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a b s t r a c t

Alzheimer's continuum biological profiles (AþT�N�, AþTþN�, AþT�Nþ, and AþTþNþ) were established in
the 2018 National Institute on Aging and Alzheimer's Association research framework for Alzheimer's
disease (AD). We aim to assess the relation between AT(N) biomarker profiles and brain functional
connectivity (FC) and assess the neural correlates of anosognosia. We assessed local functional coupling
and between-network connectivity through between-group intrinsic local correlation and independent
component analyses. The neural correlates of anosognosia were assessed via voxel-wise linear regression
analysis in prodromal AD. Statistical significance for the FC analysis was set at p � 0.05 false discovery
rate (FDR)-corrected for cluster size. One hundred and twenty-one and 73 participants were included in
the FC and the anosognosia analysis, respectively. The FC in the default mode network is greater in
prodromal AD than AD with dementia (i.e., local correlation: T ¼ 8.26, p-FDR < 0.001, k ¼ 1179; inde-
pendent component analysis: cerebellar network, T ¼ 4.01, p-FDR ¼ 0.0012, k ¼ 493). The default mode
network is persistently affected in the early stages of Alzheimer's biological continuum. The anterior
cingulate cortex (T ¼ 2.52, p-FDR ¼ 0.043, k ¼ 704) is associated with anosognosia in prodromal AD.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Background

The Alzheimer's disease (AD) continuum is both clinical and
biological. First, the cognitive decline continuum associated with
AD is clinically divided into a preclinical, a prodromal, and a clinical
stage (Sperling et al., 2011). Second, the AD biological continuum
has been recently defined. In 2018, the research framework for a
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biological in vivo classification (i.e., AT(N) classification) of AD was
published (Jack et al., 2018). Three main groups can be derived from
the National Institute on Aging and Alzheimer's Association (NIA-
AA) research framework: (1) participants with Alzheimer's patho-
logic change; (2) participants with non-AD pathologic changes; and
(3) participants with normal biomarkers (Jack et al., 2018). The
AT(N) system classification allows for a biologically centered defi-
nition of AD (Jack et al., 2018). Altogether, beta-amyloid (Ab) burden
(i.e., the “A” in the AT(N) classification system) is the characteristic
feature of the Alzheimer's continuum biological profiles (i.e.,
AþT�N�, AþTþN�, AþT�Nþ, and AþTþNþ). Fig. 1 displays the NIA-AA
research framework’, which divides the 3 AT(N) biomarker types
into different biomarker profiles (Jack et al., 2018).

The AT(N) classification permits the stratification into 3 groups
within the Alzheimer's biological continuum that are associated
with short-term clinical progression: preclinical AD, AD with mild
cognitive impairment (MCI) or prodromal AD and AD with de-
mentia (Jack et al., 2018). Importantly for clinical use, Ab burden can
be assessed through cerebrospinal fluid (CSF) amyloid and amyloid
positron emission tomography (PET) biomarkers. Amyloid PET is a
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



Fig. 1. Biomarker profiles and categories from the NIA-AA research framework. Abbreviations: AD, Alzheimer's disease; MCI, mild cognitive impairment. “Formatting denotes 3
general biomarker ‘categories’ based on biomarker profiles: those with normal AD biomarkers (no color), those with non-AD pathologic change (dark gray), and those who are in
the Alzheimer's continuum (light gray).” Original figure (Table 4) obtained from Jack CR Jr et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease.
Alzheimers Dement. 2018; 14(4): 535e562. https://doi.org/10.1016/j.jalz.2018.02.018. PMID: 29653606. Shared under the creative commons license CC BY-NC-ND 4.0.
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validated pathophysiological marker for fibrillary amyloid (i.e.,
neuritic plaques and amyloid angiopathy), which has a strong cor-
relationwith a postmortem diagnosis of AD (i.e., approximately 96%
concordance), and is, therefore, a good marker for Alzheimer's pa-
thology (Dubois et al., 2014). However, although CSF amyloid bio-
markers can indicate a disrupted balance between the production
and clearance of Ab peptide 42 (Ab1-42), PET amyloid can indicate
neuritic amyloid plaque accumulation over time (Dubois et al.,
2014). CSF Ab1-42 is a measure of Ab soluble forms, and low con-
centrations of CSF Ab1-42 suggest significant parenchymal deposi-
tion of amyloid (Dubois et al., 2014). In addition to the Ab burden,
tau pathology (i.e., the “T” in the AT(N) classification system) pro-
vides a proxy of pathophysiological changes associated with AD.
Tau pathology can be assessed through increased levels of CSF p-tau
(i.e., hyperphosphorylation of tau in the brain) (Dubois et al., 2014).
Neurodegeneration and neuronal injury (i.e., the “N” in the AT(N)
classification system) also contribute to the in vivo classification
and definition of AD. In this regard, brain glucose metabolism and
CSF t-tau arewell-established proxies for neurodegeneration; while
PET 18F-fluorodeoxyglucose (FDG) uptake is considered a sensitive
marker of synaptic dysfunction, accurately mapping regions of
hypometabolism associated with clinical symptoms, CSF t-tau is a
measure of neuronal damage (Dubois et al., 2014; Jack et al., 2018).

Here, we aim to assess the relation between AT(N) biomarker
profiles and brain functional connectivity (FC) because the use of
biological definitions at the different stages in the Alzheimer's con-
tinuum allows for a better characterization of the disease by
considering the biological factors associated with AD, thus permit-
ting to potentially better elucidate the regions or networks associ-
ated with cognitive impairment and dementia. The interaction
between information shared by different brain regions can be
assessed through brain FC measures at rest. FC alludes to the tem-
poral relationship between spatially distant neurophysiological
events (Stephan, 2009). Thus, it uses the entire blood-oxygen-level-
dependent (BOLD) imaging time series to derive the average con-
nectivity between regions (White, 2019). FC can be assessed at a local
and a distant level. Although integrated local correlation analysis is a
voxel-to-voxel measure that provides insight into the local function
of specific brain regions (Desphande et al., 2009), independent
component analysis (i.e., ICA, a voxel-to-voxel data-driven approach)
assesses the functional relationship between different brain areas
and thus provides insight into between-network connectivity (Wylie
et al., 2015). ICA attempts to separate independent sources either
spatially or temporally by organizing brain regions with a similar
time course of activation into spatially independent patterns of BOLD
signal that are represented as independent components (ICs)
(Calhoun, 2001). After separating the brain regions into functional
components, the functional coupling of these subcomponents or
networks can be assessed, thus creating a proxy for between-
network brain connectivity. Together, local correlation and
between-network connectivity provide an integrated picture of
brain network functioning.

The AT(N) system allows for a biologically based classification,
hence a more accurate characterization of the biological events
associated with the cognitive impairment in AD and amnestic MCI
(aMCI). Consequently, by defining AD and aMCI as biological con-
structs, rather than by using the clinical definitions, more accurate
between-group comparisons can be performed, as these compari-
sons consider additional confounding factors. Although the AT(N)
classification accounts for the biological factors that can confound
cognitive deterioration because of Alzheimer's and non-AD patho-
logic changes, neuropsychiatric syndromes are clinical manifesta-
tions that canmodulate the expression of cognitive decline in theAD
continuum. Neuropsychiatric syndromes associated with AD could
provide an understanding of the FC profiles related to the cognitive
decline in the AD continuum. Anosognosia is a neuropsychiatric
syndrome defined by the unawareness or denial of a neurologic
deficit (Langer and Levine, 2014). Anosognosia in patients withmild
or moderate AD has a reported incidence proportion between 21.0%
and 38.3% and a prevalence between 31.5% and 71.0% (Starkstein
et al., 2010; Castrillo-Sanz et al., 2016; Turró-Garriga et al., 2016).
Anosognosia for activities of daily living deficits can be present from
an early stage of AD with an incidence between 20% and 80%
(Starkstein, 2014). The association between brain regions or brain
networks and anosognosia is actively pursued as a predictive factor
for clinical AD disease progression. Anosognosia of memory deficits
has been identified as an independent predictor for the progression
of aMCI to AD stage and has been associated with hypometabolism
in the posterior cingulate cortex (PCC) and right angular gyrus
(Gerretsen et al., 2017). Furthermore, reducedwithin- and between-
network connectivity has been observed in the default mode
network (DMN) in AD patients with anosognosia comparedwith AD
patients without anosognosia and cognitively unimpaired partici-
pants (Mondragon et al., 2019). Anosognosia has also been associ-
ated with disconnection within the medial temporal subsystem of
the DMN in AD and aMCI patients (Antione et al., 2019).
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This study attempts to address the knowledge gap regarding the
brain network FC differences between biologically defined groups
within the AD disease continuum, as well as the functional neural
substrates of anosognosia in these same groups. The primary
objective of this work is to understand the impact of AT(N)
biomarker profiles on the local correlation and between-network
connectivity among groups of participants with and without Alz-
heimer's pathologic changes. To achieve this, we assess cognitive
decline by comparing groups accounting for the biological profiles
at transitional stages of the AD continuum (i.e., aMCI with Alz-
heimer's pathologic change to AD with Alzheimer's pathologic
change and ADwithMCI, better known as prodromal AD, compared
with AD with dementia) and non-AD cognitive decline (i.e., healthy
control [HC] with non-AD pathologic change to aMCI with non-AD
pathologic change). Furthermore, we also assess the impact of AD
pathologic change on the local correlation and between-network
connectivity in aMCI patients (i.e., aMCI with non-AD pathologic
change and aMCI with Alzheimer's pathologic change). The sec-
ondary objective is to assess the association between anosognosia
and regional activation for each of the groups previously described,
as well as the impact that anosognosia has on the FC of the regions
impacted by anosognosia and the rest of the resting-state brain
networks.

2. Methods

Data were obtained from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu/data-samples/
access-data/). ADNI is a multicenter collaboration launched in
2004, with the common goal of collecting, validating, and using
data such as magnetic resonance imaging (MRI) and PET images,
genetics, cognitive tests, CSF, and blood biomarkers as biomarkers
to define AD progression (Mueller et al., 2005). Participants
included in the ADNI project are between the ages of 55 and
90 years, completed at least 6 years of education, and are free of any
significant neurologic disease other than AD.With the ultimate goal
of developing new treatments and the optimization of clinical trials
for aMCI and AD populations, ADNI was initiated in an attempt to
define clinical longitudinal changes (e.g., related to clinical diag-
nosis and neuropsychological assessment) and biomarker (e.g.,
imaging and CSF) outcome measures (Shaw et al., 2011). ADNI
classifies participants into 5 categories: (1) normal aging; (2) sub-
jective cognitive complaints; (3) early MCI; (4) late MCI; and (5)
dementia or AD. We searched in the ADNI database for participants
with normal aging, early MCI, late MCI, or AD and fMRI sequence
available from the ADNI-2 or ADNI Grand Opportunity (ADNI-GO)
databases. Perfusion weighted, motion correction, and cerebral
blood flow sequences (i.e., which are also classified as fMRI se-
quences per ADNI definition) were not selected. The entire data set
we used was downloaded from the ADNI-2 and ADNI-GO databases
beginning on August 28, 2018, and ending on February 15, 2019.
Participants with an ADNI-3 advanced sequence were not included
in this study for 2 reasons. First, ADNI-2 and the advanced ADNI-3
fMRI versions are not compatible and thus noncomparable; second,
at the time of the data extraction for this study, not enough patients
had been included in this phase of the ADNI project to merit a
separate analysis (more information can be found at http://adni.
loni.usc.edu/methods/mri-tool/mri-analysis/). Participant eligi-
bility criteria for ADNI-2 and ADNI-GO are identical and can be
found in the ADNI general procedures manual (ADNI-I; http://adni.
loni.usc.edu/methods/documents/). The ADNI has developed
harmonized standard operating procedures for sample collection,
processing, and handling for CSF and serum biomarkers (Shaw
et al., 2011). As part of the ADNI, the PET Core initiative focuses
on the collection and analysis of metabolic brain imaging. Initially,
the ADNI PET Core focused on 18F-FDG PET imaging; however, as
ADNI's objectives adjusted to the progressing knowledge in the
field of imaging biomarkers, amyloid PET followed by tau PET were
introduced into later stages of the ADNI project (Jagust et al., 2015).
ADNI was approved by the institutional review boards of all the
participating centers. Written informed consent was obtained from
all patients. For more information, we refer the reader to www.
adni-info.org.

2.1. Description of participants

For our present study, we included 143 participants from the
ADNI-2 and ADNI-GO databases who had an rs-fMRI scan and CSF
or PET biomarkers available at that time (�4 months) to be used for
a later AT(N) classification (Jack et al., 2018). The diagnostic inclu-
sion criteria were based on the ADNI protocols available on the
ADNI website. Briefly, clinical diagnosis was assigned to the par-
ticipants by the site investigators and reassessed at each visit. For
this study, we used the diagnosis assigned during the fMRI scan and
not the diagnosis the patient had upon enrollment to the ADNI
project. Participants with AD diagnosis met the National Institute of
Neurologic and Communicative Disorders and Stroke-Alzheimer's
Disease and Related Disorders Association criteria for probable AD
(McKhann et al., 1984). In addition, mild AD participants had a
Mini-Mental State Examination (MMSE) score between 20 and 26
and a global Clinical Dementia Rating (CDR) Scale score of 0.5 or 1.0.
MCI is the stage between the expected cognitive decline because of
normal aging and the decline because of dementia. Originally, MCI
criteria focused on memory impairment or aMCI; however, many
subtypes have been described, including nonamnestic (i.e., without
memory impairment), as well as single and multidomain impaired
forms (Petersen, 2004). aMCI patients had MMSE scores �24, a
global CDR score of 0.5, objective memory loss as measured by
education adjusted scores on the Wechsler Memory Scale Logical
Memory II, absence of significant levels of impairment in other
cognitive domains, preserved activities of daily living, and absence
of dementia. Demographical, neuropsychological, biomarker, and
neuroimaging data were extracted from the 2 previously
mentioned ADNI data sets (Supplementary Table 1). Exclusion
criteria were defined by the ADNI study protocol (Mueller et al.,
2005). Functional MRI, fluid-attenuated inverse recovery images,
and volumetric T1-weighted images were downloaded for all par-
ticipants. A Hachinski ischemia score was calculated for every
participant at each visit in this study based on the ADNI clinical data
regarding dementia clinical characteristics and accompanying signs
and symptoms (e.g., onset, evolution, confusion, personality and
emotional changes, depression, somatic complaints, history of hy-
pertension and strokes, and focal neurologic signs and symptoms).
All patients included had a Hachinski score�4. Visual inspection for
hyperintensities in the fluid-attenuated inverse recovery sequence
to detect possible ischemic lesions was performed by one of the
authors (J.D.M.) and corroborated through the “MRI_Infarct” data
set to exclude participants with large vascular lesions.

2.2. Cognitive assessment

Cognitive data were extracted from the “ADNIMERGE” file,
which incorporates merged data sets containing data from ADNI 1/
GO/2 clinical data and numeric summaries. The neuropsychological
variables used in the analysis of cognitive changes were the CDR
sum of boxes (CDR-SOB), MMSE, Montreal Cognitive Assessment
(MoCA), and the 11-item Alzheimer's Disease Assessment Scale-
Cognitive Subscale (ADAS-Cog). The global CDR score was calcu-
lated from the CDR-SOB, where a CDR-SOB between 0.5 and 4.0
corresponded to a global CDR score of 0.5, a CDR-SOB between 4.5
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and 9.0 corresponded to a global CDR score of 1.0, a CDR-SOB be-
tween 9.5 and 15.5 corresponded to a global CDR score of 2.0, and a
CDR-SOB between 16.0 and 18.0 corresponded to a global CDR score
of 3.0 (O'Bryant et al., 2008). Global cognitionwas assessed through
MMSE scores, MoCA scores, and the 11-item ADAS-Cog score.

2.3. In vivo AD biomarker profile: AT(N) classification thresholds

The Ab burden was evaluated as a continuous and dichotomous
variable (i.e., amyloid positive or amyloid negative). The ADNI
processes PET imaging data at 4 laboratories that are part of the
ADNI PET Core (Jagust et al., 2015). A global cortical threshold for
PET amyloid retention to classify patients as PET amyloid positive or
PET amyloid negative was used. A participant was classified as PET
amyloid positive if the florbetapir (AV-45) PET standardized uptake
value ratio (SUVR) was larger than 1.11 based on previous work on
the ADNI data (Landau et al., 2013). The global cortical AV-45 PET
analyses were segmented and parcellated using freesurfer 4.5.0
(Harvard University, Cambridge MA); all AV-45 PET values were
extracted from the ADNI database. As part of the ADNI amyloid PET
protocol, the amyloid burden was visually assessed in 6 regions of
interest (ROIs; i.e., posterior cingulate, precuneus, parietal, tempo-
ral, anterior cingulate, and frontal) to confirm global cortical
threshold classification. The second amyloid burden assessment
strategy used Ab1-42 CSF levels. The diagnostic threshold for Ab1-42
CSF concentrations to classify participants as positive for amyloid
pathology was based on previous work in the ADNI cohort (i.e., Ab1-
42 � 192pg/mL) (Shaw et al., 2009). For this study, patients were
classified using PET amyloid.

As ADNI participants did not undergo PET imaging for tau in the
ADNI-2 and ADNI-GO study phases, tau burden “T”was assessed by
using CSF p-tau levels in this study. The diagnostic thresholds for p-
tau181 and p-tau181/Ab1-42 CSF concentrations to classify partici-
pants as having aggregated tau or associated pathologic state were
based on previous work in the ADNI cohort (i.e., p-tau181�23pg/mL
and p-tau181/Ab1-42 � 0.1) (Shaw et al., 2009). Finally, neuro-
degeneration and neuronal injury “(N)”were assessed using a brain
glucose metabolism measure. The previously for the ADNI cohort
validated global cortical glucose metabolism mean SUVR threshold
of 1.21 (Dowling et al., 2015) was used. This mean SUVR measure is
derived from 5 ROIs (i.e., bilateral posterior cingulate gyrus, right
and left angular gyri, and middle/inferior temporal gyrus). The
AT(N) thresholds previously validated for the ADNI cohort used in
this study can be found in Supplementary Table 2.

2.4. Clinical and AT(N) classification

After assessing each biomarker and designating a profile based
on the cutoff values previously mentioned, each participant was
classified into 3 groups: (1) Alzheimer's pathologic change; (2) non-
AD pathologic change; and (3) normal AD biomarkers. Fig. 1 dis-
plays the NIA-AA research framework, which divides the 3 AT(N)
biomarker types into different biomarker profiles (Jack et al., 2018).
For this study, 6 different groups are used: (1) HCs with non-AD
pathologic change; (2) aMCI with non-AD pathologic changes; (3)
prodromal AD; (4) AD with dementia; (5) aMCI with AD pathology;
and (6) clinical AD. For the first 4 groups, we used the NIA-AA
research framework definitions; meanwhile, for the fifth group
(aMCI with AD pathology), prodromal AD patients and Alzheimer's
pathologic change with aMCI are combined. The last group is
composed of the clinically classified AD patient group without us-
ing the AT(N) classification system. To assess cognitive decline, we
defined the groups by the biological factors associated with the AD
and non-AD disease continuum according to the AT(N) classifica-
tion. Furthermore, to assess the impact of Alzheimer's pathologic
change (i.e., Alzheimer's pathologic change versus non-AD patho-
logic change) on FC in clinically defined aMCI patients, between-
group comparisons were performed. Four group comparisons
were performed; 3 groups assessing the effect of cognitive decline
on FC, whereas 1 group comparison assessed the impact of Alz-
heimer's versus non-AD pathologic change on FC while controlling
for cognitive decline: (1) aMCI with Alzheimer's pathologic change
versus AD with Alzheimer's pathologic change according to the
biological AT(N) profile; (2) prodromal AD versus ADwith dementia
(i.e., patients with aMCI or AD with biological AþTþ(N)þ or
AþTþ(N)� profiles); (3) HCs versus aMCI, both with non-AD path-
ologic change AT(N) profile, to explore the non-AD cognitive
decline continuum; and (4) aMCI with non-AD pathologic change
AT(N) profile versus aMCI with Alzheimer's pathologic change
AT(N) profile: hereby controlling for cognitive decline.

2.5. MRI image acquisition

All MRI scans were performed on Philips 3T MRI scanners, using
an eight-channel head matrix coil. High-resolution volumetric T1-
weighted images were acquired using a 3D magnetization pre-
pared - rapid gradient echo (MP-RAGE) sequence, with whole-brain
coverage and 1 � 1 � 1.2 mm voxel resolution. The rs-fMRI images
were acquired using a single-shot T2*-weighted echo-planar
sequence collecting 140 volumes, TR of 3000 ms, flip angle of 80�,
and 3.3 mm isotropic resolution. The participants kept their eyes
open fixed on a point for all rs-fMRI scans. Full descriptions of ADNI
MRI image acquisition protocols are available at http://adni.loni.usc.
edu/methods/documents/mri-protocols/.

2.5.1. fMRI image preprocessing
The fMRI image preprocessing was performed using the SPM 12

software package (Wellcome Trust Centre for Neuroimaging, Uni-
versity College London, United Kingdom, http://www.fil.ion.ucl.ac.
uk/spm/software) implemented in MATLAB (2018b; Mathworks,
Natick, MA, USA). All preprocessing steps were performed using the
CONN toolbox (Functional Connectivity SPM Toolbox 2017;
McGovern Institute for Brain Research, Massachusetts Institute of
Technology, http://ww.nitrc.org/projects/conn) following the
default preprocessing pipeline for volume-based analyses
(Whitfield-Gabrieli and Nieto-Castanon, 2012). The preprocessing
included the following steps: (1) realignment and unwarping; (2)
slice-timing correction; (3) structural segmentation and normali-
zation; (4) functional normalization; (5) outlier identification; and
(6) functional smoothing. After the anatomic and functional pre-
processing steps, a denoising step was included to define, explore,
and remove possible confounds in the BOLD signal (i.e., unwanted
motion, physiological, and other noise sources).

In brief, the first 10 volumes were discarded to allow for equil-
ibration of the magnetic field. All remaining volumes were real-
igned with the first volume to correct for motion. The realigned
images were slice-time corrected, followed by tissue segmentation
(i.e., gray matter/white matter/CSF normalized masks were deter-
mined) and coregistration to a T1-weighted Montreal Neurological
Institute (MNI) native space. Normalization was performed using
DARTEL (Ashburner, 2007) with isotropic 2-mm voxels. Outlier
identification was performed using Artifact Detection Tools, which
computes regressors for outliers and movement (i.e., resulting in
scrubbing parameters). Spatial smoothing was performed using an
8 mm full width at half maximum Gaussian kernel. Participant
movement realignment and scrubbing parameters (using conser-
vative settings for functional outlier detection settings; global
signal z-value threshold and participant motion of 0.5 mm) were
assigned as first-level covariates. Quality assurance (QA) plots were
visually inspected to detect other possible outliers (i.e.,
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“QA_ValidScans,” “QA_MaxMotion,” and “QA_InvalidScans”) and
inspected for an adequate match with MNI space and proper cor-
egistration across participants. Preprocessing using the CONN
default preprocessing pipeline thus yielded normalized structural
volumes, gray matter/white matter/CSF normalized masks, real-
igned slice-time corrected, and normalized smoothed functional
volumes; as well as participant-level movement and scrubbing-
related first-level covariates. After the anatomic and functional
preprocessing steps, a denoising step was included to define,
explore, and remove possible confounds in the BOLD signal. The
denoising step applies linear regression and band-pass (i.e.,
0.01e0.1 Hz) filtering to remove unwanted motion, white matter,
and CSF noise components, as well as physiological noise sources,
hence reducing spurious sources of variance in fMRI.

2.5.2. fMRI processing and connectivity analysis
After preprocessing, rs-fMRI data were processed using the

CONN toolbox. Local correlation analysis was used as a voxel-to-
voxel measure of functional segregation for each observational
point. Local correlation is a measure of local functional coupling for
each voxel that is determined by the average correlation between
the time courses in each seed voxel and its neighbors. A neigh-
borhood of a voxel is defined as the probabilistic region delimited
by an isotropic Gaussian kernel. In this study, we used an 8 mm
kernel, which is conventionally used by the authors of the CONN
toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). To deter-
mine between-network FC, we used another voxel-to-voxel
approach, a group-ICA analysis to identify functional brain net-
works. The CONN toolbox incorporates an atlas that includes
several commonly used functional brain networks (i.e., default
mode, sensorimotor, visual, salience, dorsal attention, frontopar-
ietal, language, and cerebellar) and areas (e.g., medial prefrontal
cortex, PCC, and left and right lateral parietal cortices). ICA as
applied to functional MRI is a data-driven method that attempts to
separate independent sources either spatially or temporally by
organizing brain regions with a similar time course of activation
into spatially independent patterns of BOLD signal that are repre-
sented as ICs (Calhoun, 2001). The CONN toolbox follows the gen-
eral methodology described by Calhoun et al. (2001), which uses a
temporal concatenation of BOLD signal data across multiple par-
ticipants followed by a group-level dimensionality reduction using
principal component analysis and fast-ICA for estimation of
spatially ICs (Calhoun, 2001). Furthermore, back projection for in-
dividual participant-level spatial map estimation is attained by
performing dual regression with a univariate spatial-regression
step and a multivariate temporal-regression step (Calhoun, 2001).
Twenty ICs were chosen as recommended by the CONN toolbox
developers, as it allows for adequate characterization and separa-
tion of the represented components by matching the IC to a
network template via an automated spatial correlation (Whitfield-
Gabrieli and Nieto-Castanon, 2012). To this end, a post hoc Z-sta-
tistic was derived, from the voxel-to-voxel 1-sample t-tests of each
subject-level ICA spatial map with suprathreshold areas, to help
quantify the spatial overlap between ICs and the network template.
This statistic, known as the Dice similarity coefficient or
SørenseneDice index, allowed to assign each IC to a single network.
A threshold of 3.5 was selected, as it yielded a one-to-one corre-
spondence between components and networks visualized in the
spatial correlation maps (i.e., 1 IC was equal to a single network).

2.6. Anosognosia assessment

Three methods are primarily used to assess anosognosia clini-
cally: (1) measurement instruments that incorporate a discrepancy
score between patient and an informant; (2) measurement
instruments based on a self-accuracy discrepancy score, in which
the patient prospectively attempts to predict their performance on
a neuropsychological test; and (3) measurement instruments based
on the examiner's judgment. We used the Everyday Cognition scale
(ECog) to assess anosognosia. The ECog has been previously used to
assess awareness of memory deficits in the ADNI cohort (Gerretsen
et al., 2017). The ECog scale evaluates 6 cognitive domains (i.e.,
memory, language, visuospatial abilities, planning, organization,
and divided attention). Each item is evaluated on a 4-point Likert
scale that refers to the current condition compared with a period of
10 years or longer ago as follows: 1 ¼ better or no change; 2 ¼
questionable/occasionally worse; 3 ¼ consistently a little worse;
and 4 ¼ consistently much worse (Farias et al., 2008). Unawareness
of memory deficits (i.e., anosognosia) was determined in the pre-
sent study using a discrepancy awareness score (i.e., ECog com-
posite score) derived from the difference between the patient's
partner report ECog (ECogPR) and the patient's self-reported ECog
(ECogSR; i.e., Composite ECog ¼ ECogPR � ECogSR). The raw ECog
composite score was then converted to z-scores for each partici-
pant, using the mean and standard deviation (SD) from the com-
bined aMCI and AD groups. Higher scores signify greater
unawareness of memory deficits by the patient and hence ano-
sognosia. We decided to use the ECog composite z-score, rather
than establishing cutoff values (i.e., �1.5 SD) to explore the effect of
unawareness of memory deficits (i.e., anosognosia) on the FC of
each group in this study (i.e., a general linear model [GLM] that
includes anosognosia as a regressor and thus assesses the individ-
ual effect of awareness of memory deficits in each group of
interest).

2.7. Statistical analysis

Statistical analysis was performed using SPSS 25 (SPSS Inc.,
Chicago, IL, USA). Data were screened for outliers and tested for
normality assumptions. The normality of continuous variables was
assessed with the Shapiro-Wilk normality test and visually using
histograms and Q-Q plots. For variables with nonnormal distribu-
tion, a Wilcoxon rank-sum test was used. Analysis of variance
(ANOVA) was used for subgroup-level analysis for normally
distributed variables, and a Kruskal-Wallis test was used for
nonparametric variables. Fisher's exact test was used to evaluate
the association between discrete variables and groups. For voxel-
level measurements, two-sample paired t-tests were performed
on mean regional activation maps to assess between-group differ-
ences for the group-ICA and the local correlation analysis; the
statistical significancewas set at p� 0.05 false discovery rate (FDR)-
corrected for cluster size. To correct for unbalanced group com-
parisons, we performed conjunction analyses using different con-
trasts [�1 1 0] and [�1 �1 2]. This conjunction analysis allows to
correct for a low power/sensibility bias by looking into the remnant
effect size of the between-group differences (Friston et al., 1999). In
group-level ANOVA designs, conjunction analysis allows for the
comparison between 2 groups (FCab) by excluding the observed
difference to a third group (FCac �FCbc), with the connections pre-
sent in both contrasts corrected for a low power/sensitivity bias).
The connectivity maps (i.e., regional activation maps or beta maps)
were used to assess the correlation between anosognosia and brain
activation. A voxel-wise linear regression analysis was performed to
assess the simple main effect of anosognosia on the mean regional
activation; the statistical significance was set at p � 0.05 FDR-
corrected for cluster size. Using the first-level ICA, a second-level
FC analysis was performed through voxel-to-voxel simple t-tests
between the regions with high variance explained by anosognosia
and the identified ICA networks. The statistical significance for the
FC analysis was also set at p� 0.05 FDR-corrected for cluster size. To



Ta
b
le

1
D
em

og
ra
p
h
ic
s
an

d
co

gn
it
iv
e
p
ar
ti
ci
p
an

t
ch

ar
ac
te
ri
st
ic
s

D
em

og
ra
p
h
ic
al

C
og

n
it
io
n

D
ia
gn

os
is

N
Se

x
A
ge

Et
h
n
ic
it
y

M
ar
it
al

st
at
u
s

A
PO

Eε
4
st
at
u
s

Ed
u
ca
ti
on

C
D
R
su

m
of

bo
xe

s
M
M
SE

M
oC

A
A
D
A
S-
C
og

O
ve

ra
ll

14
3

79
fe
m
al
e

(5
5.
2%

)
72

.9
7
�

7.
62

(r
an

ge
,5

6e
95

)
12

8
W

h
it
e

10
7
M
ar
ri
ed

74
N
eg

at
iv
e

16
.2
0
�

2.
67

(8
e
20

)
1.
63

�
1.
61

(0
e
7.
0)

27
.4
5
�

2.
58

(1
9e

30
)

23
.2
3
�

3.
87

(6
e
29

)
10

.2
1
�

6.
45

(1
e
37

)
5
H
is
p
an

ic
15

D
iv
or
ce
d

49
Po

si
ti
ve

4
A
fr
ic
an

A
m
er
ic
an

15
W

id
ow

ed
18

O
th
er

3
M
ix
ed

6
N
ev

er
m
ar
ri
ed

2
M
is
si
n
g

3
A
si
an

H
C

33
20

Fe
m
al
e

(6
0.
6%

)
74

.7
0
�

7.
24

(6
5e

95
)

26
W

h
it
e

25
M
ar
ri
ed

21
N
eg

at
iv
e

16
.8
2
�

2.
11

(1
2e

20
)

0.
05

�
0.
71

(0
e
3.
0)

28
.7
6
�

1.
37

(2
5e

30
)

25
.2
1
�

2.
19

(2
1e

29
)

5.
71

�
2.
91

(2
e
14

)
3
H
is
p
an

ic
3
D
iv
or
ce
d

10
Po

si
ti
ve

3
A
fr
ic
an

A
m
er
ic
an

2
W

id
ow

ed
1
O
th
er

1
M
ix
ed

3
N
ev

er
m
ar
ri
ed

1
M
is
si
n
g

aM
C
I

92
48

Fe
m
al
e

(5
2.
2%

)
72

.2
8
�

7.
62

(5
6e

89
)

85
W

h
it
e

67
M
ar
ri
ed

51
N
eg

at
iv
e

16
.2
2
�

2.
80

(8
e
20

)
1.
66

�
1.
13

(0
e
6.
5)

27
.9
2
�

1.
81

(2
3e

30
)

23
.5
3
�

3.
11

(1
4e

29
)

9.
51

�
4.
31

(1
e
22

)
2
H
is
p
an

ic
11

D
iv
or
ce
d

29
Po

si
ti
ve

1
A
fr
ic
an

A
m
er
ic
an

11
W

id
ow

ed
11

O
th
er

2
M
ix
ed

3
N
ev

er
m
ar
ri
ed

1
M
is
si
n
g

2
A
si
an

A
D

18
11

Fe
m
al
e

(6
1.
1%

)
73

.3
3
�

8.
14

(5
6e

87
)

17
W

h
it
e

15
M
ar
ri
ed

2
N
eg

at
iv
e

14
.9
4
�

2.
56

(1
2e

20
)

4.
36

�
1.
37

(2
.0
e
7.
0)

22
.6
1
�

2.
23

(1
9e

26
)

17
.7
6
�

5.
19

(6
e
25

)
22

.0
0
�

6.
52

(1
0e

37
)

1
A
si
an

1
D
iv
or
ce
d

10
Po

si
ti
ve

2
W

id
ow

ed
6
O
th
er

M
ea

n
�

st
an

d
ar
d
d
ev

ia
ti
on

w
h
er
e
ap

p
lic

ab
le
.

K
ey

:A
D
,A

lz
h
ei
m
er
's
d
is
ea

se
;A

D
A
S-
C
og

,1
1-
it
em

A
lz
h
ei
m
er
's
D
is
ea

se
A
ss
es
sm

en
t
Sc
al
e-
C
og

n
it
iv
e
Su

bs
ca
le
;
aM

C
I,
am

n
es
ti
c
m
ild

co
gn

it
iv
e
im

p
ai
rm

en
t;
A
PO

Eε
4,

ap
ol
ip
op

ro
te
in

E
ε
4
ge

n
ot
yp

in
g;

C
D
R
,C

lin
ic
al

D
em

en
ti
a
R
at
in
g;

H
C
,c
og

n
it
iv
el
y
n
or
m
al

h
ea

lt
h
y
co

n
tr
ol
s;

M
M
SE

,M
in
i-
M
en

ta
l
Sa

te
Ex

am
in
at
io
n
;
M
oC

A
,M

on
tr
ea

l
C
og

n
it
iv
e
A
ss
es
sm

en
t.

J.D. Mondragón et al. / Neurobiology of Aging 101 (2021) 22e39 27
further assess the strength of the association between anosognosia
and the connectivity maps, a correlation analysis between ano-
sognosia and the FC variance within each IC (i.e., a voxel-wise
regression analysis between the ECog composite z-score and the
intrinsic connectivity residuals) was performed. An ROI FC analysis
was performed between the regions that were highly correlated to
anosognosia and the 8 major brain resting-state networks. Finally,
to assess the effect of other covariates that could contribute to FC
between-group differences, first, an overall voxel-wise regression
analysis was performed using a 6 � 121 second-level covariate
matrix followed by voxel-wise regression analyses with backward
elimination of the following variables: age, sex, ethnicity, APOE
status, Hachinski ischemia score, and education.

3. Results

3.1. Participant characteristics

One hundred and forty-three participants had a structural and
an rs-fMRI scan (i.e., same visit), as well as CSF or PET biomarkers
available from the same time point (�4 months). The full descrip-
tion of demographic, diagnostic, and cognitive participant charac-
teristics can be found in Table 1, whereas cognitive characteristics
are displayed by clinical diagnosis in Fig. 2. Twelve participants (i.e.,
5 HC and 7 aMCI) had missing information regarding1 biomarker,
which did not permit an accurate AT(N) classification. Ten partici-
pants were removed (i.e., 2 HC, 7 aMCI, and 1 AD) from the rs-fMRI
analysis because of excessive head movement, leaving 121 partici-
pants in total (i.e., 26 HC, 78 aMCI, and 17 AD). Fig. 3 displays a
stepwise analysis of the patient selection and grouping by their
biomarker profile.

3.2. AT(N) biomarker profile

The participants included in this study were classified according
to the 2018 NIA-AA research framework, and the biomarker profiles
are displayed in Fig.1 (Jack et al., 2018). Overall, 67 participants had a
biomarker profile compatible with Alzheimer's pathologic change
(i.e., 6 HC, 44 aMCI, and 17 AD), 47 had a non-AD pathologic change
profile (i.e., 20 HC and 27 aMCI), and 7 had a normal biomarker
profile (i.e., 7 aMCI). According to the descriptive nomenclature
described by Jack Jr. and collaborators (2018), the HC participant
group had 3 participants with preclinical AD, 3 with Alzheimer's and
concomitant suspected non-Alzheimer's pathologic change, cogni-
tively unimpaired, and 20 with non-Alzheimer's pathologic change,
cognitively unimpaired. Among the aMCI patients, 32 patients had
AD with aMCI (i.e., prodromal AD; 23 AþTþ(N)þ and 9 AþTþ(N)�), 7
participants had Alzheimer's and concomitant suspected non-Alz-
heimer's pathologic change with aMCI, 5 participants had Alz-
heimer's pathologic change with aMCI, 27 participants had non-
Alzheimer's pathologic change with aMCI, and 7 participants had
aMCI with a normal biomarker profile. Among the patients clinically
diagnosed with AD, all had an AT(N) profile compatible with Alz-
heimer's pathologic change. Specifically, 14 patients had AD with
dementia (i.e., 3 AþTþ(N)þ and 11 AþTþ(N)�), 1 patient had Alz-
heimer's and concomitant suspected non-Alzheimer's pathologic
change with dementia, and 2 patients had Alzheimer's pathologic
change with dementia. For a detailed breakdown of the AT(N)
biomarker profile classification by clinical diagnostic group and into
Alzheimer's pathologic change, non-AD pathologic change, and
normal biomarker grouping, we refer the reader to Table 2. Three
group comparisons assessing the effect of cognitive decline on FC
were performed: (1) aMCI with Alzheimer's pathologic change ac-
cording to the biological AT(N) profile (n ¼ 44 participants) versus
AD with Alzheimer's pathologic change (n ¼ 17); (2) prodromal AD



Fig. 2. Cognitive characteristics by clinical diagnosis. Graphical representation of the cognitive characteristics displayed by the clinical diagnosis groups. Presented are the group
means and the 95% confidence interval of the 4 cognitive assessment instruments: the Clinical Dementia Rating Scale- Sum of Boxes; the Mini-Mental State Examination; the
Montreal Cognitive Assessment; and the 11-item Alzheimer's Disease Assessment Scale-Cognitive Subscale.
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or AD with aMCI (i.e., aMCI with AþTþ(N)þ and AþTþ(N)�, n ¼ 32)
versus AD with dementia (i.e., AD with AþTþ(N)þ and AþTþ(N)�,
n ¼ 14); and (3) HCs (n ¼ 20) versus aMCI (n ¼ 27), both with non-
AD pathologic change AT(N) profile. Meanwhile,1 group comparison
was also performed that assessed the impact of the biological profile
on FC, while controlling for cognitive decline, among aMCI patients
Fig. 3. Patient selection and grouping by biomarker profile. Abbreviations: HC, healthy
control; aMCI, amnestic mild cognitive impairment; AD, Alzheimer's disease clinical
diagnosis; AT(N), research framework biological classification based on in vivo
biomarkers.
(i.e., 4) aMCI with non-AD pathologic change AT(N) profile (n ¼ 27)
versus aMCI with Alzheimer's pathologic change AT(N) profile
(n ¼ 44). For a graphical representation of the between-group
comparisons, we refer the reader to the graphical abstract. Sex,
age, ethnicity, marital status, APOEε4 status, education, MMSE,
MoCA, and ADAS-Cog were assessed for between-group statistical
differences, and none were found.

3.3. FC analysis of cognitive decline

First, a local correlation analysis was performed to determine
the regional functional coupling to assess the activity of specific
brain regions without a priori knowledge of functional and struc-
tural brain communication (Deshpande et al., 2009). A neighbor-
hood was determined to explore the correlation between adjacent
voxels, which provided insight into the cohesiveness or functional
segregation of each region. Second, ICA were performed to assess
the relationship between different brain areas. As a voxel-to-voxel
measure of brain functional integration, ICA allows the assess-
ment of the functional coupling of distant networks (Wylie et al.,
2015). Twenty ICs were chosen, as recommended by the CONN
toolbox developers, as it allows for adequate characterization and
separation of the represented components by matching the IC to a
network template via an automated spatial correlation (see
Supplementary Fig. 1 that displays the spatial correlation of ICs to
the template). A large spatial correlation corresponds to a better
match to the network template. After matching, the following
components were identified: components 1, 5, 10, 13, and 17 best
corresponded to the cerebellar network; components 2, 3, 11, and
12 (i.e., right temporal pole) to the DMN; components 4 and 14 to
the dorsal attention networks; components 6, 15, 18, and 19 (i.e.,
thalamus) to the sensorimotor network; components 7, 8, and 16 to
the visual network; component 9 to the language network; and
component 20 to CSF. Brain network dynamics of cognitive decline
through different stages of the cognitive decline continuum were
assessed by considering the biological definitions based on the
AT(N) classification. We present the results of the between-group
comparisons that assess the differences in FC between patients
with (1) clinical AD (i.e., all with Alzheimer's pathologic change)



Table 2
AT(N) biomarker profile classification by clinical diagnostic group

AT(N) biomarker profile

Alzheimer's pathologic change Non-AD pathologic change Normal AD biomarkers

Group Aþ Tþ (N)þ Aþ Tþ (N)� Aþ T� (N)þ Aþ T� (N)� Total A� Tþ (N)þ A� Tþ (N)� A� T� (N)þ Total A� T� (N)� Total

AD 3 11 1 2 17 0 0 0 0 0 17
aMCI 23 9 7 5 44 8 1 18 27 7 78
HC 3 0 3 0 6 8 0 12 20 0 26
Total 29 20 11 7 67 16 1 30 47 7 121

AT(N): National Institute on Aging-Alzheimer's Association (NIA-AA) 2018 research framework for a biological in vivo classification based on “A” beta-amyloid burden, “T” tau
pathology, and “N” neurodegeneration or neuronal injury.
Key: AD, Alzheimer's disease; aMCI, amnestic mild cognitive impairment; HC, cognitively normal healthy controls.
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and aMCI with Alzheimer's pathologic change; (2) prodromal AD
(i.e., AD with aMCI) and AD with dementia; and (3) cognitively
unimpaired (i.e., HCs with non-AD pathologic change) and aMCI
patients with non-AD pathologic change. For the last comparison,
the effect of biological disease burden on FC in aMCI is explored
(i.e., 4) by comparing aMCI patients with Alzheimer's pathologic
change to aMCI patients with non-AD pathologic change, thereby
controlling for cognitive decline.

3.3.1. aMCI with Alzheimer's pathologic change versus AD with
Alzheimer's pathologic change patients

a) Local correlation analysis

Patients with aMCI and Alzheimer's pathologic changes had
greater local correlation than AD with Alzheimer's pathologic
change patients in the DMN (T ¼ 6.86, p-FDR < 0.001) and the
salience network (T ¼ 8.23; p-FDR < 0.001). Conversely, AD with
Alzheimer's pathologic change patients had higher local correlation
than aMCI patients with Alzheimer's pathologic change in the
cerebellar network (T ¼ 9.21, p-FDR < 0.001) and the sensorimotor
network (T ¼ 3.21, p-FDR ¼ 0.002). These results as well as the
cluster size and localization (i.e., region and peak activation MNI
coordinates) are presented in the right column of Table 3 and
visually represented on the left side of Fig. 4A.

b) Group-ICA analysis

Patients with aMCI and AD pathologic changes had greater
between-network connectivity than AD with Alzheimer's patho-
logic change patients between the cerebellar network and DMN
(T ¼ 3.33; p-FDR ¼ 0.003) and between the dorsal attention and
salience networks (T ¼ 2.94; p-FDR ¼ 0.0094). Conversely, AD with
Alzheimer's pathologic change patients had greater between-
network connectivity than aMCI patients with Alzheimer's patho-
logic change between the cerebellar and visual networks (T ¼ 3.01;
p-FDR ¼ 0.0076). Cluster location, size, and activation effect sizes
are displayed in the left column of Table 3 and visually represented
on the right side of Fig. 4A.

3.3.2. Prodromal AD (AD with aMCI) versus AD with dementia

a) Local correlation analysis

Patients with prodromal AD had greater local correlation than AD
withdementia patients in theDMN(T¼ 8.26;p-FDR< 0.001; T¼ 6.70,
p-FDR< 0.001; T¼ 6.67; p-FDR< 0.001; here, each T-value represents
a separate cluster within a particular network). Conversely, AD with
dementia patients had greater local correlation than patients with
prodromal AD in the cerebellar network (T¼ 6.88; p-FDR< 0.001) and
the sensorimotor network (T¼ 6.73; p-FDR< 0.001). Cluster location,
size, and activation effect sizes are found in the right column of Table 4
and visually represented on the left side of Fig. 4B.

b) Group-ICA analysis

The prodromal AD group had greater between-network con-
nectivity than AD patients with dementia between the DMN and
the cerebellar network (T ¼ 4.01; p-FDR < 0.001), as well as be-
tween the DMN and the sensorimotor network (T ¼ 2.39; p-FDR ¼
0.0351) and between the cerebellar and visual networks (T ¼ 4.01;
p-FDR ¼ 0.0012). Conversely, the between-network connectivity
was greater in AD patients with dementia than in prodromal AD
between the DMN and the sensorimotor network (T ¼ 3.03; p-
FDR ¼ 0.0203; T ¼ 2.83, p-FDR ¼ 0.0352; T ¼ 2.21, p-FDR ¼ 0.041;
here, each T-value represents a separate cluster within a particular
network), between the DMN and the dorsal attention network (T ¼
2.81, p-FDR ¼ 0.0185), between the DMN and the cerebellar
network (T ¼ 2.80; p-FDR ¼ 0.0375; T ¼ 2.50, p-FDR ¼ 0.0402),
between the DMN and the visual network (T ¼ 2.61; p-FDR ¼
0.0308), and between the visual and sensorimotor networks (T ¼
2.80, p-FDR ¼ 0.0308). Cluster location, size, and activation effect
sizes are found in the left column of Table 4 and visually repre-
sented on the right side of Fig. 4B.

3.3.3. HCs versus aMCI both with non-AD pathologic change

a) Local correlation analysis

Patients with aMCI with non-AD pathologic change had greater
local correlation than cognitively healthy participants with non-AD
pathologic change in the cerebellar network (T ¼ 7.92; p-FDR <

0.001), the visual network (T ¼ 7.92, p-FDR < 0.001), and the
sensorimotor network (T ¼ 6.65, p-FDR < 0.001). There were no
significant results for the reverse comparison. Cluster location, size,
and activation effect sizes are found in the right column of Table 5
and visually represented on the left side of Fig. 4C.

b) Group-ICA analysis

The between-network connectivity was greater in aMCI patients
with non-AD pathologic change than in participants with normal
cognition and non-AD pathologic change between the visual and
sensorimotor networks (T ¼ 2.94; p-FDR ¼ 0.0052; T ¼ 2.89, p-
FDR ¼ 0.0058; here, each T-value represents a separate cluster
within a particular network) and between the visual and cerebellar
networks (T ¼ 2.64, p-FDR ¼ 0.011). There were no significant re-
sults for the reverse comparison. Cluster location, size, and activa-
tion effect sizes are found in the left column of Table 5 and visually
represented on the right side of Fig. 4C.



Table 3
Functional connectivity analysis between aMCI with Alzheimer's pathologic change and AD with Alzheimer's with pathologic change patients

aMCI with Alzheimer's pathologic change > AD with Alzheimer's with pathologic change

Local correlation analysis Between-network connectivity

Networksa Region (peak activation coordinate) Cluster size
(voxels)

Effect sizeb

(p-FDR)
Networksa Region (peak activation coordinate) Cluster size (voxels) Effect sizeb (p-FDR)

Default mode Left lateral occipital cortex (�56 �72 þ22)
Bilateral precuneus cortex (�07 �71 þ38)
(þ04 �48 þ37)
Left posterior cingulate cortex (�07 �55 þ25)
Left angular gyrus (�50 �64 þ23)
Left supramarginal gyrus (�56 �46 þ45)

1810
1143
945
365
282

T ¼ 6.86
(<0.001)

Cerebellar and default mode Precuneus (�17 �68 þ26) 29 T ¼ 3.33 (0.003)
Dorsal attention and salience Left precentral gyrus (�13 �33 þ45) 32 T ¼ 2.94 (0.0094)

Salience Right lateral occipital cortex (þ56 �60 þ33)
Right angular gyrus (þ45 �46 þ24)
Right insular cortex (þ39 �16 �02)
Right supramarginal gyrus (þ45 �61 þ50)
Right putamen (þ28 �14 þ10)

884
681
175
157
89

T ¼ 8.23
(<0.001)

Cerebellar and visual Left lateral occipital cortex (�30 �72 þ27)
Left lingual gyrus (�07 �71 þ01)
Left intracalcarine cortex (�12 �79 þ14)
Left cuneal cortex (�03 �82 þ16)
Right lingual gurus (þ07 �74 þ01)
Right supracalcarine cortex (þ03 �81 þ05)

127
89
66
33
33
26

T ¼ �3.01 (0.0076)

Cerebellar Left cerebellum VIII (�08 �68 �38)
Left cerebellum crus 1 (�27 �66 �33)
Right cerebellum VIII (þ13 �66 �54)
Left cerebellum VI (�28 �66 �32)
Right cerebellum crus 1 (þ38 �64 �33)
Left cerebellum crus 2 (�29 �64 �33)
Right cerebellum VI (þ33 �70 �30)

1054
1022
738
685
604
556
453

T ¼ �9.21
(<0.001)

Sensorimotor Right superior frontal gyrus (þ18 �07 þ58)
Right precentral gyrus (þ11 �04 þ56)
Right juxtapositional lobule (þ38 �07 þ49)
Left superior frontal gyrus (�08 þ23 þ45)

460
363
277
254

T ¼ �3.21
(0.002)

Key: AD, Alzheimer's disease; aMCI, amnestic mild cognitive impairment.
a Characterization of each network is derived from the spatial overlap between the CONN network template and the local correlation between-group differences or the independent component (IC) between-group differences.
b Effect size refers to the statistical inference derived from the T-value or the size of the difference relative to the variation of the data (i.e., differences in the mean regional activation between groups for a specific region or

cluster, for the local correlation analysis, and an independent component for the IC analysis). Multiple t-values correspond to more than 1 independent cluster within the same network with a high local correlation difference
between the compared groups or to multiple regions (i.e., clusters) inside an independent component.
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Fig. 4. Functional connectivity analysis of cognitive decline. (A) Functional connectivity analysis between aMCI with Alzheimer's pathologic change and AD with Alzheimer's with
pathologic change patients. FC, functional connectivity; aMCI, amnestic mild cognitive impairment; AD, Alzheimer's disease. Activation maps are graphical representations of
Table 3, where hot colors represent greater mean regional activation (i.e., between clusters for the local correlation analysis and between specific region and independent
component for the between-network functional connectivity analysis) in aMCI with Alzheimer's pathologic change than AD with Alzheimer's with pathologic change patients and
cold colors represent the opposite contrast or lower mean regional activation (i.e., cold colors reflect the opposite effect, greater mean regional activation in AD with Alzheimer's
with pathologic change patients than in aMCI with Alzheimer's pathologic change). Subcortical activation is represented in red. Activation values based on T values (i.e., activation
color bar range �10 to 10 for the local correlation analysis and �5 to 5 for the between-network connectivity analysis). ICA figures display the cluster within the independent
component where the between-group differences are observed and not the connectivity between regions; the color gradients are proportional to the size of the effect (i.e., between-
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3.3.4. aMCI with non-AD pathologic change versus aMCI with
Alzheimer's pathologic change

a) Local correlation analysis

Patients with aMCI with Alzheimer's pathologic change had
greater local correlation than aMCI patients with non-AD patho-
logic change in the cerebellar network (T¼ 6.41, p-FDR¼ 0.001) and
the visual network (T ¼ 6.32; p-FDR < 0.001). There were no sig-
nificant results for the reverse comparison. Cluster location, size,
and activation effect sizes are found in the right column of Table 6
and visually represented on the left side of Fig. 5.

b) Group-ICA analysis

Greater between-network connectivity was observed in aMCI
patients with non-AD pathologic change than in aMCI patients with
Alzheimer's pathologic change between the dorsal attention and
cerebellar networks (T ¼ 3.96; p-FDR < 0.001), between the visual
and cerebellar networks (T ¼ 3.29; p-FDR ¼ 0.0016), between the
default mode and cerebellar networks (T ¼ 2.58; p-FDR ¼ 0.0241),
and between the visual and dorsal attention networks (T ¼ 2.34; p-
FDR ¼ 0.0438). Conversely, aMCI patients with Alzheimer's path-
ologic change had greater between-network connectivity between
the salience and visual networks (T ¼ 2.58; p-FDR ¼ 0.0238) than
patients with aMCI with non-AD pathologic change. Cluster loca-
tion, size, and activation effect sizes are found in the left column of
Table 6 and visually represented on the right side of Fig. 5.
3.4. Neural correlates of anosognosia

A voxel-vise regression analysis was performed on each clini-
cally and biologically defined group with cognitive decline to un-
derstand the neural correlates of anosognosia in the Alzheimer's
continuum. From the sample included in this study, several par-
ticipants lacked a complete set of ECog scores to obtain an ECog
composite z-score. Seventy-eight AD or aMCI patients had AT(N)
biomarkers and fMRI data, of which 73 also had complete ECog data
for that same visit (i.e., 37 aMCI with Alzheimer's pathologic
change, 19 aMCI with non-AD pathologic change, and 17 AD pa-
tients). Furthermore, among the subgroups analyzed, 32 patients
with prodromal AD and 14 patients with AD with dementia had the
ECog data necessary to calculate the ECog composite z-score.

We explored the impact of anosognosia among each group
previously described. After the regression analyses assessing the
relation between anosognosia and brain FC, we found that only the
prodromal AD group had an association (i.e., positive) between
anosognosia and brain connectivity in the bilateral anterior cingu-
late cortex (ACC; T ¼ 2.52, p-FDR ¼ 0.043); in other words, the
greater the anosognosia, the stronger the FC. This however only
group differences t-values). (B) Functional connectivity analysis between prodromal AD and A
are graphical representations of Table 4, where hot colors represent greater mean regional a
region and independent component for the between-network functional connectivity anal
opposite contrast or lower mean regional activation (i.e., cold colors reflect the opposite eff
AD). Subcortical activation is represented in red. Activation values based on T values (i.e., ac
between-network connectivity analysis). ICA figures display the cluster within the indep
connectivity between regions; the color gradients are proportional to the size of the effect (
HC with non-AD change and aMCI with nonpathologic change. Abbreviations: FC, function
amnestic mild cognitive impairment. Activation maps are graphical representations of Table 5
the local correlation analysis and between specific region and independent component for
change than aMCI patients with non-AD pathologic change, and cold colors represent lowe
regional activation in aMCI patients with non-AD pathologic change than in HC with non-AD
on T values (i.e., activation color bar range �10 to 10 for the local correlation analysis and �
within the independent component where the between-group differences are observed and
the effect (i.e., between-group differences t-values). (For interpretation of the references to
provided information on the ACC being correlated to anosognosia in
prodromal AD. A second-level FC analysis was used to further
explore the observed between-network connectivity between the
ACC and the 8 major resting-state brain networks in prodromal AD.
In this analysis, a seed to voxel analysis using the ACC as the ROI or
seed was used to assess its FC with the 8 resting-state brain net-
works. This allowed us to understand the relation between ano-
sognosia and the FC between the ACC and the rest of the brain in
prodromal AD. Among patients with anosognosia in prodromal AD,
the FC between the ACC and the visual (T ¼ 3.72; p-FDR � 0.001),
the language (T¼ 3.25; p-FDR¼ 0.0029), and the sensorimotor (T¼
2.40; p-FDR ¼ 0.0233) networks was increased. Conversely, in this
group, FC between the ACC and the DMN (T ¼ �3.34; p-FDR ¼
0.0023) and cerebellar (T ¼ �3.20; p-FDR ¼ 0.0033) networks was
decreased. Cluster location, size, and effect sizes are found in Table 7
and visually represented in Fig. 6. To further illustrate the identified
relationship between anosognosia and the FC between the ACC and
the other resting-state networks, we provide the scatterplots
correlating the intrinsic connectivity residuals and the ECog com-
posite Z-score in Supplementary Fig. 2 and the effect sizes of this
relationship in Supplementary Table 3. Finally, no significant effects
were observed in the second-level covariate voxel-wise regression
analysis with backward elimination of age, sex, ethnicity, APOE
status, Hachinski ischemia score, and education.
4. Discussion

To the best of our knowledge, this is the first study that in-
corporates the NIA-AA research framework to assess differences in
FC between different stages in the AD continuum. Furthermore, we
also identified neural correlates of anosognosia in clinically and
biologically characterized groups in the AD continuum. We report
that using biological definitions, the DMN connectivity is persis-
tently affected in the early stages of the Alzheimer's biological
continuum, which is on par with findings from clinically defined
groups in the AD continuum. Furthermore, we associate anosog-
nosia to FC changes in the ACC in prodromal AD and between the
ACC and different brain networks, pointing to the importance of the
ACC in the perception of awareness of memory deficits and how
brain FC changes in this region might precede changes found in the
PCC, a DMN region typically associated in AD with anosognosia.

Cognitive decline was assessed objectively by considering bio-
logical confounding factors, which can be identified through the
AT(N) characterization. In this study, we measured the local cor-
relation and between-network connectivity changes throughout
the Alzheimer's syndromal and biological disease continuum. First,
we considered biological confounding factors associated with AD
bymaking group comparisons that consider Alzheimer's pathologic
change (i.e., AþT�(N)�, AþT�(N)þ, AþTþ(N) �, and AþTþ(N)þ bio-
logical profiles). In addition, Alzheimer's pathologic change was
D with dementia. FC, functional connectivity; AD, Alzheimer's disease. Activation maps
ctivation (i.e., between clusters for the local correlation analysis and between specific
ysis) in prodromal AD than AD patients with dementia and cold colors represent the
ect, greater mean regional activation in AD patients with dementia than in prodromal
tivation color bar range �10 to 10 for the local correlation analysis and �5 to 5 for the
endent component where the between-group differences are observed and not the
i.e., between-group differences t-values). (C) Functional connectivity analysis between
al connectivity; HC, cognitively healthy participants; AD, Alzheimer's disease; aMCI,
, where hot colors represent greater mean regional activation (i.e., between clusters for
the between-network functional connectivity analysis) in HC with non-AD pathologic
r activation group differences (i.e., cold colors reflect the opposite effect, greater mean
pathologic change). Subcortical activation is represented in red. Activation values based
5 to 5 for the between-network connectivity analysis). ICA figures display the cluster

not the connectivity between regions; the color gradients are proportional to the size of
color in this figure legend, the reader is referred to the Web version of this article.)



Table 4
Functional connectivity analysis between prodromal AD and AD with dementia

Prodromal AD > Alzheimer's disease with dementia

Local correlation analysis Between-network connectivity

Networksa Region (peak activation coordinate) Cluster size
(voxels)

Effect sizeb

(p-FDR)
Networksa Region (peak activation coordinate) Cluster size

(voxels)
Effect sizeb

(p-FDR)

Default mode Right lateral occipital cortex (þ44 �60 þ52)
Right angular gyrus (þ54 �60 þ32)
Right supramarginal gyrus (þ54 �47 þ50)
Brain stem (þ08 �30 �14)
Left lateral occipital cortex (�54 �74 þ22)
Left precuneus cortex (�09 �72 þ40)
Posterior cingulate cortex (�05 �58 þ23)
Left angular gyrus (�42 �66 þ24)
Left supramarginal gyrus (�58 �44 þ42)

1179
654
122
790
1724
995
607
350
195

T ¼ 8.26 (<0.001)
T ¼ 6.70 (<0.001)
T ¼ 6.67 (<0.001)

Cerebellar and default mode Left frontal pole (�32 þ50 þ18) 493 T ¼ 4.01 (0.0012)
Sensorimotor and default mode Left planum polare (�43 �13 �07) 49 T¼ 2.39 (0.0351)
Sensorimotor and default mode Right parietal operculum cortex (þ46 �30 þ19)

Right planum temporale (þ42 �20 þ04)
Left paracingulate gyrus (�07 þ51 þ09)

89
33
38

T ¼ �3.03 (0.0203)
T ¼ �2.83 (0.0352)
T ¼ �2.21 (0.041)

Dorsal attention and default mode Left middle temporal gyrus (�48 �26 �20) 159 T ¼ �2.81 (0.0185)

Cerebellar Left cerebellum VIII (�16 �62 �52)
Left cerebellum Crus 1 (�48 �65 �38)
Right cerebellum VIII (þ14 �68 �
52)
Left cerebellum VI (�44 �61 �25)
Left cerebellum Crus 2 (�48 �65 �37)

856
767
623
534
235

T ¼ �6.88 (<0.001) Default mode and cerebellar Left inferior temporal gyrus (�48 �26 �20)
Posterior cingulate cortex (þ12 �41 þ30)

37
91

T ¼ �2.80 (0.0375)
T ¼ �2.50 (0.0402)

Default mode and visual Left precuneus (�18 �70 þ46)
Left lateral occipital cortex (�20 �72 þ45)

545
142

T ¼ �2.61 (0.0308)

Sensorimotor Right precentral gyrus (þ14 �14 þ70)
Right postcentral gyrus (þ12 �15 þ67)
Right juxta-positional lobule (þ42 �07 þ50)
Left juxta-positional lobule (�19 �11 þ70)
Left superior frontal gyrus (�10 þ21 þ39)
Right superior frontal gyrus (þ45 þ07 þ42)
Left paracingulate gyrus (�08 þ10 þ48)

907
449
386
283
269
268
260

T ¼ �6.73 (<0.001) Visual and sensorimotor Right precentral gyrus (þ26 �04 þ46) 62 T ¼ �2.80 (0.0308)

Key: AD, Alzheimer's disease; aMCI, amnestic mild cognitive impairment.
a Characterization of each network is derived from the spatial overlap between the CONN network template and the local correlation between-group differences or the independent component (IC) between-group differences.
b Effect size refers to the statistical inference derived from the T-value or the size of the difference relative to the variation of the data (i.e., differences in the mean regional activation between groups for a specific region or

cluster, for the local correlation analysis, and an independent component for the IC analysis). Multiple t-values correspond to more than 1 independent cluster within the same network with a high local correlation difference
between the compared groups or to multiple regions (i.e., clusters) inside an independent component.
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Table 5
Functional connectivity analysis between HC and aMCI with non-AD change

HC with non-AD pathologic change > aMCI with non-AD pathologic change

Local correlation analysis Between-network connectivity

Networksa Region (peak activation coordinate) Cluster size (voxels) Effect sizeb (p-FDR) Networksa Region (peak activation coordinate) Cluster size (voxels) Effect sizeb (p-FDR)

Cerebellar Right cerebellum VI (þ32 �57 �26)
Left cerebellum VI (�23 �57 �21)
Left cerebellum IV & V (�11 �49 �20)
Vermis VIII (�01 �66 �29)
Right cerebellum crus 1 (þ36 �70 �25)

342
336
170
168
167

T ¼ �7.92 (<0.001) Visual and sensorimotor Right occipital pole (þ04 �93 þ12)
Right supra calcarine cortex (þ17 �82 þ18)
Right lingual gyrus (þ06 �64 þ08)

98
22
48

T ¼ �2.94 (0.0052)
T ¼ �2.89 (0.0058)

Visual Right lingual gyrus (þ25 �49 �12)
Right occipital fusiform gyrus (þ25 �78 �16)
Left lingual gyrus (�15 �60 �03)
Right occipital pole (þ16 �92 þ04)
Left occipital pole (�15 �95 �07)
Left intracalcarine cortex (�07 �88 þ02)
Right intracalcarine cortex (þ08 �89 þ01)

429
235
225
215
183
118
108

T ¼ �7.92 (<0.001) Visual and cerebellar Right intracalcarine cortex (þ12 �82 þ12) 364 T ¼ �2.64 (0.011)

Sensorimotor Left lateral occipital cortex (�21 �68 þ57)
Left superior parietal lobule (�26 �66 þ58)
Right postcentral gyrus (þ15 �34 þ72)
Left postcentral gyrus (�20 �66 þ59)
Left precentral gyrus (�11 �29 63)

831
172
168
166
132

T ¼ �6.65 (<0.001)

Key: AD, Alzheimer's disease; aMCI, amnestic mild cognitive impairment; HC, cognitively normal healthy controls.
a Characterization of each network is derived from the spatial overlap between the CONN network template and the local correlation between-group differences or the independent component (IC) between-group differences.
b Effect size refers to the statistical inference derived from the T-value or the size of the difference relative to the variation of the data (i.e., differences in the mean regional activation between groups for a specific region or

cluster, for the local correlation analysis, and an independent component for the IC analysis). Multiple t-values correspond to more than one independent cluster within the same network with a high local correlation difference
between the compared groups or to multiple regions (i.e., clusters) inside an independent component.

Table 6
Functional connectivity analysis between aMCI with non-AD and with Alzheimer's pathologic change

aMCI with non-AD pathologic change > aMCI with Alzheimer's pathologic change

Local correlation analysis Between-network connectivity

Networksa Region (peak activation coordinate) Cluster size
(voxels)

Effect sizeb

(p-FDR)
Networksa Region (peak activation coordinate) Cluster size

(voxels)
Effect sizeb

(p-FDR)

Cerebellar Left cerebellum crus 1 (�38 �71 �37)
Right cerebellum VIII (þ27 �67 �59)
Right cerebellum VI (þ28 �55 �28)
Left cerebellum VI (�38 �71 �25)
Right cerebellum crus 2 (þ46 �67 �39)
Left cerebellum VIII (�15 �63 �46)
Left cerebellum crus 2 (�16 �59 �47)
Right cerebellum IX (þ11 �67 �47)

404
311
284
275
259
247
180
180

T ¼ 6.41 (<0.001) Dorsal attention and cerebellar Left middle frontal gyrus (�25 þ36 þ32)
Left cerebellum I (�31 �84 �24)
Left inferior frontal gyrus (�43 þ33 þ16)
Left anterior cingulate gyrus (�10 þ24 þ24)

181
84
47
27

T ¼ 3.96 (<0.001)

Visual Left inferior temporal gyrus (�44 �44 �11)
Left lateral occipital cortex (�49 �62 �18)
Left temporal fusiform cortex (�38 �40 �08)

167
78
77

T ¼ 6.32 (<0.001) Visual and cerebellar Left lateral occipital cortex (�46 �69 þ10)
Left occipital pole (�26 �101 �06)
Left cerebellum II (�10 �82 �30)

217
181
155

T ¼ 3.29 (0.0016)

Default mode and cerebellar Right temporal fusiform cortex (þ26 �34 �23)
Right cerebellum VIII (þ15 �76 �51)

94
76

T ¼ 2.58 (0.0241)

Visual and dorsal attention Right paracingulate gyrus (þ12 �35 þ29 56 T ¼ 2.34 (0.0438)
Salience and visual Left frontal pole (�23 þ44 þ44)

Left superior frontal gyrus (�12 þ18 þ57)
230
240

T ¼ �2.58 (0.0238)

a Characterization of each network is derived from the spatial overlap between the CONN network template and the local correlation between-group differences or the independent component (IC) between-group differences.
b Effect size refers to the statistical inference derived from the T-value or the size of the difference relative to the variation of the data (i.e., differences in the mean regional activation between groups for a specific region or

cluster, for the local correlation analysis, and an independent component for the IC analysis). Multiple t-values correspond to more than one independent cluster within the same network with a high local correlation difference
between the compared groups or to multiple regions (i.e., clusters) inside an independent component.
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Fig. 5. Functional connectivity analysis between aMCI with non-AD pathologic change and aMCI with Alzheimer's pathologic change. FC, functional connectivity; aMCI, amnestic
mild cognitive impairment; AD, Alzheimer's disease. Activation maps are graphical representations of Table 6, where hot colors represent greater mean regional activation (i.e.,
between clusters for the local correlation analysis and between specific region and independent component for the between-network functional connectivity analysis) in aMCI with
non-AD pathologic change than aMCI with Alzheimer's pathologic change, and cold colors represent the opposite contrast or lower mean regional activation (i.e., cold colors reflect
the opposite effect, greater mean regional activation in aMCI with Alzheimer's pathologic change than in aMCI with non-AD pathologic change). Subcortical activation is repre-
sented in red. Activation values based on T values (i.e., activation color bar range �10 to 10 for the local correlation analysis and �5 to 5 for the between-network connectivity
analysis). ICA figures display the cluster within the independent component where the between-group differences are observed and not the connectivity between regions; the color
gradients are proportional to the size of the effect (i.e., between-group differences t-values). (For interpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)
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further explored by specifically investigating the differences be-
tween prodromal AD (i.e., AD with aMCI) and AD with dementia,
which assesses the differences associated with cognitive decline in
a population with an explicit pathologic burden compatible with
AD (i.e., AþTþ(N) � and AþTþ(N)þ biological profiles). Second, we
assessed the effect of cognitive decline on FC in participants with
non-AD pathologic change at the initial stages of memory impair-
ment (i.e., cognitively unimpaired participants and aMCI patients).
Furthermore, by considering aMCI patients, a sample with stable
cognition, the impact of Alzheimer's pathologic change on FC could
be assessed by comparing patients with and without Alzheimer's
pathologic change. Finally, after defining, comparing, and assessing
FC of both clinically (i.e., AD and aMCI) and biologically (i.e., with
Alzheimer's pathologic change and with non-AD pathologic
change) defined groups, we assessed the neural correlates of
Table 7
Simple main effect of anosognosia on the activation and FC in prodromal Alzheimer's di

Simple main effect of anosognosia

Group N Activation

Region (peak activation coordinate) Cluster size

Prodromal AD 32 Anterior cingulate gyrus (þ18 þ28 �10) 704

Key: AD, Alzheimer's disease; FC, functional connectivity.
a Effect size refers to the statistical inference derived from the T-value or the size of the

in the mean regional activation and the functional coupling between the anterior cingul
b Characterization of each network is derived from the spatial overlap between th

differences.
anosognosia in each of the clinically and the biologically charac-
terized cognitively impaired groups studied previously.

4.1. FC related to cognitive decline

Resting-state brain network dysfunction has been previously
described in the AD continuum. A study performing network- and
voxel-based quantitative meta-analyses on 34 studies reported
consistent connectivity alterations in the default mode, salience,
and limbic networks in both AD and aMCI patients (Badhwar et al.,
2017). The PCC displayed within-network connectivity changes
assessed through regional homogeneity and amplitude of low-
frequency fluctuations; however, DMN hypoconnectivity in aMCI
patients proved to be less (i.e., could only be demonstrated using
network-level statistics) than the changes observed in AD patients
sease

Functional connectivity

(voxels) Effect sizea (p-FDR) Networkb Effect sizea (p-FDR)

T¼ 2.52 (0.043) 1.Visual T ¼ 3.72 (<0.001)
2.Default mode T ¼ �3.34 (0.0023)
3.Language T¼ 3.25 (0.0029)
4.Cerebellar T¼ �3.20 (0.0033)
5.Sensorimotor T¼ 2.40 (0.0233)

difference relative to the variation of the data (i.e., variance explained by anosognosia
ate cortex and the different networks).
e CONN network template and the independent component (IC) between-group
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(Badhwar et al., 2017). Furthermore, previous work comparing AD
patients to HC observed changes in 3 DMN subnetworks: (1)
decreased within-network connectivity in the posterior DMN; (2)
increased connectivity in the anterior DMN; and (3) increased
connectivity in the ventral DMN (Damoiseaux et al., 2012). Similar
changes pointing to both hypo- and hyper-connectivity in the DMN
have been observed in aMCI. When compared with HCs, hypo- and
hyper-connectivity are observed in aMCI patients (Eyler et al.,
2019). Eyler and colleagues (2019), report a meta-analysis of 31
studies where hypoconnectivity in the PCC/precuneus was associ-
ated with aMCI; however, when these results were compared with
the individual studies, the directionality of the results varied,
concluding that the incorporation of biomarker AT(N) classifica-
tions “might help to resolve some of the heterogeneity of the DMN
findings for MCI” (Eyler et al., 2019; p.115e116). In our study, even
after biologically defining prodromal AD, the DMN seems to have
connectivity changes pointing to both directions in between-
network connectivity but not in within-network FC (i.e., hypo-
and hyper-connectivity between networks but not in local corre-
lation analysis).

The DMN is persistently affected independently of the cognitive
decline present in the Alzheimer's continuum. When first consid-
ering Alzheimer's pathologic change, greater local correlation was
observed in the DMN and salience network when comparing aMCI
to AD, whereas lower local correlation was seen in the cerebellar
and sensorimotor network. Meanwhile, between-network con-
nectivity was increased in the DMN and salience network, whereas
between-network connectivity decreased in the cerebellar network
in aMCI comparedwith AD. Local correlation and between-network
connectivity comparisons between AD patients and aMCI patients
with Alzheimer's pathologic change thus provide insight into brain
FC changes during a cognitive decline transitional stage (i.e.,
cognitive impairment to dementia) in the Alzheimer's continuum.
Similar to our findings, the DMN and the salience network have
been shown to be disrupted in aMCI and AD patients. Although the
patients were not classified according to AT(N) profile, recent PET/
MRI data from AD patients suggest a disruption in the DMN
signaling pathways; furthermore, neuronal injury was identified as
FDG PET hypometabolism in subnetwork regions of the DMN, the
parietal cortices, and hippocampus (Scherr et al., 2019). Regarding
the association of cognitive decline (i.e., decreased cognitive per-
formance in MoCA) and the degree of network disruption in aMCI,
the salience network is primarily affected (Chand et al., 2015).

Prodromal AD has the highest rate of short-term clinical pro-
gression to dementia, and AD with dementia has the most precise
biological and clinical characterization among the different stages
of the in vivo classification of AD-associated cognitive deterioration.
Therefore, studying the brain network differences between pro-
dromal AD and AD with dementia allows for a more in-depth un-
derstanding of the transitional stage from aMCI into AD in the AD
continuum.When the biological classificationwas narrowed so that
only cognitively impaired participants with Alzheimer's compatible
pathologic disease burden were compared, we found that the DMN
showed increased, and the cerebellar and somatosensory networks
decreased local correlation in aMCI with Alzheimer's pathologic
change compared with AD. Others, Brier et al. (2012) and
Hafkemeijer et al. (2012), found that both within-network (com-
parable to local correlation) and between-network FC are decreased
between the anterior and posterior portion of the DMN in the early
stages of AD (Brier et al., 2012; Hafkemeijer et al., 2012).

FC analytic approaches can be divided into functional segrega-
tion measures (e.g., integrated local correlation) and functional
integration approaches (e.g., ICA) (Lv et al., 2018). Local correlation
analysis provides insight into the local function of specific brain
regions or “within-network connectivity”; meanwhile, ICAs focus
on the functional relationship between different brain areas or
“between-network connectivity.” In this study, we used local cor-
relation as a measure of functional segregation, focusing on the
local function of specific brain regions; thus, within-network FC can
be interpreted (Deshpande et al., 2009). As a voxel-to-voxel mea-
sure of functional integration, we used ICA, which is a straightfor-
ward measure of between-network FC (Wylie et al., 2015). For a
didactic explanation of within-network and between-network FC
analytical approaches across different fMRI statistical analyses, we
refer the reader to the review by Lv et al. (2018). Changes in local
correlation and between-network connectivity because of non-
eAD-associated cognitive deterioration were also assessed by
comparing cognitively unimpaired participants and aMCI patients
with non-AD pathologic change. Cognitive decline (i.e., aMCI > HC)
in non-AD pathologic disease burden is associated with higher local
correlation in the cerebellar, visual, and sensorimotor networks and
greater between-network connectivity of the visual network with
both the sensorimotor and cerebellar networks. To the best of our
knowledge, there is no information about FC differences between
cognitively unimpaired participants and aMCI patients with non-
AD pathologic changes. Although our work assesses patients with
cognitive decline and AT(N) profiles cross-sectionally, recently, a
study of ATN classification and cognitive decline in patients with
subjective cognitive decline (i.e., cognitively unimpaired patients
with memory complaints) showed that patients with biomarker
profiles associatedwith both non-AD (i.e., A�TþNþ) and Alzheimer's
pathologic changes (i.e., AþT�N�, AþTþN�, AþT�Nþ, and AþTþNþ)
were at increased risk of dementia. However, the presence of am-
yloid burden (i.e., Aþ profile) was associated with steeper memory,
attention, language, and executive function decline (Ebenau et al.,
2020). Our findings and the finding from Ebenau et al. (2020)
support the hypothesis that patients with AT(N) biomarker pro-
files with Alzheimer's pathologic changes are at higher risk of
developing cognitive and functional changes compatible with AD.
In our study, we observed that the cerebellar network was linked
with reduced FC (i.e., local correlation and between-network) in
association with non-AD pathologic changes. FC changes within
and between the cerebellar network have not been reported;
however, cerebellar volumemay contribute to the cognition level in
an early stage of the Alzheimer’s disease continuum (Lin et al.,
2020). Functional changes might precede structural changes in
the cerebellum early in the Alzheimer’s disease continuum. We
observed that FC changes in the cerebellar network are associated
with non-AD pathologic changes in aMCI. The cerebellar network
had lower local correlation and between-network connectivity in
aMCI than cognitively unimpaired participants with non-AD path-
ologic change and higher local correlation and between-network
connectivity in aMCI with non-AD pathologic change than aMCI
with Alzheimer's pathologic change. All in all, changes in resting-
state brain FC observed in the cerebellum might serve as early
signs not only of structural changes but also of non-AD pathologic
changes early in the Alzheimer’s disease continuum.

4.2. FC related to biological disease burden

To the best of our knowledge, this is the first report that assesses
FC differences between aMCI patients with Alzheimer's pathologic
change and those with non-AD pathologic change. Comparing the
local correlation and between-network connectivity of aMCI pa-
tients with non-AD pathologic change to aMCI patients with Alz-
heimer's pathologic change biological profiles provides information
about the role of disease burden in FC in a population at risk of
developing dementia (i.e., aMCI). In this group, non-AD pathologic
change was associated with higher local correlation in the visual
and cerebellar networks and higher between-network connectivity



Fig. 6. Voxel-wise regression analysis of anosognosia in prodromal AD. Activation maps are graphical representations of Table 7, where hot colors represent the simple main effect
of anosognosia in the variance of the mean regional activation. Activation values based on t-values (i.e., activation color bar range 0e2.7). (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)
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primarily in the visual, cerebellar, and dorsal attention network.
Alzheimer's pathologic change in this group was associated with
higher between-network connectivity between the salience and
visual network These results are in line with the association pre-
viously described between cognitively unimpaired participants and
aMCI patients with non-AD pathologic changes, where the cere-
bellar network as well as the visual network could be altered early
in a non-AD disease continuum.

4.3. Neural correlates of anosognosia in prodromal AD

The secondary objective of this study was to evaluate if ano-
sognosia was a contributing factor that might explain the previ-
ously assessed between-group differences; with this in mind, we
explored the neural correlates associated with anosognosia in AD
and aMCI patients included in this study (i.e., clinical AD, prodromal
AD, aMCI with non-AD pathologic change, and AD with dementia).
Between-group comparisons showed reduced within- and
between-network connectivity in the DMN regions of AD patients
with anosognosia compared with AD patients without anosognosia
and controls (Mondragón et al., 2019) and reduced between-
network FC between the DMN and the insular cortex (Berlingeri
et al., 2015). A disconnection within and between DMN memory
subsystems was related to increased anosognosia discrepancy
scores in patients with AD (Antoine et al., 2019). Anosognosia in
aMCI patients was associated with reduced FC between the pre-
cuneus and the bilateral inferior parietal lobes, left PCC, and left
orbitofrontal cortex, as well as between the right hippocampus and
left middle temporal lobe and right fusiform cortex (Vannini et al.,
2017). Our results point to the ACC as the brain region related to
anosognosia in prodromal AD. Through a voxel-vise regression
analysis, we found that brain connectivity in the ACC was positively
associated with anosognosia in prodromal AD patients. The ACC is a
major hub of the salience network with a key role in processing and
integrating internal and external inputs for decision-making
(Seeley et al., 2007). Reduced gray matter density, cerebral blood
flow, and hypometabolism in the inferior frontal gyrus, ACC, and
medial temporal lobe have been associated with increased ano-
sognosia of memory deficits in AD (Hallaman et al., 2020). Bilateral
ACC volume reduction, among other regions (i.e., lingual gyrus,
fusiform gyrus, and thalamus), has also been associated with
anosognosia of memory deficits in early-AD patients (Varela-
Bermejo et al., 2020). The dorsal or pregenual ACC (pACC) cluster
was predominantly associated with anosognosia in the prodromal
AD patients in this study. The pACC is a major hub in the ventral
salience network and is highly connected with paralimbic regions,
subcortical and brainstem structures, as well as frontoparietal re-
gions (Tourgoutoglou and Dickerson, 2019). The pACC along with
the anterior midcingulate cortex is a core location of neuro-
degeneration early during frontotemporal dementia (FTD);
furthermore, the PCC has been related to impaired awareness of
autobiographical memory (Tourgoutoglou and Dickerson, 2019).

4.4. Limitations and future perspectives

Although the ECog composite score (i.e., discrepancy score be-
tween the patient's and caregiver's score) has been previously used
to assess anosognosia in the ADNI cohort. However, the ECog scale
was not designed for this purpose and could be underrepresenting
anosognosia in this cohort; thus, explaining why the effect of this
behavioral variable is only observed in themost biologically specific
comparison (i.e., prodromal AD versus AD with dementia). Studies
that incorporate the AT(N) classification and use a specific aware-
ness of memory deficit scale or diagnose anosognosia through a
clinical consensus are therefore needed. In this study, we used a
biological approach and definition to explore FC between-group
differences; thus, the neuropsychological test battery reported is
not comprehensive, and only clinical group averages are reported.
We only included a neuropsychological test that assesses global
function, limiting the interpretation of between-group differences.
However, the aim of this study was not to assess domain-specific
changes, as task-based fMRI paradigms are better suited to under-
pin neuropsychological changes than resting-state recordings.
Future studies should explore the association between specific
cognitive domains and between-group FC differences in AT(N)
defined groups using task-based paradigms.

We based our AT(N) cutoff values on previously established
thresholds for the ADNI cohort; however, the use of cutoff values
could have led to a loss of information, especially pertaining to
amyloid burden as subthreshold amyloid accumulation could
represent the earliest detectable indication of pathology (Landau
et al., 2018). Future studies with large AT(N) subgroups could
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consider using biomarkers as continuous variables to avoid losing
information associated with the use of dichotomized biomarker
data. Furthermore, of the 26 cognitively unimpaired participants
included, none were truly HC participants (i.e., 6 with AD patho-
logic changes and 20with non-AD pathologic changes). This finding
raises the question about how “truly healthy” the control partici-
pants are. Before the use of the NIA-AA research framework, studies
only used cognitive scores to designate control participants. Future
studies should consider recruiting and including AT(N) negative
cognitively unimpaired participants as their HCs. In addition, ADNI
participants are highly educated and are self-aware of their cogni-
tive abilities; thus, they are considered a convenience sample. In
cognitively unimpaired ADNI participants, cognitive reserve (i.e.,
the capacity to withstand pathologic disease burden; hence, ac-
counting for individual differences in the susceptibility to age-
related brain changes or AD-related pathology) could be a
contributing factor to the normal cognitive performance in partic-
ipants with AD and non-AD pathologic changes in this study.

Resting-state brain connectivity has certain limitations. It should
be noted that the results reported here assess resting-state fMRI data,
which provide insight into the effect size of between-group differ-
ences in FC but not into their relationship with task-based perfor-
mance. The results presented previously show a lack of distinct
directionality in 2 between-group comparisons (this concerns ICA
between-group differences among prodromal AD and AD with de-
mentia as well as FC between the sensorimotor network and the
DMN and between the cerebellar network and the DMN). The lack of
directionalitymight be a reflection of the complexity in the functional
brain network dynamics associated with the changes related to
cognitive deterioration or simply a reflection of the outcome meas-
ure's strength (or lack) of association, a limitation often related to
resting-state fMRI paradigms. We believe the first to be true: our
main conclusion is, as changes are observed in both directions in the
between-network FC, this is evidence for loss of network integrity.
However,more studies are needed to assess the small between-group
differences found in AT(N) defined groups with task-based para-
digms; this is especially true in assessing the FC of the salience, dorsal
attention, and sensorimotor network. The limited scope of resting-
state fMRI does not allow for the adequate assessment of memory,
attention, language, and executive function processes; task-based
fMRI studies are necessary to understand changes in these cogni-
tive domains. Task-based fMRI studies are necessary to assess the role
of the salience, dorsal attention, somatosensory networks, as resting-
state fMRI studies do not provide concluding evidence regarding the
alterations found between groups in the Alzheimer and non-AD
disease continuum. Another limitation of this study is the unbal-
anced number of participants included in the group comparisons. We
decided to keep all available participants rather than perform
balanced group comparisons. Unbalanced designs in fMRI studies can
be an issue as the sample-sizes dwindles. There exists no clear
guidance regarding containing interactions within the framework of
the GLM in unbalanced neuroimaging data sets (McFarquhar, 2016).
Smaller groups have a larger margin of error (i.e., larger standard of
error for a regression coefficient) because of its smaller sample size
even if the within-group SDs are the same across the compared
groups. Although overparameterized ANOVA models in the GLM are
possible and implementable in SPM (McFarquhar, 2016), we chose to
perform conjunction analyses to correct for having unbalanced
groups. Conjunction analyses using different contrasts are possible in
the CONN toolbox and are described in the Methods section (Friston
et al., 1999), vide supra; however, this correction does not prevent
heteroscedasticity in the GLMmodel or the homogeneity of variances
assumption in a two-sample t-test, which should be assessed in the
imaging preprocessing quality assessment phase. Although we cor-
rected for unbalanced group sizes, these procedures in neuroimaging
are still a topic of debate. Furthermore, on October 28, 2020, a search
on the ADNI-3 databasewas performed, yielding 61 AD patients with
fMRI imaging. Yet, for this study, we chose not to include ADNI-3
imaging data, because at the time these data were extracted, few
participants had available information; we recommend that future
studies should compare between-group differences among ADNI-2
and ADNI-3 datasets, as well as explore AD patient differences us-
ing larger groups.

4.5. Conclusion

Using biological definitions, the DMN connectivity is persis-
tently affected in the early stages of the Alzheimer's biological
continuum, which is on par with findings from clinically defined
groups in the AD continuum. Furthermore, the non-AD pathologic
burden is related to visual and cerebellar network connectivity
changes. FC of the ACC is associated with anosognosia in prodromal
AD; thus, between-network connectivity changes in the ACC might
precede changes found in the PCC, a DMN region typically associ-
ated in AD with anosognosia. The results presented here add to the
supporting evidence that proposes the DMN and the ACC as key
hubs associated with cognitive decline in the AD continuum and
anosognosia, respectively; this network and region could serve in
the future as ROI to monitor brain connectivity changes associated
with prodromal AD and awareness of memory deficits.
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