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Neural Repetition Suppression Modulates Time
Perception: Evidence From Electrophysiology

and Pupillometry

Wouter Kruijne1 , Christian N. L. Olivers2 , and Hedderik van Rijn1

Abstract

■ Human time perception is malleable and subject to many
biases. For example, it has repeatedly been shown that stimuli
that are physically intense or that are unexpected seem to last
longer. Two competing hypotheses have been proposed to ac-
count for such biases: One states that these temporal illusions
are the result of increased levels of arousal that speeds up neural
clock dynamics, whereas the alternative “magnitude coding” ac-
count states that the magnitude of sensory responses causally
modulates perceived durations. Common experimental para-
digms used to study temporal biases cannot dissociate between
these accounts, as arousal and sensory magnitude covary and
modulate each other. Here, we present two temporal discrimi-
nation experiments where two flashing stimuli demarcated the
start and end of a to-be-timed interval. These stimuli could be

either in the same or a different location, which led to different
sensory responses because of neural repetition suppression.
Crucially, changes and repetitions were fully predictable, which
allowed us to explore effects of sensory response magnitude
without changes in arousal or surprise. Intervals with changing
markers were perceived as lasting longer than those with repeat-
ing markers. We measured EEG (Experiment 1) and pupil size
(Experiment 2) and found that temporal perception was related to
changes in ERPs (P2) and pupil constriction, both of which have
been related to responses in the sensory cortex. Conversely, cor-
relates of surprise and arousal (P3 amplitude and pupil dilation)
were unaffected by stimulus repetitions and changes. These
results demonstrate, for the first time, that sensory magnitude
affects time perception even under constant levels of arousal. ■

INTRODUCTION

In some of the most critical moments in life, making the
right decision hinges on an accurate sense of time: At the
start of a runner’s sprint, or in the resolution of a cyclist’s
race, the difference between victory and defeat hinges on
choosing the right moment to break away; in our most
emotional conversations, the slightest pauses between
words can carry a world full of meaning; and during the
final resolution of a poker game, the most subtle speedup
and slowdown in opponents’ behavior can be taken as a
tell about their odds of having the best hand. However,
whereas the clocks on our walls tick away at a steady rate,
our “internal clocks” that perceive such intervals are mal-
leable and highly prone to biases, especially under condi-
tions where we are emotional or have a heightened focus
and sensitivity.

Identifying the neural mechanisms by which objective
time is translated into a subjective experience of time lies
at the heart of the study of time perception. To this end,
psychophysical studies have attempted to identify the
specific conditions where subjective time is systematically
overestimated or underestimated (Eagleman, 2008).

These studies generally explain such “temporal illusions”
in terms of two possible neural mechanisms. First, con-
verging evidence suggests that the neural “clock dynamics”
that give rise to a temporal percept are spedupunder height-
ened states of arousal, which leads to overestimations of
perceived durations. In line with this “clock-speedup”
view, it has been shown that time is dilated after a train
of clicks or flashes (Wearden et al., 2009; Penton-Voak,
Edwards, Percival, & Wearden, 1996) and that highly emo-
tional stimuli are often perceived as lasting longer (Droit-
Volet & Meck, 2007). Further evidence supporting such a
mechanism comes from neurophysiological work, which
points to striatal dopamine release as a critical modulator
of arousal-modulated speedup of clock dynamics (Mikhael
& Gershman 2019; Soares, Atallah, & Paton, 2016; Meck,
1986, 2006). Second, it has been suggested that the sub-
jective duration of a stimulus is directly affected by themag-
nitude of the sensory response that it evokes (Matthews
et al., 2014; Eagleman& Pariyadath, 2009). This “magnitude
coding” account, sometimes referred to as a “coding effi-
ciency” account, is largely motivated by a body of work
that demonstrates temporal dilations for stimuli that are
known to evoke large responses in sensory neurons. For
example, stimuli that are bright, large, and loud are typ-
ically perceived as longer than dimmed, soft, and small
stimuli (Matthews, 2011b; Xuan, Zhang, He, & Chen, 2007;1Rijksuniversiteit Groningen, 2Vrije Universiteit Amsterdam
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Goldstone, Lhamon, & Sechzer, 1978; Zelkind, 1973;
Ekman, Frankenhaeuser, Berglund, & Waszak, 1969).
Johnston, Arnold, and Nishida (2006) were among the first
to suggest that magnitude-mediated temporal illusions
can be experimentally induced. They showed that a visual
stimulus was perceived to last shorter when it was pre-
ceded by a flickering adapter stimulus at the same loca-
tion. As the effects of the adapter were spatially localized,
the results favored an explanation based on sensory
adaptation over any more global arousal-based mechanism
(see Shima, Murai, Yuasa, Hashimoto, & Yotsumoto, 2018;
Buhusi & Meck, 2009; Mattes & Ulrich, 1998, who discuss
analogous effects of prestimulus spatial cueing).
Although both mechanisms can account for a range of

findings, it has proven difficult to disentangle the two and
determine which is the primary driving force between a
given temporal illusion. The main reason for this is that
the two mechanisms are closely intertwined: Fluctuations
in arousal and differences in sensory responses strongly
covary and affect each other in several ways. Influential
theories of perception posit that sensory responses are
optimized to signal those stimuli that can be seen as
alerting or arousing, either because they violate expecta-
tions (Clark, 2013; Friston, 2005; Horvitz, 2000; Rao &
Ballard, 1999) or because they are associated with posi-
tive or negative reinforcement (Failing & Theeuwes,
2018; Cho et al., 2017; Anderson, Laurent, & Yantis,
2011; Keil & Ihssen, 2004). Conversely, heightened states
of arousal can causally modulate the responses of sensory
neurons (Mather, Clewett, Sakaki, & Harley, 2016; Mather
& Sutherland, 2011; Buia & Tiesinga, 2006).
The intertwined nature of sensory magnitude effects

on time perception on the one hand and alerting- or
arousal-based speedup of clock dynamics on the other
hand is perhaps best illustrated by research on the tem-
poral oddball paradigm (see Ulrich & Bausenhart, 2019,
for a review). Generally, in this paradigm, a sequence of
trials is presented in which participants are to estimate
the duration of frequent, repeating, standard stimuli
and occasional, infrequent oddball stimuli. The typical
finding is that the duration of standards is underesti-
mated whereas oddballs appear to last longer. In early
studies on this phenomenon, it was interpreted to reflect
sped-up clock dynamics, because of the unexpected odd-
ball causing an overall alerting and arousing response
(New & Scholl, 2009; Ulrich, Nitschke, & Rammsayer,
2006; Tse, Intriligator, Rivest, & Cavanagh, 2004). Others,
however, have interpreted the temporal oddball effect as
a manifestation of magnitude coding (Matthews &
Gheorghiu, 2016; Matthews et al., 2014; Pariyadath &
Eagleman, 2008, 2012; Eagleman & Pariyadath, 2009).
On the basis of predictive coding theories of sensory pro-
cessing (Clark, 2013; Friston, 2005; Rao & Ballard, 1999),
the repeated standard stimuli were postulated to have an
attenuated sensory response, because of either repetition
suppression or expectation suppression. The attenuated
response would then, in turn, lead to a shorter percept.

Many studies since have focused on disentangling the
relative contribution of repetitions and expectations to
temporal oddball effects. By presenting stimuli in pairs
rather than streams, it was shown that immediate stimu-
lus repetitions themselves also affect perceived durations
without a standard/oddball relation (Matthews, Stewart,
& Wearden, 2011). By modulating the predictability of
stimulus sequences, Cai, Eagleman, and Ma (2015) found
results suggesting that repetitions alone, and not expec-
tations, might be the driving force behind the oddball
effect. However, follow-up work demonstrated that the
rate of stimulus repetition (Skylark & Gheorghiu, 2017;
Matthews, 2015) and the expected sequential position
of an oddball both modulate their effect on subjective du-
ration (Wehrman, Wearden, & Sowman, 2020). In addi-
tion, it has been shown that the degree to which the
oddball physically differs from the standards can scale
the temporal oddball effect (Kim & McAuley, 2013;
Schindel, Rowlands, & Arnold, 2011). Taken together, re-
sults suggest that higher-order expectations have the abil-
ity to strongly modulate first-order repetition effects.
However, they do not directly address the question
whether the magnitude of sensory responses is directly
responsible for these modifications of subjective time.
These findings still leave the possibility that sensory re-
sponses either covary with a global sense of contextual
surprise or trigger a state of overall alertness or arousal,
which in turn speeds up the neural dynamics that are re-
sponsible for the sense of time.

Most neurophysiological studies have similarly re-
mained inconclusive as to whether sensory magnitude
can directly affect time perception. For example, the
amount of temporal dilation in humans in response to
different oddballs has been shown to correlate with sen-
sory responses to the same stimuli in the macaque cortex
(Sadeghi, Pariyadath, Apte, Eagleman, & Cook, 2011).
Although this would align with the magnitude coding
view, this cross-species brain–behavior correlate does
not necessitate a causal link between sensory responses
and the dilation effect. Noguchi and Kakigi (2006) used
magnetoencephalography in a design where participants
compared the duration of two stimuli that either repeated
or changed (cf. Matthews, 2015; Matthews et al., 2011).
Switches were perceived as longer than repeats, a dilation
effect that correlated across participants with increases in
sensory responses. However, a similar relation was found
after stimulus onset in climbing neural activity localized to
the SMA, which was interpreted to reflect speedup in
neural clock dynamics. Recently, Ernst et al. (2017) used
EEG to show that intertrial variability in P3 responses pre-
dicted the magnitude of the temporal dilation effect. This
component was related to the level of surprise or arousal
evoked by the oddball (Mars et al., 2008). The authors
offered a careful interpretation of their findings, noting
that they would fit with both a magnitude coding account
and a more global arousal-based modulation of clock
dynamics.
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To our knowledge, only one study has offered neuro-
physiological support for sensory magnitude effects with-
out manipulating expectation and arousal (Mayo &
Sommer, 2013). In this study, macaques judged the inter-
val between two briefly presented visual stimuli as “short”
or “long,” whereas local field potentials were recorded
from the FEFs. Neural responses on correctly judged tri-
als were seemingly identical to incorrect trials, except
that the sensory responses evoked by the end marker
were weaker or stronger with underestimated and over-
estimated durations. As this relation was found at the
very end of the interval, it seems unlikely that it can be
ascribed to differences in clock speed throughout the in-
terval and thereby points to a direct interaction between
the sensory response and the subjective duration.
Nevertheless, as there was no experimental manipulation
of sensory responses, it remains unclear what exactly
caused these trial-by-trial fluctuations in sensory re-
sponses and thereby what precisely caused the differ-
ences in subjective time.

Here, we present results from two experiments that
offer new neurophysiological evidence that sensory re-
sponse magnitude can directly modulate time percep-
tion. In both experiments, participants were to time
the interval between two briefly presented visual stimuli
(cf. Matthews & Meck, 2016; Mayo & Sommer, 2013).
These stimuli could be presented either in the same
hemifield or in opposite hemifields, but crucially, the lo-
cation of the end marker was always fully predictable.
Nevertheless, results indicated that intervals were per-
ceived as longer when the location changed, compared
to when it repeated. Our results strongly indicated that
this “change bias” reflects how sensory responses were
modulated by repetition suppression, which causally af-
fected perceived durations. In Experiment 1, we recorded
EEG and analyzed three components in the ERP that have
been associated with clock speeds (CNV), sensory magni-
tude (P2), and either arousal or violation of expecations
(P3). Results showed that, of these, only P2 amplitude
was affected by repetitions and could be used to predict
responses on a trial-by-trial basis. In Experiment 2, we rep-
licated the change bias in a simpler experimental setup
and additionally tracked eye movements to refute alterna-
tive explanations of the effect. Furthermore, we analyzed
pupil sizes in response to repetitions and changes, which
lent further indications that the bias was directly related to
the magnitude of sensory responses.

EXPERIMENT 1

In Experiment 1, participants compared two intervals
spaced by a memory delay. This experiment was origi-
nally designed to investigate whether maintenance and
retrieval of durations from working memory would yield
lateralized signals in EEG if the interval was presented on
either side of the display. The analyses addressing this
question are presented and discussed in a separate paper

(Kruijne, Olivers, & van Rijn, 2021), so as not to dilute
the focus of the research question in the present report.
Here, we will focus our analysis on one particular aspect
of the task: Stimulus locations either changed or repeated
in a fully predictable manner but nevertheless had a robust
effect on perceived durations.
As noted above, analyses focused on three relevant

ERP components in particular that are found at central
electrode sites and have been related to time percep-
tion, sensory processing, expectations, and arousal.
First, we focus on the CNV, a slow-wave negative deflec-
tion that develops during an interval. In early work, the
CNV was assumed to directly reflect internal clock com-
putations (Macar & Vidal, 2003; Macar, Vidal, & Casini,
1999). More recently, a more nuanced interpretation
has been put forward that the component reflects
time-informed preparation for upcoming events and ac-
tions (Amit, Abeles, Carrasco, & Yuval-Greenberg, 2019;
Boehm, van Maanen, Forstmann, & van Rijn, 2014;
Kononowicz & van Rijn, 2014; van Rijn, Kononowicz,
Meck, Ng, & Penney, 2011; Pfeuty, Ragot, & Pouthas,
2005). The second component was the central P2, a pos-
itive peak around 200–250 msec poststimulus that is as-
sociated with preattentive sensory stimulus processing
(Van der Molen et al., 2012). The P2 amplitude is mod-
ulated by physical stimulus properties, such as its
brightness (Crowley & Colrain, 2004; Kaskey, Salzman,
Klorman, & Pass, 1980), and previous studies have sug-
gested a link between the P2 at stimulus offset and per-
ceived duration (Kononowicz & van Rijn, 2014; Tarantino
et al., 2010). Third, we assessed the amplitude of the P3,
an ERP complex that has been linked to a range of cog-
nitive functions that include temporal decision-making
(Lindbergh & Kieffaber 2013), but also more broadly,
decision-making and outcome evaluation (Jepma et al.,
2016; Kelly & O’Connell, 2013; Nieuwenhuis, Aston-Jones,
& Cohen, 2005). One canonical observation regarding P3
amplitude is that it relates to the degree of “surprise” in
response to a stimulus (Mars et al., 2008) and, in turn, has
been related to temporal oddball effects (Ernst et al., 2017).

Method

Participants

Data were collected from 24 healthy participants who
were compensated by means of either course credits or a
monetary compensation of A10/hr. They were recruited
through the research participant pool of the Faculty of
Behavior and Movement Sciences at the Vrije Universiteit
Amsterdam. Four participants were discarded on the basis
of noisy EEG data, which were characterized by the pre-
processing analyses described below: Two participants
had a too high number of noisy channels (8 and 10 EEG
electrodes out of 64), and two had a too high percentage
of discarded data epochs (38% and 52%). None of the re-
maining participants was excluded on the basis of behav-
ior. To initially assess behavior, we fit a psychometric
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curve for each participant by means of logistic regression
that predicted the proportion of trials where the second
interval was judged “longer” than the first interval, as a func-
tion of the absolute difference in time between them. The
slope coefficients of this regression were within 2 SDs from
the group mean for each of the 20 participants. The final
sample contained 20 participants (10 women, ages 19–
26 years, mean age = 21.9 years).

Stimuli and Procedure

Participants were seated in a sound-attenuated, dimly lit
room at a 75-cm viewing distance from a monitor (22 in.,
Samsung Syncmaster 2233) with a 1680 � 1050 resolu-
tion and a 120-Hz refresh rate. The experiment was pro-
grammed and presented using OpenSesame (Mathôt,
Schreij, & Theeuwes, 2012), with the PsychoPy back-end
(Peirce, 2007). Figure 1A depicts the stimulus sequence
on an example trial, with black and gray colors inverted
for visibility. Trials started with a gray fixation cross
(0.2°) presented on a black background for 1000 msec,
followed by the onset of three, horizontally aligned gray
placeholder circles (radius = 1.97°, one in the center
and two at 9.83° eccentricity) around a central gray fixation
dot (0.2°). The placeholders and fixation dot stayed on
screen until the end of the trial.

The first interval (Interval 1) started 500 msec after the
onset of the placeholders, which was indicated by a red
diamond (3.94° width and height) flashing for 125 msec
in the left or right circle. The duration of this interval was
randomly sampled from a uniform distribution between
1250 and 2250 msec. The end of the interval was again
marked by a flashing red diamond at either the same or
opposite location, dependent on block type (“same” or
“change” block). Then, a memory delay followed, which
lasted 1250 msec. After this delay, Interval 2 was pre-
sented by means of two green squares flashing in the cen-
ter circle, one to mark the start and one to mark the end.
The duration of this interval was determined relative to
the duration of Interval 1 and was always either 10% or
20% shorter or longer. The resulting empirical distribu-
tions closely matched the theoretical uniform distribu-
tions depicted in Figure 1A (see Appendix Figure 1A).
The offset of Interval 2 was followed by another 1250-msec
response delay, after which a response screen appeared
where they were asked to indicate whether Interval 2
had been shorter or longer by pressing Z or M on a stan-
dard keyboard. On each trial, the meaning of these two
keys could swap unpredictably, to prevent (lateralized) re-
sponse preparation signals in the EEG. Participants were
instructed to be accurate and that there was no need for
a speeded response.

Figure 1. (A) Trial sequence. Participants compared Interval 1, which had a randomly sampled duration, to Interval 2, which was 10% or 20% shorter
or longer. Intervals were indicated by flashing markers. Markers for Interval 1 either appeared in the same position (green shading) or changed in
position (blue shading), which was varied across blocks. (B) Behavior. Participants’ responses were driven not only by the relative duration of the
intervals but also by the absolute duration of Interval 2 and by the way Interval 1 was presented. Data points reflect average response rates in
per-condition bins of Interval 2 duration, with 95% within-participant confidence interval (Morey, 2008; Cousineau, 2005). Curves reflect the fit of the
best GLMM.
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The experiment consisted of eight blocks of 40 trials
each. In half of these blocks (“same” blocks), the start
and end markers of Interval were on the same side of
the screen; in the other half (“change” blocks), they were
on opposite sides. Block types alternated throughout the
experiment, with an order counterbalanced across partic-
ipants. Before the start of each block, participants were in-
formed regarding the upcoming block type. Therefore,
regardless of block type, participants could never predict
the location of the start marker of Interval 1, but the end
marker location was always fully predictable once the start
marker had been presented. For Interval 2, both markers
were presented in the center of the screen. Participants
completed 10 “same” and “change” trials as practice be-
fore the start of the experiment, which were not consid-
ered in any of the analyses.

EEG Acquisition and Data Cleaning

EEG data were recorded at 512 Hz using a BioSemi
ActiveTwo system (biosemi.com) with 64 channels placed
according to the standard 10–20 system. Six additional ex-
ternal electrodes were placed: Two were placed on the
earlobes to be used as offline reference, two were placed
1 cm lateral to the external canthi, and two electrodes
were placed 2 cm above and below the right eye. From
these latter four electrodes, horizontal and vertical EOG
traces (HEOG/VEOG) were constructed by subtracting
data from the opposing pairs of electrodes.

Data were preprocessed and analyzed offline using
MNE-Python (Gramfort et al., 2013, 2014) and statistical
functions in R (The R Project for Statistical Computing).
Data were first high-pass filtered at 0.1 Hz, removing slow
drifts. To analyze data epochs with minimal artifacts, we
used various algorithms to mark contaminated data for
subsequent removal, which are described below. Many of
these methods take epochs of equal length as their input,
assumed to reflect on-task data of individual trials. To this
end, we created “preprocessing epochs” with data from
−2500 to 2250 msec around the onset of Interval 2. That
way, they included a maximum amount of data on-task for
each trial, based on the minimum duration of Interval 1, the
duration of the memory delay, the minimum duration of
Interval 2, and the response delay.

To detect channels with noisy data throughout the re-
cording session, we followed the PREP pipeline (Bigdely-
Shamlo, Mullen, Kothe, Su, & Robbins, 2015) and made
use of the RANSAC algorithm implemented in the auto-
reject package ( Jas, Engemann, Bekhti, Raimondo, &
Gramfort, 2017). This algorithm generates permutations
of the data set where it tries to predict channel data by
interpolating the activity from a subset (25%) of channels.
If the correlation between the predicted and observed
data is too small (r < :75) in over 40% of epochs, the
channel is marked as faulty. These channels were pri-
marily located at peripheral sites and did not overlap with
our electrodes of interest (see below). An overview of

marked channels is given in Appendix Table A1. These chan-
nels were discarded from further preprocessing steps and
are interpolated from surrounding electrodes at the end of
data cleaning. Note that this procedure had minimal impact
on ERPs, as the analyzed amplitudes were computed from
multiple averaged electrodes, and because discarded elec-
trodes had virtually no overlap with our ROIs.
Data segments contaminated by muscle artifacts were

identified by means of a procedure adopted from the
PREP pipeline (Bigdely-Shamlo et al., 2015) and functions
in FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011).
Raw data were band-pass filtered at 110–140 Hz, and the
Hilbert envelope of the resulting signal was computed.
The result was convolved with a 200-msec boxcar averaging
window, resulting in a per-channel time course estimate of
high-frequency power characteristic for muscle activity. We
determined a per-channel robust Z score of such power
based on the median and median absolute deviation com-
puted from data within the preprocessing epochs. Data
segments where the cross-channel average Z score was
larger than 5.0 were marked as contaminated and not con-
sidered in further analyses.
Artifacts caused by eye blinks were detected and fil-

tered out by means of independent component analysis,
which was computed over the full data set. Because the
spatial independent component analysis filters are sensi-
tive to slow drifts, the raw data were first high-pass fil-
tered at 1 Hz, and data were subsampled to 102.4 Hz =
512
5 to speed up computation. Independent components
were computed using the infomax algorithm (the default
in EEGLAB; Delorme & Makeig, 2004). Components were
first visually identified as corresponding to blinks, an ap-
proach that was subsequently validated by correlating
component activity with the VEOG signal during blinks.
That is, we filtered the VEOG signal with a 1- to 10-Hz
band-pass filter and extracted 1000-msec epochs around
local maxima. Components that were identified as blink
related, and only those components, had a high correla-
tion with VEOG amplitude (r2 > .50).
Horizontal saccades were identified by high-pass filter-

ing the HEOG trace at 1 Hz and convolving the result
with a stepwise zero-mean filter kernel of 325 msec that
went from −1 to 1 by means of a 25-msec linear ramp
(an approach adopted from ERPLAB; Lopez-Calderon &
Luck, 2014). In the resulting signal, we identified local
maxima that exceeded the 99th percentile as moments
of horizontal saccades. Data from the moment of such
saccades until the end of a trial were marked as contam-
inated, and later epochs overlapping with annotated data
segments were omitted from analyses.
As a final data cleaning step, we applied the autoreject

algorithm (Jas et al., 2017) to identify unreasonable fluc-
tuations in amplitudes. Autoreject aims to improve on
typical epoch rejection based on peak-to-peak amplitudes
with a fixed threshold. It uses a Bayesian optimization
procedure to compute per-channel thresholds as well as
an additional integer value k. If a channel’s peak-to-peak
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value in an epoch exceeds its threshold, autoreject will
initially attempt to interpolate its data from neighboring
channels. If the number of marked channels in an epoch
is larger than k, the entire epoch is discarded. An over-
view of the fitted threshold values is given in the
Appendix, together with the number of epochs included
after data cleaning (Appendix Figures A2 and A3).

ERP Components: CNV, P2, and P3

Using the algorithms described in the previous section,
“cleaned” data epochs were created for ERP analyses. As
stated in the introduction, we focused our analyses on
data from electrodes at central sites (Cz, C1, C2, FCz,
FC1, FC2, CPz, CP1, CP2) where we identified the
CNV, P2, and P3 (see Figures 2A and 3A). In particular,
data from these electrodes were spatially averaged, and
components were defined as the amplitudes in three
different time windows in the resulting signal. First,
we defined CNV amplitude on each trial as the average
amplitude during the 250 msec leading up to the end of
the interval with respect to a prestimulus baseline (for
Interval 1, this baseline was 100 msec before the onset
of the placeholders; for Interval 2, this baseline was
100 msec before Interval 2 onset). For the P2, we averaged
amplitudes from 200 to 250 msec after the offset of each
interval. To ensure that this measure captured the tran-
sient response with minimal interference from the on-
going slow-wave CNV amplitude, the P2 was computed

with respect to a 100-msec baseline surrounding the
moment of interval offset (t = −50 to +50 msec, follow-
ing Kononowicz & van Rijn, 2014; Correa & Nobre, 2008).
The final ERP component of immediate interest, the P3,
was defined as the average amplitude between 350 and
400 msec using the same baseline as for the P2.

In the main text, we focus on analyses of these compo-
nents in a data epoch surrounding the end markers, as it
is there that we expected to register the effects of the
same/change manipulation. Additional analyses specifi-
cally addressing neural responses evoked by the start
marker are reported in the Appendix (Figure A4 and
accompanying text).

Statistical Analyses

We analyzed behavioral and electrophysiological data
from ROIs and time windows of interest by means of gen-
eralized linear mixed models (GLMMs; Baayen, Davidson,
& Bates, 2008). These analyses aimed to characterize the
experimental variables that could best account for the be-
havioral change bias, capture variability in the EEG data,
and identify potential relations between the two. There
are several different approaches to statistical inference
with GLMMs: For example, one could compare predefined
models with prior plausibility on the basis of their fit
values, or one might fit a single theory-driven model
and determine a p value for each of its predictors. As
the change bias had been an unanticipated finding, we

Figure 2. ERPs for Interval 1. (A) Grand-averaged waveforms at central electrodes. The gray curve has a baseline before the start of the interval, to
measure the CNV amplitude at the end of the interval. The black curve reflects the same data, but baselined around the presentation of the end
marker, to measure the P2 and P3 amplitudes. (B) Model fit, (C) time course, and (D) spatial distribution of the P2 effect. Trials in same and change
blocks evoke P2 components of different amplitudes at central sites, but this difference has disappeared around the time of the P3. Around that time,
a contralateral positivity (plotted on the right) was present at occipital sites.
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chose a more data-driven model comparison approach.
That is, we predefined a set of predictors of interest and
compared the statistical models that could be constructed
from these predictors. We base inferences on the Bayesian
Information Criterion (BIC), which is typically a more con-
servative statistic than the Akaike Information Criterion
(AIC) or χ2. We report results regarding the “best” model
and its contrast with “suboptimal” models with higher BIC
values. To additionally report p values, we will report the
outcomes of likelihood ratio tests where appropriate.

More precisely, we analyzed behavioral data by means
of logistic regression on the response on each trial and
compared models constructed from the following predic-
tors: the duration of Interval 1, the duration of Interval 2,
the difference between them (Δt), the percentage change
on a trial, and the block type (same/change in marker lo-
cations for Interval 1). The most complex model with all
predictors and all their interactions was constructed, and
as an initial model selection step, this model was
“trimmed down” using the lmerTest::step() function.

That is, predictor terms were removed if they did not
have an additional explanatory value based on AIC scores.
For the resulting “trimmed”model, we fit all less complex
nested “child” models, with the only constraint that inter-
action terms were only included alongside their respec-
tive main effects. All models included participant ID as
a random intercept term. For each fixed effect in the re-
sulting “best” model, we tested whether including a cor-
responding random slopes term should be included in
the model and did so if this improved a model’s AIC
score.
Each of the ERP components (CNV, P2, and P3 for both

Interval 1 and Interval 2) was analyzed using the same
model selection procedure, albeit with linear mixed
models (LMMs) and with “temporal percept” as an addi-
tional predictor (Interval 1 or 2 judged as longer, which
was the response variable of the behavioral GLMM). This
way, we could establish direct links between ERP compo-
nents and behavior. For all analyses, we report the preferred
model alongside comparison statistics for suboptimal simpler

Figure 3. ERPs for Interval 2. (A) Grand-averaged waveforms at central sites, as in Figure 2, with the best statistical models on the right. P2
amplitudes were predicted by objective duration as well as by the temporal percept. The P3 amplitude was predicted by objective duration
interacting with the relative (%) change. (B) Model fits, (C) time course, and (D) spatial distribution of the P2 effects. Labels “long” and “short” in C
and D correspond to bins in B. (E) Model fit, (F) time course, and (G) spatial distribution of the P3 effects. Again, “short” and “long” correspond to
the bins in E.
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models where the predictor terms are individually re-
moved. We additionally report comparison statistics with
other models of theoretical interest. Our conclusions are
based on the ΔBIC, where we use positive values to indi-
cate that including a term is supported and negative
values for evidence against its inclusion. Wherever possi-
ble, we additionally report p values based on the χ2 sta-
tistic from likelihood ratio tests.
Note that most factorial analyses, such as traditional

ANOVAs or t tests, would be inadequate for our data be-
cause of the multicollinearity among the predictors of in-
terest. For example, a simple contrast among ERPs for
trials where Interval 1 or Interval 2 was perceived as lon-
ger would be inappropriate: The latter of these classes
would always include more trials where Interval 2 was ob-
jectively longer, or relatively longer, or where the marker
location changed. This similarly impedes most explora-
tions of spatiotemporal differences using cluster-based
permutation tests. Comparisons based on the BIC suffer
less from this problem as they allow us to assess model
complexity as a whole, rather than the estimated contrasts
within the model. Nevertheless, this issue of collinearity
is to be heeded when interpreting the visualizations and
precludes strong conclusions based on resulting model
coefficients.

Results

Behavior

Behavior is depicted in Figure 1B, together with the pre-
dictions of the model with the best BIC value. This model
had three additive fixed effects terms: First, the “percent-
age change,” expressed as a continuous linear term, was a
strong predictor of behavior (ΔBIC = 15.0, χ2(1) = 23.8,
p= .001), which describes participants’ ability to correctly
perform the task. A random slope was included in the
model to capture variability in this term across partici-
pants. Second, participants were more likely to perceive
Interval 2 as longer when it was also objectively long
(“Duration Interval 2,” expressed as a continuous linear
predictor: ΔBIC = 296.0, χ2(1) = 298.8, p < .001).
Note that, although participants’ responses would ideally
be determined from the relative duration alone, the ob-
jective duration is a useful heuristic to determine the cor-
rect response that participants might have exploited.
Finally, we found that the block type (“same” or “change”
block, referring to the markers of Interval 1) affected par-
ticipants’ responses: Interval 2 was less likely to be per-
ceived as longer than Interval 1 in blocks with a marker
change (ΔBIC= 82.5, χ2(1) = 91.2, p< .001). This effect
will hereafter be referred to as the “change bias.”
The predictions of this model are depicted in Figure 1B.

To visualize the fit of binomial response data as a function
of a continuous predictor (“Interval 2 duration”), we split
data for each participant across three bins for each con-
dition and computed the average response rate per bin.
These averages were used to compute grand averages

with 95% confidence intervals of within-participant ef-
fects (Morey, 2008; Cousineau, 2005). Note that this
was for visualization purposes only: Bins were not used
in the analyses.

With respect to our research question, it is of particular
interest whether the change bias might be accounted for
by a sense of “surprise” or violated expectations on
change trials. We did not expect this to be the case:
The manner of presentation (same/change) was randomly
varied across blocks, and therefore, participants would
have been highly accustomed to repetitions as well as
changes. We assessed this in more detail by exploring
whether the bias effect was perhaps larger at the start
of a block compared to the end. A factorial predictor
term “block phase” was defined through a median split
on trial index and was included in a more complex model
as a predictor that interacted with “block type.” There
was, however, no support for this model (ΔBIC =
−17.5, χ2(2) = 0.06, p = .968).

Alternatively, one could hypothesize that, although
changes were fully anticipated, these intervals were
deemed inherently more interesting than “same” inter-
vals and thus could have led to an increased state of
arousal or alertness throughout their presentation. If this
is the case, heightened arousal might have affected neu-
ral clock-speed dynamics, which could thereby explain
the change bias without a role for sensory repetition sup-
pression. The behavioral results, however, do not sup-
port this alternative explanation: If clock speed were
affected by a heightened state of alertness, this would
mean that the change bias should be larger for intervals
of a longer duration. Such an interaction effect between
“block type” and “interval duration,” however, had no sta-
tistical support (ΔBIC = −12.7, χ2(2) = 4.9, p = .085).
The χ2 statistic here might marginally hint at a possible
interaction, but we note that this was in fact underaddi-
tive with a smaller bias for longer durations.

Taken together, the behavioral data support the inter-
pretation that the change bias reflects a constant, additive
bias that is driven by differences in the sensory response
on “same” and “change” trials. These findings suggest
that this bias suggests a sensory magnitude coding effect
mediated by repetition suppression, rather than a conse-
quence of sped-up clock computations or an effect medi-
ated by violated expectations. Next, we investigate whether
ERP components lend further support for this view.

ERP Components during Interval 1

Figure 2A depicts the overall time course of the selected
central electrodes, and highlights the CNV, P2, and P3 as
defined in the Methods section. The models that best
captured the data are listed in the table on the right.
First, for the CNV, we found no evidence that any of
the predictors modulated its amplitude: The second-best
model included a term for which interval was perceived
as longer (Interval 1 or Interval 2), but neither the BIC
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nor likelihood ratio tests gave an indication that this
model was supported (ΔBIC = −7.5, χ2(1) = 0.29).
Note that the CNV development at the start of the inter-
val similarly did not differ on same- and change-blocks
(Appendix Figure A4). These results align with the view
that neural dynamics underlying subjective time unfold
identically on both types of trials, up until the end marker.

For the P2, we did find that it was modulated by the
presentation type of the interval. In blocks with a change
in marker location, the marker elicited a larger P2 than
on blocks with repeating marker locations (ΔBIC =
0.15, χ2(1) = 8.8, p = .003). This effect is visualized in
Figure 2B, accompanied by the ERP time course split for
the two block types (Figure 2C). To ensure that this P2
amplitude difference was not partially caused by any
potential baselining effects caused by the CNV, we addi-
tionally analyzed P2 amplitude in band-pass filtered data
(2–20 Hz), which emphasizes the temporal properties of
the P2while attenuating anymodulations by the slower CNV
component (following Kononowicz & van Rijn, 2014).
Analyses on filtered data similarly supported the model
with “block type” as an added predictor (ΔBIC = 1.05,
χ2(1) = 9.7, p = .002). Thus, these results additionally
suggest that early sensory responses were larger on trials
with a marker change, suggesting that neural response
magnitude affected time perception.

In a companion paper (Kruijne et al., 2021), we ana-
lyzed data from the same experiment and specifically
aimed to uncover lateralized signals and their relation
to time perception. There, cluster-based permutation
analyses indicated that lateralized occipital ERPs were
also modulated by block type. We reported a significant
difference between 197 and 455 msec postonset, which
we interpreted as a difference in N2pc between these
conditions. For this study, we have reanalyzed the
contralateral–ipsilateral difference, averaged in the time
window associated with an N2pc (200–300 msec). The
best LMM was one that included “block type” as a predic-
tor, demonstrating that parieto-occipital, lateralized ERP
amplitudes were larger in “change” blocks (ΔBIC = 7.9,
χ2(1) = 29.02, p < .001). In Figure 2D, we plot the
average scalp distribution of potentials at 200–250 and
300–350msec, contrasting data from “change” and “same”
blocks. These maps are derived from epochs where
we mirrored data such that contralateral electrodes are
plotted on the right. These maps illustrate how change
blocks are characterized by a positivity that peaks more
frontally around the time of the P2 but that later in time
manifests solely at contralateral, occipital electrodes.

The ERP time course and the scalp distributions de-
picted in Figure 2C and D suggest that the difference
between different trial types is not modulating the central
P3 component: Around that time, the difference is merely
found at contralateral occipital electrodes. Indeed,
analyses of the P3 found that it was not modulated by
any of the predictors, with no support for an effect of trial
type (ΔBIC = −8.3, χ2(1) = 0.29, p = .592) nor for an

effect of interval duration (ΔBIC = −8.6, χ2(1) = 0.01,
p = .907). The absence of any modulations of the P3
as reported by Ernst et al. (2017) provides further indica-
tion that this change bias is of a different nature than the
temporal oddball effect.

ERP Components during Interval 2

In Figure 3A, we illustrate the overall time course at cen-
tral electrode sites around the offset of the second inter-
val. For Interval 2, the CNV was more pronounced, which
would align with the view that this component reflects
time-based anticipation for the end marker (Kononowicz
& van Rijn, 2014; Pfeuty et al., 2005). Nevertheless, we
again did not find any support that the CNV amplitude
at the end of Interval 2 was modulated by any of the pre-
dictors: The best model was the intercept-only model,
followed by a model that included the comparison judg-
ment as a predictor (ΔBIC = −7.7, χ2(1) = 0.93, p =
.335). A highly comparable pattern of results was found
for the CNV development at the onset of the interval
(Appendix Figure A4).
P2 amplitude for Interval 2 was again modulated by ex-

perimental variables. That is, the model that best described
its amplitude included the predictors “Interval 2 duration”
(ΔBIC = 2.78, χ2(1) = 11.4, p = .001) and “perceived lon-
ger” (ΔBIC = 0.78, χ2(1) = 7.9, p = .005). These predic-
tors were additive, with evidence against an interaction
(ΔBIC = −8.58, χ2(1) = 0.06, p = .798). Again, we reran
the analyses on band-pass filtered data to overcome poten-
tial carryover effects from the CNV, which resulted in the
same statistical model with somewhat stronger evidence
(both ΔBIC> 1.5, χ2(1) > 10.2, p < .002). The model fits,
ERP time course, and topographical distribution of these
P2 effects are depicted in Figure 3B–D.
The best model for the P3 was one with the predictors

“percentage change” and “Interval 2 duration,” aswell as their
interaction (percentage change: ΔBIC = 7.9, χ2(2) =
25.16, p <. 001; Interval 2 duration: ΔBIC = 8.1, χ2(2) =
25.39, p < .001; interaction: ΔBIC = 7.2, χ2(1) = 15.8,
p <.001). As illustrated in Figure 3E–G, this interaction
entailed that the contrast between “short” and “long”
durations of Interval 2 yielded large P3 differences on
trials with Interval 2 < Interval 1 (−20% or −10%) but did
virtually not differ for trials where Interval 2 > Interval 1
(+10% or +20%).

P2 Amplitude Predicts the Temporal Percept

The previous section shows that the P2 at the offset of
Interval 2 was larger on trials where Interval 2 was perceived
as longer. Of all explored ERP components discussed
above, this was the only component with such a relation.
To further understand this link, we also assessed whether
the inverse held. That is, we assessed whether P2 amplitude
was supported as an additional predictor in the GLMM pre-
dicting behavior, extending the model depicted in
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Figure 1B. Indeed, we found that the extended model in-
cluding P2 amplitude as a continuous predictor improved
the model (ΔBIC = 1.35, χ2(1) = 9.99, p = .002). The best
model still included the other three predictors (removing
either term:ΔBIC < −9:78), and interactions between either
of the predictors were not supported (ΔBIC < −6.87).
The effect of P2 amplitude is depicted in Figure 4, where

for each “percentage change” condition, the P2 amplitude
is divided into three bins. The model prediction with the
average P2 amplitude in each bin is plotted as in Figure 1B,
but with three levels of transparency reflecting different P2
amplitude bins. The figure illustrates that, for certain exper-
imental conditions, participants are approximately 10%
more likely to perceive an interval as longer in the highest
P2 bin compared to the lowest bin. Note that this figure
obscures the observation that, generally, the P2 was also
found to be larger for longer intervals (Figure 3B).
For completeness, we additionally assessed whether

the amplitude of any of the other components warranted
inclusion in the behavioral model. That is, we tested
whether any of the components discussed above would
improve the behavioral GLMM. However, none of the
components was statistically supported as a predictor
for temporal judgments, including the CNV or the P3 at
either the onset or offset of Intervals 1 and 2.

Discussion

Experiment 1 revealed that temporal perception was af-
fected by the manner in which Interval 1 was presented:
In blocks where the stimuli that marked the start and
end of the interval were in the same location, the time
between these markers was perceived as shorter than
when the markers were in opposite sides of the visual
field. The characteristics of this “change bias” fit with a
magnitude coding account of temporal biases, suggest-
ing that neural repetition suppression of the sensory re-
sponse had a robust, additive effect on perceived
duration. ERP analyses established a link between behav-
ior and the P2 amplitude at the offset of both intervals.
For Interval 1, blocks with a marker change were associ-
ated with a larger P2. For Interval 2, the P2 amplitude on

individual trials predicted the upcoming comparison
judgment. The CNV and the P3, respectively associated
with temporal expectation and surprise, did not differ
across trial types, nor did they relate directly to temporal
judgments. Results did not support alternative accounts
that point to the involvement of either sped-up clock
dynamics or any other modulating effects that can be
ascribed to differences in higher-order expectations.
Therefore, these results offer direct evidence that sensory
magnitude, subject to sensory repetition suppression
and indexed by the amplitude of the P2, can directly affect
the perception of duration.

Although the results of Experiment 1 establish converg-
ing support that the change bias is caused by repetition
suppression affecting magnitude coding of temporal dura-
tions, several aspects warrant further consideration. First,
the experiment was originally not devised to investigate
this bias. Rather, the bias was incidentally uncovered when
we analyzed these data to assess representations of dura-
tion in working memory. Therefore, our analyses regarding
the role of repetition suppression are inherently explor-
atory and thus requiring subsequent confirmation. Second,
it is possible that the requirement to maintain Interval 1 in
working memory might have somehow caused the change
bias. For example, it might be that the increased sensory
response did not affect the perception of time but rather
facilitated working memory encoding or retrieval, which
subsequently could have led to biased responding in favor
of Interval 1. Third, Experiment 1 leaves open the possibil-
ity that the bias is not caused by the markers constituting a
repetition or change per se but rather somehow is a con-
sequence of the horizontal shift in marker location. For
example, the bias might result from interhemispheric
asymmetries in the processing of time1 (e.g., Oliveri,
Koch, & Caltagirone, 2009; Bueti, Bahrami, & Walsh,
2008; Vicario et al., 2008; Christman, Garvey, Propper, &
Phaneuf, 2003; Harrington, Haaland, & Knight, 1998).
Finally, earlier research points to a pronounced effect of
saccadic eye movements on duration perception (e.g.,
Burr, Ross, Binda, & Morrone, 2010; Binda, Cicchini,
Burr, & Morrone, 2009). EOG is potentially not sensitive
enough to refute any involvement of eye movements in

Figure 4. Model predictions for
“longer” responses, like the
model fit in Figure 1B, but
additionally including a
predictor for the effect of P2
amplitude. In each condition,
the predicted response rates are
depicted for three different bins
of P2 amplitude. Higher
amplitudes are plotted with
more opaque lines.
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Experiment 1. Experiment 2 was designed to address
these concerns.

EXPERIMENT 2

Experiment 2 was designed to address the concerns out-
lined above and thereby offer further confirmatory sup-
port that the change bias reflects sensory magnitude
coding modulated by repetition suppression. The critical
manipulation in Experiment 2 remained the same as in
Experiment 1: Intervals were presented by means of
markers that could either repeat or change. However,
the procedure on individual trials was simplified to a bisec-
tion paradigm (Ulrich & Vorberg, 2009; Allan & Gibbon,
1991; Wearden, 1991), where participants were to judge
a single duration as shorter or longer than a fixed reference
duration, rather than first storing it in workingmemory for
later comparisons. The reference duration in such tasks is
assumed to bemaintained in long-termmemory butmight
be sensitive to the history of durations experienced on pre-
vious trials (De Jong, Akyurek, & van Rijn, in press; Taatgen
& van Rijn, 2011; Rodríguez-Gironés & Kacelnik, 2001;
Wearden & Bray, 2001). Therefore, “change” and “same”
trials were intermixed within blocks in Experiment 2.
Cues at the start of each trial informed participants about
the upcoming trial type and ensured that the location of
repeating or changing endmarkers remained fully predict-
able. To test whether the change bias was perhaps limited
to horizontal changes, we manipulated, across blocks,
whether markers would be presented along the horizontal
or vertical axis. Finally, Experiment 2 used eye tracking
for stringent control for any potential eye movements,
for both offline trial rejection and online feedback to
participants.

We did not record EEG for Experiment 2. Nevertheless,
we explored the use of pupil responses as an additional
neurophysiological measure to determine the role of sen-
sory magnitude, surprise, and arousal in accounting for
change bias effects. This is motivated by work establishing
that larger pupil dilation is a signature of arousal or surprise
(Braem, Coenen, Bombeke, van Bochove, & Notebaert,
2015; Satterthwaite et al., 2007). Previous work in both hu-
mans and macaques has shown a relation between pupil
dilation and temporal behavior (Akdoğan, Balcı, & van
Rijn, 2016; Suzuki, Kunimatsu, & Tanaka, 2016).
Conversely, it may be the case that pupil constriction re-
flexes are informative regarding sensory response magni-
tude and subject to repetition suppression, although this
relation is at this stage only tentative. That is, the pupil
constriction response is directly triggered by visual sen-
sory responses (Corneil & Munoz, 2014), and earlier
work suggests that constriction responses might be mod-
ulated by the magnitude of responses in the sensory cor-
tex (Mathôt, Dalmaijer, Grainger, & Van der Stigchel,
2014; Binda, Pereverzeva, & Murray, 2013; Naber, Alvarez,
& Nakayama, 2013; Sahraie, Trevethan, MacLeod, Urquhart,
& Weiskrantz, 2013).

Method

Participants

Data were collected from 32 participants who were re-
cruited through the first-year participant pool of the
University of Groningen and had not participated in
Experiment 1. The experimental procedure was approved
by the ethical committee of the Faculty of Behavioral and
Social Sciences (PSY-1819-S-0019). All participants gave
written informed consent before participating and were
treated in accordance with the Declaration of Helsinki.
Data from five participants were omitted because of poor
performance (defined below), leaving 27 participants in
the final sample (18 women, mean age = 20.6 years).

Stimuli and Procedure

Overall trial design of Experiment 2 is depicted in
Figure 5A. Participants sat in a dimly lit room in front of
a 27-in. LCD monitor (Iiyama ProLite g2773hs-gb1) with a
60-Hz refresh rate at a 60-cm distance from the screen,
aided by a chin rest. The experiment started with an in-
struction phase, where participants familiarized themselves
with the reference interval (1750 msec) and practiced the
task, after which the experimental phase followed.
On-screen stimulus dimensions were identical to

Experiment 1, but participants sat 15 cm closer to the
screen. We report the new, slightly larger visual angles
here. Each trial began with a small white fixation cross
(0.25°) on a black background. Participants were asked
to fixate this cross and press the spacebar, to initiate drift
correction and subsequently start a trial. On experimental
trials, drift correction was immediately followed by a cue
informing participants on the trial type, by means of the
word “same” or “opposite,” presented for 400 msec. In
reference trials and practice trials, a 400-msec blank
screen was shown instead of the cue. This was followed
by a 500-msec screen with only a fixation dot, after which
five white placeholder circles appeared: one in the center
and four at 12.22° eccentricity on the left, right, top, and
bottom of the display, each with a 2.45° radius. After an-
other 500 msec, the interval was presented as the SOA
between the start and end markers, each flashing for
125 msec in one of the placeholders. On each trial, this
interval was sampled from a uniform distribution be-
tween 1250 and 2250 msec. In the experimental phase,
markers were red diamonds (4.95° width and height) pre-
sented in the peripheral placeholders, on either the hor-
izontal axes or the vertical axes as determined by the
block type, and in the same or the opposite location as
indicated by the cue. In the instruction phase, start and
end markers were green squares (3.47°) presented within
the central placeholder. The placeholders remained on
screen for another 2000 msec after the end of the inter-
val, after which participants were probed for a response,
to indicate whether the presented interval had been
shorter (“F”) or longer (“J”) than the reference interval
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(1750 msec). They were instructed to be as accurate as
possible, without the need to respond fast.
Before the experimental blocks, participants completed

an instruction and practice phase: First, the reference
interval was presented nine times to participants, by
means of markers that flashed in the center placeholder.
Participants were instructed to attend and memorize this
duration. Subsequently, they completed 10 practice trials
with central markers and randomly sampled intervals,
where they received trial-wise feedback on their accuracy.
The experimental phase consisted of eight blocks of
40 trials each, in which 20 “same” and 20 “change” trials
were randomly intermixed. The presentation axis (hori-
zontal or vertical) randomly varied across blocks, with
never more than two successive blocks of the same type.
Each block started with three “refresher” presentations of
the reference interval, after which participants were in-
formed whether markers in the upcoming block would
appear on the horizontal or vertical axis in the upcoming
block. As in Experiment 1, participants could therefore
never predict the exact location of the start marker but
could always infer the location of the offset marker be-
fore it was presented.

Gaze and Pupil Data Acquisition and Analysis

Participants’ right eye was tracked during the experiment
using an EyeLink 1000 system (www.sr-research.com),
which recorded gaze position in screen coordinates
and pupil size (area in arbitrary units) at 1000 Hz.
Participants were instructed not to blink or move their
eyes during a trial, from the cue until the response. If
the recorded gaze position was more than 2.45 from
the center and thereby moved outside the central place-
holder, participants saw a warning message in orange
font at the end of the trial, and the trial was excluded
from all further analyses (6.2% of trials).

The analysis of pupil size was conducted offline and
followed (Mathôt, Fabius, Van Heusden, & Van der
Stigchel, 2018). First, segments of pupil data recorded
between 100 msec before and after a blink were replaced
by linearly interpolated data. Two pupil epochs were sub-
sequently created, one around interval onset (−1400 to
1250 msec, so as to encompass the time from the start of
trial up to the minimal interval duration) and one around
interval offset (−500 to 2000 msec, encompassing the
end of the interval up to the moment of the response).

Figure 5. Design and results of Experiment 2. (A) General trial design. Two example “change” trials are illustrated, for horizontal (horiz.; upper path)
and vertical (vertic.; lower path) blocks. After the cue, the interval was presented through markers on the horizontal or vertical axis. Participants
compared a randomly determined interval to the reference duration of 1750 msec. (B) Behavior. The x axis marks deviation (Δt) from the reference
interval. As in Experiment 1, “change” trials were perceived as longer. Performance was not affected by the marker presentation axis. Data points and
error bars reflect average response in four bins of interval duration, as in Figure 1B. (C) Pupil size in response to the offset of the interval. A significant
cluster indicates that the pupil constricts more on “change” trials. (C) The peak-to-peak constriction response at interval offset. Constriction was larger
with longer intervals, was larger in horizontal compared to vertical blocks, and was larger on change than on same trials. Data bins and error bars as in B.
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Pupil sizes were baseline-corrected by subtracting the
median pupil size in a 200-msec window at the start of
each trial, and samples were subsequently normalized
by dividing pupil size samples by the average median
baseline. This resulted in epochs of pupil size expressed
as proportional change.

Statistical Analyses

Overall performance of each participant was assessed by
means of a logistic regression that predicted “longer” re-
sponses as a function of interval duration, independent of
condition. From the regression coefficients, a 50% Just
Noticeable Difference ( JND) metric was computed.
This JND estimates the duration difference between
25% and 75% “longer” responses, with a larger JND indi-
cating less temporal sensitivity. Participants were excluded
if JND is 500 msec, which would imply that more than
half of the trials had fallen within those 25–75% bounds,
given the range of sampled durations.

For the remaining participants, behavior was analyzed
by means of GLMMs, predicting responses based on the
predictors “interval duration” (numeric predictor), “trial
type” (same or change), and “axis” (horizontal or vertical
blocks), with a random intercept term and an uncorrelated
random slope for interval duration. These two terms de-
scribed participants’ individual differences in response
biases and sensitivity to duration differences, respectively.
On the basis of AIC scores, no other random effects were
included. Models constructed from all combinations of
predictors and their interactions were again compared
based on the BIC for statistical inference. For pupil sizes,
effects of trial type were initially explored by averaging
across trial type (same/change) and presentation axis
(horizontal/vertical) and by exploring their average time
courses across conditions by means of cluster-based per-
mutation tests. The results, outlined below, suggested
that pupil constriction at offset was modulated by trial
type. To explore this in more detail, we additionally com-
puted a per-trial measure of constriction as the peak-to-
peak difference in a window of 100–700msec after interval
offset, which we subjected to model comparisons with
LMMs, similar to behavior.

Results

Data points in Figure 5B illustrate the average proportion
of “longer” responses in Experiment 2, computed sepa-
rately for all levels of “trial type” (same/change) and “axis”
(horizontal/vertical), for four bins of interval duration.
The curves in this figure reflect the best statistical model
based on the BIC. This model had two additive fixed ef-
fects: interval duration as a linear predictor (ΔBIC >
1000, χ2(2) = 3163.3, p < .001), reflective of task perfor-
mance, and trial type (same/change; ΔBIC=163.2,χ2(1)=
172.23, p < .001), which indicated we replicated the

change bias effect from Experiment 1. Note that the mag-
nitude of this bias was highly comparable to that reported
in Experiment 1, suggesting that the shift to a trial-wise
manipulation of marker repetition did not attenuate this
bias. Again, we found no evidence for an interaction be-
tween duration and trial type (ΔBIC = −6.0, χ2(1) =
2.98, p = .084). As in Experiment 1, the potential trend
hinted at by the χ2 statistic actually pointed to an underad-
ditive interaction, once again arguing against a clock-speed
modulation in change trials. Figure 5B also illustrates that
behavior was almost identical in horizontal or vertical
blocks. Indeed, there was no support for the additive pre-
dictor “axis” (ΔBIC = −8.9, χ2(1) = 0.053, p = .818) nor
for an interaction term that captured a modulation of the
change bias by the axis (ΔBIC=−17.9,χ2(2) = 0.061, p=
.970). This illustrates that the change bias was not limited
to horizontal displacements, rendering an explanation
based on interhemispheric communication unlikely.2

Pupil sizes at the onset of the interval did not point to
any effects related to the change bias. Exploring the data
by means of cluster-based permutation analysis marked
one significant cluster that was suggestive of a difference
between same and change trials, from−1150 to−20msec
with respect to interval onset ( p = .002). In this window,
change trials were found to have somewhat smaller pupil
sizes. Given the timing of this cluster, this likely entails
differences in pupil constriction in response to the cue
rather than any differences related to temporal percep-
tion. Note that change trials were signaled by the word
“opposite” and same trials were signaled by the word
“same”—the latter of which was smaller and less bright
than the former. The permutation test did not identify
any significant differences during the interval itself. An
LMM predicting the average pupil size in a window of
interest at the endof the interval (750–1250msec) provided
no support for a difference between trial types (ΔBIC =
−19.5, χ2(1) = 0.12, p = .734).
At the offset of the interval, the cluster-based permuta-

tion analysis uncovered one significant cluster, for themain
effect of trial type, between 429 and 1084msec after interval
offset ( p= .044). This was suggestive of more constriction
on change trials, as is illustrated in Figure 5C. The traces in
this figure also suggest another difference, in that constric-
tion responses were stronger in horizontal blocks com-
pared to vertical blocks. Although this difference was
indeed reflected in a cluster in the same time range (426–
771msec), that cluster did not survive permutation correc-
tion ( p = .084). We explored this constriction response
in more detail with an LMM, but note that it would be mis-
leading to use the pupil size as depicted in Figure 5C as the
dependent variable for this LMM. This is because, due to
the sluggishness of the pupil response, carryover effects
from the constriction response to the onset markers can still
be observed. Therefore, we instead analyze the constriction
response in isolation, by determining the peak-to-peak
difference in pupil size in a window 100–700 msec after the
offset marker.
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This peak-to-peak constriction response was best mod-
eled as a function of three additive predictors, as illustrated
in Figure 5D. In line with the observations of the cluster
test, one of these predictors was the “trial type,” with more
constriction on change compared to same trials (ΔBIC =
24.01,χ2(1)= 45.75, p< .001). In addition,model compar-
isons indicated weaker constriction on “vertical” compared
to “horizontal” trials (ΔBIC=67.75,χ2(1)=89.5, p< .001),
for which the permutation analysis had also suggested a
trend. This aligns with differences in retinal sensitivity along
horizontal and vertical axes (Seiple, Holopigian, Szlyk, &
Wu, 2004; Curcio, Sloan, Kalina, & Hendrickson, 1990).
The LMM also allowed us to map the effect of interval dura-
tion as a continuous predictor. We found stronger constric-
tion for longer intervals (ΔBIC = 284.26, χ2(1) = 304.96,
p < .001). There was some support for an interaction
between “axis” and “duration,” although this was not
warranted on the basis of the BIC (ΔBIC = −13.68, χ2

(1) = 5.56, p = .018). This interaction (not depicted in
Figure 5D) suggested that the duration effect on constric-
tion was somewhat weaker in vertical trials compared to
horizontal trials. To some extent, the effects of duration
might reflect a ceiling effect on peak-to-peak constric-
tion: On shorter trials, the pupil might already be in a
constricted state because of constricting in response to
the onset marker. However, this explanation is rendered
unlikely given that, even for short durations, an effect of
trial type is observed, with no support for an underaddi-
tive interaction (ΔBIC=−17.71, χ2(1) = 1.53, p= .216).
Instead, the effect of duration on pupil constriction
might be similar to what was found for P2 amplitudes
in Experiment 1: The effects of constriction might reflect
stronger repetition suppression on shorter trials as well
as on same trials. Unlike for P2 amplitude, however, we
found no support that pupil constriction was predicted
by the temporal percept (ΔBIC = −21.26, χ2(1) =
0.01, p = .905).

Discussion

Experiment 2 confirmed the behavioral findings of
Experiment 1 that a fully predictable stimulus change
causes temporal dilation compared to stimulus repeti-
tion. The results provided further support for the magni-
tude coding hypothesis over alternative explanations of
the bias, including arousal-based accounts. Behaviorally,
the bias was constant across the tested range of dura-
tions, which once again suggested that there was no
clock speedup in anticipation of an upcoming stimulus
change. By strictly controlling for eye movements, both
online and offline, we ruled out their potential role in
causing the temporal bias. In addition, we found that
the bias was virtually identical for horizontal and vertical
changes, indicating that this axis does not play a role for
the mechanism underlying the bias.
Pupil size measurements further supported a magni-

tude coding account of the change bias, more so than

an account involving fluctuations in arousal. We found
stronger pupil constriction responses to the offset marker
on change trials. We are not aware of studies that have
directly assessed whether neural repetition suppression
in the sensory cortex is reflected in the pupil constriction
response, and therefore, this account remains tentative.
Nevertheless, the constriction response has been shown
to depend on physical stimulus properties as well as pre-
attentive bottom–up salience (Mathôt et al., 2014; Binda
et al., 2013). Either way, our findings certainly do not point
to an effect of increased pupil dilation, which in previous
work has been associated with motivational salience,
arousal, or violation of expectations (Akdoğan et al., 2016;
Suzuki et al., 2016; Satterthwaite et al., 2007).

GENERAL DISCUSSION

In two temporal discrimination tasks, wehave demonstrated
a bias in temporal perception caused by fully predict-
able changes in sensory input and have analyzed the
behavioral and physiological properties of this bias. We
found that a change in the location of a visual start or
end marker leads to a longer perceived duration of the in-
terval compared to a location repetition. In Experiment 1,
we found that this bias in behavior was not modulated by
the absolute or relative duration of the intervals and did
not attenuate as participants became more accustomed
to changes or repetitions throughout a block: Rather,
the behavioral biasmanifested as an additive effect, consis-
tent across conditions throughout the experiment. ERP
analyses indicated that stimulus changes and repetitions
were paired with amplified and attenuated central P2
amplitudes, respectively. At the offset of the reference
interval, always presented at a central location, the same
P2 component was modulated by the interval duration
and was predictive of the upcoming discrimination judg-
ment. These findings strongly relate the P2 amplitude to
temporal perception. The P3 measured at the same sites
was affected by the objective duration of the reference
interval but was not modulated by the bias nor was it
predictive of the upcoming response. In Experiment 2,
we replicated the behavioral bias effect in a bisection
task, with a similar magnitude for horizontal and vertical
marker changes. Pupil size analyses showed that the bias
was paired with larger constriction in response to change,
similar to the P2 modulation in Experiment 1. Taken
together, our findings offer direct evidence of magnitude
coding effects on time perception. Stimulus repetitions
and changes affect the relative magnitude of the sensory
response, reflected in the P2 amplitude and pupil constric-
tion, and subsequently affect perceived time. The bias did
not seem to be mediated by surprise or arousal, as stimuli
were fully predictable and the bias could not be related to
P3 amplitude or pupil dilation.

Several differences set our experimental design apart
from previous work on temporal biases, in particular,
from those using oddball paradigms. Most crucially, the
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sensory changes and repetitions in our task were fully
predictable by design, through either blocked presenta-
tion or cueing. This allowed us to isolate the effects of
repetition independent of surprise. A similar approach
has been used to dissociate repetition suppression from
expectation suppression effects (Larsson & Smith, 2012;
Todorovic & de Lange, 2012; Summerfield, Trittschuh,
Monti, Mesulam, & Egner, 2008). Another difference is
that, in our design, stimulus repetitions and changes were
physically identical up to the end of the interval, whereas
in most oddball designs, the deviant stimulus differs from
the onset onward throughout its duration (Mayo &
Sommer, 2013; but seeMatthews, 2011a). Thismeans that,
in oddball designs, sensory magnitude effects could have
ongoing effects on time perception throughout the inter-
val, which would give rise to “clock speedup.” This would
explain why the change bias presented here was character-
ized by a shift of the psychometric curve, whereas in odd-
ball designs, it has often been characterized by a difference
in slope (Ernst et al., 2017; Sadeghi et al., 2011; Tse et al.,
2004). This interpretation aligns with previous magneto-
encephalography results (Noguchi & Kakigi, 2006) from
a study where two intervals were compared that could
be either the same or different. Here, it was found that
changing stimuli were perceived as longer and were char-
acterized by a larger visual response at the onset followed
by faster changes in climbing neural activity. This climbing
neural activity was localized to the SMA and compared to
the CNV component in EEG recordings.

Regarding the CNV, it may seem remarkable that, al-
though it was clearly present in our task, we did not find
that it was related to the temporal bias, nor that it was
related to discrimination responses. This extends earlier
work that suggests that the CNV does not reflect the tim-
ing process itself but instead marks processes that are
contingent on time, such as preparing for upcoming
stimuli or actions (Boehm et al., 2014; Kononowicz &
van Rijn, 2014; van Rijn et al., 2011). In both experiments,
several aspects of our design might have prevented such
preparation: Intervals were uniformly distributed across a
relatively wide range, participants were probed to re-
spond only late after the offset of the interval, and the
mapping of the percept to either of the keys was not
known to the participant during estimation. Together,
these factors might have prevented preparation effects
on the CNV that previous studies interpreted as a marker
of the internal clock (Macar & Vidal, 2003; Müller-
Gethmann, Ulrich, & Rinkenauer, 2003; Trillenberg,
Verleger, Wascher, Wauschkuhn, & Wessel, 2000).

The P3, on the other hand, did seem to capture as-
pects of the temporal comparison. At the end of
Interval 1, the P3 was constant in amplitude across exper-
imental factors, in line with our assumption that stimulus
changes and repetitions were both fully anticipated.
However, when the temporal comparison was to be
made at the end of Interval 2, P3 amplitude was smaller
for longer durations (cf. Lindbergh & Kieffaber, 2013),

interacting with duration relative to Interval 1. This aligns
with the classical interpretation of the P3 as an index of
surprise (Mars et al., 2008) but, in addition, points to the
relation between the P3 and decision-making processes
(Twomey, Murphy, Kelly, & O’Connell, 2015). Taken to-
gether, these results suggest that the P2 and P3 might in-
dex different aspects of temporal decision-making, which
both contribute to the later comparison judgment:
Whereas the P3 seems primarily driven by the relative du-
ration, thus reflecting the comparison that a participant
needs to make, the P2 appeared to index the overall
sense of objective duration.
Thus far, we have phrased our findings within the con-

text of the magnitude coding account: Stimulus repeti-
tions and changes cause attenuation or enhancement of
sensory responses because of neural repetition suppres-
sion, which causally affects the perception of time. A subtly
different interpretation of our findings would be that neu-
ral repetition suppression itself reliably depends on the
time between repetitions and that the resulting sensory
magnitude is thus used by the brain as a heuristic to tell
time. Not many studies have explored the effects of ISIs
on repetition suppression, but some findings in the rodent
auditory cortex (Budd et al., 2013) and the human visual
cortex (Noguchi, Inui, & Kakigi, 2004) suggest that sensory
response magnitude indeed monotonically increases as a
function of this duration. This implies that the amount of
repetition suppression to two subsequent stimuli could in
theory be used to infer how much time has elapsed be-
tween them. Although our results might fit this interpreta-
tion, future research is necessary to fully understand the
temporal dynamics of repetition suppression effects and
whether they indeed contribute to our perception of time.
By dissociating stimulus repetition from stimulus expec-

tation, we were able to identify a temporal bias that we
could attribute to neural repetition suppression. We em-
phasize, however, that the inverse relation might not
always hold, as not every form of repetition will necessarily
affect temporal percepts. The precise effects of stimulus
repetition are known to vary across stimuli (Amado &
Kovács, 2016) and the cortical area under consideration
(Larsson & Smith, 2012), to the extent that certain config-
urations demonstrate repetition enhancement rather than
suppression (deGardelle,Waszczuk, Egner, & Summerfield,
2013; Segaert, Weber, de Lange, Petersson, & Hagoort,
2013). It is to be expected that not every sensory area plays
a crucial part in temporal cognition and in computing
perceived durations. Therefore, the change bias paradigm
might be used to provide critical insights into which sensory
systems do contribute to time perception, as they might
isolate sensory repetition suppression effects without
confounding these with modulations through arousal or
surprise. Previous research suggests that “change biases”
similar to the location effects presented here could arisewith
changes in size (Matthews, 2011a) or changes in the direc-
tion of two arrowheads (Noguchi & Kakigi, 2006). Visual pro-
cessing of stimulus location, size, and direction is classically
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attributed to the dorsal “where” pathway (Haxby et al.,
1991). These temporal change biases therefore converge
with recent findings from neuroimaging that the dorsal
pathway, involving the fronto-parietal network in particular,
plays a critical role in perceiving the timing of visual events
(Harvey, Dumoulin, Fracasso, & Paul, 2020; Harvey,
Fracasso, Petridou, & Dumoulin, 2015; Battelli, Walsh,
Pascual-Leone, &Cavanagh, 2008;Walsh, 2003). Future neu-
roimaging work might help identify the neuroanatomical
substrates that underlie the modulations in EEG and pupil-
lometry reported here.
In conclusion, we believe that our findings present

compelling evidence that sensory repetition effects affect

human time perception, even when repetitions and
changes are fully in line with expectations. Results from
behavior, electrophysiology, and pupillometry all sup-
ported this interpretation, demonstrating that neural
magnitude can modulate time perception in the absence
of arousal-based modulations of neural clock dynamics.
In neuroimaging, repetition effects of sensory neurons
have a strong tradition of being used as a tool to map
out neural tuning in cortical areas, uncovering the path-
ways that give rise to a percept (Grill-Spector, Henson, &
Martin, 2006). In the same vein, temporal biases like the
change bias can be used to determine how low-level sen-
sory responses give rise to a temporal percept.

Table 1. Number of Times (of 20 Participants) That a Channel
Was Labeled “Bad” Based on the RANSAC Algorithm

Channel # Times Marked Bad

AF7 2

AF8 1

CP6 1

Cz 1

F5 1

F8 1

FC4 1

FC5 1

FT8 1

FP2 2

P10 2

P9 1

TP7 1

TP8 1

Data from bad channels were removed and interpolated from neighbor-
ing channels at the end of data cleaning. The highlighted row marks the
single instance that a bad channel coincided with one of the ROIs. The
50 channels that are not listed were never marked as “bad.”

APPENDIX: ANALYSIS OF CENTRAL COMPONENTS AT INTERVAL ONSETS

Figure A1. Densities (50-msec bandwidth) of presented interval
durations. (Left) Representative data from the first participant in either
experiment. (Right) Data pooled from all participants. On each trial, an
interval is sampled from U(1.25, 2.25) sec. Interval 2 (in Experiment 1)
is defined by Interval 1 ± 10 or 20%.
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Central ERP components were analyzed using onset-
locked data in the same manner as for offset-locked data
(main text of the repetition suppression study); that is,
single-trial amplitudes were quantified by averaging across
predefined time windows (P2: 200–250 msec postonset;
P3: 350–400 msec postonset; CNV: final 250 msec in the
epoch; see Figure S4) and were assessed using LMM com-
parisons based on the BIC.

For both intervals, the intercept-only model was pre-
ferred for all components, indicating that their amplitude
was not modulated by experimental factors. Specific,
hypothesis-driven model comparisons for Interval 1 onset
indicated that “same” and “change” trials did not differ with
respect to the P2 (ΔBIC = −2.85, χ2(1) = 5.8, p = .016),
P3 (ΔBIC=−8.34,χ2(1)= 0.3, p= .592), or CNV (ΔBIC=

−8.59, χ2(1) = 0.042, p = .838), in line with the assump-
tion that trials from different block types are identical, up
to the presentation of the offset marker. Any difference in
P2 amplitude (significant under themore liberal likelihood
ratio test) would point to slightly higher amplitude on
“same” trials. If anything, such amodulation would actually
run counter to any theoretical account of the change bias.
Further comparisons focusing on the CNV suggested that
there was no evidence that amplitudes differed across later
comparison judgments (ΔBIC = −2.88, χ2(1) = 5.7, p =
.017). Again, likelihood ratio tests pointed to a difference,
suggesting that Interval 1 potentially was perceived longer
on trials with a more pronounced CNV.
For Interval 2, we similarly found no indication that

components differed between block types (same/change

Figure A2. Thresholds for each channel for each participant, as computed by autoreject. For most channels, the peak-to-peak amplitude value in an
epoch that marks a channel for repair or rejection is between 100 and 200 μV.

1246 Journal of Cognitive Neuroscience Volume 33, Number 7

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/7/1230/1921260/jocn_a_01705.pdf by guest on 19 July 2021



contrast for the P2: ΔBIC=−8.17,χ2(1) = 0.48, p= .491;
P3: ΔBIC = −8.63, χ2(1) = 0.01, p = .910; CNV: ΔBIC =
−8.45, χ2(1) = 0.18, p = .667). In addition, we assessed
whether the CNV seemed to climb at different rates
depending on the memorized reference duration (Interval 1).
If so, its amplitude at the end of this epoch would depend
on the duration of Interval 1, possibly interacting with the
eventual temporal judgment. We found no support for this
view, as CNV amplitude was unaffected by either Interval 1
duration (ΔBIC = −8.00, χ2(1) = 0.65, p = .421), the
comparison judgment (ΔBIC = −5.98, χ2(1) = 2.67, p =
.103), or their interaction (ΔBIC = −21.03, χ2(3) = 4.90,
p = .180).

For the comparisons depicted in Figure A4, we addi-
tionally ran cluster-based permutation tests, aiming to
uncover any differences outside our components of in-
terest. These analyses did not identify any other signifi-
cant differences. Taken together, we conclude that
onset-locked ERPs were not modulated by experimental
conditions.

Figure A3. Number of remaining “valid” epochs in each time window
in Experiment 1, after dropping epochs based on muscle artifacts, eye
movements, and epochs with peak-to-peak artifacts detected by
autoreject. The dotted line marks the maximum number of epochs.
The red violins mark epochs around interval onsets; the green violins
mark interval offsets.

Figure A4. Central ERP
components, locked to the
onset of Interval 1 (left) and
Interval 2 (right). (A) Interval 1
onset, same and change trials,
(B) Interval 2 onset, same and
change trials. (C) Interval 1
onset contrasting trials with
Interval 1 or Interval 2
perceived as “longer.” (D)
Interval 2 onset, contrasting
trials with Interval 1 or Interval 2
perceived as longer, additionally
split on the duration of Interval
1 (the reference duration).
Analyses (see below) indicated
no effects for any component in
these epochs.
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Diversity in Citation Practices

A retrospective analysis of the citations in every article
published in this journal from 2010 to 2020 has revealed
a persistent pattern of gender imbalance: Although the
proportions of authorship teams (categorized by estimated
gender identification of first author/last author) publishing
in the Journal of Cognitive Neuroscience ( JoCN) during
this period were M(an)/M = .408, W(oman)/M = .335,
M/W = .108, and W/W= .149, the comparable proportions
for the articles that these authorship teams cited were
M/M = .579, W/M = .243, M/W = .102, and W/W = .076
(Fulvio et al., JoCN, 33:1, pp. 3–7). Consequently, JoCN
encourages all authors to consider gender balance explic-
itly when selecting which articles to cite and gives them
the opportunity to report their article’s gender citation
balance. The authors of this paper report its proportions
of citations by gender category to be: M/M = .655; W/M =
.184; M/W = .126; W/W = .034.

Notes

1. Behavioral data did not immediately support this hypothe-
sis: We found no support for an interaction effect of marker
location/direction and block types (ΔBIC = −16.1; χ2(2) =
1.55; p = .460).
2. Furthermore, just as for Experiment 1, we found no evi-
dence for asymmetrical change biases contingent on marker
locations in horizontal blocks (ΔBIC = −10.9, χ2(2) = 5.68,
p = .058).
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