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Abstract. Scheduling the availability of order pickers is crucial for effective operations in a
distribution facility with manual order pickers. When order-picking activities can only be
performed in specific time windows, it is essential to jointly solve the order picker shift
scheduling problem and the order picker planning problem of assigning and sequencing
individual orders to order pickers. This requires decisions regarding the number of order
pickers to schedule, shift start and end times, break times, as well as the assignment and
timing of order-picking activities.We call this the order picker scheduling problem and present
two formulations. A branch-and-price algorithm and a metaheuristic are developed to
solve the problem. Numerical experiments illustrate that the metaheuristic finds near-
optimal solutions at 80% shorter computation times. A case study at the largest super-
market chain in The Netherlands shows the applicability of the solution approach in a real-
life business application. In particular, different shift structures are analyzed, and it is
concluded that the retailer can increase the minimum compensated duration for employed
workers from six hours to seven or eight hours while reducing the average labor cost
with up to 5% savings when a 15-minute flexibility is implemented in the scheduling of
break times.

Funding: This research was partially funded by NWO (Dutch Research Council) as part of the project
“Sustainable Logistics in Fresh Food” [Grant 438-13-215].

Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2020.1029.
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1. Introduction
Scheduling order pickers is one of the fundamental
decision problems in manual picker-to-part ware-
houses, where order pickers walk (or drive) to the
storage locations of items to retrieve all the items
specified in a picking list. The order-picking process is
one of the most labor-, time- and capital-intensive
activities in warehouses, responsible for more than
50% of the operating costs (Tompkins et al. 2010).
Despite the rise of automated order picking, less than
3% of warehouses are fully automated and less than
10% of warehouses use automated parts-to-picker sys-
tems (Michel 2016). Specifically, Azadeh, De Koster,
and Roy (2019) estimate that only 40 out of thousands
of warehouses in Western Europe are fully auto-
mated. Consequently, manual order picking has been
studied extensively in the literature, and most re-
search focuses on the development of travel time or
distance models for various storage assignment, picking
routing,andorderbatchingpolicies (VanGils et al. 2018b).
In contrast, the order picker planning problem, which

assigns and sequences orders to order pickers, has
hardly been studied (Van Gils et al. 2018b). This is
an important problem for warehouses where orders
have temporal restrictions such as deadlines. The
assignment and the sequence of execution of orders
have a direct impact on the tardiness of orders and on
the costs associatedwith the order-picking operations.
Furthermore, as order pickers are humans, the order
picker planning problem is further constrained by shift
scheduling decisions, which include decisions regarding
the start and end times of shifts and breaks, aswell as the
workforce level requirements for different shifts. The
literature on order picker planning ignores these shift
scheduling decisions and only considers a single shift
horizon (i.e., shifts with one start and end time for all
order pickers) without the need for breaks (Matusiak
et al. 2014, Henn 2015, Matusiak, De Koster, and
Saarinen 2017, Scholz, Schubert, and Wäscher
2017). Therefore, the available solution approaches in
the literature can only be applied in a straightforward
manner to manual order picker planning problems in
warehouseswhere orders donot have temporal restrictions.
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Many distribution centers in Western Europe face
twomain restrictions in the order-picking operations:
due time windows of orders and flexible order pickers.
On-time retrieval of customer orders has become more
important nowadays, with companies offering deliveries
to customers within a small time interval (e.g., one or two
business days). To ensure that customer orders are de-
livered on time, trucks have departure deadlines from
the warehouse. In retail logistics, these departure
deadlines can also be imposed by strict city access time
window regulations (Quak and De Koster 2007) and
contractual agreements with retail stores (Bodnar, de
Kostner, and Azadeh 2017). In addition to these
temporal restrictions, there are also spatial restric-
tions due to limited capacity at the outbound staging
areas ofwarehouses to consolidate orders that need to
be delivered by the same truck. Consequently, every
order has a due timewindowduringwhich it needs to
be picked and sent to the allocated staging lane. These
due time windows present severe challenges to ware-
house managers in maintaining the right order-picking
workforce at the appropriate times. To cover demand
during peak periods, a large number of order pickers is
required. These order pickers can become superfluous
when the volume of order-picking tasks decreases. To
alleviate this problem, warehouses employ flexible or-
der pickers who can be called upon to work on short
notice. The shift start and end times vary for these em-
ployees, but they are guaranteed a minimum payment
equal to the payment corresponding to the minimum
compensated duration, which is defined as the duration
of time an order picker is paid for even if the order picker
is asked to work in a shift with a shorter shift length.
Labor laws in many countries specify a minimum
compensation duration. For instance, employees in the
United States, Canada, andAustraliamust be paid for at
least three hours each time they are required to report to
work. Under these circumstances, the aim of the ware-
house manager is to solve the order picker planning
problem such that due time windows of orders are
respected while minimizing the labor cost. This requires
them to determine how many order pickers to schedule
(including the start times, end times, and breaks for each
order picker), assign the orders that need to be picked
during each shift, as well as the sequence in which the
orders are picked by the order pickers. We call this
optimization problem the order picker scheduling prob-
lem (OPSP). Most warehouse managers rely on their
experience and intuition to make these decisions. Even
though our study is inspired by the largest grocery
retail chain in The Netherlands, the use of flexible
order pickers with minimum compensation and one
or multiple break periods is common in many coun-
tries. Our definitions of flexible order pickers and
break requirements are fully compliant with the current
EuropeanUnion (EU)Directive 91/533/EEC (European

Parliament, Council of the European Union 1991) as
well as the new Directive (EU) 2019/1152 (European
Parliament, Council of the European Union 2019) that
will replace the current directive in 2022. An overview
of other labor laws around the world is included in
online Appendix D. Our study is generally applicable
and relevant tomanymanual order-pickingwarehouses
where orders have tight due times and the resources to
prepare orders (such as the number of staging lanes) and
order pickers are limited.
In this paper, we combine the order picker planning

problem with the shift scheduling problem to jointly
determine the scheduling of start, end, and break
times for the shifts of flexible order pickers as well as
the assignment and sequencing of orders with due
time windows to these order pickers. The shift de-
cisions have direct implications for the order-picking
process that shouldnot be ignored. In onlineAppendixA,
an illustrative example is given that highlights the
importance of explicitly constructing shifts that take
breaks into account when orders have due time
windows and order pickers are flexible. The contri-
butions of our work are four fold. (i) We introduce the
OPSP to the order-picking literature and formulate
the OPSP as a mixed integer linear program (MILP).
(ii) To solve the problem, we present an exact branch-
and-price algorithm in combination with an efficient
heuristic to generate tight upper bounds based on the
savings algorithm. (iii) We propose a computationally
efficient metaheuristic that is capable of producing near-
optimal solutions for large instances. (iv) A case study is
performed to investigate the practical impact of flexible
shift structures and show the impact can be substantial.
The outline of this paper is as follows. Relevant

literature is reviewed in Section 2. Section 3 presents
the problemdescription and themodel formulation of
the problem. In Section 4, we present a branch-and-
price algorithm to find optimal solutions for the
problem. A metaheuristic to solve the problem is
proposed in Section 5. Results from computational
experiments and the case study follow in Section 6.
Finally, Section 7 concludes the paper.

2. Literature Review
As identified in the previous section, the OPSP operates
at the intersection of shift (or personnel) scheduling and
order picker planning. More details on both research
streams in the literature are provided in this section.

2.1. Order Picker Planning Problem
When orders have temporal restrictions (such as due
time windows) or when they result in penalties
when completed early or late, the assignment of
orders to order pickers and the sequencing to execute
these orders have a direct impact on the feasibility
of workforce schedules and the associated costs.
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Elsayed et al. (1993) and Elsayed and Lee (1996) are
the first authors to study the joint order batching and
sequencing problem for a single automated storage
and retrieval system (AS/RS) where the objective is
to minimize the earliness and tardiness of orders.
The authors suggest simple heuristic methods to gen-
erate solutions for the problem. Henn and Schmid
(2013) and Henn (2015) extend this work to multi-
ple order pickers, which is considered the joint order
batching,assignment, andsequencingproblem(JOBASP).
The authors suggest iterated local search and attribute-
based hill climber, variable neighborhood search, and
variable neighborhood depth algorithms to solve this
problem. Tsai, Liou, and Huang (2008) introduce a
joint order batching, assignment, sequencing, and
routing problem (JOBASRP), which is an extension of
the JOBASP with routing decisions for the order
pickers within the warehouse. Chen et al. (2015) and
Scholz, Schubert, and Wäscher (2017) propose heu-
ristic solution approaches for this problem. Matusiak
et al. (2014) investigate a variation of JOBASRPwhere
the sequencing of batches is not relevant but the
routing is part of the optimization problem, which
aims at minimizing the overall travel distance. In
most applications, the storage racks are stationary,
however, Boysen, Briskorn, and Emde (2017) consider
an interesting variationwithmobile rackwarehouses,
where an entire storage aisle may need to bemoved to
access items in it. Here, the objective is to sequence
orders to minimize the number of aisle relocations.

In a recent review on order-picking problems, Van
Gils et al. (2018b) note that there is hardly any liter-
ature on the integration of the order assignment and
sequencing decisions for order pickers (i.e., the order
picker planning problem) while determining the order-
pickingworkforce (i.e., the shift schedulingproblem).All
work in the literature on scheduling manual order
pickers assumes a single shift start and end timewithout
the need for a break,which can be tracedback toElsayed
et al. (1993) and Elsayed and Lee (1996). This sim-
plifying assumption is only valid for machine envi-
ronments or for manual order-picking environments
where a fixed number of order pickers can start and
end their shift at only one given time, no breaks are
scheduled, and orders do not have temporal restric-
tions (as discussed in Section 1). When order pickers
have fixed employment contracts, the shift scheduling
decisions are typically made at a tactical level or at least

before any order assignment and sequencing decisions
are made. However, when order pickers have flexible
employment contracts, it is crucial to make shift
scheduling decisions at the same time as the order
assignment and sequencingdecisions aremade. Figure 1
illustrates the typical order in which decisions are
made in the two types of employment contracts. These
differences require us to review shift scheduling litera-
ture,which isdone in the following.Note that batching is
decoupled in both of the contracts because integrating
optimal order batching with other decisions is compu-
tationally prohibitive in realistic settings. Furthermore,
an appropriate batching policy alone can explain much
of the variance in travel times of order pickers compared
with related decisions (storage, zoning, and routing)
(Van Gils et al. 2018a).

2.2. Shift (or Personnel) Scheduling Problem
In contrast to the literature on order-picking pro-
cesses, the shift scheduling literature explicitly con-
siders shift decisions as part of the planning problem.
Shift scheduling is one of the oldest problems in the
field of operations research. It dates back to Edie (1954)
and Dantzig (1954), who scheduled toll booth oper-
ators, and it has received a lot of attention in the
literature since then (Ernst et al. 2004a, b; Van den
Bergh et al. 2013). Many of the mathematical for-
mulations are based on a generalized set covering
modelwhere each possible shift (i.e., a combination of
start time, end time, and break placement) is repre-
sented by a decision variable. The goal is to determine
the optimal complement of shifts such that opera-
tional constraints are satisfied while optimizing some
objective function. It has applications in many in-
dustries including airlines, public transportation, hos-
pitality, military, healthcare, and call centers.
Shift scheduling problems can be divided into two

broad categories based on the type of workload they
consider: workload-coverage problems and task-
coverage problems. The main distinction between
these two categories relies on what is known prior to
performing the personnel planning. In workload-
coverage problems, the actual tasks that need to be
executed during the planning horizon are not known
when personnel are scheduled. Consequently, the
demand for employees is forecasted based on ex-
pectedworkloads andworkers are scheduled to cover
these predicted personnel demands. Employees are

Figure 1. Sequence of Decision Problems with Fixed and Flexible Employment Contracts for Order Pickers
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usually scheduled to perform one type of task that can
be preempted between employees working in dif-
ferent shifts (e.g., manning a cash register in a shop).

In contrast toworkload-coverage problems, the actual
tasks that need to be executed are known in task-
coverage problems. In addition to the creation of shifts,
these problems include assignment decisions of tasks
to individual employees or shifts such that all, or as
many as possible, tasks are completed. Consequently,
task-coverage problems are generally more compli-
cated to solve than workload-coverage problems. Task-
coverage problems can be further divided into two
subcategories: fixed task timing problems and flexible
task timing problems. In fixed task timing problems,
when to execute each task is known a priori (therefore,
sequencing decisions are not included). These problems
aim to generate schedules that cover the fixed tasks
with a minimum number of machines or shifts. Exam-
ples of these problems are fixed job scheduling prob-
lems (Fischetti, Martello, and Toth 1987, 1989), in-
terval scheduling problems (Kroon, Salomon, and
Van Wassenhove 1995; Kolen et al. 2007) and shift
minimization personnel task scheduling problems
(Krishnamoorthy, Ernst, and Baatar 2012). The navy
personnel planning problem studied byHolder (2005)
is closely related. Another example of the fixed task
timing problem is the integrated task scheduling and
personnel rostering problem, which generates the
roster of employees while explicitly considering the
coverage of tasks (Smet, Ernst, and Berghe 2016).
Beliën and Demeulemeester (2008) present a branch-
and-price algorithm for the integrated rostering prob-
lem of nurses while incorporating the scheduling of
tasks that arise from surgery schedules. When the plan-
ning horizon of the fixed task timing problem is divided
into periods and the duration to execute each task is
equivalent to the length of a period, this is known in
the literature as the multiactivity shift scheduling prob-
lem (Côté, Gendron, and Rousseau 2011; Elahipanah,
Desaulniers, and Lacasse-Guay 2013; Dahmen, Rekik,
and Soumis 2018).

In flexible task timing problems, when to execute
tasks is a decision. Consequently, sequencing deci-
sions have to be made in addition to shift scheduling
and task assignment decisions. For instance, home
care workers are assigned to locations where tasks
(such as cooking, cleaning, and administering med-
icine) must be performed within specific time win-
dows (Rasmussen et al. 2012). Closely related prob-
lems include the field workforce scheduling problem,
where individual workers with appropriate skills are
assigned to geographically distributed tasks (Alsheddy
and Tsang 2011), and the technician task scheduling
problem, where individuals with the correct skill mix
are assigned to tasks of different priorities (Cordeau
et al. 2010, Fırat and Hurkens 2012).

2.3. Shift Scheduling Problem with Breaks
The inclusion of breaks in the personnel scheduling
literature is mainly limited to workload-coverage
problems. Thompson (1988) is one of the first authors
to explicitly plan for breaks when shift schedules are
generated. In its simplest form, the set covering formu-
lation of Dantzig (1954) is extended with additional
decision variables to represent breaks and reliefs. For
problems involving a high degree of flexibility with
respect to the timing of breaks, the number of enu-
merated shifts increases drastically and the resulting
set covering problem can be very difficult to solve (if
even possible). To overcome these challenges, Bechtold
and Jacobs (1990) propose a compact formulation that
implicitly considers breaks, but is tractable for realistic
instances. This model is extended by Thompson (1995)
to consider different types of breaks and even over-
time. Aykin (1996) also presents a compact integer
programming model that is capable of considering time
windows for multiple breaks in one shift. Aykin (2000)
shows that this model is computationally superior to
the formulation in Bechtold and Jacobs (1990), who
only consider one break in a shift. Sungur, Özgüven,
and Kariper (2017) present a goal programming ap-
proach for the same problem studied byAykin (1996).
The work of Bechtold and Jacobs (1990) is also

extended by Brusco and Jacobs (2000) to introduce
break and relief planning in tour scheduling prob-
lems. In this type of problem, the aim is to generate a
schedule with multiple shifts for each employee as
well as off days during which the employee is not
working. Consequently, the planning horizon is longer
than for shift scheduling problems. Bard, Morton, and
Wang (2007) also model a tour scheduling problem
with break and labor rules but in a stochastic envi-
ronment of a parcel sorting center. Gérard, Clautiaux,
and Sadykov (2016) present a heuristic that is based
on column generation for a more extensive prob-
lem, which simultaneously considers off days, shift
scheduling, shift assignments, and task assignments
within shifts. A key difference of these problems
comparedwith our OPSP is that the tasks have a fixed
timing rather than a time window during which they
need to be performed.
For flexible task timing problems, the scheduling of

breaks is only included in the truck driver scheduling
problem. In these problems, the sequence in which
locations are visited by trucks has to be determined
while satisfying appropriate time windows. The maxi-
mum amount of time a truck driver is allowed to be on
the road is restricted such that breaks and rest periods
have tobe considered to satisfy the strict hours-of-service
regulations (Goel 2010, Goel and Kok 2012). The truck
driver scheduling problem is extended to vehicle
routing decisions in Goel and Irnich (2017). In these
studies, the objective of the problem is tominimize the
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travel distance. An alternative objective function for the
problem is presented by Tilk and Goel (2020), where
the problem aims to minimize the number of working
days for a given route instead of the travel distance.

A comparison between OPSP and the available
literature on shift scheduling problems can be found
in Table 1. It becomes clear that the order picker
planning problem does not consider shift scheduling
decisions when orders have temporal restrictions.
Furthermore, most of the flexible task timing prob-
lems in the shift scheduling literature do not consider
the characteristics that are unique to warehouse en-
vironments (i.e., tasks with due time windows in
combination with flexible workers who require breaks
and a minimum payment).

In the shift scheduling literaturewith task assignments
that have to be performed in a certain timewindow, only
the truck driver scheduling problem considers breaks. It
is therefore the most closely related to our problem
formulation. The break requirements for truck drivers
considered in Goel and Irnich (2017) are similar to the
break requirements for order pickers considered in
the OPSP. However, a major difference is that Goel
and Irnich (2017) focus on minimizing travel dis-
tances, whereas schedule durations do not play a role.
The objective in Tilk and Goel (2020) is to minimize
the sum of labor costs and distance-related costs
whereas labor costs are related to the number of
working days required to complete the route. The
number of hours worked within a working day does
not play a role, andmost schedules generated actually

include long waiting periods. The OPSP studied in
our work combines elements of minimizing schedule
duration with minimum compensated duration, which
make the OPSP structurally different from the afore-
mentioned problems and necessitates new solution ap-
proaches. Our work addresses this gap in the literature
and combines the order picker planning literature and
shift scheduling literature. In Section 4, we further
explain the differences between our approach to solve
the OPSP and other approaches in the literature.

3. Problem Description and
Model Formulation

In this section, we explain the warehouse operations
that define our OPSP and formulate the corresponding
MILP model. Symmetry breaking constraints and ad-
ditional constraints to tighten the model formulation are
included in online Appendix B. An alternative for-
mulation of the problem as a network flow problem is
presented in online Appendix C. This formulation
takes more computational effort to solve in our nu-
merical experiments, so it is included for reference
only. Extending the OPSP formulation with full-time
order pickers and different types of break time con-
straints are discussed in online Appendix D.
Production facilities or retail stores place orders to

receive items from a distribution warehouse based on
their needs. An order is composed of multiple order
lines, where each order line consists of a particular
item and the corresponding requested quantity. The
order lines that should be processed together create a

Table 1. Comparison of OPSP to the Shift Scheduling and Order Picker Planning Literature

Type of problem (representative paper)

Coverage Task timing

Break timing
Minimum compensated

durationTask Workload Fixed Flexible Window

Parcel sorting center scheduling (Bard, Morton, and
Wang 2007)

3 3

Order assignment sequencing (Scholz, Schubert, and
Wäscher 2017)

3 3 3

Fixed job scheduling (Fischetti,Martello, and Toth 1989) 3 3

Interval scheduling (Kroon, Salomon, and Van
Wassenhove 1995)

3 3

Shift minimization (Krishnamoorthy et al. 2012) 3

Nurse rostering and task scheduling (Beliën and
Demeulemeester 2008)

3 3

Home care scheduling (Rasmussen et al. 2012) 3 3 3

Field workforce scheduling (Alsheddy and Tsang 2011) 3 3 3

Technician task scheduling (Cordeau et al. 2010) 3 3

Call center scheduling (Bhandari, Scheller-Wolf, and
Harchol-Balter 2008)

3 3

Hotel staff scheduling (Thompson and Pullman 2007) 3 3

Navy personnel planning (Holder 2005) 3 3 3

Tour scheduling (Brusco and Jacobs 2000) 3 3 3

Multiactivity shift scheduling (Dahmen, Rekik, and
Soumis 2018)

3 3 3

Truck driver scheduling (Goel and Irnich 2017) 3 3 3 3

Order picker scheduling problem 3 3 3 3 3
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pick list. The list contains all items that need to be
picked and it guides the order picker through the
warehouse. Items that are collected are put in roll
cages such that products in the same roll cage are sent
to a single customer. However, a customer’s order can
result in multiple roll cages picked by one or more
order pickers. An order picker’s tour finishes when all
roll cages from the pick list are delivered to the cor-
responding staging lanes at the outbound docks. The
total number of order lines and roll cages can exceed
hundreds, which prohibits a joint optimization of the
personnel scheduling and order batching problems
within a reasonable computational effort. Conse-
quently, we assume that order batching (i.e., the
construction of pick lists) is done a priori. In the re-
mainder of the paper, we use the term “batch” to refer
to a pick list that is to be completed by a single order
picker in a single pick tour.

Let I be the set of batches that are generated a priori.
The time required to pick batch i ∈ I is denoted by ti. It
includes the time for an order picker to travel between
product locations of items in the batch, search for the
items, place them in roll cages, and transport the filled
roll cages to the staging lanes. We assume that ti is
independent of the order picker and its value is de-
terministic since the picking route is determined by
the storage locations of the items in the batch and the
routing strategy of the warehouse. The company in
our case study uses norm times that are set to pick a
certain batch.

Each batch i ∈ I has a corresponding delivery due
time window [ri, di]. All items in the batch have to be
delivered to the designated staging area(s) within this
time window. The values of ri and di are determined
based on the outbound truck departure schedule and
the capacity of the staging lanes. The value of ri
usually corresponds to the departure time of the
previous vehicle that departed from the same staging
lane as where the vehicle for batch i is departing from,
and di is the latest time batch i can be delivered at the
staging lane for thevehicle todeparton time (i.e.,without
violating the delivery due time at the customer).

Let P represent the set of the flexible order pickers
that can be employed by thewarehouse,where |P| � pmax.
Flexible workers are scheduled to work when needed,
and as such, they are assigned one of a variety of
possible shift lengths with different start times on
any day. They are only compensated for the amount
of time they spend at the warehouse. Although there
is often no restriction on the minimum shift length
for a worker, warehouses favor providing a mini-
mum compensation if an employee is scheduled to
work. This improves the working relation between the
flexible order pickers and the warehouse to increase
employee retention. The time corresponding to the
minimum compensation duration is denoted by Tmin.

The maximum amount of time an employee can work
per day is restricted by law and gives an upper limit
on the shift length, which we denote by Tmax.
There are also labor rules and union agreements on

breaks for human order pickers. The amount of time
an employee can work without a break is denoted by
Tbreak. An employee who works for a duration that
exceeds Tbreak time units must be given an uninter-
rupted break of at least lb time units. An employee can
be entitled to more than one break in the same shift
depending on the values of Tbreak and Tmax. The length
of the planning horizon is Tday time units. Formula-
tions for alternative types of breaks are presented in
online Appendix D. We assume that order picking is
scheduled nonpreemptively and breaks cannot in-
terrupt this. Interrupting a pick tour and leaving
picking equipment in the storage area creates con-
gestion as well as safety and security hazards. Lim-
ited parking space for order-picking equipment in the
break areas and issues of theft or responsibility of
already picked items may also prevent preemptive
batch scheduling. If breaks can preempt the order
picking of a batch, we propose an updated solution
framework and perform a numerical comparison in
online Appendix K.
Even though flexible employees can potentially

start and end their shifts at any time, many shift start
and end times are an administrative and operational
burden, and labor union agreements can also prohibit
unrestricted shift start and end times (Brusco and
Jacobs 1998). Furthermore, employees are paid in
integral multiples of a certain duration (even if they
completed the last task of their shift before the end of a
certain time period). Therefore, we divide the plan-
ning horizon into W time periods of equal length,
where each period consists of l time units. The set of
admissible time periods to start or end a shift is
denoted by S and E, respectively. Note that the dis-
cretization of the time horizon is only used for shift
start and end times. The actual tasks that need to be
executed can still start and end at any point in time
during the shift (i.e., they do not have to coincide with
the time periods) and the same holds for breaks.
We make the assumption that all order-picking

operations associated with the batches in the plan-
ning horizon are performedwithin the same planning
horizon, and we assume that all shifts of the order
pickers start and end in the same planning horizon
that they are scheduled for (i.e., there is no overlap
between either order-picking tasks of a batch or shifts
of order pickers in different planning horizons).
Furthermore, we define a task as an activity that

needs to be scheduled—either picking orders of a
batch or taking a break. Arranging tasks in a sequence
creates a shift, and each task in the sequence has a
position (first, second, and so on). This is illustrated
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with a Gantt chart in Figure 2. Employee 1 picks the
items in batch 4 and 5 successively, then takes a break,
and finally picks items in batch 10 before ending the
shift. Note that the order picker completes four tasks
but not necessarily consecutively (i.e., there can be an
interruption or gap between two successive tasks),
which is the case for employee 2. Each order picker
can perform at most k̄ tasks in a shift. A summary of
all parameters is provided in Table 2.

The following decision variables are used in our
model formulation:

The variable xikp is 1 if batch i ∈ I is scheduled to be
picked at the kth position in the shift for order picker
p ∈ P, where k ∈ K, else 0.

The variable ykp is 1 if a break is scheduled at the kth
position in the shift for order picker p ∈ P, where
k ∈ K, else 0.

The variable sjp is 1 if order picker p ∈ P starts the
shift at the beginning of period j ∈ S, else 0.

The variable ejp is 1 if order picker p ∈ P ends the
shift at the end of period j ∈ E, else 0.

The variable ckp is the completion time of the task
scheduled at the kth position in the shift for order
picker p ∈ P, where k ∈ K.

The variable mp is the amount of time for which
order picker p ∈ P is compensated.
The OPSP is formulated as a MILP model as follows:

min
∑
p∈P

mp, (1)

subject to

∑
i∈I

xikp + ykp ≤ 1 ∀k ∈ K, p ∈ P, (2)∑
k∈K

∑
p∈P

xikp � 1 ∀i ∈ I, (3)
∑
i∈I

xi1p + y1p ≤
∑
j∈S

sjp ∀p ∈ P, (4)
∑
j∈S

sjp �
∑
j∈E

ejp ∀p ∈ P, (5)

c1p≥
∑
j∈S

j−1
( )

sjp

( )
l+∑

i∈I
tixi1p+ lby1p

∀p∈P,
(6)

ckp ≥ ck−1,p +
∑
i∈I

tixikp + lbykp

∀k ∈ K \ 1{ }, p ∈ P,
(7)

∑
j∈E

jejp
( )

l ≥ ck̄p ∀p ∈ P, (8)

ckp +M 1 − xikp
( ) ≥ ri ∀i ∈ I, k ∈ K, p ∈ P, (9)

ckp −M 1 − xikp
( ) ≤ di ∀i ∈ I, k ∈ K, p ∈ P, (10)

ckp − chp −
∑
i∈I

tixihp

( )
≤ Tbreak +M

∑k
k′�h+1

yk′p

( )

∀h, k ∈ K, h < k, p ∈ P,

(11)

∑
i∈I

xik−1,p + yk−1,p ≥
∑
i∈I

xikp + ykp

∀k ∈ K \ 1{ }, p ∈ P,
(12)

Tmin
∑
j∈S

sjp ≤ mp ∀p ∈ P, (13)

∑
j∈E

jejp −
∑
j∈S

j − 1
( )

sjp

( )
l ≤ mp ∀p ∈ P, (14)

ckp ≥ 0 ∀p ∈ P, k ∈ K, (15)
xikp ∈ 0,1{ } ∀i∈ I,k ∈K,p∈P, (16)
ykp ∈ 0,1{ } ∀k ∈K,p∈P, (17)
sjp ∈ 0,1{ } ∀j∈ S,p ∈P, (18)
ejp ∈ 0,1{ } ∀j∈E,p∈P, (19)
0≤mp ≤Tmax ∀p ∈P. (20)

The objective function (1) expresses the minimization
of the total labor cost over all order pickers who are
scheduled to pick the items that need to be delivered
during the planning horizon. Constraints (2) ensure
that order pickers can perform at most one task in the

Figure 2. A Gantt Chart to Illustrate the Concepts of Tasks,
Shifts, and Task Positions in a Sequence

Table 2. Overview of the Parameters for the Order Picker
Scheduling Problem

Notation Description

P Set of order pickers that can be scheduled, {1, . . . , pmax}
I Set of batches that need to be picked
K Set of positions in which an order picker can perform a

task, {1, . . . , k̄}
ti Duration to pick and deliver the items of batch i ∈ I
ri Earliest due time of batch i ∈ I
di Latest due time of batch i ∈ I, where di ≥ max{ri, ti}
Tmin Minimum time an order picker needs to be

compensated if scheduled
Tmax Maximum shift length
Tbreak Maximum time duration an order picker can work

consecutively without a break
Tday Length of the planning horizon
l Length of a time period
J Set of time periods, {1, . . . ,W}
S Set of time periods where a shift can start at the

beginning of that period, S ⊆ J
E Set of time periods where a shift can end at the end of

that period, E ⊆ J
lb Duration of a break
M A very large number
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kth position of their shift. Constraints (3) ensure that
each batch is picked exactly once. Order pickers can
only perform the first task in a shift if they are
scheduled to start a shift according to constraints (4).
Constraints (5) ensure that every order picker who
starts a shift also ends a shift (and vice versa).

Constraints (6) and (7) determine that the task in the
kth position of the order picker’s shift can only be
labeled as completed after it is executed. Constraints (8)
ensure that the order picker can only finish a shift
after completing the last assigned task. Constraints (9)
and (10) require that batches are completed within
their due timewindows.Note that an order picker can
have fewer than k̄ tasks assigned to a shift. In that case,
for all positions in a shift without an actual task
assigned (i.e., for all k where

∑
i xikp+ ykp � 0), the

completion times ckp are set equal to the completion
time of the last assigned task (i.e., ckp � ck−1,p).

Constraints (11) states that an order picker cannot
work successively for a durationmore thanTbreak time
units without a break. The constraint specifies that the
time between the start of the task at position h of the
shift and the end of the task at position k, where k > h,
has to be less than or equal to Tbreak if no break is
scheduled between these two tasks. Constraints (12)
specify that a task can only be assigned to a position if
there is also a task assigned to the previous position.

Constraints (13) ensure that an order picker is
compensated for at least Tmin time units if the picker is
scheduled to work. Constraints (14) ensure that an
order picker is compensated for at least the amount of
time the order picker is scheduled to work (i.e., from
the start time of the shift to the end time of the shift).
Constraints (15) to (20) define the domain and range
of the decision variables.

Proposition 1. Generating a feasible solution for the OPSP
is NP-hard in the strong sense.

Proof. The P| |CMAX problem is a special case of the
OPSP. □

4. Branch-and-Price Algorithm for OPSP
This section outlines an exact procedure to solve the
OPSP using a branch-and-price framework. In this
solution approach, the linear relaxation in each node
of a branch-and-bound tree is solved with column
generation (Barnhart et al. 1998, Vanderbeck 2000). A
branch-and-price solutionapproachremainsa successful
and popular solution strategy for generating optimal
solutions for problems in a variety offields, ranging from
transport planning (Bertsimas et al. 2019), routing
(Dellaert et al. 2018), to personnel scheduling (Van
den Bergh et al. 2013). We also develop a branch-and-
price algorithm for the OPSP. We first present the
reduced master problem (RMP). The pricing problem

to verify the optimality of a linear programming (LP)
solution is presented in Section 4.2. The branching
that occurs when the LP solution does not satisfy the
integrality conditions is discussed in Section 4.3.
The proposed framework for the branch-and-price

algorithm has similarities to the one used by Goel and
Irnich (2017). However, because we use the schedule
duration in the objective function (which includes
employee waiting times between the performance of
two tasks) and include the minimum compensated
duration as constraints, the details of the building
blocks for the branch-and-price algorithm are dif-
ferent from the algorithm in Goel and Irnich (2017).
Specifically, the augmented graph for the pricing
problem requires information on shift starting and
ending times. The definitions of resources and re-
source extension functions that are used to solve the
pricing problem also differ and are more comparable
to those used for theminimum tour duration problem
(MTDP) (Tilk and Irnich 2017) than the truck driver
scheduling problem. Furthermore, because of the
constraints regarding the minimum compensated du-
ration and flexible breaks, the problem suffers from
significant issues of symmetry. Therefore, we develop a
tailored acceleration strategy to address these issues (see
the end of Section 4.2).

4.1. Reduced Master Problem
To present the RMP for the OPSP in a column-
generation format, we first introduce the concept
of a column as a feasible shift schedule that is specified
by the start and end time as well as the assignment
and sequence of tasks (both order picking and breaks)
to be performed by a single order picker while re-
specting the due time windows of order-picking
tasks, maximum shift length Tmax, and maximum
time between breaks Tbreak. Let Ω denote a set of all
feasible schedules, whereΩ′ is a subset ofΩ (i.e.,Ω′⊆Ω).
The cost for an individual schedule q ∈ Ω′ is given
by mq. The parameter αiq is set to one if batch i is
processed (or picked) in schedule q, and zero other-
wise. The decision variable θq represents the number
of schedules of type q to be selected in the solution.
TheRMP can be formulated as a set covering problem:

min
∑
q∈Ω′

mqθq (21)

subject to

∑
q∈Ω′

αiqθq ≥ 1 ∀i ∈ I, (22)
∑
q∈Ω′

θq ≤ pmax, (23)

θq ≥ 0 ∀q ∈ Ω′. (24)
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The objective in the RMP is the same as in the OPSP.
Constraints (22) ensure that all batches are processed
(or covered) with the selected schedules. Constraints
(23) do not select more than pmax schedules to be
performed by order pickers. The constraints (2) and
(4) to (20) of the OPSP are included in the pricing
problem where columns are generated that result in
feasible schedules.

4.2. Pricing Problem
The pricing problem for the OPSP can be formulated
as an elementary shortest path problemwith resource
constraints (ESPPRC) (Feillet et al. 2004). This is a
variation of the shortest path problem with resource
constraints (SPPRC) where cycles are not allowed,
that is, a node cannot be visited more than once. The
SPPRC can be solved with pseudo-polynomial al-
gorithms (Irnich and Desaulniers 2005), whereas the
ESPPRC is NP-hard in the strong sense (Dror 1994).
Nevertheless, ESPPRC is known to generate a supe-
rior lower bound compared with SPPRC when used as
pricing problem (Contardo, Desaulniers, and Lessard
2015). A technique to solve the ESPPRC is a labeling
algorithm based on dynamic programming (Feillet
et al. 2004). This approach uses the concepts of re-
sources in a graph and resource extension functions. A
resource is an arbitrary one-dimensional piece of infor-
mation that can be determined or measured at the ver-
tices of a directed walk in a graph (e.g., cost, time, load).
In thispaper, time is themain resource. Labels areused to
store the information on the resource values for partial
paths. Labels reside at vertices and they are propagated
via resource extension functionswhen they are extended
along an arc. To keep the number of labels as small as
possible, we define dominance rules to identify la-
bels that need not be extended. We first introduce the
graph structure, labels, resource extension functions, and
dominance rules.

4.2.1. Graph Representation. Consider a subgraph
G � (V,A), whereV is the set of vertices indicating the
set of batches i ∈ I that have to be picked and the arcsA
indicate the subsequent sequence in which the batches
are completed. Thenodes in the sets S and E indicate the
start and end times of a shift, respectively. Further-
more, dummy origin and destination nodes are in-
dicated by o and d, respectively. The complete set of
all vertices is V′ :� {o} ∪ S ∪ V ∪ E ∪ {d}.

We introduce arcs between the dummy origin node
o and the shift start time nodes in S, between each
vertex in S and V, between each vertex in V and E, as
well as between the shift end time nodes and the
dummy destination node d. See Figure 3 for an ex-
ample. The travel time for each arc is set to zero. The
service time ti at each node i ∈ V equals the processing
time of batch i, whereas the service time at the
remaining vertices V′ \ V is zero.

The time windows for the origin and destination
nodes are [ri ; di] � [0 ; Tday] for i ∈ {o, d} such that
these nodes can be visited at any time during the time
horizon. For the shift start time nodes i ∈ S, the value
of ri � di equals the possible shift start times such that
these nodes are visited at these specific times. Simi-
larly, for the shift end time nodes i ∈ E, the value of
ri � di equals the possible shift end times. A feasible
schedule for an order picker comprises a tour from
node o to node d respecting the due time windows
[ri ; di] for i ∈ V′, maximum shift length Tmax, and the
time until breaks Tbreak. As an illustrative example,
Figure 3 represents a graph where there are three
possible shift start and end times. The dashed arrow
indicates a feasible schedule that starts at s1, then
executes batch i3 and ends at e1.

4.2.2. Labels. A partial schedule corresponds to a
partial path in the graphG. A partial schedule hwhere
vertex i is visited as last node is defined by label Lih �(i, cih,Ti, (V1

h , . . . ,V
|V|
h )), where:

• i is the last vertex that has been visited in the
partial schedule;
• cih is the reduced cost of the partial schedule

(i.e., the actual cost minus the dual values of the nodes
visited, see Section 4.2.3 for more details);
• Ti � (Ttime

i ,Tdur
i ,Tstart

i ,Twork
i ,Tbrk

i ) indicates the re-
source vector, where the resource variables are:

- Ttime
i is the time when the batch at node i is

completed,
- Tdur

i is the minimum duration required to service
all the nodes in the partial schedule including thewaiting
times if necessary to respect the due time windows,

- Tstart
i is the latest possible start time of the shift to

feasibly visit all of the vertices in the partial schedule
while respecting the due time windows,

- Twork
i is the amount of time since the end of the

last break,
- Tbrk

i is the latest time to start picking the first
batch after the previous break to ensure feasibility of
the schedule;
• Vv

h is one if node v ∈ V is visited in the partial
schedule or if it is infeasible to visit (due to the due
timewindowsormaximumshift length), zerootherwise.

Figure 3. (Color online) Representation of a Graph
Structure for the Pricing Problem of the OPSP with Three
Shift Start and End Times and Three Batches
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To guarantee elementarity of a (partial) path, it is
sufficient to add the extra resources Vv

h for each node
v ∈ V indicating whether the node has been visited on
the path. When this resource has the value one, it
prohibits the path from re-entering previously visited
nodes. Feillet et al. (2004) enhance this idea by ob-
serving that some nodes are not reachable due to the
resource constraints, which they indicate by setting
the resources Vv

h to one for these nodes without the
path having to visit them. They use this to speed up the
dominance check,which is explained later in this section.

The resource windows of resource vector Ti are given
by Ttime

i ∈ [ri ; di], Tdur
i ∈ [0 ; Tmax], Tstart

i ∈ (−∞ ; Tday],
Twork
i ∈ [0 ; Tbreak], and Tbrk

i ∈ (−∞ ; ∞). A path is called
resource-feasible if there exist resource vectors for
each node in the path that satisfy their resource
windows. Therefore, a feasible schedule is a resource-
feasible path that starts in o and ends in d. Further-
more, let Li denote the set of all labels corresponding
to partial schedules where node i ∈ V′ is the last
visited node.

The initialization of a label is done at shift start
nodes i ∈ S as Lih � (i,Tmin − ψ,Ti, (V1

h , . . . ,V
|V|
h )), where

ψ is the dual variable associated with constraint (23)
of the RMP, Ttime

i � di, Tdur
i � 0, Tstart

i � di, Twork
i � 0,

and Tbrk
i � ∞, and Vj

h � 0 for all nodes j ∈ V.

4.2.3. Resource Extension Functions. A resource ex-
tension function (REF) is used to extend a label (or
partial schedule) with an additional vertex such that
all constraints related to the scheduling problem are
still satisfied. There are two options to extend label Lih
at vertex i to vertex j when Vj

h � 0. The first extension
executes the batch in node j directly after finishing the
batch in node iwithout a break. The second extension
starts with a break before the execution of the batch in
node j. Consequently, we consider the two REFs f (·)
and g(·), respectively.

The REFs f (Ti, j) for the extension of label Lih to node
jwithout a break define the new resource variables of
resource vector Tj as follows:

Ttime
j � f time Ti, j

( )
:� max Ttime

i + tj, rj
{ }

, (25)
Tdur
j � f dur Ti, j

( )
:� max Tdur

i + tj, rj − Tstart
i

{ }
, (26)

Twork
j � f work Ti, j

( )
:� max Twork

i + tj, rj − Tbrk
i

{ }
, (27)

Tbrk
j � f brk Ti, j

( )
:� min dj − Twork

i + tj
( )

,Tbrk
i

{ }
. (28)

Similarly, when label Lih is extended with a break
before the order-picking task is completed as indi-
cated by node j, the REFs g(Ti, j) define the resource
vector Tj as follows:

Ttime
j � gtime Ti, j

( )
:� max Ttime

i + tj + lb, rj
{ }

, (29)
Tdur
j � gdur Ti, j

( )
:� max Tdur

i + tj + lb, rj − Tstart
i

{ }
, (30)

Twork
j � gwork Ti, j

( )
:� tj, (31)

Tbrk
j � gbrk Ti, j

( )
:� min dj − tj,∞{ }

. (32)
Note that the resource variable Tstart

i is never updated
after it is set in the shift start node. The REF for Ttime

j
is a classic REF from the routing literature (Irnich
2008). The REFs for Tdur

j and Tstart
i bear resemblance to

REFs from theMTDP (Tilk and Irnich 2017). The REFs
for Twork

j and Tbrk
j are new and specifically designed to

determine the amount of time elapsed since the last
break. Desaulniers and Villeneuve (2000) use similar
extension functions to estimate the cost of waiting at
nodes for the shortest path problem with time win-
dows and linear waiting costs.
The reduced cost for the partial schedulewhen label

Lih is extended to node j is given by c jh :� max{Tmin,

Tdur
j } − πj − ψ −∑

ĵ∈B̂h
πĵ, where πj is the dual value of

constraints (22) for vertex j, ψ is the dual value asso-
ciated with constraint (23), and

∑
ĵ∈B̂h

πĵ indicates the
accumulated dual values associated with constraints (22)
for the set of batches previously added to the partial
schedule represented by the set B̂h. Note that the
payment to pickers for the entire period (even if they
work only for a fraction of the period) is accounted for
by the use of shift end nodes, which restrict the visit to
the shift end nodes at the end of a period.
The resourceVj

h is set to one to prevent vertex j from
being visited again. Furthermore, Vj′

h is also set to one
for any node j′ ∈ V′ that cannot be visited anymore
when node j is added to the partial path because of
resource constraints. The new label is then given by
Ljh :� ( j, cjh,Tj,Vh), which is only feasible if the resource
variables of the resource vector Tj fall within the as-
sociated resource windows.

4.2.4. Dominance. A dominance principle can be used
to accelerate the solution technique by eliminating
unnecessary labels. To define dominance in our pricing
problem,we note that the REFs are either nondecreasing
or nonincreasing, such that an element-wise comparison
can be made to determine dominance (Irnich and
Desaulniers 2005). A label Lih dominates a label Lih′
if both labels reside at the same vertex i ∈ V′ and if, for
each feasible extension of Lih′ to Ljh′ , there exists a
feasible extension of Lih to Ljh where the value of each
resource with a nondecreasing (or nonincreasing)
REF is less than (or larger than) or equal to the value of
the resource in the extension of Lih′ , that is, c

i
h ≤ cih′ ,

Ttime
i,h ≤ Ttime

i,h′ , Tdur
i,h ≤ Tdur

i,h′ , Tstart
i,h ≥ Tstart

i,h′ , Twork
i,h ≤ Twork

i,h′ ,
Tbreak
i,h ≥ Tbreak

i,h′ , Vv
h ≤ Vv

h′ ∀ v ∈ V. Consequently, the
partial schedule corresponding to label Lih′ cannot be
part of the optimal solution. Note that the differen-
tiation of time resources Ti for label h and h′ is done for
comparison required by dominance. For ease of
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notation, we do not use the differentiation of time re-
sources for specific labels in the remainder of the paper.

4.2.5. LabelingAlgorithm. Thepricingproblem is solved
by embedding the resource definitions, REFs, and
dominance rules in the label correction algorithm by
Feillet et al. (2004). The pseudocode for the labeling
algorithm is presented in online Appendix E.

4.2.6. Acceleration Strategies. Acceleration strategies
are commonly used to speed up branch-and-price
algorithms and are key to successfully solving siz-
able problems (Kallehauge et al. 2005). We propose
three acceleration strategies for the pricing problem.

4.2.6.1. Initial Columns. It is known that column gen-
eration with good initial upper bounds accelerates the
convergence of the linear relaxation at the root node
(Desaulniers,Desrosiers, andSolomon2002). Therefore,
we first generate initial primal solutions with the
savings algorithm outlined in Section 5.1. This al-
gorithm aims to rapidly find a feasible solution. If the
savings algorithm is not able to generate a feasible
solution with at most pmax order pickers, the initial
columns for column generation are initializedwith an
additional artificial column that covers all batches of
the problem and has an arbitrarily high cost to ensure
that this artificial column will not be part of the op-
timal solution.

4.2.6.2. Limited Extension. To exploit the time win-
dows and processing time information between order-
picking tasks to reduce the use of REFs, we first present
the following proposition. The proof of this proposition
is presented in online Appendix F.

Proposition 2. If there is an optimal schedule with two
batches i and j such that ri ≥ rj, di ≥ dj, ti < tj, and i precedes
j in the same order picker’s schedule without a break between
the execution of the two batches, the execution order can be
reversed with the same objective function value.

For any partial schedule h ending with node i
(i.e., presented by label Lih), if there is a node j which
Vj

h � 0 and the conditions in Proposition 2 satisfy, we
only have to consider the extension with a break be-
tween the execution of the batches from node i and j.
Consequently, we limit the extension of resources
in the arc (i, j) with the REF g(·) only. This particular
strategy allows us to have fewer extensions and
maintain a smaller set of labels while solving the
pricing problem.

4.2.6.3. Limited Discrepancy Search. Desaulniers,
Lessard, and Hadjar (2008) and Spliet, Dabia, and
Van Woensel (2018) show that the branch-and-price

algorithmcanbe solvedmore efficientlywhen thepricing
problem is solved with heuristics until no negative re-
duced costs are found (such that no new columns are
added to the RMP). Along the same principle, as pro-
posed by Feillet, Gendreau, and Rousseau (2007) and
Goel and Irnich (2017), we use limited discrepancy
search (LDS) to heuristically accelerate the generation of
columns with a negative reduced cost.
LDS speeds up the pricing problem by maintaining a

limited set of labels and heuristically removing so-called
unpromising labels from the problem. In our pricing
problem, labels with batches that require large waiting
times and numerous breaks are considered unpromising
labels. The waiting time between two nodes i and j is
measured as the time window distance TWdistance(i, j) :�
max{0,rj−di}. The outgoing arcs from each node i
are partitioned into two sets—good arcs and bad
arcs—based on TWdistance. An additional resource
(denoted as lbad) is included in the label that is in-
creased by one if a label traverses through an arc from
the set of bad arcs or if it is extended with a break.
Only labels that have lbad ≤ Λ are extended, where the
threshold Λ is called the discrepancy limit. If the LDS
is unable to find any columnswith a negative reduced
cost, the value of Λ increases by one and the LDS is
repeated. When the discrepancy limit reaches an
upper bound, the LDS terminates and the ESPPRC is
solved with the labeling algorithm. Additionally, an
iteration of LDS is terminated if 100 columns with
negative reduced cost are generated.Note that the use
of LDS does not impact the optimality of the branch-
and-price technique since the last pricing problem at
every node of the branch-and-bound tree is solved
exactly with ESPPRC.

4.3. Branching
If the pricing problem cannot find columns with a
negative reduced cost and the LP solution to the RMP
is not integral, a node of the branch-and-bound tree is
selected for branching. Branching is done on flow
variables using the best-lower-bound-first strategy
(Desaulniers 2010).
A good upper-bound solution improves the effi-

ciency of the branch-and-price technique by reducing
the number of branch nodes in the search tree (Danna
and Le Pape 2005). In our solution procedure, before
branching from the root node, we solve the MILP of
the RMPwhere we only consider the columns that are
generated at the root node. The solution to the MILP
provides the upper bound before branching. If the
root node is not solvedwithin the time limit, theMILP
of the RMP is solved with the available columns to
derive the best known upper-bound solution for
benchmarking purposes.
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5. Metaheuristic for OPSP
Given the size of real-world instances of theOPSP and
the computational complexity of the problem, even
the branch-and-price technique developed in the pre-
vious section is not likely tobea viable solution approach
in real-life applications. In this section, we present an
efficient metaheuristic that adapts the classic savings
principle by Clarke and Wright (1964) to generate an
initial feasible solution, and that solution is improved
by a large neighborhood search (LNS) algorithmwith
simulated annealing (Pisinger and Ropke 2010).

5.1. Savings Algorithm
The savings algorithm iteratively combines two sched-
ules into one schedule based on the savings principle
(Clarke and Wright 1964). The procedure begins by
relaxing the maximum number of order pickers con-
straint and creating schedules that each consist of one
batch to be picked. Then, it iteratively determines the
saving in terms of the labor cost that is generated when
two schedules are combined into one schedule (if pos-
sible). This saving is easy to calculate. Consider that
schedule h′ and h′′ are combined in a feasible schedule
hwith the corresponding compensation mh′ , mh′′ , and
mh, respectively, then the savings is (mh′+ mh′′ ) −mh.
Combining batches in two schedules into one schedule
has the potential to overcome inefficiencies of individual
schedules when these schedules have waiting times (or
breaks) between tasks or the shift length is shorter than
Tmin time units.

To verify whether two (randomly) selected schedules
can be combined into one schedule, we try to solve a
simplified (or reduced) version of our OPSP, which is
formulated as a MILP model in online Appendix G.
Since the reduced problem finds the optimal schedule
for only one order picker (or one shift) with a small
number of order-picking tasks, the MILP can be
solved exactly in a reasonable amount of computation
time. Even though the computation time of the MILP
for the reduced problem is short, a set of infeasibility
checks can be performed first as a preprocessing step
to easilyverifywhether the order-picking tasks cannot be
combined in a feasible schedule. See online Appen-
dix G.1 for the infeasibility checks. If these checks do
not rule out that a feasible schedule can be found, the
reduced OPSP with one order picker is solved. If no
feasible solution is found, it is concluded that the two
schedules cannot be combined. Otherwise, the solu-
tion of theMILPmodel provides the combined schedule
with the largest savings (i.e., it finds the optimal se-
quencing of the order-picking batches).

In the classical savings algorithm by Clarke and
Wright (1964), the savings of combining any given
two schedules are calculated first before combining
solutions in a given iteration of the algorithm. However,

in this paper, if any two randomly selected schedules can
be combined in a feasible schedule and result in a savings
of at least Tmin time units, the combined schedule is
accepted immediately and the two individual schedules
will not be considered for other savings in the same it-
erationof the savings algorithm. If no two schedules exist
that can be combined in a feasible schedule that also
results in sufficient savings of at least Tmin, all possible
combinations are first calculated and then the schedules
are combined such that the maximum savings is
achieved. The procedure continues until no savings
can be realized while combining schedules. When no
further savings can be realized and the number of
schedules in the solution is less than pmax, a feasible
solution is found that satisfies all constraints of the
OPSP, and the algorithm terminates. If no feasible
solution is found, the savings algorithm enters the
second phase, in which the batches of any pair of
schedules are chosen to be combined in a new schedule
that results in the largest savings (which can be the least
negative savings or additional cost) until the number of
schedules equals pmax.

5.2. Large Neighborhood Search for
Improved Solutions

After a feasible solution for the OPSP is generated by
the savings algorithm, the solution is improved with
an LNS procedure. Let us denote the feasible solu-
tion at the beginning of an iteration by π, where the
corresponding cost (or objective function value) is
z(π) :� ∑

p∈P mp. This solution is destroyed and then
repaired in every iteration, which results in a new
feasible solution π′ with cost z(π′). Furthermore, let
the best found solution so far be denoted by π∗. The
decision whether π′ becomes the starting solution in
the next iteration is based on a simulated annealing
principle: if z(π′) < z(π∗), then π∗ :� π′ and π :� π′;
otherwise π′ is accepted as new solution π with
probability e−(z(π′)−z(π∗))/T, where T is the temperature
that is initialized asT :� −w · z(π∗)/ ln(0.5) (Ropke and
Pisinger 2006). The value is updated at the end of
every iteration: T :� ρT, where 0 < ρ < 1 is the cooling
parameter. Consequently, it becomes less likely for
worse solutions to be accepted as the starting solution
in the next iteration when the number of iterations
increases. If the best solution is not improved in nT
iterations, the temperature is reset to the initial value
(−w · z(π∗)/ ln(0.5)), such that it is more likely to ex-
plore new areas in the feasible solution space.

5.2.1. Destruction and Repair. The LNS destroys and
repairs the solution π in two stages. In the first stage,
two order pickers are selected. The first order picker is
selected probabilistically with a roulette wheel principle
based on a wastage ratio. The wastage ratio of an order
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picker is the fraction of the amount of unproductive
duration spent by the order picker compared with the
total unproductive hours spent by all of the order pickers
in the solution. The wastage ratio for order picker p ∈ P,
who is assigned to complete the batches Bp with the
cost mp in solution π, is given by

wp :�
mp −∑

i∈Bp ti∑
p′∈P mp′ −∑

i∈Bp′ ti
( ) ∀p ∈ P. (33)

Anorder pickerwith a higherwastage ratio is likely to
be chosen as the first picker. The second order picker is
randomly selected among the remaining order pickers.

In the second stage, the batches previously assigned
to the two selected order pickers are reassigned to
generate a new (feasible) solution π′. For this purpose,
we use one of two operators with equal probability.
The swap operator exchanges a random subset of
batches between the two order pickers. The insert
operator randomly selects a subset of batches from
the first order picker and assigns them to the second
order picker. In the literature, swap and insert op-
erators are typically designed to exchange or insert
one job, task, or trip at a time. The swap and insert
operator in this work swaps and inserts multiple
batches at a time. This allows us to generate new
solutions that would otherwise require multiple op-
erations with the traditional operators. The number of
batches to swap or insert from each order picker is
uniformly sampled between one and σ (which is a user
set parameter). If the best solution is not improved by
nσ iterations, the value of σ is reduced by one.

After the batches are reassigned to these two order
pickers, the sequencing of the batches and scheduling
of shifts for the order pickers is determined by solving
the same MILP of the reduced problem as in the
savings algorithm (see online Appendix G). Note that
we also verify whether any of the infeasibility con-
ditions is satisfied before solving the reduced prob-
lem. Rather than directly solving a MILP, other so-
lution techniques can be proposed to solve the reduced
problem. For instance, the pricingproblem in Section 4.2
can be adapted to develop a dynamic programming
(DP) algorithm by creating a new graph for each
reduced problem, in which only the relevant batches
assigned to a picker are included and a path starting
at the dummy source (i.e., node o) has to visit all batch
nodes in the graph before returning to the dummy
sink (i.e., node d). At the dummy sink, the solution
with the cheapest cost is selected and returned to the
metaheuristic for evaluation. In limited numerical
experiments, this DP approach to solve the reduced
problem produced the same results as the MILP ap-
proach but with shorter computation times. How-
ever, the development of aDP algorithm requires labels,

REFs, dominance rules, and acceleration techniques that
need to be tailored to solve a specific reduced problem. If
there would be additional restrictions in the original
problem formulation (such as an upper bound on the
ratio between flexible to full-time order pickers, a
maximum number of order pickers at any time or
specific time windows for different types of breaks),
these components of the DP algorithm need to be
redefined. In contrast, the MILP approach is able to
address different variations of the original problem
without the need to change the code (see online Ap-
pendix D). To accommodate flexibility in our solution
approach and easily adjust to different warehouse
environments, we present the LNS that uses the MILP
approach to solve the reduced problem.
Figure 4 illustrates how the two destroy operators

work based on a simple example. The initial schedules
of the two selected order pickers are represented by
X1 and X2. With the swap operator, batch 2 and
batch 6 are interchanged. The new batches assigned to
the order pickers are indicated by B1′

Swap and B2′
Swap,

respectively. With the insert operator, batch 2 is
unassigned from the first order picker and assigned to
the second order picker. The new batches assigned
to the order pickers are then indicated by B1′

Insert and
B2′
Insert, respectively. After solving the MILP as for-

mulated in online Appendix G for each of the two
order pickers individually, we obtain the new schedules
X1′ and X2′ , respectively.
The LNS terminates if z(π∗) does not exceed the

lower bound formulated in Equation (10) (see online
Appendix B), if the number of iterations exceeds a
maximum threshold or if the runtime exceeds a maxi-
mum threshold. Once the LNS terminates and time is
available, we pass the LNS solution to the branch-and-
price algorithm to improve the solution further by
solving the pricing problem for one iteration without
solving the ESPPRC exactly.

6. Results
This section presents a numerical comparison of the
branch-and-price algorithm (Section 4), savings al-
gorithm (Section 5.1), and metaheuristic (Section 5.2)
to solve the OPSP. Since state-of-the-art commercial
solvers such as Gurobi 9.0.1 (Gurobi Optimization
2020) cannot generate an optimal solution for even
the smallest instances, and the branch-and-price al-
gorithm outperforms Gurobi without exception, we
do not report the performance of such commercial
solvers here. See online Appendix H for a comparison
of the performance of commercial solver Gurobi and
the branch-and-price algorithm. Furthermore, no
existing solution procedures from the literature are in-
cluded as benchmark since the authors are not aware of
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any other work that makes the same (or even similar)
decisions and the objective function (see also Section 2).

All solution procedures are implemented in C++
and run on an i7 3.60 GHz machine with 16 gigabytes
of RAM. For the parameters of the branch-and-price
algorithm, the maximum number of good arcs from
any node is set to two and the number of increments
for the discrepancy limit in LDS (i.e., Λ) is set to 10.
The parameter values for themetaheuristic are guided
by the literature,whereρ :� 0.95 and nT :� 200 (Stenger
et al. 2013; Bodnar, deKostner, andAzadeh 2017). The
initial value of σ is set to 4 and nσ to 1,250. Further-
more, w :� 0.1 produced the best results in our nu-
merical experiments, but we cannot guarantee opti-
mality of this parameter value. The stopping criterion
for the branch-and-price method is set to 1,800 sec-
onds. For the metaheuristic, it is set to 360 seconds or
5,000 iterations (whichever comes first) to ensure that
the method is suitable for practical applications.

6.1. Instances in Numerical Testbed
The instances are generated to mimic the operations
of a retail grocery warehouse for which we had de-
tailed data where the target departure times of the
outbound trucks determine the staging lane opera-
tions as well as their earliest and latest due times. For
all instances, we consider a 24-hour time horizon and
weuseminutes as our timeunit. Thewarehouseoperates
24 hours a day, seven days a week. However, all order-
picking tasks and shifts of order pickers are disjoint
between different planning horizons as all shifts in a day
start and end between 11 p.m. and 11 p.m. the next day.

6.1.1. Due Time Windows. Two patterns of due time
windows are considered in our instances: waved and
waveless. In waved instances, trucks arrive at the stag-
ing lanes at the same time and depart from the staging
lanes at the same time (i.e., batches to be picked in the
same wave have the same due time windows). Al-
ternatively, in the waveless operations, the arrival and
departure times of trucks at different staging lanes
are not related. The deadline for each truck departure

from a staging lane is taken from a uniform distribution
in the range of 120–1,425 minutes.
To make sure that there is sufficient time for the

staging and loading operations of a truck, we push back
deadlines (if needed) to guarantee at least 30 minutes
between two consecutive departure due times of
batches destined for the same dock door (or staging
lane). The earliest due time of a batch is set to the latest
due time of the previous batches at the same staging
lane plus 15 minutes to ensure that loads of different
trucks are not mixed up, and previous trucks have
finished loading. The earliest due time of the first batch
that is due at a staging lane is set to zero. The number of
staging lanes in the instances varies from one to eight
(see Section 6.1.4).

6.1.2. Processing Time Distributions. The processing
times of batches are taken either from one of the
following uniform distributions—U[30, 60], U[60, 90]
or U[90, 120]—or from an exponential distribution
with the same corresponding average (i.e., 45, 75, or
105 minutes, respectively). The maximum processing
time of a batch is restricted to 330 minutes to ensure
that employees do not violate the break constraint
(Tbreak � 330 minutes (see Section 6.1.3)).

6.1.3. Shift Types. In accordance with Dutch and
European working hours laws, the maximum shift
length to employ an order picker (i.e., Tmax) is 540
minutes (or nine hours), and the maximum time
duration that an employee can work without a break
(i.e., Tbreak) is 330 minutes (or 5.5 hours). The length of
the break (i.e., lb) has to be at least 45 consecu-
tive minutes (European Parliament, Council of the
European Union 2003).
We consider six shift structures. In shift structures

SStr1, SStr2, and SStr3, shifts can start every eight
hours and Tmin equals eight, six, and four hours, re-
spectively. In shift structures SStr4, SStr5, and SStr6,
shifts can start every four hours and Tmin equals eight,
six, and four hours, respectively. In all shift structures, a
shift can end at the end of any hour after Tmin. Conse-
quently, shift structure SStr1 is the most restrictive

Figure 4. Illustration of the Destroy Operations in an Iteration of the LNSAlgorithm,Where 0 in a Schedule Represents a Break
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and SStr6 is the most flexible. Table 3 summarizes the
six shift structures we consider.

6.1.4. Number of Batches and Staging Lanes. Each
outbound truck requires exactly four order batches to
be picked and the number of trucks departing the
warehouse in the planning horizon equals 10, 20, or 40
trucks. This results in instances with 40, 80, or 160
batches to be picked, respectively. The number of
staging lanes in an instance is chosen such that the
number of departures per staging lane is fixed at five,
10, or 20 trucks. As a result, the number of staging
lanes ranges from one and eight lanes. Note that in-
stances with 10 trucks can only have five or 10 de-
partures per staging lane. Furthermore, for instances
where the number of trucks equals the number of
truck departures in a staging lane, there is only one
staging lane (grouped under “waved” in Table 4). We
assume that sufficient order pickers are available to
schedule with pmax � 100.

6.2. Algorithmic Performance
Table 4 summarizes the results over all 504 instances
in the testbed, whereas the results for the individual
instances are presented in online Appendix H. For the
branch-and-price algorithm, Root solved indicates the
number of instances for which the column generation
was able to solve the linear relaxation within the
runtime limit of 1,800 seconds. Optimal solution in-
dicates the number of instances for which the optimal
solution was found within this time limit. For those
instances where the branch-and-price algorithm was
not able to find the optimal solution,Optimality gap %
presents the average relative percentage cost differ-
encebetween thebest lowerbound foundafter branching
and the best integer solution found after branching. The
average time required to solve the root node and the
overall branch-and-price algorithm is indicatedbyCPULP

and CPUBP, respectively. Note that CPUBP also in-
cludes the time to generate an initial solution. The
average relative performance gap between the solu-
tiongeneratedby the savingsalgorithmandmetaheuristic
compared with the best branch-and-price solution is in-
dicated by %ΔS and %ΔMH , respectively,1 where a
positive number indicates that the branch-and-price

algorithm found a better solution. The average computa-
tion time of the savings algorithm and metaheuristic is
indicated by CPUS and CPUMH, respectively.
Table 4 shows that the branch-and-price algorithm

is capable of solving reasonable size instances. However,
the size of the instances adversely affects the perfor-
mance of the exact approach. For the instances with 40,
80, and 160 batches, the root node can be solved in 100%,
58.9%, and 26.3% of the instances, respectively, and the
algorithm converges to an optimal solution within the
runtime for 60.2%, 36.1%, and 19.4% of the instances,
respectively. For the instances where the branch-and-
price algorithm isnot able tofindanoptimal solution, the
average optimality gap is only 3.5%. Figure 5(a) shows
the average optimality gap of the branch-and-price
solutions for instances where we were able to solve
the root nodebut the optimal solutionswere not obtained.
When we compare the number of instances for

which the root node (i.e., the linear relaxation) is
solved and the number of instances for which an
optimal solution is found within the runtime limit of
1,800 seconds, we make the following observations.
First, waveless instances are more difficult to solve
than waved instances. A reason why the branch-and-
price algorithm can solve waved instances easier is
because the limited extension property (see Proposition 2)
exploits the fact that the batches have nonoverlap-
ping due time windows when solving the pricing
problem. As a result, the labeling algorithm does not
have to explore as many extensions between nodes,
and it is capable of solving the pricing problem more
efficiently for waved instances. Second, instances
with exponentially distributed processing times are
more difficult to solve than instances with uniformly
distributed processing times. Instances with expo-
nentially distributed processing times have many
batches with short processing times. On average, the
number of tasks that can be assigned to an order
picker is higher with the exponentially distributed
processing times. As a result, the labeling algorithm
has to consider more potential solutions and labels
when solving the pricing problem. Third, instances
with more truck departures per staging lane are
easier to solve than instances with fewer truck de-
partures. When there are more trucks departing from
the same staging lane, the average length of the due
time windows is smaller (see Figure 3 in online Ap-
pendix H). As a result, the pricing problem needs to
consider fewer extensions from any node as many
potential solutions are not feasible. See online Ap-
pendix H for a more detailed discussion of these
observations.
The savings algorithm is able to quickly generate a

feasible solution (on average within 4.3 seconds) for
either the branch-and-price algorithm or the meta-
heuristic. However, the quality of these solutions

Table 3. Shift Structures Considered in Our Numerical
Experiments

Shift structure Starting hours (S) Tmin (hours)

SStr 1 0, 8, 16 8
SStr 2 0, 8, 16 6
SStr 3 0, 8, 16 4
SStr 4 0, 4, 8, 12, 16, 20 8
SStr 5 0, 4, 8, 12, 16, 20 6
SStr 6 0, 4, 8, 12, 16, 20 4
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is poor, with an average cost deviation of 15.0% com-
pared with the best solutions found with the branch-
and-price algorithm. In contrast, the solutions with
the metaheuristic have an average performance gap
of less than 0.4%, which is found within less than one-
fifth of the computational time required for the branch-
and-price algorithm. Figure 5, (b) and (c), present the
performance gap of the heuristic procedures and the
computational time for each of the three solution
approaches, respectively.

6.3. Flexible Shift Structures: A Case Study
In this subsection, we apply the metaheuristic to the
OPSP at a warehouse with perishable products of a
Dutch grocery retailer. The case study serves two pur-
poses. First, it evaluates the usability of the meta-
heuristic that we propose to solve industrial instances.
Second, the case illustrates some of the ways that the
methodology in this paper can be used to evaluate
warehouse operating policies of interest to managers.
In particular, we study the impact of the shift structures

on the number of order pickers scheduled to perform
the order-picking activities.

6.3.1. Description Instances. The retailer provided
operational data regarding the processing times and
due time windows of batches for two weeks of its
operations. Thefirstweek represents a typicalweek in
terms of the number of batches to be picked and
shipped from the warehouse. The second week rep-
resents the busiest week of the year, which occurs
during the Christmas season. There are 6.9% more
batches to be picked in the busier week than in the
typical week (see Figure 6(a), where day 1 is a Sun-
day). The warehouse has 53 staging lanes, and the
number of trucks departing from the warehouse
ranges from 128 to 227 trucks per day (see Figure 6(b)).
When we consider the number of batches with a due
deadline in a particular hour in Figure 6(c), we
identify two peak periods of operations: between
hour 5 and hour 7, and between hour 10 and hour 12.
In this figure, hour 0 corresponds to 11:00 p.m. since

Table 4. Summary of Results

Branch-and-price algorithm
Savings
algorithm Metaheuristic

Dep. per
lane Instance type Batches

Number of instances Average runtime

Root
solved

Optimal
solution

Optimality
gap %

CPULP

(sec.)
CPUBP

(sec.) %ΔS
CPUS

(sec.) %ΔMH
CPUMH

(sec.)

5 Unif- Waved 40 18/18 11/18 4.00 10.5 809.7 11.6 2.5 0.2 48.2
80 13/18 9/18 1.7 671.7 1,016.1 12.5 8.5 0.0 234.3
160 3/18 1/18 0.6 1,601.5 1,758.4 12.1 33.8 0.7 361.4

Unif- Waveless 40 18/18 10/18 5.0 54.9 839.2 17.9 2.3 0.5 110.3
80 6/18 3/18 1.1 1,489.8 1,571.5 20.3 7.6 0.2 322.0
160 1/18 0/18 0.8 1,956.9 1,800.0 17.4 26.2 1.9 362.2

Exp- Waved 40 18/18 8/18 3.7 73.7 1,125.7 8.3 2.7 0.0 101.0
80 4/18 2/18 1.5 1,496.3 1,603.9 10.5 9.0 0.0 302.8
160 0/18 0/18 — 1,788.9 1,800.0 15.0 37.3 0.6 361.5

Exp- Waveless 40 18/18 13/18 3.3 76.4 843.1 14.0 2.2 0.7 147.1
80 4/18 0/18 1.4 1,637.2 1,800.0 14.7 7.9 −0.3 348.6
160 0/18 0/18 — 1,889.1 1,800.0 12.9 28.3 1.1 363.3

10 Unif- Waved 40 18/18 16/18 2.1 1.7 204.5 12.2 1.8 0.6 30.7
80 18/18 14/18 1.9 142.2 492.3 14.2 6.7 0.1 103.8
160 14/18 11/18 0.4 507.2 785.1 11.3 26.1 0.2 210.0

Unif- Waveless 80 12/18 6/18 2.5 759.8 1,278.9 18.8 6.2 −0.1 239.4
160 6/18 5/18 0.3 1,402.5 1,447.3 17.8 21.9 0.3 336.3

Exp- Waved 40 18/18 7/18 5.2 22.3 1,102.7 11.5 1.8 0.1 64.9
80 12/18 8/18 3.2 758.2 1,030.2 15.0 6.5 0.4 205.0
160 2/18 1/18 0.7 1,654.7 1,702.8 16.4 25.9 0.8 333.4

Exp- Waveless 80 8/18 4/18 1.3 1,134.5 1,497.7 17.4 6.0 0.3 272.0
160 1/18 0/18 3.6 1,727.7 1,800.0 20.0 21.3 1.2 364.2

20 Unif- Waved 80 17/18 14/18 1.2 108.1 410.0 13.0 4.9 0.0 66.4
160 14/18 11/18 0.7 486.1 782.6 12.8 18.9 0.0 175.1

Unif- Waveless 160 5/18 5/18 — 1,467.0 1,447.9 23.8 17.9 0.6 324.1
Exp- Waved 80 12/18 5/18 1.7 671.1 1,316.7 16.5 5.0 0.0 215.0

160 5/18 3/18 0.3 1,534.9 1,527.3 15.8 19.8 0.6 343.1
Exp- Waveless 160 6/18 5/18 2.8 1,476.7 1,417.4 16.4 18.0 0.4 335.8

Note: Optimality gap % with “—” indicates that lower bound is not available for instances with nonoptimal solutions for these set of instances.
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the warehouse starts its order-picking activities at
that hour. The average processing time of a batch is
around 41 minutes for both the busy and normal
week, and the distribution of these processing times
are similar in both weeks (see Figure 7(a)). The dis-
tribution of the duration of the due time windows is
illustrated in Figure 7(b). The larger due time win-
dows in the right tail in this figure occur on days with
fewer trucks departing from the warehouse (i.e., on
day 1).

6.3.2. Current Shift Structure. The employees are hired
to work at the warehouse through third-party agencies.
Their shifts can start at hour 0, 8, and 9 (i.e., at 11:00 p.m.,
7:00 a.m., and 8:00 a.m.). The flexible workers are
allowed to work for at most nine hours (i.e., Tmax = 9
hours) and are compensated for at least six hours

(i.e., Tmin = 6 hours). In contrast to our MILP for-
mulation in Section 3, the order pickers receive three
breaks at fixed times after they start their shift: a
15-minute break after two hours, a 30-minute break
after 3.5 hours, and another 15-minute break after six
hours. This shift structure is compliant with the EU
and Dutch labor laws.
Thewarehousemanager has to determine the number

of orderpickers to schedule for eachof the three shift start
times, the shift duration of each order picker, as well as
the batches to be picked by each order picker. Currently,
these decisions are made based on experience and in-
tuition of warehouse managers. Due to data privacy
concerns, the retailer was not willing to share the actual
order picker schedules.
There are four interesting research questions in our

case study with the retailer: (i) Can the metaheuristic

Figure 5. (Color online) Performance Comparison Between Solutions Found with the Branch-and-Price Algorithm, Savings
Algorithm, and Metaheuristic

(a) (b) (c)

Figure 6. (Color online) The Workload in the Case Study

(a) (b) (c)
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that is developed in Section 5 be used in practice as a
decision support tool? (ii) What is the value of flexible
break times rather than fixed break times (that are
currently used by the retailer)? (iii) What is the value
of an additional shift start time? (iv) Can the retailer
leverage flexible break times and an additional shift
start time to offer a larger minimum compensation
Tmin without incurring higher labor costs? The last
question especially is of interest to the retailer since
the retailer believes that a larger minimum com-
pensation helps to foster better working relationships
with order pickers and improve the retention rates
of employees.

To answer these questions, we first conducted
multiple rounds of consultationwith the planners and
managers to develop plausible and actionable sce-
narios. The scenarios can be distinguished along three
dimensions. First is flexible break times. This means
that the breaks for order pickers are scheduled at the
current break start times ± 15 minutes. Second, an

additional shift start time is introduced at hour 4
to account for the workload peak, as illustrated in
Figure 6(c).We have also tried an additional start time
at hour 3 and hour 5, but an additional shift start time
at hour 4 resulted in the lowest objective function
values. Third, the minimum compensation time can
be increased to seven hours or even eight hours in-
stead of six hours. Additionally, we introduce two
shift structures that are in line with Section 3: a break
of 20 minutes needs to be scheduled after at most
two hours of work (i.e., Tbreak � 2 hours and lb � 20
minutes). The minimum compensation time (i.e.,
Tmin) is still six hours. This shift structure is compa-
rable to the current shift structure in the sense that an
employee is compensated for either two or three
breaks in any shift, and the values of Tmin and Tmax are
the same. An overview of the 12 shift structure sce-
narios is provided in Table 5. Scenario 1 corresponds
to the current shift structure, which serves as benchmark.
Since the shift structure at the retailer is different than

Figure 7. (Color online) Variability in the Processing Times and Durations of Due Time Windows for Picking Batches

(a) (b)

Table 5. Shift Structure Scenarios to Analyze

Shift structure Description Flexible break times Additional shift start Tmin (hours)

Scenario 1 Current scenario (base case) 6
Scenario 2 Flexible breaks and Tmin � 6 hours 3 6
Scenario 3 Flexible breaks and Tmin � 7 hours 3 7
Scenario 4 Flexible breaks and Tmin � 8 hours 3 8
Scenario 5 Extra shift and Tmin � 6 hours 3 6
Scenario 6 Extra shift and Tmin � 7 hours 3 7
Scenario 7 Extra shift and Tmin � 8 hours 3 8
Scenario 8 Flexible breaks, extra shift, and Tmin � 6 hours 3 3 6
Scenario 9 Flexible breaks, extra shift, and Tmin � 7 hours 3 3 7
Scenario 10 Flexible breaks, extra shift, and Tmin � 8 hours 3 3 8
Scenario 11 Theoretical breaks and Tmin � 6 hours Tbreak � 2 hours, lb � 20 minutes 6
Scenario 12 Theoretical breaks, extra shift, and Tmin � 6 hours Tbreak � 2 hours, lb � 20 minutes 3 6
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discussed in Section 3, we adapted the reduced problem
of the metaheuristic to consider flexible break times (see
online Appendix I for details).

The overall cost savings as well as the impact on
the average number of scheduled order pickers and
the average shift length are presented inFigure 8, (a), (b),
and (c), respectively; detailed results are presented in
online Appendix J. By allowing 15 minutes of flexi-
bility in the break times, the labor cost savings for the
retailer are on average 8.8% (comparing scenario 2 to
the base case of scenario 1). In particular, fewer em-
ployees have to be scheduled and the average shift
length decreases as well. Example schedules under
scenarios 1, 2, 5, and 11 are presented in online Ap-
pendix J. When the minimum compensation time is
increased from six hours to seven or eight hours
(i.e., scenario 3 and 4), the retailer can still expect to
have an average cost saving of 5.2% and 0.7%, re-
spectively, by adopting flexible break times. The
number of employees to schedule remains similar in
scenarios 2, 3, and 4, however, the average shift length
increases. Interestingly, the average shift length in
scenario 3 is comparable to scenario 1, that is, the cost
savings of 5.2% in scenario 3 are mainly due to the
scheduling of fewer order pickers. Increasing the
minimum compensation time to eight hours (in sce-
nario 4) still results in cost savings. This is good news
for the retailer, since the additional cost of an in-
creased value of Tmin is offset against 15 minutes of
flexibility in the break start times. Allowing even
more flexibility in scheduling breaks (in scenario 11),
the average labor cost can decrease an additional 1%
(the cost savings in scenario 11 is 9.8%, whereas it
is 8.8% in scenario 2). However, this is considered
not favorable by the retailer since there is less over-
lap between the breaks of employees in scenario 11

(see also online Appendix J), which is of social im-
portance for the employees. Since the majority of the
cost savings in scenario 11 are also captured by
allowing 15minutesofflexibility in thebreak times (as in
scenario 2), these results provided sufficient motivation
to initiate implementing this 15 minutes of flexibility.
The average cost savings of an additional shift start

time at hour 4 is less substantial compared with
flexible break times: 4.5% when Tmin equals six hours,
only 0.6% when Tmin equals seven hours, and an
average cost increase of 4% when Tmin equals eight
hours (for scenarios 5, 6, and 7, respectively). This is
mainly because the number of order pickers that need
to be scheduled decreases significantly less compared
with flexible break times, whereas the average shift
lengths are comparable.
When combining flexible break times and adding a

shift start time at hour 4, the average labor cost can
(obviously) decrease even further.What is interesting
to observe is that the number of order pickers that are
scheduled is actually decreasing as the minimum com-
pensation time Tmin increases from six to seven hours
and from seven to eight hours (comparing scenario 8,
9, and 10). Since the increase in average shift length is
similar to that in the previous case, the marginal de-
crease in average cost savings is less when Tmin in-
creases. The corresponding average cost savings in
these scenarios are 11.1%, 9.0%, and 5.2%, respec-
tively. Finally, we observe that most of the cost savings
of the flexible break times are captured by the 15-minute
flexibility of the break times, since the cost savings in
scenario 8 and 12 correspond to 11.1% and 12.5%, re-
spectively (similar when comparing the cost savings
between scenario 2 and 11). This reinforces our previous
conclusion that it is sufficient to include only 15 minutes
of flexibility when scheduling the break times.

Figure 8. (Color online) Performance of the Different Shift Structure Scenarios in the Case Study

(a) (b) (c)
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7. Conclusion
In thispaper,westudytheOPSPwhereorder-picking tasks
can be done flexibly but are constrained with due time
windows. The problem intersects with the personnel
scheduling literature. However, unlike the available liter-
ature, our problem minimizes the labor cost while con-
sidering the minimum promised pay to order pickers, the
shift start and end times of employees, and break times.
Therefore, break timesare explicitly includedas scheduling
variables as well as shift start and end times (with a
minimum compensation time for each order picker). This
is a common problem at warehouses with manual order
pickers where batches of items need to be picked and
delivered to outbounddockdoors (or staging lanes)within
the timewindows that the trucks are scheduled to load the
items. Since it combines the order picker planning problem
and the shift scheduling problem, we call this the order
picker scheduling problem. We present several formu-
lations of the problem with a range of operational re-
strictions that are important to consider. Twomethods
are presented to solve the problem. First, an exact
branch-and-price algorithm is developed. Since this
algorithm can be prohibitive for practical applications,
we also present an efficient metaheuristic that com-
bines a savings algorithm and LNS. The results indi-
cate that the heuristic has a stable performance and is
capable of producing near-optimal solutions in a rea-
sonable time for real-life instances.

In a case study, we show how the problem and
solution approaches can be used to study different
shift structures. In particular, the results show that the
retailer can readily increase the minimum compen-
sation duration for workers from six to seven or eight
hours and still realize average labor cost savings of
5.2% or 0.7%, respectively, when a 15-minute flexi-
bility in the scheduling of break times is implemented.
By increasing the minimum compensation duration,
order pickersmight experience improved job satisfaction
to promote job retention. More cost savings of around
4–4.5% can be achieved when an additional shift start
time is introduced. Inspired by the result, the retailer
under study has decided to implement additional
shifts and flexible breaks. Moreover, the findings are
applicable beyond this grocery retailer as most re-
tailers in Western Europe operate their warehouses
constrained by staging time windows with flexible
order pickers in a similar manner.

For the sake of brevity, we only consider identical
order pickers in our study. Since the evaluation of a
schedule in both our solution approaches to the
problem is on the individual employee, order picker
specific characteristics such as age and seniority-
based breaks as well as restricted and preferred
shift starting times can be added to the pricing problem

for the branch-and-price algorithm and the reduced
problem for the metaheuristic.
Furthermore, we assumed that shifts and order-

picking tasks are nonoverlapping between different
planning horizons (i.e., the shift start and end times of
every shift are in the same planning horizon when
batch orders can be picked). If this assumption were
to be relaxed, we propose to use our solution meth-
odology with a rolling horizon. In particular, we
suggest extending the planning horizon with an ad-
ditional time period during which no new shifts are
allowed to start but employees who started their shift
in the original planning horizon can finish their
shift in the extended time period and perform order-
picking tasks during that time period. Consequently,
orderpickers canbe scheduledmoreefficiently at the end
of the planning horizon and order-picking tasks in the
next planning horizon can be performed already. Such a
rolling horizon approach results in feasible solutions that
may not be optimal as there may not be sufficient order-
picking tasks available for the order pickers that start
their shift in the next planning horizon. A shift scheduling
problem that can dynamically include arrivals of new
orders in an online environment could be of significant
value for e-commerce companies.
Future research can take two additional trajectories

within the offline retail environment. First, given the
size of the instances in real-life business applications,
order batching decisions are made a priori (similar to
our approach). It can be worthwhile to jointly con-
sider the order batching and shift scheduling prob-
lem. Second, we assume norm times to perform the
order-picking activities in a deterministic manner. A
compelling research direction would be to consider
robust OPSPs with stochastic processing times of
batches. These two research directions can be of
significant value to both academia and practice.

Endnote
1The performance metrics %ΔS � (z(S) − z(BP))/z(BP) × 100 and
%ΔMH � (z(MH) − z(BP))/ z(BP) × 100, where z(BP), z(S), and z(MH)
denote the objective function value of the best integer solution found
by the branch-and-price algorithm, savings algorithm, and meta-
heuristic, respectively.
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