expected level of uncertainty.

We can then define the elements in a pipeline for each sce-
nario. The difference between the observed reference polarisa-
tion for a given object, and the observed perturbed polarisation
is a realisation of expected polarisation uncertainty caused by a
semi-realistic treatment of systematic effects in a data reduction
scenario. We explain this further using the specific example with
which we are concerned in this paper: the assessment of cosmic
shear performance.

In our case, the output of the pipeline process, Eq. (5), leads
to a set of measured polarisations and sizes that represent the

1 We note that this is the same combination of moments used by M13,
but who refer to the polarisation by the different name, “ellipticity”,
denoted as ε.
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Survey Qini,i Qshr,i QPSF,i Qdet,i Qobs,i M

χ̃R
i CR(`)

χ̃P
i CP

n (`)

δCn(`) Fαβ

σα, bα

n = 1 . . .NPerturbed

Reference

Fig. 1. Overall structure of the concept as described in the main text. The quadrupole moments Q are initiated with intrinsic moments and then
modified by incorporating the shear, PSF, and detector effects. Survey characteristics such as dither pattern, slew pattern, and observation time
are entered in the initial catalogue. A measurement process M subsequently converts the observed moments to polarisations. The estimation of
the galaxy polarisation is then made (as described in Eqs. (10) and (11)). This is done per object. Next a power spectrum for the reference and
perturbed scenarios is computed. For the perturbed line the PSF and detector moments are drawn from distributions that represent the measurement
uncertainty as described in the text. This process is repeated for 150 random realisations for the set of galaxies that are in the input catalogue.
Finally the residual power spectrum is computed per realisation, and the statistics of each of the realisations is passed onto the Fisher matrix, from
which uncertainties and biases of dark energy parameters are calculated. White circles indicate moment space, where modifications are performed
on an object-by-object basis. Grey circles indicate ensemble average in the harmonic space. Diamonds show cosmological parameter space.

true response of the system, that is an ellipticity catalogue that
includes the cumulative effects of the individual processes as
they would have occurred in the real instrument and survey. As
detailed in M13, we can compute how PSF and detector effects
change the polarisation and size of a galaxy2 as follows:

χobs,i = χini,i + χshr,i

+


R2

PSF,i

R2
PSF,i + R2

ini,i + R2
shr,i


(
χPSF,i − χini,i − χshr,i

)

+ χdet,i, (6)

where χobs,i is the observed polarisation, χini,i is the intrin-
sic/unlensed polarisation, χshr,i is the induced polarisation
caused by the applied shear γ, χPSF,i is the polarisation of the
PSF, and χdet,i is the detector-induced polarisation; the same sub-
scripts apply to the R2 terms (R =

√
Q11 + Q22, see Eq. (3)).

The relation between the applied shear, γ, and the correspond-
ing change in polarisation, χshr, is quantified by the shear polar-
isability Pγ so that

χshr = Pγγ (7)

(Kaiser et al. 1995). The shear polarisability depends on the
galaxy morphology, but it can be approximated by the identity
tensor times a real scalar Pγ = (2 − 〈χ2

ini〉)I (where I is the iden-
tity matrix) in the case of unweighted moments (Rhodes et al.
2000). We simplify this equation, in terms of notation, to

χobs,i = χgal,i + fi (χPSF,i − χgal,i) + χdet,i, (8)

where χgal,i = χini,i + χshr,i (the polarisation that would be
observed given no PSF or detector effects), and

fi =
R2

PSF,i

R2
obs,i

· (9)

2 We note that this formalism does not capture non-linear effects
whereby the change in moments caused by PSF or detector effects may
depend on the intrinsic shape and brightness of a galaxy. We leave a
relaxation of this linearity assumption to future work.

These quantities are constructed from the corresponding
quadrupole moments in Eq. (5).

Given a set of observed galaxy polarisations and sizes and
perfect knowledge of the systematic effects Eq. (8) can be
inverted, yielding an estimate for the galaxy shape in the ref-
erence case given by

χ̃R
gal,i =

χobs,i − f R
i χ

R
PSF,i − χ

R
det,i

1 − f R
i

, (10)

where the superscript R denotes the reference case. In this case
the quantities χR

PSF,i, χ
R
det,i, and f R

i are known exactly and con-
structed from the quadrupole moments in Eq. (5), and we obtain
(trivially) the underlying true χ̃R

gal,i = χgal,i. Even though this is a
trivial inversion we nevertheless perform this step since in gen-
eral the measurement process may not be exactly invertable.

In the perturbed case, the uncertainties in the measurement
and modelling process result in a set of estimated values that
include residual effects of the PSF and detector

χ̃P
gal,i =

χobs,i − f P
i χ

P
PSF,i − χ

P
det,i

1 − f P
i

, (11)

where the superscript P denotes the perturbed case. In this equa-
tion, χP

PSF,i, χ
P
det,i, and f P

i are constructed from the quadrupole
moments drawn from relevant probability distributions that rep-
resent uncertainties in the system. The resulting polarisation esti-
mates correspond to a realisation of the system that encodes the
expected uncertainty in our understanding of PSF and detector
effects. Each of these steps is then repeated for realisations of the
probability distributions present in the perturbed quantities. The
implementation of these probability distributions for the PSF and
CTI cases are detailed in Appendices A and B.

To convert the estimated reference and perturbed polarisa-
tions to their corresponding shear estimates we use

γ̃gal = [Pγ]−1χgal, (12)

which provides a noisy, but unbiased estimate of the shear
γ (M13). We note that Pγ does not change between the ref-
erence and perturbed cases. In practice, shape measurement
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algorithms use weighted moments to suppress the noise in the
images, which changes the shear polarisation compared to the
unweighted case. The correction for the change in shape caused
by the weight function depends on the higher-order moments
of the surface brightness (Melchior et al. 2011) and is a source
of shape measurement bias that can be quantified using image
simulations (e.g. Hoekstra et al. 2017). This also leads to a sen-
sitivity to spatial variations in the colours of galaxies if the PSF
is chromatic (Semboloni et al. 2013; Er et al. 2018). However,
for this study this complication can be ignored as we implicitly
assume that the biases in the shape measurement algorithm have
been accounted for to the required level of accuracy (C13).

In future work, we will include more effects in the perturbed
scenario. Observable quantities χ̃P

i can be generalised to a func-
tion of redshift and wavelength, i.e. χ̃P

gal,i(z, λ). We will then
explore the effects of masking, shape measurement errors, pho-
tometric errors, and SED variations within a galaxy.

2.3. Shear power spectrum estimation

The estimated polarisations contain

χ̃R
gal,i = χgal,i,

χ̃P
gal,i ≈ χgal,i + χδgal,i, (13)

where χδgal,i is the change in polarisation. We note that χgal,i is in
general redshift-dependent, leading to tomographic power spec-
tra, but that in this initial proof of concept we do not include
redshift-dependent effects in χδgal,i; the consequence of this is
shown in Eq. (18). We assume higher-order terms are subdom-
inant, i.e. terms involving (χP

gal,i)
n ≈ 0 for n > 1. The quantity

χδgal,i is caused by the uncertainty in systematic effects, that is
defined by expanding the denominator in Eq. (11) to linear order,
and substituting Eq. (8) as follows:

χ̃P
gal,i ≈ χgal,i + [ f R

i (χR
PSF,i − χ

R
gal,i) + χR

det,i − χ
P
PSF,i − (1/ f P

i )χP
det,i],

(14)

where the denominator in Eq. (11) is expanded by assuming
f R
i � 1.

The polarisations in Eq. (13) can be converted to estimates of
the corresponding shears using Eq. (7) and Eq. (12), γ̃R and γ̃P.
These can be subsequently used to calculate shear power spectra,
and the residual between the reference and perturbed spectra,

δCn(`) = CP
n (`) −CR(`)

≈ Cgal−δ
n (`) + Cδ−gal

n (`) + Cδ−δ
n (`), (15)

where

CP
n (`) =

1
2` + 1

∑̀

m=−`

γ̃P
`m(γ̃P

`m)∗, (16)

where γ̃P
`m are the spherical harmonic coefficients of the per-

turbed shear field, i.e.

γ̃P
`m =

√
1

2π

∑

i

γ̃P
i 2Y`m(θi, φi). (17)

In the above expressions (θi, φi) is the angular coordinate of
galaxy i, the 2Y`m(θi, φi) are the spin-weighted spherical har-
monic functions, and a ∗ refers to a complex conjugate. Similarly

for the reference case CR
n (`). CP

n (`) is a realisation n of one that
may be observed given the limited knowledge of uncertainties in
systematic effects. We can split the residual power spectrum into
three terms: δ−δ quantifies the auto-correlation of the systematic
uncertainties and gal-δ and δ-gal are the cross-correlation power
spectra between the systematic uncertainties and the true cosmo-
logical signal (i.e. the signal that would have been observed if all
systematic effects were perfectly accounted for).

Although selection effects can result in a correlation between
the shear and systematic effects, we stress that we are interested
in residual effects, and thus implicitly assume that such selection
effects have been adequately accounted for. Hence, when tak-
ing an ensemble average over many realisations, we are left with
〈δCn(`)〉 = Cδ−δ(`) as the mean of these additional terms should
reduce to zero and any variation is captured in the error distri-
bution of the ensemble of δC(`). Hence we can determine the
power spectrum caused by uncertainties in systematic effects.

We sample from all parameter probability distributions in the
perturbed case, and compute the mean and variance over the
resulting ensemble of {δCn(`)}. In the cases in which random
numbers are required for the reference case, care must be taken
to ensure that the seed is the same in the reference and perturbed
cases.

In this initial proof of concept we do not investigate redshift-
dependent systematic effects, that is the change in polarisations
is applied to all galaxies regardless of their redshifts. This then
means that we can assume that PSF and CTI effects have an
equal impact on all tomographically binned cosmic shear power
spectra, and we can generalise the discussion above such that,
for example

CP
αβ(`) = CR

αβ(`) + δCn(`) (18)

for all redshift bin labels α and β.

2.4. Comparison to previous work

To compare to previous work, in M13 generic non-parametric
realisations of δC(`) are generated and used to place conserva-
tive limits on a multiplicative and additive fit to such realisa-
tions δC(`) = MCR(`) + A, where M and A are constant so
that biases in the dark energy parameters, using Fisher matrix
predictions, were below an acceptable value. This represents a
worst case because the residual power spectra are assumed to
be proportional to the cosmological signal (apart from the addi-
tive offset). In Kitching et al. (2016), simple models for sys-
tematic effects are used to create simplified but realistic δC(`)
values. In Taylor & Kitching (2018) the constant multiplicative
and additive formulation is generalised to include the propaga-
tion of real-space multiplicative effects into power spectra as a
convolution. The full expression for the analytic propagation of
constant and scale-dependent multiplicative and additive biases
is derived in Kitching et al. (2019). This reveals that the analytic
propagation of biases into cosmic shear power spectra involves
second- and third-order terms that result in an intractable cal-
culation for high-` modes. Our approach, therefore, differs from
the earlier works in that it captures any general scale and redshift
dependence on an object-by-object level, and, very importantly,
creates δC(`) values that correctly incorporate the uncertainty
in the system. This procedure enables a complete evaluation of
the performance, which differs from a true end-to-end evalua-
tion only in that we do not use the images and image-analysis
algorithms that are used to analyse the real data.

These catalogue-level simulations have the major advantage
that they are much faster than full end-to-end image simulations,
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allowing for realisations of systematic effects to be computed so
that a full probability distribution of the effect on the cosmo-
logical performance of the experiment can be determined. This
allows us to explore various survey strategies and other trade-
off considerations, whilst capturing most of the complexities of
the full image-based analysis. The catalogue-level simulations
include survey-specific features, such as the detector layout, sur-
vey tiling, and PSF pattern (see Sect. 3.2). It also allows for
foreground sky models to be included to account for variations
in Galactic extinction, star density, and Zodiacal background.
Calibration uncertainties can be incorporated by adjusting the
probability density distributions of the relevant parameters
accordingly.

2.5. Propagation to cosmological parameter estimation

To assess the impact of the power spectrum residuals on
cosmological parameter inference, we used the Fisher matrix
Euclid Collaboration (2019a), and bias (Kitching et al. 2008;
Amara & Réfrégier 2008; Taylor & Kitching 2018) formalism.
We used the w0waCDM Fisher matrix from Euclid Collaboration
(2019a); all code and files can be found on the associated repos-
itory for that paper3.

We very briefly summarise the Fisher matrix and bias for-
malism, which is based on the notation in Euclid Collaboration
(2019a). In general, a change in the power spectrum caused by a
residual systematic effect can influence the size of the confidence
region about any parameter as well as the maximum likelihood
location. In this paper we only consider the change in the maxi-
mum likelihood position.

The expected confidence regions for the cosmological
parameters can be expressed using the Fisher matrix, which is
given by

Fµν =

`max∑

`=`min

∑

αβ,ωρ

∂Cεε
αβ(`)

∂θµ
Cov−1

[
C εε
αβ (`),Cεε

ωρ(`)
] ∂Cεε

ωρ(`)

∂θν
, (19)

where (α, β) and (ω, ρ) are redshift bin pairs and (µ, ν) denote
cosmological parameter pairs and (`min, `max) are the minimum
and maximum angular wavenumbers used. The Cεε

αβ(`) are the
true cosmic shear power spectra; we note that Cεε

αβ(`) , CR
αβ(`)

due to sample variance. The covariance is given by

Cov
[
Cεε
αβ(`),C

εε
ωρ(`

′)
]

=
Cεε
αω(`)Cεε

βρ(`
′) + Cεε

αρ(`)C
εε
βω (`′)

(2` + 1) fsky∆`
δK
``′ ,

(20)

where fsky is the fraction of the sky observed. We note that we
assume a Gaussian covariance in this case and do not include
non-Gaussian terms. The Euclid Collaboration (2019a) find that
the signal-to-noise ratio of the power spectra decreases by
∼30% at `max = 5000 when the non-Gaussian contributions are
included and that this loss of information content corresponds to
an effective cut at `max = 1420 in a forecast that only uses the
Gaussian covariance given by Eq. (20).

The noise power spectrum is defined as Nαβ(`) =

σ2
χini
δαβ/Ng,β, where Ng,β is the total number of galaxies in bin

β for full sky observation and δαβ is a Kronecker delta. The
intrinsic shape noise is quantified by σχini = 0.3, the disper-
sion per ellipticity component. This can be used to compute

3 https://github.com/euclidist-forecasting/fisher_
for_public

the expected marginalised, cosmological parameter uncertainties
σµ = [(F−1)µν]1/2.

The changes in the maximum likelihood locations of the cos-
mology parameters (i.e. biases) caused by a change in the power
spectrum can also be computed for parameter α as

bn, µ = −
∑

β

(F−1)µν Bn, ν, (21)

where the vector B for each parameter β is given by

Bn, ν =

`max∑

`=`min

∑

αβ,ωρ

Cov−1
[
C εε
αβ (`),Cεε

ωρ(`)
]
δCn(`)

∂Cωρ(`)
∂ν

· (22)

We note that the biases computed in this section are the one-
parameter, marginalised biases and that this may result in opti-
mistic assessments for multi-dimensional parameter constraints.
The quantity n refers to the realisation number as previously
discussed and we note that δCn(`) is not redshift dependent
in this case. A multi-dimensional constraint may be biased by
more than 1σ along a particular degenerate direction, and yet
the marginalised biases may both be less than 1σ.

The fiducial cosmology we use in the Fisher and bias calcu-
lations is a flat w0waCDM cosmology with a redshift-dependent
dark energy equation of state, defined by the set of parame-
ters Ωm, Ωb, σ8, w0, wa, h, ns; these are the matter density
parameter; baryon density parameter; the amplitude of matter
fluctuations on 8 h−1 Mpc scales, which is a normalisation of
the power spectrum of matter perturbations; the dark energy
equation of state parameterised by w(z) = w0 + waz/(1 + z);
the Hubble parameter H0 = 100 h km s−1 Mpc−1; and the
scalar spectral index of initial matter perturbations, respec-
tively. The fiducial values are defined in Euclid Collaboration
(2019a). The uncertainties and biases we quote on individual
dark energy parameters are marginalised over all other parame-
ters in this set. The survey characteristics we used are defined in
Euclid Collaboration (2019a) with area of 15 000 deg2 a galaxy
number density of 30 arcmin−2, and ten equi-populated tomo-
graphic bins. We used the weak lensing only “optimistic” Fisher
matrix from Euclid Collaboration (2019a), where further details
can be found; for a flat w0waCDM cosmology the marginalised
1σ errors from that paper (Table 11) are: σ(Ωm) = 0.034,
σ(Ωb) = 0.42, σ(w0) = 0.14, σ(wa) = 0.48, σ(h) = 0.20,
σ(ns) = 0.030, σ(σ8) = 0.013 for an optimistic setting (defined
in that paper). In this paper we only quote biases on dark energy
parameters, relative to the expected parameter uncertainty. We
chose the optimistic Fisher matrices from Euclid Collaboration
(2019a) since these yield smaller expected errors and hence
biases are more sensitive to systematic effects. The ` range used
to compute these optimistic Fisher matrices is 2 ≤ ` ≤ 5000; for
further discussion of the range we used in the computation of the
δCn(`), see Sect. 3.4.

2.6. Summary of the pipeline

In Fig. 1 we summarise the overall architecture of the cur-
rent concept. This propagates the changes in the quadrupole
moments, converts these to observed polarisation, determines
the estimated galaxy polarisation, and then determines the power
spectra and the residuals. The steps are listed below.

– Survey: specifies input positional data for each galaxy, for
example the position, dither pattern, slew pattern, and obser-
vation time.
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– Qini,i: initial, intrinsic quadrupole moments are assigned to a
galaxy.

– Qshr,i: shear effects are included for each galaxy in the form
of additional quadrupole moments.

– QPSF,i: PSF effects are included for each galaxy; these can
be drawn from a distribution representing the variation in the
system.

– Qdet,i: detector effects are included for each galaxy; these can
be drawn from a distribution representing the variation in the
system.

– Qobs,i: observational effects are included for each galaxy such
as the impact of shape measurement processes. In this paper
these are not included, but we include them in the pipeline
for completeness.

– M: moment measurements are converted into polarisations
χobs,i. At this step, where the systematic effects are removed,
the reference and perturbed lines separate.

– χ̃R
i : a reference polarisation is computed, from Eq. (10),

which includes χR
PSF,i, χ

R
det,i, and f R

i , which are the same val-
ues used in the construction of χobs,i.

– χ̃P
i : a perturbed polarisation is computed, from Eq. (11),

which includes χP
PSF,i, χ

P
det,i, and f P

i constructed from
quadrupole moments drawn from relevant probability distri-
butions that represent uncertainties in the system.

– CR(`): computes the power spectrum of χ̃R
i .

– CP(`): computes the power spectrum of χ̃P
i .

– δC(`): computes the residual power spectrum for realisation
n.

– Fαβ: computes the Fisher matrix and biases given the per-
turbed power spectrum, which can be used to derive uncer-
tainties σα and biases bα.

3. End-to-end pipeline

Having introduced the general formalism, we now describe the
details of the current pipeline. As we work at the catalogue
level, we have full flexibility over the steps that are included in
or excluded from the pipeline. Furthermore, the approach (and
code) is modular, giving us full flexibility in terms of develop-
ing the pipeline further. As certain steps in the pipeline mature,
the relevant modules can be updated with increasingly realistic
performance estimate.

3.1. Input catalogue

To evaluate the performance we need an input catalogue that
contains galaxies with a range of sizes, magnitudes, and red-
shifts4. It is also important that the catalogue captures spatial
correlations in galaxy properties, such as clustering, because
the morphology and SED of a galaxy correlate with its local
environment.

3.1.1. Mock catalogue: MICE

We used the Marenostrum Institut de Ciències de l’Espai
(MICE) Simulations catalogue to assign galaxy properties, such
as magnitude, right ascension (RA), declination (Dec), and
shear. It is based on the DES-MICE catalogue and designed
for Euclid (Fosalba et al. 2015a,b; Crocce et al. 2015). This

4 These properties are not used in the tomographic bin definition used
in the Fisher matrix calculation, which is a sophistication that will be
included in later iterations of the pipeline.

catalogue has approximately 19.5 million galaxies over a total
area of 500 deg2 (11 arcmin−2), with a maximum redshift of
z ' 1.4. The catalogue is generated using a halo occupation dis-
tribution (HOD) to populate friends of friends (FOF) dark matter
haloes from the MICE simulations (Carretero et al. 2015). The
catalogue has the following observational constraints: the lumi-
nosity function is taken from Blanton et al. (2003); the galaxy
clustering as a function of the luminosity and colour follows
Zehavi et al. (2011); and colour-colour distributions are taken
from COSMOS (Scoville et al. 2007).

A model for galaxy evolution is included in MICE to mimic
correctly the luminosity function at high redshift. The photo-
metric redshift for each galaxy is computed using a photo-z
template-based code, using only Dark Energy Survey (DES)
photometry; see Fosalba et al. (2015a,b), Crocce et al. (2015) for
details of the code. Our magnitude cut is placed at 20.0 ≤ mVIS ≤

25.0 in the Euclid visible (VIS) band. We used a 10 × 10 deg2 area
of the catalogue, containing approximately 4 million galaxies.

3.1.2. Intrinsic polarisations

The MICE catalogues contain the information about the posi-
tion, redshift, and (apparent) magnitudes of the galaxies and we
wished to assign each galaxy an initial triplet (Q11,Q22,Q12)
of unweighted quadrupole moments. The Cauchy-Schwartz
inequality for quadrupole moments implies that |Q12| is bounded
by
√

Q11Q22. Thus, the distributions of the moments are not
independent of each other and cannot be sampled independently
from a marginal distribution as was done in Israel et al. (2017a).
Moreover, the shapes and sizes of the galaxies depend on param-
eters such as redshift, magnitude, and morphology. Faint galax-
ies are more likely to be found at higher redshifts and thus may
have smaller angular sizes; see for example M13. The polarisa-
tion distribution can have a mild dependence on the local envi-
ronment as well (Kannawadi et al. 2015).

To learn the joint distribution of the quadrupole moments
from real data, we used the galaxy population in the COSMOS
field as our reference and assigned shapes and sizes that are
consistent with the observed distribution in the COSMOS sam-
ple. Since the unweighted moments are not directly available
from the data, we have to rely on parametric models fitted to
the galaxies. We used the publicly available catalogue of best-fit
Sérsic model parameters for COSMOS galaxies as our training
sample (Griffith et al. 2012). The catalogue consists of structural
parameters such as Sérsic indices, half-light radii, and polarisa-
tion prior to the PSF convolution, in addition to magnitudes and
photometric redshifts for about 470 000 galaxies. In their paper,
Griffith et al. (2012) model the PSF at each galaxy position.

We modelled the six-dimensional multivariate distribution
of magnitude, redshift, polarisation, half-light radius, and Sérsic
index using a mixture of 6D Gaussians. A generative model such
as this has the advantage that we can arbitrarily generate large
mock catalogues that are statistically similar to the catalogue we
begin with without having to repeat the values in the original cat-
alogue. We find that with 100 Gaussian components, we are able
to recover the one-dimensional and two-dimensional marginal
distributions very well. We obtain a mock catalogue, sampled
from the Gaussian mixture model, with three times as many
entries as the MICE catalogues have. We remove from the mock
catalogue any unrealistic values (such as polarisation above 1
or redshift less than 0), caused by over-extension of the model
into unrealistic regimes. We then find the closest neighbour
for each galaxy in the MICE catalogues in magnitude-redshift
space using a kd-tree and assign the corresponding polarisations.
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Fig. 2. Coverage of a single slew by VIS. The default dither pattern in
Euclid is “S”-shaped (shown as the black lines in the bottom left cor-
ner) with displacements (∆x,∆y) = (0,0; 50,100; 0,100; 50,100)′′. The
weights show the number of times an area has been observed. In each
field of view there are 6 × 6 non-square CCDs that have asymmetric
spacing between them in the vertical and horizontal directions, which
results in a non-square field of view.

The orientations of the galaxies are random and uncorrelated
with any other parameter, thus any coherent, intrinsic alignment
among the galaxies is ignored. The model is hence too simplistic
to capture the environmental dependences on shapes and sizes.

Using the knowledge of circularised half-light radii along
with their Sérsic indices, the R2 = Q11 + Q22 values assigned
to the galaxies are second radial moments computed analyti-
cally for their corresponding Sérsic model. Additionally, with
the knowledge of polarisation and position angle, which are in
turn obtained from the best-fit Sérsic model, we obtained all
three unweighted quadrupole moments (Q11,Q22,Q12).

3.2. Survey

A key feature of our approach is that survey characteristics are
readily incorporated. Having assigned the galaxy properties, we
simulated a 10× 10 deg2 survey with a simple scanning strategy.
We tiled the VIS focal plane following the current design; see
Sect. 3.3.2.

To fill the gaps between its CCDs, Euclid will observe in
a sequence of four overlapping exposures that are offset (or
“dithered”) with respect to each other; a re-pointing between
the sets of overlapping exposures, i.e. dither, is called a slew.
The nominal pattern of offsets for exposures i = 1, . . . , 4 cre-
ates an “S”-shaped pattern (see Markovič et al. 2017, for more
details), where the angular shifts with respect to the previ-
ous field positions are (∆x1,∆y1) = (50, 100); (∆x2,∆y2) =
(0, 100); (∆x3,∆y3) = (50, 100) in arcsec. The code uses Mangle
(Swanson et al. 2008) to create the corresponding weight map
and tiles this map across the survey patch; the code is flexible
enough to incorporate any dither pattern. The weight map for a
pointing with four dithers is shown in Fig. 2.

The propagation of the PSF and CTI stages of the pipeline,
and the inverse relations described in Eqs. (10) and (11), are
performed on a per exposure basis. The resulting polarisations

are then averaged over all of the exposures that each galaxy
receives, subject to the dither pattern; some areas of sky have
fewer than four exposures, and this is captured by the dither pat-
tern described in this work.

We also simulated a simple scanning strategy by ordering the
tiling of the survey area in row (right ascension) order followed
by column (declination) order, i.e. a rectilinear scanning strategy
(see Kitching et al. 2016). In future implementations this will be
generalised to match the full Euclid reference survey scanning
strategy (Scaramella et al., in prep.).

In this first implementation and presentation of the code we
did not include uncertainties in the spatial variation of fore-
ground sources of emission or extinction. However, given the
pipeline infrastructure these can be readily included and will be
investigated further in future studies.

3.3. Instrumental effects

We limited our analysis to the two main sources of instrumen-
tal bias, namely uncertainties in the PSF caused by focus varia-
tions and the impact of an imperfect correction for CTI. There
are other systematic effects that impact the inference of cosmo-
logical parameter using cosmic shear, which could in principle
result in larger effects than these (such as photometric redshift
uncertainty) but as a proof of concept we limit this study to these
instrumental effects.

3.3.1. Point spread function

Correcting the observed shapes to account for their convolution
by the PSF is an important step in any weak lensing measure-
ment pipeline, and much effort has been spent on the devel-
opment of algorithms to achieve this. A critical ingredient for
the correction is an accurate model of the PSF itself (Hoekstra
2004). Current cosmic shear studies take a purely empirical
approach where the spatial variation of the PSF is captured by
simple interpolation functions that are fitted to the observations.
In the case of Euclid with its diffraction-limited PSF this is no
longer possible: the PSF depends on the SED of the galaxy of
interest (Cypriano et al. 2010; Eriksen & Hoekstra 2018). More-
over, compared to current work, the residual biases that can
be allowed are much smaller given the much smaller statistical
uncertainties afforded by the data. Therefore, a physical model
of the telescope and its aberrations is being developed (Duncan
et al., in prep.). The PSF model parameters are then inferred
using measurements of stars in the survey data, supported by
additional calibration observations.

The model parameters however will be uncertain because
they are determined from observations of a limited number of
noisy stars. Constraints may be improved by combining mea-
surements from multiple exposures thanks to the small thermal
variations with time. The PSF will nevertheless vary with time,
and thus can only be known with finite accuracy. Moreover,
the model may not capture all sources of aberrations, result-
ing in systematic differences between the model and the actual
PSF. Fitting such an incorrect model to the measurements of
stars results in residual bias patterns (e.g. Hoekstra 2004), which
may be complicated by undetected galaxies below the detec-
tion threshold of the algorithms used for object identification
(Euclid Collaboration 2019b).

The PSF uncertainties in the pipeline are based on the cur-
rent Euclid PSF wavefront model and capture one of the main
sources of uncertainty, which is the nominal focus position, as
detailed in Appendix A. We note that our results are expected to
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be somewhat conservative for this particular example because
we ignore the correlations in focus positions between subse-
quent exposures. On the other hand, a more realistic scenario is
expected to introduce coherent patterns on smaller scales caused
by errors in the model itself. This will be studied in more detail
in future work.

3.3.2. Detector

The VIS focal plane is comprised of 6 × 6 CCDs that each have
dimensions of (2×2048)× (2×2066) pixels, where we explicitly
indicate that each CCD consists of four separate readout circuits
(quadrants).

Thanks to their high quantum efficiency and near linear
response, CCDs are the most practical devices to record astro-
nomical images. They are, however, not perfect and various
detector effects can degrade the images. Examples include the
brighter-fatter effect (BFE; e.g. Antilogus et al. 2014; Plazas et al.
2018), which affects bright objects such as stars, detection chain
non-linearity, offset drifts, and photo-response non-uniformity.
In this work we focus on CTI, caused by radiation damage that
accumulates over time in the detectors. The resulting trailing of
charge changes the measured shape and has a larger impact on
fainter objects and is therefore most damaging for weak lensing
studies.

There is an extensive, ongoing, characterisation programme
that focusses on CTI for the Euclid detectors, the CCD273 from
e2v, (see e.g. Gow et al. 2012; Hall et al. 2012; Prod’homme et al.
2014; Niemi et al. 2015). The results from this on-ground
characterisation work, together with calibration measurements
acquired in flight with the actual Euclid detectors, will allow
the data processing to mitigate the biases caused by CTI, using
correction algorithms such as those described in Massey et al.
(2014). There is a fundamental floor to the accuracy of CTI cor-
rection, even if the model exactly matches the sold-state effect,
owing to read noise in the CCD. The model will also have
associated systematic errors and uncertainties that will translate
into increased noise and residual biases for the shape measure-
ments, with preferred spatial scales corresponding to those of
the quadrants (which are approximately 3′.5 in right ascension
and 4′ in declination) and the CCDs (which are approximately
7′ × 8′).

As there are more electrons from brighter sources, the rela-
tive loss of charge due to CTI is lower. As a result, CTI affects
fainter and extended sources more (e.g. see Figs. 10 and 11 in
Hoekstra et al. 2011). In our current implementation, which is
detailed in Appendix B, we ignore these dependences. Instead
we consider a worst case scenario, adopting the bias for a galaxy
with S/N = 11 and FWHM of 0′′.18 and a trap density that is
expected to occur at mid-survey. These parameters are based
on the results from Israel et al. (2015) (with updated parame-
ters as presented in Israel et al. 2017b), who adopted the same
approach.

As discussed in Appendix B, CTI is expected to increase
with time as radiation damage accumulates. To account for this
increase, we assume that trap densities grow linearly with time.
This gradual trend is further deteriorated by intermittent steps,
which are caused by solar coronal mass ejections (CMEs), which
largely increase the flux of charged particles through the detec-
tors over the baseline level. This means the estimate of the trap
density parameter has to be updated periodically using images
acquired in orbit. To investigate this effect in the model we define
“reset on” or “reset off” cases. The two cases affect the estimated
trap densities, ρ, and the associated errors in the model. In the

first case the relative error in the density of species i, δρi, is the
same throughout the whole patch of sky under study5, sampled
from a normal distribution with zero mean and standard devi-
ation σp. Hence, for each realisation all measurements in the
observed patch are affected by the same relative error in trap
density; we refer to this case as reset off.

The second case is reset on, in which we model the potential
effect of resetting the CCD after a CME event, a so-called CME
jump on scales smaller than those of the considered patches. In
this case the relative error in trap densities are re-estimated mid-
way through the patch, meaning it has one value in one half of
the patch and another in the other half, both drawn from the same
distribution as that used in the reset off case. And again these
biases are updated (sampled from the same normal distribution)
in every realisation. This scenario would correspond to a more
frequent, but equally accurate, update of the trap densities than
the reset off case and the coherence of the biases across the angu-
lar scales is decreased by the jumps, or resets, across the patch
halves. The point is that the error is never exactly zero. But we
have to re-do the model in the case of a CME jump that causes a
different model uncertainty.

3.4. Power spectrum computation

For each realisation we took a spherical HEALPix map of the
galaxies to make an estimate of the shear map for both the ref-
erence and perturbed catalogues. The unobserved areas are
masked, and we apodised this mask with a Gaussian with a stan-
dard deviation σ = 1.5π/2048 (0.13 deg) to minimise the effect
of the result of leakage due to the boundaries. We then used
anafast from HEALPix to calculate the E-mode power spec-
trum of the masked map.

Throughout we used an ` range 13 ≤ ` ≤ 4096. The min-
imum ` approximately corresponds to the maximum angular
seperation in a 10×10 deg2 patch (along the diagonal). The max-
imum corresponds is less than that used in the optimistic Fisher
matrices used (see Sect. 2.5), where `max = 5000; however we
note that the apodisation required for the power spectrum com-
putation corresponds to a smoothing above ` ' 1500, and in we
find in practice that δCn(`) → 0 above ` ' 1000. Therefore we
expect this assumption to have a minimal impact on results.

3.5. Pipeline set-up

A key feature of our approach is that we create realisations of
the systematic effects, for each galaxy and each pointing, which
enables us to determine the expected probability distributions for
the changes in the cosmological parameter inferences caused by
these systematic effects. This is done by creating 150 random
realisations that are propagated through the Fisher matrix and
bias calculations as discussed in Sect. 2.5; we chose 150 since
this then means the total area is 150×100 square degrees which is
equal to the total Euclid wide survey. The run in which we com-
bined PSF and CTI residuals took 20 h to compute on a machine
with 25 1.8 GHz CPUs and 6 GB RAM. The PSF-only scenario
took 14 h, and the CTI-only run took seven hours on the same
architecture. As each realisation can be run in parallel, the cal-
culations can be sped up accordingly on a machine with more
processors.

5 The absolute error in the density of species i is just given by ∆ρi =
ρi × (1 + δρi), where ρi is the “true” trap density.
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Fig. 3. Residual power spectra caused by imperfect removal of systematic effects. Thin lines show 68% intervals. Top left panel: residual power
spectrum due to PSF, caused by the limited precision with which the nominal focus position can be determined from the stars in the data; it can
be seen that residuals have on average been removed. Top right panel: residual power spectrum caused by CTI when the CTI-removal model
parameters are updated throughout the survey (reset on case, see text for details). There are residuals on the scales corresponding to half the
distance between the CCDs, as shown in the insets. Bottom right panel: results when the CTI-removal model parameters are kept constant during
the survey (reset off). As can be seen the residuals have a slightly wider distribution compared to the reset on case. Bottom left panel: residual
systematic effects from uncertainties in the modelling of both PSF and detector effects; as shown in the inset the two effects seem to work in
opposite directions, where the positive offset present in the PSF-only case has reduced in the combined case. We note that owing to the sensitivity
of dark energy parameters to relatively large angular scales ` ' 50−1000, the deviations on these scales are of more importance.

4. Results

As a demonstration of the usefulness of our approach, we
assessed the impact of two prime sources of bias for the Euclid
cosmic shear analysis: PSF and CTI modelling. We computed
the expected residual systematic power spectra caused by imper-
fect removal of systematic effects from realistic uncertainties in
the modelling. We then propagated the power spectrum residu-
als through a Fisher matrix to compute the biases in dark energy
parameters.

4.1. PSF

The top left panel of Fig. 3 shows the residual systematic power
spectrum caused by uncertainties in the PSF model caused
by focus variations. The thick line indicates the mean of the
150 realisations, whereas the thin lines delineate the 68% inter-
val. As discussed in Appendix A, we consider only the uncer-

tainty in the PSF model given the assumed nominal focus posi-
tion, which is the dominant contribution and introduces residuals
in the power spectrum on large scales. Other imperfections in the
optical system typically introduces residuals on smaller scales.

To understand the relevant scales in the PSF case, it is help-
ful to look at Fig. 4, where some of the relative correlated scales
are indicated. A point in one field of view is correlated with
the same point in all the other fields of view; i.e. the angular
distances between the field of view are also relevant, not only
the scales of field of view itself. Also the field of view is not
square, and hence the distances to the same point in the fields
of view are not the same in both directions. In our 10 × 10 deg2

area, this gives us correlated scales in the range 13 ≤ ` ≤ 300.
The minimum distance between adjacent fields of view cor-
responds to ` = 300, and the diagonal in our square survey
area (the maximum angular separation) corresponds to ` = 13.
Incidentally this is also the range in which cosmic variance
dominates.
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The average residual power spectrum in the top left panel
of Fig. 3 is close to zero and does not show sharp features, but
the residual PSF biases contribute over a range of scales. This is
because the averaging over the four dithers for each slew reduces
the average induced biases in the polarisations, which in turn
reduces the correlations between slews; and the polarisations in
the perturbed line for each field of view (i.e. each dither and each
slew) are drawn from a distribution, so that the average impact
is typically less extreme.

4.2. CTI

The thick line in the top right panel in Fig. 3 shows the aver-
age residual power spectrum when we consider the imperfect
correction for time-dependent CTI for the reset off case (see
Sect. 3.3.2). The amplitude of the residuals are slightly larger
than that of the PSF case. Compared to the PSF case, there
are additional angular scales on which correlations can occur,
namely the distances between the CCDs in the detector. The inset
shows a zoom in around ` ' 3080, which corresponds to half the
distance between CCDs. This is because in our setting, CTI sys-
tematic effects are induced only in the serial readout direction
(see Appendix B), inducing biased polarisation estimates at half
the CCD scale (quadrant scale).

In the second case, reset on (see Sect. 3.3.2), the results
presented in the bottom right panel of Fig. 3 show that this
procedure does not improve the residuals around ` ' 3080.
It does, however, reduce the variance on the largest scales,
even though the average residual power spectrum is largely
unchanged, except for increased variation for ` in the range
150−300.

4.3. PSF and CTI

Rather than considering individual sources of bias separately,
we can simultaneously propagate different types of systematic
effects and capture their correlated effects. This is demonstrated
in the bottom left panel of Fig. 3, which shows the residual sys-
tematic power spectrum resulting from both CTI (reset on) and
PSF systematic uncertainties6. Both features of CTI and PSF
systematic effects can be seen in the residual power spectrum.
The inset shows the residual power spectrum in the range cor-
responding to the CCD scales, where CTI contributes most. The
residuals on these scales are now dominated by both the CTI and
PSF systematic effects.

4.4. Impact on cosmology

For each residual power spectrum we compute the change in the
expected maximum likelihood locations for the parameters w0
and wa. The tolerable range for biases on dark energy param-
eters is generically |(b/σ)w0 | ≤ 0.25 (where b is the bias, and
σ is the 1σ marginalised uncertainty) as derived in M13 and
Taylor et al. (2018), which ensure that the biased likelihood has
a greater than 90% overlap integral with the unbiased likelihood.
This tolerance is applicable for all systematic effects in an exper-
iment, not per each systematic effect.

The results are presented in Fig. 5 and reported in Table 1.
We show results for the PSF-only case, the CTI-only case with
resetting on, and the combined case. The panels, respectively,

6 We ignore the impact that CTI can have on the PSF measurement.
However this is expected to be a small effect; see lines 2 and 4 of Table 1
in Israel et al. (2015).

X
Y

Fig. 4. Part of the observed area with 3 slews in each direction and 4
dithers for each slew. The slews are plotted at 1.2× their nominal value
for presentation purposes, causing apparent gaps, which are not present
in the actual simulated survey. The lines show some of the correlated
scales relating to the same point in each field of view. We also note that
there are correlations at 2×, 3×, n× of these harmonic scales. It should
be noted that relevant scales are determined by the distances between
the fields of view, not the size of the field of view itself.

show the biases in w0 and wa relative to the statistical uncer-
tainty. In Table 1 we list the mean and its uncertainty for the
quantities as well as the standard deviation of the distributions
themselves. We also quote the 90% confidence limits of the bias
distributions.

We find that the PSF residuals have a minimal impact,
which is expected as the amplitudes of the residual power spec-
tra were small. The induced biases b, relative to the uncer-
tainty σ on the dark energy parameters are expected to be
(b/σ)w0 = [−0.024, 0.033] and (b/σ)wa = [−0.042, 0.015] at
90% confidence interval. These are well within the tolerable
range.

For the case in which the CTI model parameters are kept
fixed during the simulated observations of a 100 deg2 patch (reset
off), the impact on the induced biases are (b/σ)w0 = [−0.328,
0.077] and (b/σ)wa = [−0.054, 0.281], which are just outside
the tolerable range. However for the case in which we resam-
ple the CTI model parameters (reset on), the results are improved
with (b/σ)w0 = [−0.078, 0.152] and (b/σ)wa = [−0.121, 0.067].
The effects seen are very similar to effects seen using the
simplified models of CTI in Kitching et al. (2016).

Perhaps most interesting are the results for the case in
which we include both CTI and PSF residuals, since this joint
case was not captured in the C13 “flow down”. We find that
the biases are expected to be (b/σ)w0 = [−0.046, 0.144] and
(b/σ)wa = [−0.124, 0.032], which is again within the tolerable
range.

4.5. Discussion

It is useful to compare our findings to the requirements derived
in C13. In the latter study, requirements on systematic effects
were set through a formalism that flowed down (i.e. subdivided
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Fig. 5. Left panel: ratio of the bias in w0 and the 1σ uncertainty in this parameter for PSF-only (cyan), CTI-only with resetting on (blue), and both
PSF and CTI with resetting on (red) scenarios. We note that the two darker purple shades are overlaps between the red and blue and red, blue
and green histograms. Right panel: ratio of the bias in wa and the 1σ uncertainty in this parameter. Although the distributions are wide in some
scenarios, we find that they are well within limits set in C13; see also Table 1.

Table 1. Summary of bias changes for the different case studies.

Statistics 90% Confidence interval
Effect(s) (b/σ)w0 (b/σ)wa (b/σ)w0 (b/σ)wa

PSF 0.006 ± 0.002(0.029) −0.018 ± 0.005(0.064) (−0.024, 0.033) (−0.042, 0.015)
CTI (reset off) −0.045 ± 0.030(0.370) 0.045 ± 0.027(0.330) (−0.328, 0.077) (−0.054, 0.281)
CTI (reset on) −0.049 ± 0.007(0.083) −0.038 ± 0.006(0.068) (−0.078, 0.152) (−0.121, 0.067)
PSF & CTI (reset on) 0.056 ± 0.006(0.078) −0.050 ± 0.005(0.066) (−0.046, 0.144) (−0.124, 0.032)

Notes. The column labelled “Statistics” shows the mean and 68% error on the mean for our 150 realisations. The numbers in brackets are the
standard deviation of the distributions. The column labelled “90% Confidence interval” shows the 90% confidence regions in our distributions.

requirements in progressively finer details via a series of inter-
related subsystems) changes in the power spectrum parame-
terised by

δC(`) =MCR(`) +A. (23)

Requirements onM and A were determined for various effects
such as PSF and CTI. To compare to this formalism we could
naively fit the residual power spectra that we find using such a
linear model. However, this would neglect the correct formula-
tion of how to propagate biases into cosmic shear power spectra
(Kitching et al., in prep.).

Therefore to assess the difference between the C13 approach
and our approach we need to flow up the requirements on the
uncertainties set in C13 (referred to as σ in that paper) for indi-
vidual effects, and compare the outcome of the two approaches at
the level of biases in cosmological parameters rather than com-
paring M and A values. We do this by determining the mul-
tiplicative and additive biases, M and A, associated with each
systematic effect in C13, constructing Eq. (23) for these val-
ues, and then adding this to Eq. (21); a process we refer to as
flow up.

Whilst uncertainties are included in this flow-down
approach, these are taken to be constant across the survey (both
spatially and temporally). They are also assumed to be inde-
pendent of each other. Our approach does not suffer from these
limitations. By modelling biases simultaneously, they also have

a chance of acting at different scales, or even cancelling each
other out. Hence any comparison with prior work should not be
interpreted as there being a margin in previously derived require-
ments. Nevertheless, such a comparison is useful to show how
different the approaches are, and if previous requirements were
exceeded this would be of concern.

Assuming PSF modelling errors in the shear power spectrum
at the maximum values permitted by the C13 requirements of
A = 5 × 10−8 and M = 4.8 × 10−4, we find biases on cosmo-
logical parameters (b/σ)w0 = 0.25 and (b/σ)wa = 0.31. Assum-
ing CTI correction biases at the maximum values permitted by
C13 of A = 1.21 × 10−8 and M = 0 (CTI contributions to
multiplicative bias are subdominant) yields (b/σ)w0 = 0.14 and
(b/σ)wa = −0.2. In contrast, our flow-up analysis predicts biases
on cosmological parameters that are lower by a factor between
2 and 5. None exceed previously derived requirements and
all are within acceptable tolerances to meet top-level scientific
goals.

We note that the scatter in δCn(`) and the corresponding
scatter in the cosmological parameter biases are smaller in the
PSF+CTI case than for the PSF alone. What is happening in
this case is a partial cancellation of terms where the CTI is pre-
dominately a positive Q11 component at the chip edges, whereas
the perturbations in the PSF can have negative Q11 components.
Therefore in combination the overall amplitude cancels out in
some regions of the field of view. This is the first time that these
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systematic effects have been combined, and it is not unexpected
that systematic effects that act in opposite senses may cancel
each other out. However we leave a full investigation of these
effects to future work.

Finally we emphasise several assumptions in this analysis
that should be relaxed in the future, which may mean the results
are either optimistic or pessimistic:

– We do not model intrinsic alignments, the environmental
dependence on the intrinsic size and shapes of galaxies.

– The smooth increase in CTI over adjacent pointings may be
considered optimistic, if CTI has sudden jumps in reality.
Furthermore the choice of 45%−55% end-of-mission radia-
tion dose is average. In a tomographic analysis CTI residuals
may also mimic redshift-dependence of cosmic shear, which
may mean the results are optimistic.

– The uncorrelated PSF residuals between consecutive expo-
sures may be conservative or optimistic, depending on the
final state of the telescope at launch.

5. Conclusions

We have presented an end-to-end approach that propagates
sources of bias in a cosmic shear survey at a catalogue level.
This allowed the capture of spatial variations, temporal changes,
dependences on galaxy properties, and correlations between dif-
ferent sources of systematic and stochastic effects in the pipeline.
We use our methodology to revisit the performance of a Euclid-
like weak lensing survey. We limit the analysis to quantify the
impact of imperfect modelling of the PSF and CTI, as these are
two major sources of bias caused by uncertainty in the modelling
of instrument(s). Other effects can be readily included, which
will be done in future work.

The PSF systematic effects are introduced through the
expected uncertainty in fitting the PSF model to noisy data given
the assumed nominal focus of the telescope. Additional imper-
fections introduce residuals on smaller scales, but these should
not affect our main conclusions because the dark energy mea-
surements are most sensitive to variation on large scales. We
also consider a time-dependent CTI, where the CTI increases
with the survey time due to accumulation of radiation damage on
the detectors. We consider a conservative scenario because the
parameters we adopted apply to the faintest galaxies in the anal-
ysis, whereas the biases are smaller for brighter objects. We
also do not include intrinsic alignment effects or source blending
effects, both of which will be included in future studies.

These effects were propagated through to residual cosmic
shear power spectra and cosmological parameters to estimate
the expected biases in the parameters w0 and wa. Compared to
requirements based on a more restricted flow-down approach by
C13, we find that the biases on the dark energy parameters from
our more realistic performance estimates are well within the
requirements. Even for the combined scenario of CTI and PSF,
we find the biases on dark energy parameters are well within the
required tolerances.

This paper presents the first step towards a more comprehen-
sive study of the performance of a Euclid cosmic shear survey.
The same approach however can also be readily applied to other
cosmic shear surveys. In future work we will introduce more
complexity in the PSF and detector systematic effects, so that the
resulting redshift dependences of these effects can be assessed.
As alluded to earlier, CTI is dependent on flux and morphol-
ogy, which implies it will change with redshift. Other systematic
effects, such as shape measurement uncertainties, will also be
implemented in the pipeline. These improvements will enable us

to examine the impact of systematic effects on an increasingly
realistic tomographic analysis.
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Appendix A: Details of PSF modelling

In this section, we describe the propagation of uncertainties
which result from inaccuracies in the PSF model, using the
broadband parametric phase retrieval method from Duncan et al.
(in prep). In this method, the PSF variation is modelled in the
wavefront domain. The corresponding real-space optical PSF is
obtained as the modulus squared of the Fourier transform of the
wavefront at the exit pupil, including the effect of telescope dis-
tortion, integrated over the bandpass. In the present application,
a simple Gaussian model for the distribution of telescope guid-
ing accuracy is used, linear detector effects (including pixelisa-
tion and linear charge diffusion) are included, and it is assumed
that the detectors lie precisely in the focal plane. More realistic
guiding and detector effects will be included in the future.

The wavefront at the exit pupil of the telescope describes the
coherent perturbations in the optical path differences of infalling
photons, caused by the design and alignment of the telescope
optical elements. The wavefront can be split into two parts:
an amplitude component, which describes where the light is
vignetted by structures in the telescope, and a phase compo-
nent, which describes the variation of the optical path differ-
ences. Both change with position in the focal plane. To capture
the amplitude variation, we use a geometric model that describes
the projection of intervening structures in the telescope (i.e. the
secondary mirror M2 and its struts) at the focal plane. To model
the phase variation, we used a suite of simulated wavefronts
obtained with the optical design program ZEMAX7, configured to
the specifications of Euclid. Each phase map was fitted by a sum
of Zernike polynomials, and the variation of the corresponding
Zernike coefficients with focal plane position was captured by
a set of polynomials. Several optical elements in the telescope
design were displaced or deformed by turn, and the correspond-
ing effects on the phase maps were captured by so-called tele-
scope modes. As a result, the wavefront can be predicted for
any telescope set-up, with a realistic focal plane variation. Given
a model wavefront, the real-space PSF is then computed for a
range of densely sampled wavelengths. The final PSF is obtained
by integrating over the spectral telescope response, weighted by
the SED of the source with additional convolution effects of
guiding and CCD pixel response included. In this application of
the model, detector offset and high frequency contributions such
as those arising from surface errors are not included.

As the Euclid VIS PSF model is jointly fitted to stars in the
entire field of view, PSF errors are correlated across that field. In
order to capture this, we investigated the effect of varying one of
the principal model parameters, the wavefront error associated
with the defocus of the telescope. Higher-order wavefront errors
are also expected to contribute to the PSF uncertainty. But the
PSF variations of this mode should be a realistic representation
of the actual correlated PSF errors in the absence of possible
effects at cryogenic temperatures, which could cause deforma-
tion in the y-axis displacement of M2 rather than the z-axis. We
modelled the effect of a shift in the focus position resulting in an
optical defocus for a given source SED. We chose the source
SED to be the template spiral Sbc galaxy of Coleman et al.
(1980) with redshift of 1.

We assume a nominal offset focus position that is drawn
at random from a normal distribution whose variance matches
the expected σz ' 0.5 µm uncertainty in this model parameter,
which can be obtained from fitting the telescope model to the
stars that appear in each survey field. Even consecutive expo-
sures are assumed to have independent nominal focus values.
7 https://www.zemax.com
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Fig. A.1. Change in the quadrupole moments in units of Euclid pixels
squared, for focus position shifts of ∆z = −1.35 µm (left columns) and
∆z = 1.35 µm (right columns), for Q11 (top panels), Q12 (middle pan-
els), and Q22 (bottom panels) as a function of field of view position (in
degrees).
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Fig. A.2. Stick plot describing the variation in polarisation across the
field of view (in degrees) for the nominal focus (z = 0). All values
shown are taken from the training data, not the fit.

A realisation of errors in the quadrupole moments of the
PSF was then obtained in a two-step process. In the first step,
the focus position was shifted to give a minimum in PSF size at
the centre of the field of view, which was taken as the nominal
in-focus position. The mirror was then perturbed in both direc-
tions (positive and negative z offsets) until the second-moment
measure of the model PSF’s size, R2, varied from the nominal
value R2

nom by a tolerance ∆R2 ≡ |R2 − R2
nom| < 10−3R2. This

value is both the requirement on the knowledge of the mean PSF
size across the survey, set by C13, and also is approximately the
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measurement uncertainty that we expect to obtain from measure-
ments on individual survey exposures.

In a second step, the FoV-dependent behaviour was deter-
mined by fitting a sixth order polynomial8 to ∆Qi j(x, y,∆z) =
Qi j(x, y, z)−Qi j(x, y, znom) across x and y, where x and y describe
the FoV position, z the focus mirror position, znom the nominal
focus position and ∆z = z − znom. The variation with z was mod-
elled by training the coefficients of the FoV position fit across
∆z = 0 ± 1.35 µm, using a quadratic form. Finally, it was ver-
ified that the fit recovered the expected perturbed quadrupole
moments to .5% accuracy across the field of view, except where
∆Q was close to zero so that relative differences – defined as
(∆Qfit

i j − ∆Qi j)/∆Qi j – became large owing to numerical inaccu-
racy. This verification was conducted both on the training data,
as well as a coarse grid of field-of-view values and M2 shifts
within the range σz = 0.5 µm, which was not used to train the fit.
The residual quadrupole moment variations that these changes
induce is shown in Fig. A.1. Figure A.2 shows the variation in
polarisation across the field of view at the nominal focus position
(z = znom).

Appendix B: Details of CTI modelling

Charge transfer inefficiency is caused by the capture and delayed
release of photoelectrons by traps, i.e. localised, unintended
quantum levels in the silicon lattice of a detector. These defects
are created when high energy particles displace silicon atoms
and, above the protection of the Earth’s atmosphere, will accu-
mulate throughout the mission. The timescales for capture and
release depend upon the type of damage and the proximity to any
lattice impurities. During readout, if electrons are captured from
a charge packet that is moving through the lattice and released
after a sufficient delay, they become part of a later charge packet
(or pixel in the resulting image). This creates faint luminous
“trails” behind the images of galaxies and stars, which bias mea-
surements of their polarisation and size. Objects farther from the
readout nodes gain brighter trails because their electrons must
travel farther and are subject to more traps.

We adopted the Israel et al. (2015) model of CTI in the
Euclid VIS serial readout direction9. This treats charge capture
as instantaneous and charge release as a stochastic process gov-
erned by exponential decay (Massey et al. 2014). Euclid CCDs
will contain three trap species in the serial register. Each species i
has a different characteristic release time τi, and a time-evolving
surface density (abundance) ρi. Table B.1 shows the trap proper-
ties expected after the radiation dose accumulated by the end of
the mission (for 90% of realisations of solar weather).

To account for the accumulation of radiation damage over
time, we assume that trap densities grow linearly over the patch
of the sky observed, from 45% of the values in Table B.1 at
one end to 55% at the other. This is very conservative for large
angular scales as it introduces an increase of approximately 10%
over roughly a ten-day cycle (i.e. the typical amount of time it
would take to observe our 100 deg2 patch), which is much larger
than the milder increase over the actual mission. On the other

8 This was found to best fit the spatial variation in terms of a least
squares minimisation when varying the polynomial order, although the
polynomial model itself was assummed.
9 No accurate model yet exists of CTI in the Euclid VIS parallel read-
out direction owing to difficulties with engineering model CCDs. We
therefore ignore it here. However, parallel CTI has been measured suf-
ficiently accurately to determine that it is subdominant to serial CTI
(Endicott et al. 2012).

Table B.1. Baseline trap model used in this work, for an end-of-mission
radiation dose Israel et al. (2015), with densities increased by a factor
4.155, following erratum Israel et al. (2017b).

Baseline model i = 1 i = 2 i = 3

Trap density ρi [pix−1] 0.083 0.125 3.95
Release time τi [pix] 0.8 3.5 20

hand, we assumed consecutive observations, and hence consec-
utive increases in CTI at each exposure in this patch. In real-
ity, a 100 deg2 patch of the observed area will not have this
smooth increase as the exposures that cover it will not, in gen-
eral, be consecutive. Therefore, this is also a somewhat opti-
mistic approach in that sense.

Euclid’s baseline strategy for CTI mitigation is a pixel-by-
pixel movement of flux from trails, back to the pixels it came
from. This “back-clocking” approach is limited by read-out noise
(RON), model parameter uncertainties, and model inaccuracy.
Because RON is added at the amplifier, it is not trailed during
readout – but it is spuriously corrected by pixel-level methods as
if it had been trailed (see Sect. 5.3 of Israel et al. 2015).

In the reference case (i.e. assuming a perfect CTI model), the
model and model parameters are known perfectly and the only
source of bias is the RON. Images of galaxies contain a residual
shape measurement error

∆ηR(ρi, τi) =
NTr

Nmax
Tr

∑

i

ρi f res(τi) , (B.1)

where ∆η may refer to either ∆χ1 or ∆R2/R2; NTr is the
“serial”/“horizontal” distance (in pixels) of the object to the
readout amplifier, and Nmax

Tr = 2099 pixels is the maximum num-
ber of serial transfers given the detector design; the function f res

has the form shown in Eq. (14) of Israel et al. (2015) and coef-
ficients listed in rows 7 and 8 of Table 1 in Israel et al. (2015).
The linear prefactor reflects the increasing number of transfers
(hence increasing number of encountered traps) traps for galaxy
images farther from the readout amplifier. Finally, to model the
non-deterministic filling history of traps along the readout direc-
tion, which can perturb CTI trailing, we add Gaussian noise to
the scaled ∆η in each exposure with zero mean and 5% standard
deviation. This was not considered in the analysis of Israel et al.
(2015) and we find its effect to be negligible.

In the perturbed case, we also propagate uncertain knowl-
edge of the model parameters (e.g. accumulated radiation dose)
at each point in time. Since all our galaxies have the same flux,
we introduce model parameter errors in the assumed density ∆ρi
and release time ∆τi of the traps. In addition to errors from back-
clocking the RON, as in the reference case, Israel et al. (2015)
find that model parameter errors introduce a bias,

∆ηper =
NTr

Nmax
Tr

∑

i

ρi f res(τi) (B.2)

+
NTr

Nmax
Tr

∑

i

[
ρi f deg(τi) − (ρi + ∆ρi) f deg(τi + ∆τi)

]
, (B.3)

where the function f deg provides the change (“degradation”) in
shape parameters because of CTI, without mitigation, as a func-
tion of the model parameters. Its functional form is shown in
Eq. (14) of Israel et al. (2015) and it uses coefficients listed in
rows 3 and 4 of Table 1 in Israel et al. (2015). The difference
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of this function evaluated at (ρ + ∆ρ, τ + ∆τ) from the same
function at (ρ,τ) in Eq. (B.3) is a reflection of how the iterative
mitigation of CTI is, at its root, equivalent to an additional degra-
dation of the images, similar to that caused by CTI, but applied
in the opposite sense (hence the name back-clocking). We note
that Eq. (B.3) is equal to Eq. (17) in Israel et al. (2015). Halfway
through the mission, both terms account for roughly equal levels
of residual.

To assign values to the biases in model parameters, we adopt
a constant bias ∆τi = 1% in the release time parameters; and
∆ρi drawn from a Gaussian distribution with zero mean, where
the average bias is zero; and standard deviation of 1%, over the
true value of ρ at each time. These are both conservative in the
sense that they could be derived from Euclid calibration each day
(Nightingale et al., in prep.), but τi are likely to be constant for
the entire mission and ρi smoothly increasing, so errors could be
reduced by iterative calibration. These values therefore do not
necessarily reflect the ultimately achievable uncertainty in the
model parameters, but are useful as reference values. Figure B.1
shows the pattern of induced biases due to imperfect CTI miti-
gation for a random selection of galaxies in one FoV.

Fig. B.1. Random selection of galaxies are shown representing the pat-
tern of the induced polarisations owing to imperfect CTI mitigation in
one field of view. The biases are larger with distance from the readout
nodes on either side of the CCDs. Biases are only considered in the
serial direction.
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