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Maneuvering Formations of Mobile Agents
Using Designed Mismatched Angles

Liangming Chen , Graduate Student Member, IEEE, Hector Garcia de Marina , Member, IEEE,
and Ming Cao , Senior Member, IEEE

Abstract—This article investigates how to maneuver a
planar formation of mobile agents using designed mis-
matched angles. The desired formation shape is specified
by a set of interior angle constraints. To realize the ma-
neuver of translation, rotation, and scaling of the formation
as a whole, we intentionally force the agents to maintain
mismatched desired angles by introducing a pair of mis-
match parameters for each angle constraint. To allow differ-
ent information requirements in the design and implemen-
tation stages, we consider both measurement-dependent
and measurement-independent mismatches. Starting from
a triangular formation, we consider generically angle rigid
formations that can be constructed from the triangular for-
mation by adding new agents in sequence, each having
two angle constraints associated with some existing three
agents. The control law for each newly added agent arises
naturally from the angle constraints and makes full use of
the angle mismatch parameters. We show that the control
can effectively stabilize the formations while simultane-
ously realizing maneuvering. Simulations are conducted to
validate the theoretical results.

Index Terms—Angle rigid formation, designed mis-
matched angles, formation maneuvering, multiagent sys-
tems.

I. INTRODUCTION

MULTIAGENT formations have recently attracted atten-
tion because of the broad applications in, e.g., search and

rescue of unmanned aerial vehicles [1], coordination of multiple
mobile manipulators [2], and satellite formation flying [3]. Both
formation shape control and formation maneuvering have been
studied [4], [5]. The works in [5]–[7] realized the control of
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desired formation shapes by using the measurements of relative
positions, distances, and bearings, respectively. At the same
time, in many practical applications, formations are expected
to be “maneuverable,” e.g., capable of translating, scaling, and
rotating to adapt to complex environments. For instance, when
a team of flying unmanned aerial vehicles aims at going through
some areas containing obstacles, they need to change the ve-
locity, orientation, and even the scale of the whole formation.
Therefore, researchers have studied the formation maneuvering
problem that requires the achievement of not only the desired
formation shape but also simultaneously the translation, rotation,
or scaling of the formation [8].

To achieve formation maneuvering, some researchers have
proposed several approaches given different types of formation
shape descriptions and available sensing information. When a
desired formation shape is described by relative positions, for-
mation translation was achieved in [9]. For rigid formations with
distance constraints, the rotational and translational formation
maneuvering algorithms were designed in [10] and [11] by intro-
ducing a pair of mismatches per distance constraint. For a desired
formation shape described by interagent bearings, based on the
bearing rigidity developed in [7], the work in [8] achieved the
scaling and translational formation maneuvering using relative
position measurements. Note that these works [8]–[11] cannot
fully achieve the formation maneuvering of scaling, rotation, and
translation easily at the same time. The reason is that, because of
the dependence of coordinate frames, displacement constraints
vary during rotation and scaling, distance constraints vary during
scaling, and bearing constraints vary during rotation. To ma-
neuver the formation with the capacity of translation, rotation,
and scaling, some other approaches were proposed [12]–[16].
Note that for most of the proposed formation maneuvering
algorithms [8]–[17], the measurements of relative positions
are required. Compared with relative position measurements,
bearing measurements are cheaper, more reliable, and accessible
that can be obtained from the passive radars, sonar systems, or
cameras [18], [19].

Motivated by the facts that interior angle constraints are invari-
ant during translation, rotation, and scaling, this article aims at
realizing the formation maneuvering enabling translation, rota-
tion, and scaling, under the conditions that the formation shape is
described by interior angle constraints and the measurements are
chosen bearings. To be more specific, based on the angle-based
formation stabilization law [20], [21], we employ mismatches
in prescribed angles, and propose to use “designed mismatched
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angles” after the angle mismatches are added to each agent’s
desired interior angles. We first consider the maneuvering of
three-agent formation. The mismatches that we consider can be
either measurement dependent or measurement independent in
the sense that the former depends on the current measurements
between neighboring agents, and the latter does not. To grow a
triangular formation into a large angle rigid formation, two angle
constraints associated with three existing agents are required
for each sequentially added agent, which naturally gives rise to
the formation maneuver control algorithm for the newly added
agents.

The contributions of this article can be summarized as fol-
lows. The formation maneuver control is realized enabling
translation, rotation, and scaling using the bearing measure-
ments. Both the measurement-dependent and measurement-
independent mismatch cases are studied. When the mismatches
are measurement-independent, the formation maneuvering algo-
rithm only needs the information of the desired formation shape
in the design stage and only local bearing measurements in the
implementation stage.

The rest of this article is organized as follows. Section II
gives the problem formulation. Section III gives the results for
triangular formation maneuver. In Section IV, we present the
extension from triangular formation to generically angle rigid
formation. Simulation results are shown in Section V, and finally,
Section VI concludes this article.

II. PROBLEM FORMULATION

A. Agents’ Dynamics

For an N -agent system moving in the plane, the motion
dynamics of its agent i are governed by

ṗi = ui, i = 1, . . ., N (1)

where pi ∈ R2 denotes the position of the agent i described in
a fixed global coordinate frame

∑
g , and ui ∈ R2 is the control

input to be designed.

B. Bearing Measurements

Each agent i has its own fixed coordinate frame
∑

i, which
may differ from

∑
g . Let pij denote agent j’s position in

∑
i. To

simplify notation, whenever causing no confusion, we drop the
superscript reference to

∑
g , e.g., pi = pgi . The agent imeasures

the bearing φij ∈ [0, 2π) ∀j ∈ Ni toward the agent j evaluated
counter-clockwise from the X-axis of

∑
i, and here, Ni denotes

the set of the neighbors of the agent i that do not coincide with

i. We also call the unit vector ziij :=
pi
j−pi

i

‖pi
j−pi

i‖
=

⎡
⎢⎣
cosφij

sinφij

⎤
⎥⎦ the

bearing from i to j, which starts from pii, points toward pij , and
can be uniquely determined by φij . For the agents i, i+ 1, and
i− 1 shown in Fig. 1, the interior angle αi can be calculated by

αi := �(i− 1)i(i+ 1) = arccos(z�i(i+1)zi(i−1)). (2)

Note that even when
∑

i are chosen differently, αi remains the
same but zgij = Rg

i z
i
ij , where zgij is the bearing from pi to pj

Fig. 1. Bearing measurements.

described in
∑

g , and Rg
i ∈ SO(2) denotes the rotation matrix

from
∑

i to
∑

g .

C. Problem Formulation

The goal of this article is to design the control input ui in (1)
for each agent i such that the N -agent system achieves a desired
formation described by interior angles, and at the same time,
realizes desired maneuvering. First, we study the triangular case
whenN = 3, and then, extend the obtained results to generically
angle rigid formations whenN > 3. For the triangular caseN =
3, the objectives are as follows:

1) to achieve the desired triangular formation shape, i.e.,

limt→∞ ei(t) = 0, ∀i = 1, 2, 3 (3)

where the formation-shape error signal ei are defined to be
ei(t) = αi(t)− α∗

i , α∗
i ∈ (0, π) denotes agent i’s desired inte-

rior angle, and naturally α∗
1 + α∗

2 + α∗
3 = π;

2) to achieve one of the following separately defined maneu-
vering:

a) translational formation maneuver

limt→∞(ṗi(t)− v∗c) = 0 ∀i = 1, 2, 3 (4)

where v∗c ∈ R2 is the desired translational velocity described in∑
g;
b) rotational formation maneuver

limt→∞(ṗi(t)− ω∗Epci(t)) = 0 (5)

where E = [
0 −1
1 0

] is a skew-symmetric matrix, pci = pi − pc

denotes the vector from the maneuvering reference point pc to
agent i’s position pi (thus, Epci corresponding to rotating pci
by π/2 counter clockwise), and ω∗ ∈ R is the desired rotational
angular speed, with ω∗ > 0 corresponding to rotating counter-
clockwise. The formation reference point pc can have different
choices, e.g., the centroid pc =

1
N

∑N
i=1 pi; in applications, it

can be chosen to be the position of a well-recognized landmark
in the environment.

c) scaling formation maneuver

limt→∞ (ṗi(t)− s(t)pci(t)) = 0 (6)

where s(t) ∈ R is the modulation factor for the scaling speed,
which can be typically chosen as s(t) = kse

−γt, γ > 0, ks ∈
R. Note that s(t) > 0 or ks > 0 corresponds to enlarging the
formation, while s(t) < 0 or ks < 0 shrinking the formation.
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Fig. 2. Formation maneuver velocity vectors: translation, rotation, and
scaling.

If the translation, rotation, and scaling maneuverings are re-
quired to be achieved simultaneously, then by combining (4)–(6)
together, the maneuvering control objective becomes

limt→∞ [ṗi(t)− (v∗c + ω∗Epci(t) + s(t)pci(t))] = 0. (7)

Note that when the formation reaches its desired shape, the
motion of the formation as a whole can be decomposed into
independent translation, rotation, and scaling [22, Sec. 4.6].
Therefore, the desired translation, rotation, and scaling motions
can be achieved when (7) holds.

When N > 3, we aim to control those multiagent formations
that are angle rigid. Here, we briefly mention a few concepts
from the angle rigidity theory. The multipoint framework that
we consider consists of a set of points and angle constraints, and
it is said to be angle rigid if under appropriately chosen angle
constraints, the framework can only translate, rotate, or scale as
a whole when one or more of its points are perturbed locally.
An angle rigid multipoint framework with generic configuration
p = [pT1 , . . . , p

T
N ]T ∈ R2N , e.g., no three points are collinear

and no four points are on a circle, is said to be generically angle
rigid. For more details about angle rigidity, readers can refer
to [20].

To construct a generically angle rigid N -agent formation,
according to [20], one can grow the formation by N − 2 steps.

Step 1: One constructs the first triangular formation 	123
using three angle constraints: �123,�231,�312.

Step 2: One adds agent 4 under the two angle constraints:
�142 and �243.

...
Step k − 2: One adds agent k under the two angle constraints:

�j1kj2 and �j2kj3, j1, j2, j3 ∈ {1, . . ., k − 1}.
...
Step N − 2: One adds agent N under the two angle con-

straints: �i1Ni2 and �i2Ni3, for some distinct i1, i2, i3 ∈
{1, . . ., N − 1}.

To guarantee the uniqueness of each agent’s position in Steps
2 to N − 2 under the given two angle constraints, the following
assumption is needed.

Assumption 1: In the aforementioned Step k, k =
2, . . . , N − 2 with the corresponding newly added agent
i and its angle constraints �j1ij2 and �j2ij3, we assume
that the positions of i, j1, j2, and j3 are generic and no

Fig. 3. Formation growing method from a triangular shape.

collinearity occurs, namely �j1ij2 
= 0,�j1ij2 
= π, and
�j2ij3 
= 0,�j2ij3 
= π.

Remark 1: According to [20, Proposition 2], when
i, j1, j2, and j3 are generic as stipulated in Assumption 1, the
position of each newly added agent i, i = 2, . . . , N is locally
uniquely determined by �j1ij2 and �j2ij3, which implies the
angle rigidity of the constructed formation.

Then, for agents i, i = 4, . . . , N , the formation control objec-
tive is to achieve

limt→∞ ei1(t) = limt→∞(αj1ij2(t)− α∗
j1ij2

) = 0 (8)

limt→∞ ei2(t) = limt→∞(αj2ij3(t)− α∗
j2ij3

) = 0 (9)

where j1 < i, j2 < i, j3 < i, and α∗
j1ij2

∈ (0, π), α∗
j2ij3

∈
(0, π) denote agent i’s two desired angles formed with agents
j1, j2, j3 ∈ {1, 2, . . ., i− 1}, and to achieve the maneuvering of
translation, rotation, and scaling as described in (4)–(6).

Therefore, the desired formation shape is described by a set
of angle constraints α∗ = {α∗

1, α
∗
2, α

∗
3, α

∗
142, α

∗
243, . . . , α

∗
j1kj2

,
α∗
j2kj3

, . . . , α∗
i1Ni2

, α∗
i2Ni3

}. The goal is to achieve these angles
and the maneuvering objective (7) simultaneously.

III. TRIANGULAR FORMATION MANEUVER

In this section, we aim at achieving the triangular formation
maneuvering for the first three agents. First, we will present a for-
mation maneuver algorithm by introducing a pair of mismatches
per angle constraint. Then, for the cases of measurement-
dependent and measurement-independent mismatches, the for-
mation maneuver control algorithms and the corresponding
stability analysis will be given, respectively.

A. Formation Maneuver Algorithm Design

In [21], using bearing measurements, three agents achieved
a triangular formation shape described by three interior angles
α∗
i , i = 1, 2, 3. The control algorithms designed in [21] can be

equivalently written as

ui = −ki(αi − α∗
i )

zi(i+1) + zi(i−1)

‖zi(i+1) + zi(i−1)‖ (10)

where ki > 0, zi(i+1) is the unit vector starting from pi and
pointing toward pi+1, and this section considers that (i+ 1) =

Authorized licensed use limited to: University of Groningen. Downloaded on March 30,2022 at 15:44:07 UTC from IEEE Xplore.  Restrictions apply. 
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1 when i = 3, and (i− 1) = 3 when i = 1. In this article, we
modify the control algorithm (10) into

ui = −ki(αi − α∗
i )(zi(i+1) + zi(i−1)). (11)

Now, we introduce a pair of designed-mismatches per angle
constraint α∗

i in (11) such that the formation maneuvering with
translation, rotation, and scaling can be realized. By follow-
ing [23], we design the formation maneuvering law as

ui=−ki

(
αi−α∗

i −
μi

ki

)
zi(i+1)−ki

(
αi−α∗

i−
μ̃i

ki

)
zi(i−1)

=−ki(αi−α∗
i )[zi(i+1)+zi(i−1)]+[μizi(i+1) + μ̃izi(i−1)]

= ufi + umi (12)

where μi ∈ R and μ̃i ∈ R are the designed-mismatches associ-
ated with agent i’s desired angle α∗

i , ufi is the formation shape
control part, and umi is the maneuver control part. From (7)
and (12), the steady-state maneuver velocity ṗ∗i of the agent i
at the desired triangular formation shape (αi = α∗

i ) should be
decomposed into three parts as follows:

ṗ∗i = ṗ∗i(translation) + ṗ∗i(rotation) + ṗ∗i(scaling)

= v∗c + ω∗Epci + s(t)pci = μizi(i+1) + μ̃izi(i−1). (13)

Note that in the aforementioned equation, zi(i+1) is determined
by the bearing measurement φi(i+1), but pci is the vector from
the reference point pc to agent i’s position pi which needs to
be additionally measured. In the following two subsections, we
introduce two techniques to design the mismatches to realize
the desired maneuvering, which are the measurement-dependent
mismatchesμi(zij , pci), μ̃i(zij , pci) orμi(t), μ̃i(t) for short that
require the real-time measurements of zij(t) and pci(t), and the
measurement-independent mismatches μi(α

∗), μ̃i(α
∗) or μi, μ̃i

for short that are not related to the real-time measurements but
calculated in the design stage based on the desired formation
shape α∗.

B. Measurement-Dependent Mismatches

Now, we use the measurement-dependent mismatches to re-
alize the desired maneuvering under the measurements of zij
and pci, in which we assume that all the agents’ coordinate
frames

∑
i have the same orientation as

∑
g . In the following,

we first illustrate how to design μi(t) and μ̃i(t), then analyze
the stability of the closed-loop dynamics. Note that the desired
maneuvering velocity ṗ∗i in (13) is a linear combination of the
translation velocity v∗c , rotation velocity ω∗Epci, and scaling
velocity s(t)pci. We first show in the following how to design
μi and μ̃i in (12) to achieve each maneuvering separately, then
simultaneously.

1) Translation: According to (13), only considering trans-
lation maneuvering with desired v∗c , one requires

v∗c = μ1(t)z12 + μ̃1(t)z13 (14)

v∗c = μ2(t)z23 + μ̃2(t)z21

v∗c = μ3(t)z31 + μ̃3(t)z32 (15)

where we assume that the three agents’ positions are not
collinear. Then, μi(t), μ̃i(t), i = 1, 2, 3 can be calculated by[

μi(t)

μ̃i(t)

]
=

[
zi(i+1)(1) zi(i−1)(1)

zi(i+1)(2) zi(i−1)(2)

]−1 [
v∗c(1)
v∗c(2)

]
(16)

where zi(i+1)(1) and zi(i+1)(2) denote the first and second
elements of the vector zi(i+1). To make (16) well-defined, the
matrix [zi(i+1) zi(i−1)] should always be invertible, which can
be guaranteed if there is no collinearity among agents 1–3.

2) Rotation: Only considering rotation around pc in (13),
one has

ω∗Epc1 = μ1(t)z12 + μ̃1(t)z13 (17)

ω∗Epc2 = μ2(t)z23 + μ̃2(t)z21 (18)

ω∗Epc3 = μ3(t)z31 + μ̃3(t)z32. (19)

Similarly, μi(t), μ̃i(t), i = 1, 2, 3 can be calculated by[
μi(t)

μ̃i(t)

]
=

[
zi(i+1)(1) zi(i−1)(1)

zi(i+1)(2) zi(i−1)(2)

]−1 [−ω∗pci(2)
ω∗pci(1)

]
. (20)

3) Scaling: Only considering scaling with respect to pc in
(13), one has

s(t)pc1 = μ1(t)z12 + μ̃1(t)z13 (21)

s(t)pc2 = μ2(t)z23 + μ̃2(t)z21 (22)

s(t)pc3 = μ3(t)z31 + μ̃3(t)z32. (23)

Also, μi(t), μ̃i(t), i = 1, 2, 3 can be calculated by[
μi(t)

μ̃i(t)

]
=

[
zi(i+1)(1) zi(i−1)(1)

zi(i+1)(2) zi(i−1)(2)

]−1 [
s(t)pci(1)

s(t)pci(2)

]
. (24)

Then, by applying translation, rotation, and scaling simultane-
ously, one has[
μi(t)

μ̃i(t)

]
= [zi(i+1) zi(i−1)]

−1(v∗c + ω∗Epci + s(t)pci)

=[zi(i+1) zi(i−1)]
−1

[
v∗c(1)− ω∗pci(2) + s(t)pci(1)

v∗c(2) + ω∗pci(1) + s(t)pci(2)

]

(25)

which is well defined when [zi(i+1) zi(i−1)] is invertible. By
applying the designed mismatches (25) into the control law (12),
we are ready to give the following result.

Theorem 1: Consider a three-agent formation described by
(1), with the control inputs (12) and mismatchesμi(t), μ̃i(t), i =
1, 2, 3 as designed in (25). If the initial angle errors ei(0) are
sufficiently small, αi(0) 
= 0, and ‖pi(0)− pj(0)‖, i 
= j are
sufficiently away from zero, then the three-agent formation con-
verges to its desired shape and maneuvers with the combination
of the prescribed translation (4), rotation (5), and scaling (6).

Proof: According to (12), the motion of each agent is in-
fluenced by the combination of formation shape control part
ufi = −ki(αi − α∗

i )(zi(i+1) + zi(i−1)) and maneuver control
part umi = μizi(i+1) + μ̃izi(i−1). To obtain (3), we need to
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analyze ėi. According to Appendix A, the angle error dynamics
can be described by

ė =

⎡
⎢⎣α̇1

α̇2

α̇3

⎤
⎥⎦ = F1(e)e =

⎡
⎢⎣−g1 f12 f13

f21 −g2 f23

f31 f32 −g3

⎤
⎥⎦
⎡
⎢⎣e1e2
e3

⎤
⎥⎦ (26)

where fij := kj(sinαj)/lij , gi := (sinαi)(ki/li(i+1) +
ki/li(i−1)), and lij := ‖pi − pj‖ denotes the distance between i
and j. According to Appendix A and (26), the maneuver control
part umi has no contribution to the angle error dynamics ėi,
which is reasonable since the whole formation’s translation,
rotation, and scaling will not change its interior angles.

First, we prove that the three-agent formation will not become
collinear under (26) if it is not initially collinear. If for a fixed i,
αi → π, one hasαi−1 → 0 andαi+1 → 0 because αi + αi−1 +
αi+1 = π. Note that α∗

i , i = 1, 2, 3 are bounded away from
zero and π, which implies that ei > 0, ei+1 < 0, and ei−1 < 0.
Then, since gi > 0 and fij > 0, j = i− 1, i+ 1, from agent i’s
angle error dynamics ėi = −giei + fi(i+1)ei+1 + fi(i−1)ei−1,
one has ėi < 0, which implies that α̇i makes it impossible to
achieve αi = π. Similarly should αi → 0, one would obtain the
contradicting result thatαi increases. Sinceαi has to be 0 or π in
the collinear situation, the contradictions we have constructed
imply that the three agents will not become collinear if their
initial positions are not collinear. Therefore, it follows that the
calculations in (16)–(25) are well defined.

Since e1 + e2 + e3 ≡ 0, the angle error dynamics (26) can be
reduced to

ės=

[
ė1

ė2

]
=

[
−(g1 + f13) f12 − f13

f21 − f23 −(g2 + f23)

][
e1

e2

]
=Fs1(es)es.

(27)

Let U ∈ R2 denote the neighborhood of the origin {e1 =
e2 = 0}, in which we investigate the local stability of (27).
Linearizing (27) at the origin, we obtain

ės = A1es (28)

where A1 = Fs1(es)|es=0. Then, under es = 0, i.e., αi = α∗
i ,

one has

tr(A1(α
∗)) = − g1 − f13 − g2 − f23 < 0 (29)

det(A1(α
∗))=(g1 + f13)(g2 + f23)−(f21−f23)(f12−f13)

> g1f23 + g2f13 + f21f13 + f12f23 > 0 (30)

where we have used the fact that g1g2 > f21f12, and tr() and
det() denote the trace and determinant of a square matrix,
respectively. According to (29) and (30), one has that A1 is
Hurwitz. By following the Lyapunov Theorem[24, Th. 4.6],
for an arbitrary positive definite matrix Q1 ∈ R2×2, there al-
ways exists a positive definite matrix P1 ∈ R2×2 such that
−Q1 = P1A1 +AT

1 P1. We then design the Lyapunov function
candidate as V1 = eTs P1es, whose time derivative is

V̇1 = −eTs Q1es ≤ − (λmin(Q1)/λmax(P1))V1 (31)

Fig. 4. Relationship between several coordinate frames.

where λmin() and λmax() denote the minimum and maximum
eigenvalues of a square matrix, respectively. Then, one has

e21 + e22 = ‖es‖2 ≤ V1

λmin(P1)
≤ V1(0)

λmin(P1)
e
− λmin(Q1)

λmax(P1)
t
. (32)

Also, one has

e23 = e21 + e22 + 2e1e2 ≤ 2(e21 + e22) ≤
2V1(0)

λmin(P1)
e
− λmin(Q1)

λmax(P1)
t

which implies that ei under the dynamics (26) is exponentially
stable when the initial states lie in U [24, Lemma 9.1]. Note that
when ei(t) → 0, li(i+1)(t) will converge to a constant since s(t)
in (6) can be seen as a vanishing perturbation. Using (1) and (12),
one has limt→∞[ṗi(t)− (μi(t)zi(i+1)(t) + μ̃i(t)zi(i−1)(t))] =
0. Therefore, if (14)–(15), (17)–(19), or (21)–(23) are applied
separately in (13), the maneuvering defined in (4)–(6) is achieved
separately. Meanwhile, if they are applied simultaneously by
(25), the maneuverings consisting of translation, rotation, and
scaling are achieved simultaneously. �

C. Measurement-Independent Mismatches

Now, we consider that the agent i can only measure zi(i+1) and
zi(i−1) in (12). The mismatches μi and μ̃i are calculated in the
design stage by using the information of the desired formation
shape. First, we define a body frame

∑
b(t) whose origin is fixed

at the position p1(t) of the agent 1, and x-axis points from the
position p1(t) of the agent 1 to the position p2(t) of the agent 2,
and y-axis follows the direction under the right-hand rule.

At the initial design stage t = 0, consider the
static and reference formation configuration pb∗ =
[(pb∗1 )T, (pb∗2 )T, . . . , (pb∗N )T]T ∈ R2N described in

∑
b(0),

which satisfies all the desired angle constraints α∗. As shown in
Fig. 4, according to the definition of

∑
b(0), one has pb∗1 = [0, 0]T

and pb∗2 = [xp∗
2
, 0]T, where xp∗

2
can be chosen as an arbitrary

positive number; then, one can calculate pb∗3 , . . ., pb∗N using
the angle constraints α∗. If one has a reference configuration
p∗ = [(p∗1)

T, (p∗2)
T, . . . , (p∗N )T]T of the desired formation

described in
∑

g with p∗1 = [0, 0]T and p∗2 = [xp∗
2
, 0]T, then

one directly has pb∗ = p∗. Now, we use pb∗ for the design of
measurement-independent mismatches.

1) Translation: Only considering translational maneuver-
ing, similar to (14) and (15), one has

vb∗c = Rb(0)
g v∗c = μiz

b∗
i(i+1) + μ̃iz

b∗
i(i−1), i = 1, 2, 3 (33)
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where zb∗ij =
pb∗
j −pb∗

i

‖pb∗
j −pb∗

i ‖ is the bearing calculated by pb∗, v∗c is

described in
∑

g , and R
b(0)
g is the rotation matrix from

∑
g to∑

b(0). Then, μi, μ̃i, i = 1, 2, 3 can be calculated by[
μi

μ̃i

]
=

[
zb∗i(i+1)(1) zb∗i(i−1)(1)

zb∗i(i+1)(2) zb∗i(i−1)(2)

]−1 [
vb∗c (1)

vb∗c (2)

]
. (34)

Since the bearing vectors zb∗i(i+1) and zb∗i(i−1) are noncollinear in
a generically angle rigid formation according to [20, Definition
4] and Assumption 1, the matrix [zb∗i(i+1) z

b∗
i(i−1)] is invertible.

Since vb∗c is described in
∑

b(0) in (33), the control objective (4)
for translation maneuvering in this case should be modified to

limt→∞(Rb(t)
g ṗi(t)− vb∗c ) = 0 (35)

where R
b(t)
g is the rotation matrix from

∑
g to

∑
b(t).

2) Rotation: Considering rotation in (13), one has

ω∗Epb∗ci = μiz
b∗
i(i+1) + μ̃iz

b∗
i(i−1), i = 1, 2, 3 (36)

where pb∗ci = pb∗i − pb∗c = pb∗i − 1
N

∑N
j=1 p

b∗
j . Then, μi, μ̃i, i =

1, 2, 3 can be similarly calculated as (24).
3) Scaling: Only considering scaling with respect to the pb∗c

in (13), one has

s(t)pb∗ci = μiz
b∗
i(i+1) + μ̃iz

b∗
i(i−1). (37)

Then, μi, μ̃i, i = 1, 2, 3 can be calculated. Then, by applying
translation, rotation, and scaling simultaneously, one has[

μi

μ̃i

]
= [zb∗i(i+1) z

b∗
i(i−1)]

−1
(
vb∗c + ω∗Epb∗ci + s(t)pb∗ci

)
(38)

which is well-defined since [zb∗i(i+1) z
b∗
i(i−1)] ∈ R2×2 is invertible.

Now, we apply the constant mismatches designed in (38) into
the control law (12).

Theorem 2: Consider a three-agent formation described by
(1), with the control inputs (12) and mismatches μi, μ̃i, i =
1, 2, 3 as designed in (38). If the initial angle error ei(0), and
the designed mismatches are sufficiently small, αi(0) 
= 0 and
‖pi(0)− pj(0)‖, i 
= j are sufficiently away from zero, then
the three-agent formation converges to its desired shape and
maneuvers with the prescribed translation (35), rotation (5), and
scaling (6).

Proof: To analyze the convergence of ei, we first aim at
obtaining the angle error dynamics ėi, i = 1, 2, 3. Note that the
analysis method of angle error dynamics given in [21] cannot
be used in this case because of the part μizi(i+1) + μ̃izi(i−1) in
the control law (12). Instead, we derive the angle error dynamics
by using the dot product of two bearings. Using similar steps as
Appendix A, one has the following angle error dynamics under
the control (12) and (38):

ė = [α̇1 α̇2 α̇3]
T = F2(e)e+H2(e, μ, μ̃)

=

⎡
⎢⎣−g1 f12 f13

f21 −g2 f23

f31 f32 −g3

⎤
⎥⎦
⎡
⎢⎣α1 − α∗

1

α2 − α∗
2

α3 − α∗
3

⎤
⎥⎦+

⎡
⎢⎣h1

h2

h3

⎤
⎥⎦ (39)

where gi and fij have the same forms as (26), and

hi =
μ̃i sinαi − μi+1 sinαi+1

li(i+1)
+

μi sinαi − μ̃i−1 sinαi−1

li(i−1)
.

Now, we analyze the local stability of (39). Since e1 + e2 +
e3 = 0, one has the following subdynamics:

ės =

[
ė1

ė2

]
= Fs2(es)es +Hs2(es)U2

=

[
−(g1 + f13) f12 − f13

f21 − f23 −(g2 + f23)

][
α1 − α∗

1

α2 − α∗
2

]

+

[
h11 h12 h13 h14 h15 h16

h21 h22 h23 h24 h25 h26

]
U2 (40)

where U2 = [μ1, μ2, μ3, μ̃1, μ̃2, μ̃3]
T, h11 = sinα1

l13
, h12 =

− sinα2

l12
, h13 = h15 = 0, h14 = sinα1

l12
, h16 = − sinα3

l13
, h21 =

h26 = 0, h22 = sinα2

l21
, h23 = − sinα3

l23
, h24 = − sinα1

l21
, and

h25 = − sinα2

l23
. It can be verified that H2(0, μ, μ̃) = 0, which

implies that e = 0 is an equilibrium of (39). To obtain the local
stability of (40), we linearize the dynamics (40) at the origin.
The linearized system of (40) at the origin can be written as

ės = A1es +B1es = (A1 +B1)es

where B1 = ∂Hs2(es)U2

∂es
|es=0 = [∂Hs2(es)

∂e1

∂Hs2(es)
∂e2

](I2 ⊗
U2)|es=0, and A1 = Fs2(es)|es=0, ⊗ and IN denote the
Kronecker product and N -by-N identity matrix, respectively.
Therefore, for an arbitrary positive definite matrix Q2 ∈ R2×2,
there exists a positive definite matrix P2 ∈ R2×2 such that
Q2 = −(P2A1 +AT

1 P2). Since U2 is bounded, we then check
the stability of (40) when es lies in U . Consider the Lyapunov
function candidate V2 = eTs P2es whose time derivative is

V̇2 ≤ −λmin(Q2)‖es‖2 + eTs (B
T
1 P2 + P2B1)es

≤ (−λmin(Q2) + q1)‖es‖2 (41)

where q1 = 2‖B1‖λmax(P2). For a neighborhood of the equilib-
rium, one can obtain λmin(Q2) > q1 by choosing the following:

1) Small designed-mismatches μi, μ̃i: since q1(μ) grows
with μ continuously and q1(μ) ≥ q1(0) = 0, which in
general require that the maneuvering speed ‖v∗c‖, ω∗, ks
should be sufficiently small according to (38);

2) Big feedback gain ki when k1 = k2 = k3: which only
makes λmax(P2) smaller but not λmin(Q2) because Q2

is given and ‖B1‖ is not related with ki.
When λmin(Q2) > q1, the subdynamics (40) are locally ex-

ponentially stable. By following (31) and (32), one has

e21 + e22 = ‖es‖2 ≤ V2

λmin(P2)
≤ V2(0)

λmin(P2)
e
− λmin(Q2)−q1

λmax(P2)
t
.

(42)
Since e1 = e2 = 0 implies e3 = 0, the overall dynamics (39) are
locally exponentially stable, which implies that limt→∞[ṗi(t)−
(μizi(i+1)(t) + μ̃izi(i−1)(t))] = 0. For the translation case, it

follows that limt→∞ R
b(t)
g ṗi(t) = limt→∞ R

b(t)
g (μizi(i+1)(t) +
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μ̃izi(i−1)(t)) = limt→∞(μiz
b(t)
i(i+1)(t) + μ̃iz

b(t)
i(i−1)(t)) = vb∗c ,

where we have used the facts that
∑

b(t) is rigidly attached

at the real-time formation and z
b(t)
ij (t) → zb∗ij when αi → α∗

i .
For rotation and scaling, since ksp

b∗
ci = μiz

b∗
i(i+1) + μ̃iz

b∗
i(i−1)

implies that kspci = μizi(i+1) + μ̃izi(i−1), one has that
the rotation and scaling are also achieved. Therefore, the
maneuvering defined in (5), (6), and (35) is achieved. Note that
the formation’s eventual orientation Rg

b(∞) is not necessarily

equal to Rg
b(0). The eventual maneuvering velocity described

in
∑

g is limt→∞ ṗi(t) = Rg
b(∞)v

b∗
c + ω∗Epci(∞) + kspci(∞)

where the formation’s eventual orientation Rg
b(∞) depends on

the initial states of the agents and the rotation maneuvering
that the formation has conducted. Finally, we analyze the
noncollinearity in this case. Note that (42) implies that
∀i = 1, 2, 3

|ei| = |αi − α∗
i | ≤

√
2V2(0)

λmin(P2)
e
− λmin(Q2)−q1

2λmax(P2)
t ≤

√
2V2(0)

λmin(P2)
.

If we choose the initial formation errors ei(0) such that V2(0)
is sufficiently small, one has that αi(t) will be bounded away
from zero and π because α∗

i , i = 1, 2, 3 are bounded away from
zero and π. This implies that no collinearity will occur in this
case. �

Remark 2: For the case of measurement-independent mis-
matches, (12) can be realized in each agent’s local coordinate
frame that can have different orientation from

∑
g . Note that the

measurement-independent mismatches in (38) can be calculated
in the design stage that uses the information of the desired forma-
tion shape pb∗ described in

∑
b(0). However, the implementation

of (12) is distributed, i.e., no aligned coordinate frames or global
information is required to be shared among agents.

Remark 3: Note that the desired translation velocity in (14)
and (15) is described in

∑
g , but in (33), it is described in

∑
b(0).

To achieve a desired translational velocity with respect to
∑

g in
the measurement-independent mismatch case, one can align one
real-time bearing zij to the bearing zb∗ij described in

∑
b(0)[10].

However, the mismatch design for rotation and scaling in both
measurement-dependent and measurement-independent cases is
not influenced by the global or local coordinate frame because
the rotation and scaling is conducted with respect to the forma-
tion’s reference point pc instead of an external reference frame;
see Fig. 2 and (4)–(6).

Remark 4: For the case of measurement-dependent mis-
matches, one can also add the desired maneuvering velocity v∗c +
ω∗Epci + s(t)pci directly into (11). The reasons for designing
measurement-dependent mismatches are supported by two facts.
The first is that the controllers for the cases of measurement-
dependent and measurement-independent mismatches have the
same form (12). Therefore, when the measurements of rela-
tive position are available, the formation maneuvering can be
realized with measurement-dependent mismatches, but when
they are unavailable, the formation maneuvering can be realized
with measurement-independent mismatches whose control law
has the same structure as the measurement-dependent case. The

second is that the analysis of angle error dynamics (39) in the
case of measurement-independent mismatches is based on the
angle error dynamics (26) in the case of measurement-dependent
mismatches.

D. Collision Analysis

Note that the angle error dynamics and the bearing vector
zij =

pj−pi

‖pj−pi‖ , j ∈ Ni used in the maneuver control law
(12) are not well defined if there exists collision between
neighboring agents i and j. Therefore, the analysis on the
collision among the three agents is needed. Since we are
controlling interior angles, we would like to show that the
distance lij = ‖pi − pj‖ does not vary much, which is not
obvious when maneuvering is conducted. Therefore, we need
to assess the order of magnitude of how much lij can grow or
shrink from the initial conditions. Consequently, we provide the
following analysis considering the cases of measurement-
dependent and measurement-independent mismatches,
respectively.

1) Measurement-Dependent Mismatches: Taking agents
1 and 2 as an example (the other cases can be similarly analyzed),
one has

l12(t) = l12(0) +

∫ t

0

l̇12(τ)dτ

= l12(0) +

∫ t

0

(p1 − p2)
T(ṗ1 − ṗ2)

‖p1 − p2‖ dτ

= l12(0) +

∫ t

0

zT21(uf1 − uf2 + um1 − um2)dτ. (43)

First, we consider the formation part uf1 − uf2 in (43)∫ t

0

zT21(uf1 − uf2)dτ

=

∫ t

0

k2e2z
T
21(z21 + z23)− k1e1z

T
21(z12 + z13)dτ

≤
∫ t

0

(2k1|e1|+ 2k2|e2|)dτ ≤ 2
√
2k̄12

∫ t

0

√
e21 + e22dτ

(44)

where k̄12 = max{k1, k2} and we have used the fact that
2|e1||e2| ≤ e21 + e22. By using (32), one has

∫ t

0

√
e21 + e22dτ≤

√
V1(0)

λmin(P1)

2λmax(P1)

λmin(Q1)

(
1− e

− λmin(Q1)

2λmax(P1)
t

)

≤ 2λmax(P1)

λmin(Q1)

√
V1(0)

λmin(P1)
. (45)

Then, we consider the maneuver part um1 − um2 in (43). By
using (12) and (25), one has∫ t

0

zT21(um1 − um2)dτ=
∫ t

0

zT21[ω
∗E + s(τ)I2](pc1 − pc2)dτ

=

∫ t

0

s(τ)l12(τ)dτ (46)
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where we have used the fact that zT21Ez21 = 0 and pc1 − pc2 =
z21l12. According to (46), the translational and rotational maneu-
vering has no impact on the change of l12(t), and only scaling
has. Note that when modulation factor for the scaling speed
s(t) > 0, i.e., conducting formation enlargement, one always
has

∫ t

0 s(τ)l12(τ)dτ ≥ 0. By substituting (44)–(46) into (43),
when s(t) > 0, one has

l12(t)≥ l12(0)+

∫ t

0

s(τ)l12(τ)dτ − 4k̄12λmax(P1)

λmin(Q1)

√
2V1(0)

λmin(P1)

≥ l12(0)− 4k̄12λmax(P1)

λmin(Q1)

√
2V1(0)

λmin(P1)
. (47)

However, the case of s(t) < 0 is also important in the obstacle
avoidance task because it corresponds to shrink the formation.
Now, we analyze the impact of shrinking formation on the
change of l12(t)using the caseks = −1. By using the integration
by parts, one has∫ t

0

s(τ)l12(τ)dτ = γ−1l12e
−γt − γ−1

∫ t

0

e−γτdl12(τ)

= γ−1l12e
−γt − γ−1

∫ t

0

e−γτs(τ)l12(τ)dτ

− γ−1

∫ t

0

e−γτ [zT21(uf1 − uf2)]dτ.

(48)

Note that in (48), γ−1l12e
−γt ≥ 0 and

−γ−1
∫ t

0 e−γτs(τ)l12(τ)dτ ≥ 0 since s(t) < 0. In addition, by
using (44), one has

− γ−1

∫ t

0

e−γτ [zT21(uf1 − uf2)]dτ

≤ γ−12
√
2k̄12

∫ t

0

e−γτ
√

e21 + e22 dτ

≤ γ−12
√
2k̄12

√
V1(0)

λmin(P1)

∫ t

0

e
−(γ+

λmin(Q1)

2λmax(P1)
)τdτ

≤ γ−12
√
2k̄12

√
V1(0)

λmin(P1)

2λmax(P1)

λmin(Q1) + 2γλmax(P1)
. (49)

By substituting (44)–(52) into (43), when s(t) = −e−γt, one
has

l12(t) ≥ l12(0)− 4k̄12λmax(P1)

λmin(Q1)

√
2V1(0)

λmin(P1)

−γ−12
√
2k̄12

√
V1(0)

λmin(P1)

2λmax(P1)

λmin(Q1) + 2γλmax(P1)
.

(50)

Finally, we summarize the aforementioned analysis into a
proposition.

Proposition 1: Consider a three-agent formation described by
(1), with the control input (12) and mismatches μi(t), μ̃i(t), i =

1, 2, 3 as designed in (25) and αi(0) 
= 0. For the case

of s(t) > 0, if l12(0) >
4k̄12λmax(P1)

λmin(Q1)

√
2V1(0)

λmin(P1)
, no colli-

sion will happen between agents 1 and 2. For the case

of s(t) = −e−γt < 0, if l12(0) >
4k̄12λmax(P1)

λmin(Q1)

√
2V1(0)

λmin(P1)
+

γ−12
√
2k̄12

√
V1(0)

λmin(P1)
2λmax(P1)

λmin(Q1)+2γλmax(P1)
, then no collision

will happen between agents 1 and 2.
Proof: For the case of s(t) > 0, since l12(0) > 0, ∃T2 > 0

such that in [0, T2), no collision happens between agents 1
and 2. Assume that there exists a collision between agents
1 and 2 in [T2,∞), then there must exist an escape time Tc

such that l12(Tc) = 0. Since no collision happens in [T2, T
−
c ),

the closed-loop system is well defined in [T2, T
−
c ). Following

the calculations in (43)–(47), one has that l12(T−
c ) ≥ l12(0)−

4k̄12λmax(P1)
λmin(Q1)

√
2V1(0)

λmin(P1)
> 0, which is bounded away from zero.

This implies a contradiction with the assumption that collision
happens at Tc. Thus, no collision happens in [0,∞). The case
of s(t) < 0 can be similarly obtained. �

2) Measurement-Independent Mismatches: For the case
of measurement-independent mismatches, the description of
l12(t) in (43) still holds. By following the analysis from (43)
to (45), one has the effect of the formation part uf1 − uf2 on
l21(t)∫ t

0

zT21(uf1 − uf2)dτ ≤ 2
√
2k̄12

∫ t

0

√
e21 + e22dτ

≤ 4k̄12λmax(P2)

λmin(Q2)− q1

√
2V2(0)

λmin(P2)
. (51)

Then, we discuss the maneuver part um1 − um2 in (43). By
using (12) and (38), one has∫ t

0

zT21(um1 − um2)dτ

=

∫ t

0

zT21(μ1z12 + μ̃1z13 − μ2z23 − μ̃2z21)dτ

=

∫ t

0

(−μ1 − μ̃2 − μ̃1 cosα1 − μ2 cosα2)dτ. (52)

By using αi = ei + α∗
i , one has

− μ1 − μ̃2 − μ̃1 cosα1 − μ2 cosα2

= −μ1 − μ̃2 − μ̃1(cos e1 cosα
∗
1 − sin e1 sinα

∗
1)

− μ2(cos e2 cosα
∗
2 − sin e2 sinα

∗
2). (53)

Now, we use the Taylor series to describe cos ei and sin ei

cos ei = 1− e2i
2!

+
e4i
4!

+ · · ·+ (−1)ne2ni
(2n)!

(54)

sin ei = ei − e3i
3!

+
e5i
5!

+ · · ·+ (−1)ne2n+1
i

(2n+ 1)!
(55)

where n → ∞ and n! denotes the factorial of n. Since ei(0) is
sufficiently small and ei(t) converges to zero at an exponential
speed, we only focus on the first main part in (54) and (55).
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Then, one has

− μ1 − μ̃2 − μ̃1 cosα1 − μ2 cosα2

≈ −μ1 − μ̃1 cosα
∗
1 − μ̃2 − μ2 cosα

∗
2

+ μ̃1e1 sinα
∗
1 + μ2e2 sinα

∗
2. (56)

On the one hand, by using (38) for the first part of (56), one has

− μ1 − μ̃1 cosα
∗
1 − μ̃2 − μ2 cosα

∗
2

= −
[
1 (zb∗12)

T zb∗13
] [μ1

μ̃1

]
−
[
(zb∗21)

�z∗23 1
] [μ2

μ̃2

]

= −(zb∗12)
�
[
zb∗12 zb∗13

]
[zb∗12 z

b∗
13]

−1
(
vb∗c + ω∗Epb∗c1 + s(t)pb∗c1

)
− (zb∗21)

�
[
zb∗23 zb∗21

]
[zb∗23 z

b∗
21]

−1
(
vb∗c + ω∗Epb∗c2 + s(t)pb∗c2

)
= (zb∗12)

�[ω∗E(pb∗2 − pb∗1 ) + s(t)(pb∗2 − pb∗1 )] = s(t)lb∗12 (57)

where we have used the fact that cosα∗
1 = (zb∗12)

Tzb∗13. On the
other hand, for the second part of (56), one has∫ t

0

(μ̃1e1 sinα
∗
1 + μ2e2 sinα

∗
2)dτ≤

∫ t

0

μmax12(|e1|+ |e2|)dτ

whereμmax12 = max{|μ̃1|, |μ2|} and we have used the fact that
| sinα∗

i | < 1. By following (44) and (45), one has∫ t

0

(|e1|+ |e2|)dτ ≤
√
2

∫ t

0

√
e21 + e22dτ

≤ 2λmax(P2)

λmin(Q2)− q1

√
2V2(0)

λmin(P2)
. (58)

By substituting (51)–(58), one has

l12(t) ≥ l12(0) +

∫ t

0

s(t)lb∗12dτ − 4k̄12λmax(P2)

λmin(Q2)− q1

√
2V2(0)

λmin(P2)

− 2μmax12λmax(P2)

λmin(Q2)− q1

√
2V2(0)

λmin(P2)
(59)

where
∫ t

0 s(t)lb∗12dτ > 0 when ks > 0. For the case of ks < 0,
the conclusion can be similarly analyzed by following (48) and
(49). Finally, we summarize the aforementioned analysis into a
proposition.

Proposition 2: Consider the three-agent formation de-
scribed by (1), with the control inputs (12) and mismatches
μi, μ̃i, i = 1, 2, 3 as designed in (38), and the initial angle er-
ror ei(0), and the designed-mismatches are sufficiently small,

αi(0) 
= 0 and ks > 0. If l12(0) >
4k̄12λmax(P2)
λmin(Q2)−q1

√
2V2(0)

λmin(P2)
+

2μmax12λmax(P2)
λmin(Q2)−q1

√
2V2(0)

λmin(P2)
, then no collision will happen be-

tween agents 1 and 2.
The proof can be similarly obtained by following

Proposition 1.

IV. EXTENSION TO GENERICALLY ANGLE RIGID FORMATIONS

In this section, we aim at realizingN -agent formation maneu-
ver control by using designed mismatches. Since the maneuver-
ing for the first three agents is realized, we now consider how
agent i, i = 4, . . . , N can be added to the formation by giving
two desired angles α∗

j1ij2
and α∗

j2ij3
, j1 < i, j2 < i, j3 < i. As

shown in Fig. 3, we first investigate how the agent 4 can be
merged with the first triangular formation, and then, we illustrate
how agents 5 to N can be similarly merged into the resulting
formations.

We can design a similar stabilization control algorithm for the
agent 4 to achieve the two desired angles α∗

142 and α∗
243

u4 = −k41(α142 − α∗
142)(z41 + z42)

− k42(α243 − α∗
243)(z42 + z43) (60)

where k41 and k42 are positive constants. To make agent 4 also
maneuver with the desired translation, rotation, and scaling, we
modify the stabilization control algorithm (60) as the following
formation maneuver control algorithm:

u4 = −k41

(
α142 − α∗

142 −
μ4

k41

)
(z41 + z42)

− k42

(
α243 − α∗

243 −
μ̃4

k42

)
(z42 + z43)

= − k41(α142 − α∗
142)(z41 + z42)− k42(α243 − α∗

243)(z42

+ z43) + μ4z41 + (μ4 + μ̃4)z42 + μ̃4z43

= uf4 + um4 (61)

where μ4 ∈ R and μ̃4 ∈ R are the designed-mismatches associ-
ated with agent 4’s desired angles α∗

142 and α∗
243. By following

the similar steps given in Sections III- B and III-C, we give
the following procedure for the measurement-dependent and
measurement-independent mismatch design, respectively.

A. Measurement-Dependent Mismatches

Similar to the design procedure (14)–(25), we use the mis-
matches μ4(t), μ̃4(t) to realize the desired maneuvering under
the measurements of z4i, i = 1, 2, 3 and pc4 = p4 − pc.

1) Translation: According to (13), only considering trans-
lation maneuvering, one requires

v∗c = μ4(t)z41 + (μ4(t) + μ̃4(t))z42 + μ̃4(t)z43. (62)

Then, μ4(t) and μ̃4(t) can be calculated by[
μ4(t)

μ̃4(t)

]
=

[
(z41 + z42)(1) (z42 + z43)(1)

(z41 + z42)(2) (z42 + z43)(2)

]−1 [
v∗c(1)
v∗c(2)

]
.

2) Rotation: Based on (13), considering rotation maneuver-
ing, one has

ω∗Epc4 = μ4(t)z41 + (μ4(t) + μ̃4(t))z42 + μ̃4(t)z43. (63)

Similarly, μ4(t) and μ̃4(t) can be calculated.
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3) Scaling: Only considering scaling maneuvering in (13),
one has

s(t)pc4 = μ4(t)z41 + (μ4(t) + μ̃4(t))z42 + μ̃4(t)z43. (64)

Then, μ4(t) and μ̃4(t) can be calculated. By applying transla-
tion, rotation, and scaling simultaneously, one has[
μ4(t)

μ̃4(t)

]
= [z41 + z42 z42 + z43]

−1(v∗c + ω∗Epc4 + s(t)pc4).

(65)

Now, we give the result for the four-agent case.
Theorem 3: Consider a four-agent formation described by

(1), with the control (12) for agents 1 to 3, the control (61)
for the agent 4, and the mismatches μi(t), μ̃i(t), i = 1, 2, 3 as
designed in (25), and μ4, μ̃4 as designed in (65). If the initial
angle errors ei(0), i = 1, 2, 3 and e41(0), e42(0) are sufficiently
small,αi(0) 
= 0, sinα∗

124 > sinα∗
214, sinα∗

423 > sinα∗
234, and

α∗
143 = α∗

142 + α∗
243 and ‖pi(0)− pj(0)‖, i 
= j are sufficiently

away from zero, then the four-agent formation converges to its
desired shape and maneuvers with the prescribed translation,
rotation, and scaling.

Proof: According to Appendix B, one has agent 4’s angle
error dynamics

ė4 =

[
ė41

ė42

]
= F4(e4)e4 +W (e4)es

=

[
−ḡ1 f̄12

f̄21 −ḡ2

][
α142 − α∗

142

α243 − α∗
243

]
+

[
w11 w12

w21 w22

][
e1

e2

]
(66)

where ḡ1 = k41 sinα142(1/l41 + 1/l42), ḡ2 = k42 sinα243

(1/l43+1/l42), f̄12=−k42(sinα142+sinα143)
l41

+ k42 sinα243

l42
,

f̄21 = −k41(sinα243+sinα143)
l43

+ k41 sinα142

l42
, w11 =

zT
42Pz41

(z12+z13)

l41 sinα142
, w12 =

zT
41Pz42

(z21+z23)

l42 sinα142
, w21 =

− zT
42Pz43

(z31+z32)

l43 sinα243
, w22 =

zT
43Pz42

(z21+z23)

l42 sinα243
− zT

42Pz43
(z31+z32)

l43 sinα243
.

By considering a small neighborhood of the origin {e1 =
0, e2 = 0, e41 = 0, e42 = 0}, (66) can be linearized to

ė4 = A2e4 +B2es (67)

where A2 = F4(e4)|e4=0,es=0, and B2 = W (e4)|e4=0,es=0.
Then, one has tr(A2) = (−ḡ1 − ḡ2)|e4=0,es=0 < 0 and

det(A2)

k41k42
|e4=0,es=0 =

ḡ1ḡ2 − f̄12f̄21
k41k42

|e4=0,es=0

=
l∗41(sinα

∗
241 sinα

∗
342 + sin2 α∗

342 + sinα∗
342 sinα

∗
341)

l∗41l
∗
42l

∗
43

+
l∗43(sinα

∗
241 sinα

∗
342 + sin2 α∗

241 + sinα∗
241 sinα

∗
341)

l∗42l
∗
41l

∗
43

− l∗42(sinα
∗
241 sinα

∗
341 + sinα∗

341 sinα
∗
342 + sin2 α∗

341)

l∗41l
∗
42l

∗
43

.

Then, if det(A2) > 0, one has that A2 is Hurwitz. Similar
to [20, Lemma 7], it can be observed that det(A2) > 0 if l∗41 >
l∗42 and l∗43 > l∗42 hold. Based on the law of sines, the conditions

l∗41 > l∗42 and l∗43 > l∗42 are equivalent to sinα∗
124 > sinα∗

214 and
sinα∗

423 > sinα∗
234, respectively.

Combining (28) and (67), one has the linearized four-agent
angle error dynamics

˙̄e4 =

[
ės

ė4

]
= A4ē4 =

[
A1 0

B2 A2

][
es

e4

]
. (68)

WhenA1 andA2 are Hurwitz, one has thatA4 is also Hurwitz.
Then, for an arbitrary positive definite matrix Q3 ∈ R4×4, there
always exists a positive definite matrix P3 ∈ R4×4 such that
−Q3 = P3A4 +AT

4 P3. Design the Lyapunov function candi-
date as

V3 = ēT4 P3ē4

whose time derivative is

V̇3 = −ēT4 Q3ē4 ≤ −λmin(Q3)‖ē4‖2 ≤ −λmin(Q3)

λmax(P3)
V3.

Then, one has

‖e4‖2 ≤ ‖ē4‖2 ≤ V3

λmin(P3)
≤ V3(0)

λmin(P3)
e
− λmin(Q3)

λmax(P3)
t (69)

which implies that ‖e4‖ also exponentially converges to zero
when the four agents’ initial angle errors are in a small neighbor-
hood of the origin {e1 = 0, e2 = 0, e41 = 0, e42 = 0}. To make
the calculation of (65) valid and W (e4) well defined, one has
to guarantee that z41(t) 
= ±z42(t), z42(t) 
= ±z43(t) ∀t > 0,
which are equivalent to α142(t) 
= 0, π and α243(t) 
= 0, π ∀t >
0, respectively. From (69), one has |e41(t)| ≤

√
V3(0)

λmin(P3)
, which

implies

−
√

V3(0)

λmin(P3)
+ α∗

142 ≤ α142(t) ≤
√

V3(0)

λmin(P3)
+ α∗

142.

Therefore, if√
V3(0)<

√
λmin(P3) ∗min{π − α∗

142, α
∗
142, π − α∗

243, α
∗
243}

one obtains 0 < α142(t) < π and 0 < α243(t) < π, ∀t > 0,
which guarantee the calculation of (65) valid since
the first three agents are not collinear ∀t > 0. Then,
according to (1) and (61), one has limt→∞ ṗ4(t) =
limt→∞ um4(t) = limt→∞[μ4(t)z41(t) + (μ4(t) +
μ̃4(t))z42(t) + μ̃4(t)z43(t)] = limt→∞ ṗ∗4(t). By using
(62)–(64), one has that the maneuvering defined in (13) is
achieved. �

To guarantee that ‖W (e4)‖ is bounded and control law (61)
is well-defined, the collision between the agent 4 and agents 1 to
3 needs to be avoided. Similar to the three-agent formation case,
we conduct the collision analysis by taking l41(t) as an example

l41(t) = l41(0) +

∫ t

0

zT41(uf1 − uf4 + um1 − um4)dτ. (70)
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On the one hand, by using (32) and (69), one has∫ t

0

zT41(uf1 − uf4)dτ≤
∫ t

0

2(k1|e1|+ k41|e41|+ k42|e42|)dτ

≤
∫ t

0

2(k1

√
e21 + e22 +

√
2k̄4

√
e241 + e242)dτ

≤ 4k1λmax(P1)

λmin(Q1)

√
V1(0)

λmin(P1)
+

4k̄4λmax(P3)

λmin(Q3)

√
2V3(0)

λmin(P3)

(71)

where k̄4 = max{k41, k42}. On the other hand, by using (25)
and (65), one has∫ t

0

zT41(um1 − um4)dτ =

∫ t

0

s(τ)l41(τ)dτ ≥ 0 (72)

when s(t) > 0. For the case of s(t) < 0, the conclusion can be
similarly analyzed by following (48)–(49). Similarly, one has
the following proposition.

Proposition 3: Consider a four-agent formation described
by (1), with the control (12) for agents 1 to 3, the control
(61) for the agent 4, and the mismatches μi(t), μ̃i(t), i =
1, 2, 3 as designed in (25), and μ4(t), μ̃4(t) as designed in
(65) and s(t) > 0. If the initial angle errors ei(0), i = 1, 2, 3
and e41(0), e42(0) are sufficiently small, αi(0) 
= 0, sinα∗

124 >
sinα∗

214, sinα∗
423 > sinα∗

234, and α∗
143 = α∗

142 + α∗
243. If

l41(0) >
4k1λmax(P1)

λmin(Q1)

√
V1(0)

λmin(P1)
+ 4k̄4λmax(P3)

λmin(Q3)

√
2V3(0)

λmin(P3)
, then

no collision will happen between agents 4 and 1.
Now, we design a general formation maneuver control algo-

rithm for arbitrary agent i, 4 ≤ i ≤ N

ui = −ki1

(
αj1ij2 − α∗

j2ij3
− μi

ki1

)
(zij1 + zij2)

− ki2

(
αj2ij3 − α∗

j2ij3
− μ̃i

ki2

)
(zij2 + zij3)

= −ki1(αj1ij2−α∗
j1ij2

)(zij1 + zij2)−ki2(αj2ij3−α∗
j2ij3

)

× (zij2 + zij3) + μizij1 + (μi + μ̃i)zij2 + μ̃izij3

= ufi + umi (73)

where μi(t), μ̃i(t) can be similarly designed according to (62)–
(65), and j1, j2, j3 < i. Under the fact that the four-agent for-
mation achieves the desired shape exponentially, we suppose
for a 4 < k < N , the k-agent formation converges to the desired
shape exponentially. We need to prove that for the (k + 1)-agent
formation, the angle errors e(k+1)1 = αj1(k+1)j2 − α∗

j1(k+1)j2
and e(k+1)2 = αj2(k+1)j3 − α∗

j2(k+1)j3
converges to zero expo-

nentially. Similar to the proof from (60) to (69), one has that
the angle errors e(k+1)1 and e(k+1)2 exponentially converge to
zero. Therefore, the control algorithm (73) can locally stabilize
agent k + 1, i.e., the (k + 1)-agent formation converges to the
desired shape exponentially. So, by using induction, theN -agent
formation converges to the desired formation shape exponen-
tially. Similarly, the formation maneuvering is achieved since
limt→∞ ṗi(t) = limt→∞ umi(t) = limt→∞ ṗ∗i (t).

B. Measurement-Independent Mismatches

Similar to the design procedure (62)–(65), we use the
measurement-independent mismatches to realize the desired
maneuvering under the measurements of z4i, i = 1, 2, 3. The
information of the desired formation shape pb∗ described in∑

b(0) is required to be known in the mismatch design stage.
By applying translation, rotation, and scaling, simultaneously,

one has

μ4z
b∗
41 + (μ4 + μ̃4)z

b∗
42 + μ̃4z

b∗
43 = vb∗c + ω∗Epb∗c4 + s(t)pb∗c4

(74)

where zb∗4j =
pb∗
j −pb∗

4

‖pb∗
j −pb∗

4 ‖ . Then, mismatches μ4 and μ̃4 can be

calculated by[
μ4

μ̃4

]
= [zb∗41 + zb∗42 z

b∗
42 + zb∗43]

−1(vb∗c + ω∗Epb∗c4 + s(t)pb∗c4)

(75)

which is well defined when [zb∗41 + zb∗42 z
b∗
42 + zb∗43]

−1 is invertible.
Since no three points are collinear in the desired generically
angle rigid formation [20, Definition 4], the matrix [zb∗41 +
zb∗42 z

b∗
42 + zb∗43] is invertible. Now, we present the main result.

Theorem 4: Consider a four-agent formation described by
(1), with the control (12) for agents 1 to 3, the control (61) for
the agent 4, and the mismatches μi, μ̃i, i = 1, 2, 3 as designed in
(38), and μ4 and μ̃4 as designed in (75). If the initial angle error
ei(0), i = 1, . . ., 3, e41(0), e42(0) and the designed-mismatches
are sufficiently small, αi(0) 
= 0 and ‖pi(0)− pj(0)‖, i 
= j are
sufficiently away from zero and sinα∗

124 > sinα∗
214, sinα∗

423 >
sinα∗

234, and α∗
143 = α∗

142 + α∗
243, then the four-agent forma-

tion converges exponentially to its desired shape and maneuvers
with the prescribed translation (35), rotation (5), and scaling (6)
simultaneously.

Proof: Using similar steps as Appendix B, one has agent 4’s
angle error dynamics under the control (61) and (75)

ė4 = F4(e4)e4 +W (e4)es +H4(e4)U4

=

[
−ḡ1 f̄12

f̄21 −ḡ2

][
α142 − α∗

142

α243 − α∗
243

]
+

[
w11 w12

w21 w22

][
e1

e2

]

+

[
h11 h12 h13 h14 h15 h16 h17 h18

h21 h22 h23 h24 h25 h26 h27 h28

]
U4

(76)

where e4, F4(e4), and W (e4) have the same defi-
nitions as (66), U4 = [μ1, μ2, μ3, μ4, μ̃1, μ̃2, μ̃3, μ̃4]

T,
and h11 = −zT42

Pz41

l41 sinα142
z12, h12 = − zT41

Pz42

l42 sinα142
z23,

h13 = 0, h14 = zT42
Pz41

l41 sinα142
z42 + zT41

Pz42

l42 sinα142
z41, h15 =

−zT42
Pz41

l41 sinα142
z13, h16 = − zT41

Pz42

l42 sinα142
z21, h17 = 0,

h18 = zT42
Pz41

l41 sinα142
(z42 + z43) + zT41

Pz42

l42 sinα142
z43,h21 = 0,

h22 = − zT43
Pz42

l42 sinα243
z23, h23 = − zT42

Pz43

l43 sinα243
z31,

h24 = zT42
Pz43

l43 sinα243
(z41 + z42) + zT43

Pz42

l42 sinα243
z41,h25 = 0,

h26 = − zT43
Pz42

l42 sinα243
z21, h27 = − zT42

Pz43

l43 sinα243
z32, and

h28 = zT42
Pz43

l43 sinα243
z42 + zT43

Pz42

l42 sinα243
z43.
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Fig. 5. Formation maneuvering trajectories under measurement-
dependent mismatches.

Fig. 6. Evolution of angle errors under measurement-dependent mis-
matches.

Note that ‖es‖ and ‖U4‖ are sufficiently small. Therefore, the
angle error dynamics (76) are locally stable when F4(e4)|e4=0

is Hurwitz. To obtain the local stability of (76), by using the
similar analysis steps from (67) to (72), one has the local
stability of angle error dynamics (76). Also, when the initial
angle errors are sufficiently small and the initial distances are
sufficiently away from zero, no collision will happen. Similarly,
it can be proved that the prescribed formation maneuvering
in terms of translation, rotation, and scaling can be achieved.
For agents 4 < i ≤ N , the formation maneuver algorithm (73)
with measurement-independent mismatches can be similarly
designed according to (65). �

Remark 5: Note that since pbi − pbj = pi − pc − (pj − pc) =
pi − pj , the maneuvering reference point pc can be set as other
well-selected point of interest, which is not necessary the cen-
troid of the formation.

V. SIMULATION EXAMPLES

In this section, to verify the effectiveness of the proposed
formation maneuver control algorithms, we present numerical
simulation examples by conducting four-agent obstacle
avoidance task. The desired angles describing the formation
shape are set as α∗

1 = π/4, α∗
2 = π/2, α∗

3 = π/4, α∗
142 =

arctan 0.5, andα∗
243 = arctan 0.5. The initial states of all

agents are p1(0) = [0.8;−3.2], p2(0) = [0.1;−4.4], p3(0) =
[−1.4;−3.3], and p4(0) = [0.1;−5.3]. A reference formation
configuration in

∑
g is p∗1 = [0.9619; 4.6234], p∗2 =

[−0.1706; 3.1289], p∗3 = [−1.6666; 4.2629], and p∗4 =
[0.0134; 1.8154], which satisfies all the desired angle con-
straints. All the control gains are set aski = 1, i = 1, 2, 3, k41 =

Fig. 7. Formation maneuvering trajectories under measurement-
independent mismatches.

Fig. 8. Evolution of angle errors under measurement-independent
mismatches.

k42 = 1. For the case of measurement-dependent mismatches,
the maneuvering command velocity is v∗c = [0; 1.2], t ∈
[0, 9]; v∗c = [1; 0], t ∈ [11, 20]; ω∗ = −π

8 , t ∈ [7, 11]; s(t) =

−0.8e−0.4(t−12), t ∈ [12, 13]; and s(t) = 0.8e−0.4(t−16), t ∈
[16.5, 17]. The simulation results are given in Figs. 5 and 6.

For the case of measurement-independent mismatches,
the maneuvering command velocity is vb∗c = [−0.5795;
−0.9933], t ∈ [0, 9]; vb∗c = [−1.2957; 0.7558], t ∈ [13, 20];
ω∗= −π/8, t ∈ [9, 13]; s(t) = −0.4e−0.4(t−12), t ∈ [14, 15];
and s(t) = 0.4e−0.4(t−12), t ∈ [16.5, 17]. The corresponding
simulation results are given in Figs. 7 and 8.

According to the aforementioned simulation results, one
obtains that in both of the measurement-dependent and
measurement-independent mismatch cases, the translation, rota-
tion, and scaling maneuvering can be conducted simultaneously.
The angle errors converge to zero in both cases. Note that
in the measurement-independent mismatch case, only bearing
measurements are needed. As corresponds to Remark 3, the
translational maneuvering command velocities are different in
these two cases, but the rotational and scaling maneuvering are
not influenced.

VI. CONCLUSION AND FUTURE WORKS

This article has realized the formation maneuver control
by using a designed-mismatch angle approach. The forma-
tion is described by angles and constructed from a triangular
shape and grown with two angle constraints for each newly
added agent. Two types of designed mismatches have been
investigated: measurement-dependent case and measurement-
independent case. For both cases, the formation maneuver
control algorithms have been proposed to realize the desired
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maneuvering. To analyze the stability of the angle errors, the
angle error dynamics have been derived by using the dot product
of two bearings. Future work will focus on formation maneuver
control of multiagent systems with double-integrator dynamics.

APPENDIX A

For Section III-B, we use the dot product of two bearings to
obtain the angle error dynamics. In the following, we consider
the maneuvering of translation, rotation, and scaling simultane-
ously. Take agent 1 as an example

d(cosα1)

dt
= − sin(α1)α̇1 =

d(zT12z13)
dt

= (ż12)
Tz13 + (z12)

Tż13. (77)

Considering that for x ∈ R2, x 
= 0, d
dt (

x
‖x‖ ) =

I2− x
‖x‖

xT

‖x‖
‖x‖ ẋ and

denoting Px/‖x‖ = I2 − x
‖x‖

xT

‖x‖ , one has ż12 =
Pz12

l12
(ṗ2 − ṗ1).

By using (12), one has

ż12 =
Pz12

l12
(u2 − u1)

=
Pz12

l12
[−k2(α2 − α∗

2)(z23 + z21) + μ2(t)z23 + μ̃2(t)z21

+ k1(α1 − α∗
1)(z13 + z12)− μ1(t)z12 − μ̃1(t)z13].

(78)

From (25), one has

μ2(t)z23 + μ̃2(t)z21 − μ1(t)z12 − μ̃1(t)z13

= v∗c + (ω∗E + s(t)I2)pc2 − v∗c − (ω∗E + s(t)I2)pc1

= (ω∗E + s(t)I2) (pc2 − pc1). (79)

Substituting (79) into (78) yields

(ż12)
Tz13

= [k1(α1 − α∗
1)(z13 + z12)− k2(α2 − α∗

2)(z23 + z21)

+ (ω∗E + s(t)I2)(pc2 − pc1)]
TPz12

l12
z13

=
1

l12
[k1(sin

2 α1)(α1 − α∗
1)− k2(sinα1 sinα2)(α2 − α∗

2)]

− ω∗zT12EPz21z13 (80)

where we have used the fact that Pxx = 0 for all x ∈ R2 and
s(t)l12z

T
12Pz21z13 = 0. SincexTEx = 0 for allx ∈ R2, one has

−ω∗zT12EPz21z13 = −ω∗zT12Ez13. Similarly, one can get

(z12)
Tż13 = ω∗zT12Ez13 +

1

l13
[k1(sin

2 α1)(α1 − α∗
1)

− k3(cosα2 + cosα1 cosα3)(α3 − α∗
3)]. (81)

Substituting (80) and (81) into (77), one has the angle error
dynamics of the agent 1

α̇1= − (sinα1)

(
k1
l12

+
k1
l13

)
(α1 − α∗

1)+k2
sinα2

l12
(α2 − α∗

2)

+ k3
sinα3

l13
(α3 − α∗

3). (82)

By using the same analysis steps, one has

α̇2= − (sinα2)

(
k2
l21

+
k2
l23

)
(α2 − α∗

2) + k1
sinα1

l21
(α1 − α∗

1)

+ k3
sinα3

l23
(α3 − α∗

3) (83)

α̇3 = − (sinα3)

(
k3
l31

+
k3
l32

)
(α3 − α∗

3)

+ k1
sinα1

l31
(α1 − α∗

1) + k2
sinα2

l32
(α2 − α∗

2). (84)

Writing (82)–(84) into a compact form, one has the overall angle
error dynamics (26), which are independent of the mismatches
μi(t) and μ̃i(t).

APPENDIX B

For Section IV-A, we use a similar approach to obtain the an-
gle error dynamics of e41 and e42 for the agent 4 under the control
algorithm (61). In the following, we consider the maneuvering
of translation, rotation, and scaling simultaneously.

By using (12) and (61), one has

ż41 =
Pz41

l41
(ṗ1 − ṗ4) =

Pz41

l41
(uf1 − uf4 + um1 − um4).

By substituting the definitions of ufi and umi, one has

zT42
Pz41

l41
(uf1 − uf4)

=
−zT42Pz41(z12 + z13)e1 + k41(α142 − α∗

142) sin
2 α142

l41

+
k42(α243 − α∗

243)(sinα142)(sinα142 + sinα143)

l41
. (85)

On the other hand, one has

zT42
Pz41

l41
(um1 − um4) =

zT42Pz41(ω
∗E + s(t)I2)(p1 − p4)

l41

= ω∗zT42Ez41 (86)

where we have used the fact that Pz41z41 = 0 and zT41Ez41 = 0.
Similarly, one also has

zT41ż42 = zT41
Pz42

l42
(uf2 − uf4 + um2 − um4)

=
−zT41Pz42(z21+z23)e2+k41(α142−α∗

142) sin
2 α142

l42

+
k42(α243 − α∗

243)(− sinα142 sinα243)

l42

+ ω∗zT41Ez42. (87)

By substituting (85)–(87) into α̇142 = −(z�42ż41 +
z�41ż42)/ sinα142, one has the dynamics of α142 as

α̇142 = − (sinα142)

(
k41
l41

+
k41
l42

)
(α142 − α∗

142)

− k42(α243 − α∗
243)(sinα142 + sinα143)

l41
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+
k42(α243 − α∗

243) sinα243

l42
+

zT41Pz42(z21 + z23)e2
l42 sinα142

+
zT42Pz41(z12 + z13)e1

l41 sinα142
. (88)

By using the same analysis approach, one has the angle error
dynamics of α243 as

α̇243=−(sinα243)

(
k42
l43

+
k42
l42

)
(α243 − α∗

243)−
uT
f2Pz42z43

l42 sinα243

− k41(α142 − α∗
142)(sinα243 + sinα143)

l43

+
k41(α142 − α∗

142) sinα142

l42
− uT

f3Pz43z42

l43 sinα243
. (89)

By combining (88) and (89), one has the angle error dynamics
given in (66), which are independent of the designed mismatches
μi(t), μ̃i, i = 1, . . . , 4.
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