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Working memory is essential: it serves to guide intelligent behavior
of humans and nonhuman primates when task-relevant stimuli are no
longer present to the senses. Moreover, complex tasks often require that
multiple working memory representations can be flexibly and indepen-
dently maintained, prioritized, and updated according to changing task
demands. Thus far, neural network models of working memory have
been unable to offer an integrative account of how such control mech-
anisms can be acquired in a biologically plausible manner. Here, we
present WorkMATe, a neural network architecture that models cognitive
control over working memory content and learns the appropriate control
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operations needed to solve complex working memory tasks. Key compo-
nents of the model include a gated memory circuit that is controlled by
internal actions, encoding sensory information through untrained con-
nections, and a neural circuit that matches sensory inputs to memory
content. The network is trained by means of a biologically plausible
reinforcement learning rule that relies on attentional feedback and re-
ward prediction errors to guide synaptic updates. We demonstrate that
the model successfully acquires policies to solve classical working mem-
ory tasks, such as delayed recognition and delayed pro-saccade/anti-
saccade tasks. In addition, the model solves much more complex tasks,
including the hierarchical 12-AX task or the ABAB ordered recognition
task, both of which demand an agent to independently store and updated
multiple items separately in memory. Furthermore, the control strategies
that the model acquires for these tasks subsequently generalize to new
task contexts with novel stimuli, thus bringing symbolic production rule
qualities to a neural network architecture. As such, WorkMATe provides
a new solution for the neural implementation of flexible memory control.

1 Introduction

Complex behavior requires flexible memory mechanisms for dealing with
information that is no longer present to the senses but remains relevant
to current task goals. For example, before we decide it is safe to change
lanes on a highway, we sequentially accumulate evidence in memory from
various mirrors and the road ahead of us. Importantly, such complex be-
havior requires memory operations beyond mere storage. Not every object
that we observe on the highway needs to be memorized, while often it is a
specific combination of information (e.g., multiple cars and signs) that
determines whether it is safe to switch lanes. As any novice driver has expe-
rienced, learning to properly apply these operations of selecting, maintain-
ing, and managing the correct information in memory can take quite some
effort. Yet after sufficient practice, we learn to apply these skills and abstract
the essence across multiple environments, regardless of the specifics of the
road or cars around us. This example illustrates the core functions that de-
fine working memory (WM), and that – in the words of O’Reilly and Frank
(2006) – make WM. First, WM is flexible in that control processes determine
what information is stored, when it is updated, and how it is applied during
task performance. Second, the rules that govern these control operations for
a given task setting are trainable and can be acquired with practice. Third, af-
ter training, these rules then generalize to the same task setting with different
stimuli. It is this combination of flexibility, trainability, and generalizability
that makes WM a cornerstone of cognition, not only in humans but also in
nonhuman primates (Warden & Miller, 2007, 2010; Naya & Suzuki, 2011).
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Here we present a neural network model of WM that integrates these core
components.

Before we describe the WorkMATe model, we briefly explain how it ex-
tends previous models that either focused on the generic storage of ar-
bitrary sensory stimuli in memory or on the learning of content-specific
memory operations.

1.1 Models of Storage and Matching. A number of previous neural
network models explain how the brain can temporarily maintain informa-
tion (Brunel & Wang, 2001; Amari, 1977; Mongillo, Barak, & Tsodyks, 2008;
Barak & Tsodyks, 2007; Fiebig & Lansner, 2017) and how different items can
be maintained separately (Oberauer & Lin, 2017; Raffone & Wolters, 2001;
Jensen & Lisman, 2005; Schneegans & Bays, 2017). Given their emphasis
on storage, one of the most commonly modeled WM tasks is the delayed
recognition task, in which the observer responds according to whether an
observed stimulus matches a memorized stimulus.

Delayed recognition tasks do not require an agent to act on the spe-
cific content of information in memory. Rather, the agent produces a re-
sponse based on the presence or absence of sufficient similarity between
two successively presented stimuli, which in principle could be anything.
Experimental work has revealed that both human and nonhuman primates
can almost effortlessly determine such matches, even for stimuli that have
never been seen before (Downing & Dodds, 2004; Warden & Miller, 2010,
2007; Siegel, Warden, & Miller, 2009), and studies have demonstrated neu-
rons in frontal as well as parietal cortices whose activity depends on the
match between sensory input and memory content (Miller, Erickson, &
Desimone, 1996; Freedman, Riesenhuber, Poggio, & Miller, 2003; Rawley &
Constantinidis, 2010). Taken together, these findings suggest that the com-
putations governing matching tasks—determining the similarity or degree
of match—are relatively independent of stimulus content.

Most models for matching, recognition, and recall tasks therefore im-
plement a content-independent computation of a match signal. Ludueña
and Gros (2013) demonstrated that a relatively simple, self-organizing neu-
ral network can learn to detect coactivation in neuronal pools representing
similar information with nonoverlapping codes, allowing for a match signal
between sensory and memory information to emerge upon presentation.
Match signals also emerge in models of associative memory that assume
one-shot Hebbian learning of arbitrary information in the hippocampus. In
these models, the ease of subsequent context-driven retrieval provides an
index of stimulus-memory similarity, which is used to simulate recall prob-
abilities and response times (Howard & Kahana, 2002; Lohnas, Polyn, &
Kahana, 2015; Raaijmakers & Shiffrin, 1981; Howard & Eichenbaum, 2013;
Norman & O’Reilly, 2003). Meyer and Rust (2018) have shown that repeti-
tion suppression in the inferotemporal cortex after a repeated presentation
of a stimulus predicts recognition performance for arbitrary stimuli in the
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macaque (see also Engel & Wang, 2011; Sugase-Miyamoto, Liu, Wiener, Op-
tican, & Richmond, 2008). The same idea is prevalent in models of visual
search, where a match signal is computed between an item in memory and
stimuli present in the to-be-searched scene, which is subsequently used to
optimally guide attention (Zelinsky, 2008; Rao, Zelinsky, Hayhoe, & Ballard,
2002; Hamker, 2005).

In these models, match signals are automatically computed as an emer-
gent consequence of the interaction between perception and memory,
adding to the utility of WM without the need for training on specific stimu-
lus content first. In contrast, more complex tasks call for additional WM op-
erations, decisions, and motor actions depending on specific content. In the
lane-changing example, an empty rear-view mirror may indicate that over-
taking is safe unless the side mirror says otherwise. Generic match mod-
els typically do not explain how memory content is controlled, how control
policies can be acquired through training, and how memory content in com-
bination with sensory information leads to action selection. Such trainable,
flexible, action-oriented models of WM will be discussed next.

1.2 Models of Memory Operations. A rather different class of models
has focused on how WM can be trained to solve tasks in which multiple
different stimuli map onto different responses—that is, how the cognitive
system learns which of a number of available actions, including memory
operations, is appropriate given particular (combinations of) stimuli. Train-
ing neural network models to solve tasks means that as the network
processes examples, weights are updated to establish a desirable mapping
between an input and output stream. In a reinforcement learning setting, a
desired, optimal mapping yields a policy that maximizes reward and mini-
mizes punishment. For multilayer neural networks, this becomes a problem
of structural credit assignment, where the learning algorithm needs to de-
termine to what extent a connection weight contributed to the outcome. For
memory tasks, there is an additional temporal credit assignment problem,
as the outcome of certain actions (e.g., storing an item into memory) will
only later in the trial lead to success or failure. An ongoing issue in deep
learning is how these credit assignment problems might be solved in a bio-
logically plausible manner (Lillicrap, Cownden, Tweed, & Akerman, 2016;
Richards & Lillicrap, 2019; Whittington & Bogacz, 2017; Scellier & Bengio,
2018; Marblestone, Wayne, & Kording, 2016).

One biologically plausible solution to temporal and structural credit as-
signment in WM tasks is provided by the AuGMEnT algorithm (Rombouts,
Bohte, & Roelfsema, 2015; Rombouts, Roelfsema, & Bohte, 2012; Rombouts,
Bohte, Martinez-Trujillo, & Roelfsema, 2015), which in turn is based on the
AGREL model for perceptual learning (Roelfsema, van Ooyen, & Watanabe,
2010; Roelfsema & Ooyen, 2005; van Ooyen & Roelfsema, 2003). These mod-
els demonstrate that attentional feedback can play a critical role in solving
credit assignment (Roelfsema & Holtmaat, 2018). The architecture used by
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AuGMEnT is a multilayer neural network with a recurrent memory layer
to maintain information. The output of the neural network is the expected
reward value associated with each action. Upon selection of an action, the
attentional feedback mechanism tags synapses that contributed to this ac-
tion. When an action does not yield the expected reward, a reward predic-
tion error (RPE) signal is broadcast across the network, which drives weight
changes in tagged synapses. Through these mechanisms, AuGMEnT im-
plements a rudimentary but trainable WM architecture. This architecture
can learn to solve a variety of memory tasks where sequences of stimuli
need to be integrated over time to yield a correct response (Rombouts, Bo-
hte, & Roelfsema, 2015; Rombouts et al., 2012). However, at the same time,
AuGMEnT lacks the operations that define the flexibility of primate WM:
its store accumulates relevant information but does not allow, for example,
items to be separately updated, selectively forgotten, or only to be encoded
under certain conditions.

A highly popular neural network architecture that does incorporate such
flexible control mechanisms is the long- short-term memory (LSTM) archi-
tecture (Hochreiter & Schmidhuber, 1997). This architecture introduces a
gated memory store, implemented through gating units that open or close
dependent on activity in the rest of the network. These gates allow an agent
to control which information is allowed entry into memory, how new in-
formation is integrated, and which information is read out at any given
time. LSTM networks and similar architectures are now commonplace in
modern deep learning systems, which is a testament to their power (Gers,
Schmidhuber, & Cummins, 1999; Gers, Schraudolph, & Schmidhuber, 2002;
Monner & Reggia, 2012; Cho, van Merrienboer, Bahdanau, & Bengio, 2014;
Costa, Assael, Shillingford, de Freitas, & Vogels, 2017; Graves & Schmidhu-
ber, 2005; Graves et al., 2016). However, while LSTM architectures allow for
flexible control over memory content, they were not developed with bio-
logical plausibility in mind: typical implementations rely on rather implau-
sible learning rules from a biological perspective (Graves & Schmidhuber,
2005; Hochreiter & Schmidhuber, 1997). LSTMs can be trained using rein-
forcement learning methods (Bakker, 2002, 2007), but the complexity of the
recurrent architecture renders training implausibly inefficient when com-
pared to animal learning (requiring millions of trials to learn a relatively
straightforward T-maze task).

Probably the most strongly established biologically inspired model of
flexible WM control so far is the prefrontal cortex-basal ganglia working
memory model (PBWM; O’Reilly & Frank, 2006; Hazy, Frank, & O’Reilly,
2006, 2007). PBWM allows for flexible memory control in a manner inspired
by LSTM, but was designed with a strong focus on biological plausibil-
ity. PBWM only gates the entry of sensory stimuli into its WM store in
an all-or-none fashion. Specifically, the basal ganglia determine whether
items are allowed to enter WM on the basis of selecting internal gating
actions. The model can learn complex hierarchical tasks (such as 12-AX,
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described below), which require selective updating and maintenance of
relevant items in WM while preventing the storage of distractor stimuli.
However, as Todd, Niv, and Cohen (2009) noted, the exact functionality
of PBWM is considerably obscured by the fact that it is a rather com-
plex model with a highly interwoven architecture of a range of neural
subsystems and several parallel learning algorithms, both supervised and
unsupervised (O’Reilly, Frank, Hazy, & Watz, 2007; O’Reilly, 1996b, 1996a).
Todd et al. (2009) presented a simplified PBWM model that distills only a
core feature of PBWM, which is the use of internal gating actions to con-
trol memory content. This model replaces all biologically inspired neural
subcomponents with a more abstract tabular representation of all possible
input and memory states. States are then mapped to external motor and
internal gating actions, the value of which is learned through a standard
reinforcement learning algorithm that uses eligibility traces. The simpli-
fied PBWM model thus discards most of the biological realism of PBWM,
but demonstrates its core functionality, the control over memory content
through internal gating actions, that can be acquired using reinforcement
learning alone.

Thus, these trainable, action-oriented models (AuGMEnT, LSTM, and
PBWM) demonstrate working memory functions that go beyond mere stor-
age and matching. In both LSTM and PBWM, memory control is flexible,
as multiple items can be encoded, maintained, and updated separately, and
there are mechanisms that prevent interference from task-irrelevant stimuli.
LSTM and AuGMEnT solve tasks by constructing memory representations
tailored to the task at hand: sensory information is encoded in a manner
that links them to relevant actions in order to solve the task at hand. By fo-
cusing on tasks beyond mere storage, action-oriented models can explain
how memory content can be utilized to solve a task. They provide control
operations to update specific content and learn to apply them based on
reinforcement. Yet these models do not easily cope with arbitrary stimuli
that the agent has never observed before, and thus they lack the symbolic
production-rule quality of WM operations. For this, the models would need
the generic storage approach that matching-oriented models utilize, and it
remains untested whether generalized matching signals can be integrated
in this type of model.

1.3 WorkMATe: Generalizable, Flexible, Trainable WM. As laid out
above, existing neural network models of flexible memory vary accord-
ing to their focus of functionality (storage versus action). Here, we present
WorkMATe (working memory through attentional tagging) a neural net-
work architecture that integrates the core components of these models to
arrive at a model of WM that is trainable, flexible, and generalizable. The
model utilizes a new, gated memory circuit inspired by PBWM and LSTM
to maintain multiple items separately in WM. We include a straightfor-
ward neuronal circuit for a generic matching process that compares the
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memory content to incoming new stimuli. These structures are embedded
in a multilayer neural network that is trained using the simple and biolog-
ically plausible reinforcement learning rule of AuGMEnT. We demonstrate
how the resulting neural network architecture solves complex, hierarchical
tasks with multiple stimuli that have different roles depending on context
and that it can rapidly generalize an acquired task policy to novel stimuli
that it has never encountered before.

2 Materials and Methods

We first describe the architecture of WorkMATe and how it compares the
memory representations to sensory stimuli, as well as how its learning
rule resolves the credit assignment problem by combining reinforcement
learning with an attentional feedback mechanism. We then illustrate the
virtues of WorkMATe in four general versions of popular WM tasks. First,
we model a basic delayed recognition task with changing stimulus sets to
illustrate how the model indeed generalizes to novel stimuli. Second, we il-
lustrate how the model tackles hierarchical problem solving with the classic
memory-juggling 12-AX task, where the agent is presented with a stream
of symbols and must learn the rule. Third, the challenges of both tasks are
combined by training the model on a sequential recognition task introduced
by Warden and Miller (2007, 2010), where an agent has to store multiple,
sequentially presented items and match them to subsequent test stimuli, in
the same order. Here again we assess both flexibility and generalization to
new stimuli. Finally, we turn to the delayed pro-saccade/anti-saccade task
(Everling & Fischer, 1998; Munoz & Everling, 2004; Hallett, 1978; Brown,
Vilis, & Everling, 2007; Gottlieb & Goldberg, 1999), because it allows for a
direct comparison between the present architecture and the previous gate-
less AuGMEnT model (Rombouts, Bohte, & Roelfsema, 2015).

We present a model architecture (see Figure 1A) that achieves good
performance in all four memory tasks. The parameter values and other
network specifics were kept the same in all simulations. An overview
of these parameters is given in Table 1. We describe the details of
these computations, followed by a discussion of our simulations. Code
used to implement the architecture and run the simulations is available:
https://osf.io/jrkdq/?view_only=e2251230b9bf415a9da837ecba3a7d64.

2.1 Input Representations and Feedforward Sweep. The model is a
neural network that receives input x at every time step t. Input is com-
posed of sensory representations xs and a representation of time xτ . Sen-
sory representations are, in all simulations, defined as binary patterns with
activity levels [1,0] that uniquely identify each stimulus. The time represen-
tation is inspired by “time cells” as identified in multiple cortical and sub-
cortical areas (Howard & Eichenbaum, 2013; Mello, Soares, & Paton, 2015;
Naya & Suzuki, 2011; Tsao et al., 2018; Paton & Buonomano, 2018). These
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Figure 1: (A) The network architecture used in all simulations: a standard mul-
tilayer network, complemented by a gated store composed of two independent
memory blocks. The input layer and memory store both project to the hidden
layer, which in turn projects to two output modules. There, activity encodes
Q-values that drive action selection. (B) Memory unit within a block, with a
closed gate: the memory content is maintained via self-recurrent connections.
Additionally, a match value is computed between sensory and memory infor-
mation by comparing a projection of the sensory information (m′

i) to memory
content (mi). The comparison is performed by two units that respond to posi-
tive and negative disparities between the two values. Their output is summed
across memory units, yielding one match value for each block. The closed
gate inhibits the connection between m′

i → mi so that the original memory is
maintained. Only when a gating action is selected, the recurrent projection is
inhibited and m′

i → mi is opened so that memory content is updated. Figure 2
illustrates network activity in a task context, and Table 1 lists the number of
units in each layer.
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Table 1: Parameters Used in All Simulations, Unless Stated Otherwise.

Symbol Name Value

β Learning rate 0.15
γ Temporal discounting factor 0.9
λ Eligibility trace decay rate 0.8
ε Exploration rate 0.025
Symbol Name Size
x Total input units 17
xs Sensory input units 7
xτ Time input units 10
h Hidden units 15
S Memory store (blocks) 2
mi Units per memory block 14
qint Output q-units (internal actions) 3
qext Output q-units (external actions) 2 or 3 (task dependent)

cells encode time by their delayed response profiles, each peaking at dif-
ferent times relative to the onset of a trial. For most tasks, the contribution
of the time cells is minimal: the correct policy depends on the sequentially
presented stimuli rather than their exact timing. However, in the ABAB-
ordered recognition task, the moment at which a state is presented is criti-
cal for the correct response. For such tasks, we assume that the network can
learn to make use of an underlying sense of time, without having to learn
such a representation anew for new tasks at hand. In other words, a sense
of time is considered as a part of perception and not dependent on work-
ing memory control. In our model units, activity profiles of time cells are
defined as symmetrically increasing and decreasing activity around each
unit’s unique peak time, at the levels [0.125, 0.25, 0.5, 1.0]. An example se-
quence of inputs from time and sensory units is depicted in Figure 2C.

The network projects the input representation x to two different layers.
One is a regular hidden layer h in which units are activated via the pro-
jection weight matrix Whx. The other layer is the memory store S, which is
composed of two equally sized blocks m1 and m2. Sensory information is
encoded into one of these stores by means of the projection WSx. By sep-
arating the two stores, WorkMATe is able to selectively update part of its
memory content with new information while leaving another part of its
memory unaffected. In the current implementation, a stimulus that is gated
into memory wholly replaces any previously stored content. Note that other
than selective encoding, the memory blocks together act as a single memory
layer that projects to the hidden layer via a single set of plastic connections
WhX .

During the initial feedforward sweep of activity, the projection WSx · x =
S′ = {m′

1, m′
2} serves to compute the match value between the projected
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Figure 2: Illustrative model performance on a match and a mismatch trial after
training. (A) Model architecture (as in Figure 1). Colors in the input and output
layers correspond to the graphs in panels C and D. (B) An example match trial
(top) and example mismatch trial (bottom). After fixation, a probe stimulus (a
six-bit pattern) is presented that must be maintained in memory. After a delay,
the test stimulus is presented. The agent has learned to hold fixation until the
test, and then respond “left” in case of a match and “right” in case of a mismatch.
(C) Input, match and output activity (in arbitrary units) for each time step in an
example match trial. F-P-D-T are four different time steps (cf. panel B). Sensory
units have unique patterns for each stimulus, though these patterns might par-
tially overlap. The time cells (only six depicted) each peak at a different moment
in time. Colors and height of the bar indicate different time cells and their activ-
ity, respectively. Match values reflect the overlap between input and memory
content. The resulting gating and motor q-values determine behavior through
winner-take-all selection. The resulting policy is depicted as grids with a filled
square for each selected action. A filled square in the gating network denotes
the updating of the activity of a memory cell. (D) Same as panel C, but for a
mismatch trial. Note the different match values, which drive the eventual crit-
ical decision. The policy for both trial types is identical up to the test stimulus.
See the text for more detail.
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sensory representation m′
i and the contents of each memory block mi. These

match values are denoted as xm1 , xm2 . As noted above, there are a number
of hypotheses on how this match value might be computed (Howard & Ka-
hana, 2002; Meyer & Rust, 2018; Ludueña & Gros, 2013; Norman & O’Reilly,
2003). Here, we refrained from a specific modeling effort and instead com-
puted the sum of absolute differences between the two representations, a
common match metric (Zelinsky, 2012; Choo & Eliasmith, 2010; Stewart,
Tang, & Eliasmith, 2011):

xmi =
∑�mi − m′

i� + �m′
i − mi�

n
. (2.1)

Here, n refers to the number of nodes in a block. This computation could be
readily implemented by a set of accessory units that are activated by input
projections and memory units, and respond to disparities between memory
and sensory information (see Figure 1B). The summed activation in these
units is a measure of dissimilarity, and one minus this value is used as a
match signal.

The activity of the match nodes is combined with the activity of the mem-
ory content S∗ = {S, xm} and projects to the hidden layer h. This layer inte-
grates information from the input layer and memory stores via:

h = f (ha) = f (Whx · x + WhS∗ · S∗ + bh), (2.2)

where b is a bias input vector and f is a standard sigmoid transfer function.
The hidden layer h projects to the output layer q through the weights

Wqh:

q = {qint, qext} = Wqh · h + bq. (2.3)

These output values q will, after training, approximate the Q-values of each
of the possible response options. The Q-value is the sum of the expected
immediate and temporally discounted future rewards for the remainder of
the trial that the agent can acquire by selecting that action. The output layer
q is divided into two modules: one for external and one for internal actions.
External actions reflect the motor response options of the agent, which in
our simulations reflect either holding or releasing a lever or fixating left,
right, or in the center of the screen. The internal actions determine memory
gating. Based on the action selected in this layer, the currently presented
stimulus is either memorized in block 1, in block 2, or ignored. On most
time steps, the agent will selects internal and external actions associated
with the units with the highest activation {argmax(qint), argmax(qext)}. On
rare exploration time steps, determined by exploration rate ε, the agent will
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select a random action, determined by a Boltzmann controller operating
over the q-values within each module.

2.2 Storage and Gating. The memory layer S in WorkMATe is func-
tionally similar to that used in PBWM. Separate memory representations
are maintained via self-recurrent projections in the memory store. This is
a strong abstraction of the presumed neurophysiological mechanisms of
WM maintenance in the primate brain, as there is no consensus in the lit-
erature as to whether items in WM are functionally organized into slots
(Zhang & Luck, 2008; Cowan, 2010), continuous resources (Bays & Husain,
2008; Van den Berg, Awh, & Ma, 2014; Ma, Husain, & Bays, 2014), hierarchi-
cally organized feature bundles (Brady & Alvarez, 2011), or through interac-
tions with long-term memory representations (Orhan, Sims, Jacobs, & Knill,
2014). Here, we remain largely agnostic regarding the precise representa-
tion, but choose a mechanism where items in memory can be maintained
separately, can be updated separately, and can be selectively ignored to pre-
vent interference (O’Reilly & Frank, 2006). We will show that this approach
allows us to investigate how complex cognitive control over the content of
WM can be acquired via reinforcement learning.

After feedforward processing is completed and the Q-values in the out-
put layer have been computed, the agent selects a gating action from
{g1, g2, g∅} in order to either gate the current sensory representation into
block m1, m2 or to prevent the stimulus from entering the memory store al-
together. Note that unlike in PBWM, a memory representation mi is not a
direct copy of sensory information. Rather, it is a compressed representa-
tion of the input representation, encoded via the weights WSx. This allows
for generalization of learned task rules to novel stimuli.

Importantly, unlike the other, trained projections in the model, WSx re-
mains fixed throughout each model run at the connection strengths it ob-
tains through random initialization. As a result, memory representations
of a stimulus are not tuned to the task at hand and will differ depending
on whether they are encoded in block 1 or block 2. Previous work (Barak,
Sussillo, Romo, Tsodyks, & Abbott, 2013; Saxe et al., 2011; Bouchacourt &
Buschman, 2019) has demonstrated that untrained random projections can
be used for memory encoding in a useful manner as long as dissociable
memory representations can be formed. This is not to say that memory en-
coding in the brain is necessarily random and untrained, but we will use
this architecture to illustrate that without additional tuning, the model can
successfully encode stimuli in a generic manner and will explore whether
learned policies generalize to novel stimulus sets.

2.3 Learning. Learning in the model follows the AuGMEnT-algorithm
(Rombouts, Bohte, & Roelfsema, 2015), which was derived from the AGREL
learning rule (Roelfsema, van Ooyen, & Watanabe, 2010). At every time
step, the model predicts the Q-value of each of its possible actions. These
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values are represented in the motor and the gating module in the network’s
output layer. Based on these values, the gating module selects an internal
action and the motor module an external action, in parallel. The sum of the
two Q-values associated with the selected actions, qint(t) + qext(t), reflects
the total Q-value Qt , that is, the network’s estimate of the sum of discounted
rewards predicted for the remainder of the trial. Note that there is no a pri-
ori constraint on how these two values are weighted, though in all the tasks
simulated here, we found the Q-values in internal and external action mod-
ules to converge to comparable values, with each module accounting for
approximately half of the total Q-value associated with the selected pair of
actions.

The selected actions form a binary vector z, which is 1 for the units reflect-
ing the selected actions and 0 otherwise. Once actions have been selected,
an attentional feedback signal that passes through the system through at-
tentional feedback connections originates from these units. This recurrent
signal is used to tag synapses that contributed to the selected actions. These
synaptic tags correspond to eligibility traces in traditional SARSA(λ) rein-
forcement learning. The value of these tags gradually decays at each time
step with a rate α = 1 − λγ , where γ is a temporal discounting factor (dis-
cussed below) and λ corresponds to common usage to indicate the persis-
tence of an eligibility trace. The update of a tag depends on the contributions
of a synapse to a selected action. Formally, this means that in each plastic
connection in the weight matrices WSx,Whx,WhS∗

,Wqh, each Tag ji between
presynaptic unit i and postsynaptic unit j is updated according to:

for the connections h → q:

�Tagqh
ji = −αTagqh

ji + hi · z j, (2.4)

and for the connections x → h and S → h:

�Taghx
ji = −αTaghx

ji + x · σ ′(h j ) · w′
j, (2.5)

�TaghS
ji = −αTaghS

ji + S · σ ′(h j ) · w′
j, (2.6)

with:

w′
j =

∑

k

wk j · zk. (2.7)

Here, the term h j refers to the output of hidden unit j, and σ ′ is the
derivative of the sigmoid transfer function. The term w′

j indicates the
amount of recurrent feedback from the action vector z onto the hidden
layer nodes. This feedback is determined by the weight between the hid-
den nodes and the selected actions where zk = 1 if action k is selected and
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z j = 0 for all nonselected actions j. Feedback connections are updated via
the same learning rule as the feedforward connections. Therefore, the feed-
forward and feedback connections remain or become reciprocal, which has
been observed in neurophysiology (Mao et al., 2011).

Synaptic connections are updated when the synaptic tags interact with
a global reward-prediction error (RPE) signal. This signal, δ(t), is modeled
after striatal dopamine and reflects the signed difference between the ex-
pected and obtained reward. This is expressed in the SARSA temporal dif-
ference rule:

δ(t) = r(t) + γ Q(t) − Q(t − 1). (2.8)

That is, the model values the previous actions on the basis of the obtained
reward r(t) plus the amount of expected future reward Q(t) multiplied by a
temporal discounting factor γ ∈ [0, 1] and contrasts this valuation with the
previously expected value Q(t − 1). The RPE then triggers a global, neuro-
modulatory signal that spreads uniformly the network, and interacts with
the synaptic tags to modify weights, that is:

�W (t) = βδ(t)Tag(t), (2.9)

where β is the learning rate. Note that the two forces that determine weight
updates are the RPE and the synaptic tags. The RPE signal assures that
once the model accurately predicts rewards, the resulting δ(t) = 0 and the
weights remain unchanged, which allows the model to converge on an on-
policy solution. The synaptic tags, on the other hand, solve the credit assign-
ment problem by means of attention-gated feedback: units in the hidden
layer whose activity had a larger influence on the Q-value of chosen ac-
tions receive stronger feedback and form stronger tags, whereas units that
did not contribute to the selected action will not have weight updates. Previ-
ous work has established that this learning rule offers a biologically feasible
approximation of error, backpropagation (Rombouts, Bohte, & Roelfsema,
2015).

In all simulations, the model was trained using the same, general prin-
ciples that are in line with typical animal learning. Changes in the environ-
ment and the reward that was delivered depended on the external actions of
the agent, whereas internal actions that pertain to WM updates were never
directly rewarded. Trials were aborted without reward delivery whenever
the model selected an incorrect motor response. Reward could be obtained
twice in a trial. First, all tasks required the agent to perform a default action
throughout the trial (such as maintaining gaze at a central fixation point
or holding a response lever) until a memory-informed decision had to be
made. We encouraged the initial selection of this action by offering a small
shaping reward (r = 0.2) for selecting this action at the first time step. At
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the end of a trial, if the correct decision was made in response to a critical
stimulus, a large reward (r = 1.5) was delivered. In our model assessments,
trials were considered correct only when both rewards were obtained.

Although not all inputs and computations were strictly necessary or use-
ful in every task, the network architecture, parameter values and the rep-
resentation of inputs were kept constant across simulations; Across tasks,
we modified only the external action module to represent the valid motor
responses for the different tasks.

3 Results

3.1 Task 1: Delayed Recognition. Arguably one of the most central and
at the same time straightforward WM tasks is the delayed recognition (DR)
task. Here, an agent is asked to compare two stimuli separated by a reten-
tion delay, and make a response based on whether they are the same or not.
Here, we show that the random, untrained encoding projections in Work-
MATe not only suffice for such a comparison task, but that the solution also
generalizes to stimuli that the agent has not observed before. We trained the
agent on a simple DR task, where it was sequentially presented with a fixa-
tion cross, a probe stimulus, another fixation cross, and a test stimulus that
would either match the probe or not (see Figures 2A and 2B). Stimuli con-
sisted of unique binary patterns of six values (see Figure 2B for two example
stimuli). One additional seventh input was used to signal the presence of
the fixation dot. The agent had to withhold a response until the test stimulus
appeared, and it then had to make one of two choices to indicate whether
the test stimulus matched the probe (we used a leftward/rightward saccade
for match/mismatch). We modeled a total of 750 networks with randomly
initialized weights. During initial training, the probe and test stimuli were
chosen from a set of three unique stimuli (set 1). Once performance had con-
verged (more than 85% correct trials), the stimulus set was replaced by a set
of three novel stimuli (set 2) This process was repeated until performance
had converged for six sets of stimuli.

In these and all other simulations, we report convergence rates based on
all trials including those with exploratory actions.

Figures 2C and 2D illustrate how an example trained network solves a
given match and mismatch trial. The left-most bar charts illustrate the net-
work input, consisting of sensory and time units. Both trials have the same
test stimulus (green bar) but differ in their probe (blue bar in D). These stim-
uli are each coded as a unique, partially overlapping six-bit pattern. Each
of the time cell units (left bottom bar chart) peaks at a unique time point,
and in concert, they convey a drifting representation of time since the trial
started. The activity in the match nodes (orange and purple curves) conveys
the result of comparing the content of each memory block to currently pre-
sented stimulus: Match 1 and Match 2 for the comparison with the content
in memory block 1 and memory block 2, respectively. The agent’s policy is
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to store the probe stimulus in block 2 and to maintain this item throughout
the trial so that match signal at the test stimulus can drive the final match
versus mismatch decision (the difference in Match 2 activity at the test stim-
ulus in panels C and D).

The Q-values computed in the output modules are depicted on the right
of Figures 2C and 2D. The actions with the highest value are selected and
give rise to the policy, depicted under both graphs. Individual values in
these modules do not allow for a straightforward interpretation: only the
sum of the values of selected actions is used to drive learning and will ap-
proximate the true Q-value. In practice, however, we found that the two
modules somewhat evenly contributed to this total estimate, as illustrated
in this example network.

Note that the policy acquired by this agent was the same for match and
mismatch conditions and would readily apply to the same task setup with
novel stimuli. To examine whether the policy generalized to novel stim-
uli, we assessed the number of trials that an agent required to converge
after each switch to a new set. The results in Figure 3 illustrate that agents
were able to generalize across stimulus sets. Convergence on the first set
was relatively slow (Figure 3A): the median number of trials needed for
convergence was approximately 12,700, with 95% of the agents converg-
ing within 4379 to 46,724 trials. After the first switch, convergence occurred
much faster after a median of 1066 trials (95% within 212 to 5288, trials).
With each subsequent switch, the agents displayed further generalization,
and the median number of trials needed for convergence on set 6 was only
343.5 (95% within 90 to 1994 trials. We note that 85 trials is the absolute
minimum number of trials before any agent could reach our criterion of
85% accuracy.

We next assessed performance in the first 100 to 500 trials with each new
set to explore how fast the agents learned the task with novel stimuli (Fig-
ure 3). Initial performance on set 1 (after 100 trials) was near chance level:
approximately 1% correct in a task that required four consecutively correct
actions to be selected out of three options. Performance gradually increased
and reached 18.5% accuracy within 500 trials. Following the first switch (to
set 2), performance did not drop back to chance: rather, agents immediately
performed 55.8% correct on the first 100 trials and were 66.3% correct af-
ter 500 trials. On each subsequent set switch, immediate performance with
never-before-seen stimuli kept increasing, with performance at 70.3% for
the final set. On the final two sets, criterion performance (85%) was acquired
within 500 trials. These results suggest that agents were indeed able to gen-
eralize the acquired policy to novel contexts, although each set switch still
required some additional learning.

We suspected that one important reason that the model failed to imme-
diately generalize to new sets might have been that agents broke fixation
for novel stimuli. Note that a completely novel input pattern makes use of
connections that have not been used before in the task, which could trigger
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Figure 3: Performance and training on the delayed recognition task with novel
stimuli. (A) Convergence rates across 750 agents (left: performance on first
6000 trials with each new stimulus set; right: convergence on all sets, with log
timescale). On the first set, convergence is relatively slow, but on subsequent
sets, agents learn much faster. The convergence rates keep increasing with each
new set. (B) Performance with new stimuli immediately after a switch increases
with each switch, indicating that the agents generalize the task to new stimulus
sets. (C) Accuracy for the first encounter with a novel test stimulus, on the first
trial in which the model maintained fixation until the test stimulus was pre-
sented. Note that accuracy is 87.1% on set 2, after the first stimulus switch. The
agents then further generalize the rule across contexts, because accuracy is 90%
or higher for all subsequent set switches.

erroneous saccades due to their random initialization. To account for such
errors, we also assessed the accuracy of agents on the first trial in which
they encountered a novel probe and maintained fixation until the test stim-
ulus. We observed an average accuracy of 87.1% across agents on their first
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encounter with a novel stimulus from set 2. This accuracy score also in-
creased for subsequent sets, with an average accuracy of approximately
92.6% correct for the first encounters with stimuli from sets 5 and 6. Thus,
the vast majority of errors in novel stimulus sets were caused by fixation
breaks, and the model actually did learn the matching task in a manner
that allows almost immediate generalization to new stimulus sets: the vast
majority of errors in later sets were caused by fixation breaks.

3.2 Task 2: 12-AX. We next examined the performance of WorkMATe
on the 12-AX task, a task that was used to illustrate the ability of PBWM
to flexibly update WM content. The 12-AX task is a hierarchical task with
two contexts: 1 and 2. In the task, letters and numbers are sequentially pre-
sented, and each requires a go or a no-go response. Whenever a 1 has been
presented as the last digit, the 1 context applies. In this context, an A fol-
lowed by an X should elicit a go response to the X, whereas every other
stimulus requires a no-go response. When a 2 is presented, the second con-
text applies: now only a B immediately followed by a Y should elicit a go
response. Agents must separately maintain and update both the context (1
or 2), and the most recently presented stimulus, in order to make the correct
go response to the imperative stimuli X or Y.

Human participants can do this hierarchical task after verbal instruc-
tion, but to acquire the rules that determine the correct response solely
through trial and error learning poses a challenge. PBWM learned this task
using a complex combination of reinforcement learning, supervised learn-
ing, and unsupervised learning techniques (O’Reilly et al., 2007; O’Reilly,
1996a; Aizawa & Wurtz, 1998), but Todd, Niv, and Cohen (2009) showed
that agents can also learn this task using a simpler SARSA(λ) reinforcement
learning scheme. To our knowledge, no data have been published on hu-
mans or other primates learning a task of this complexity through reinforce-
ment learning alone.

Here, we used a trial-based version of the task, where on every trial, a
sequence of symbols with unpredictable length is presented, which ends
with an X or a Y. During this sequence, the agent had to respond as outlined
above. Given the complexity of the task, we trained the agents through cur-
riculum learning (Bengio, Louradour, Collobert, & Weston, 2009; Zaremba
& Sutskever, 2014; Graves et al., 2016), a training scheme in which trials
were organized into levels, which gradually increased in difficulty. Once
an agent showed sufficient performance on a level, training for the next
level began. Example sequences at different difficulty levels are shown in
Figure 4A. Key to curriculum learning is that trial types from previous, eas-
ier levels are also presented in order to prevent unlearning of the simpler
cases. In our curriculum, 50% of the trials were always of the highest dif-
ficulty level, and the other 50% were simpler cases drawn from one of the
previous levels with equal probability for all previous levels. The difficulty
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Figure 4: Training on trial-based 12AX. (A) The curriculum used to train the
agent, with example trial sequences to illustrate the difficulty levels. As soon
as the agent performs correctly on 85% of the trials, a higher difficulty level is
introduced and presented on 50% of the trials (critical trials), with the other 50%
sampled from the lower levels. (B) Policy on an example trial (see Figure 2E), ac-
quired by an illustrative model agent converging on the highest difficulty level.
The agent correctly updates memory content on each stimulus, but is only re-
warded on the basis of its final motor action in response to the target symbol
(X/Y). This agent stored the task context (1/2) in the memory block 1 and stored
the last-seen stimulus, target or distractor, in block 2. (C) Cumulative histogram
from 500 agents depicting the number of trials needed for convergence on each
difficulty level. Training on higher difficulty levels does not start until lower
levels have been learned. The graph on the right depicts convergence rates con-
sidering only the trials drawn from the highest difficulty.

was increased when performance on the last 100 trials was over 85%
correct.

This trial-based curriculum not only facilitated training, but also had an-
other benefit over previous approaches to train 12-AX (O’Reilly & Frank,
2006; Todd et al., 2009; Martinolli, Gerstner, & Gilra, 2017). In previous im-
plementations, the imperative X/Y stimulus always occurred at one of a
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few critical moments after the context rule, whereas here we intermixed
sequences of very different lengths. Without this variation, we found that
models could meet the convergence criterion on the basis of timing alone,
without actually fully acquiring the task rules. In the current curriculum
learning scheme, the agents truly solved the task, applying the appropriate
storage policies to all difficulty levels and trial lengths.

All 500 agents converged and were able to accurately perform the task
at the highest difficulty level. The policy acquired by one of these agents is
depicted in Figure 4B, which illustrates an example trial at the highest dif-
ficulty. Throughout the sequence, the agent selected the hold action, while
it updated each last-presented stimulus, encoding these into block 2. How-
ever, stimuli denoting the rule context (1/2) were encoded into memory slot
1 and updated only when the context changed. Once presented with the im-
perative stimulus (Y, in this case), this gating policy allowed the agent to use
the memory of the current context (2) and the previous stimuli (B) to decide
to yield a correct go response.

Convergence rates for this task are depicted in Figure 4C. Despite the
complexity of this task, all agents reached criterion performance, within a
median of approximately 62,000 trials (95% range 11,566, to 180,988). Alarge
proportion of these trials were repetitions of easier levels, and the number
of critical (final level) trials before convergence was lower, with a median
of approximately 42,000 trials (95% 8700 to 121,208). Thus, the model was
able to acquire the rules of a complex, hierarchical task that requires flexible
gating of items into and out of WM, based only on relatively sparse rewards
that were given only at the end of correctly performed trials.

The gating mechanisms of WorkMATe that allow it to solve the 12-AX
problem are derived from the mechanisms proposed for PBWM (O’Reilly
& Frank, 2006), and like the simplified PBWM model by Todd et al. (2009),
WorkMATe demonstrates that a control policy for 12-AX can be acquired
solely via reinforcement learning. Nevertheless, WorkMATe strongly differs
from this simplified PBWM model in one critical way: whereas simplified
PBWM uses a tabular architecture with a unique row for each combination
of external and internal states, WorkMATe is a neural network that has to
rely on distributed overlapping stimulus representations, as well as an im-
perfect compressed representation of stimuli in working memory. We set
up a simulation to explore how this difference, together with more subtle
differences between the two models, might affect learning. To this end, we
compared 250 instances of WorkMATe to 250 instances of the simplified
PBWM model and trained both groups of models on the first four lessons
of the trial-based 12-AX task. We then assessed the number of critical trials
needed for either model type to learn each consecutive level.

The results, plotted in Figure 5, illustrate that the neural network ar-
chitecture initially puts WorkMATe at a disadvantage with respect to the
tabular architecture. As WorkMATe has to rely on compressed, overlap-
ping representations, it first needs to learn to dissociate the relevant stimuli



Reinforcement Learning of Working Memory 21

Figure 5: Comparing WorkMATe to the simplified PBWM model of Todd et al.
(2009). The median number of critical trials needed to converge computed on
250 agents of each type is plotted. At the first level, the tabular model of the
simplified PBWM model is clearly at an advantage. However, once WorkMATe
has learned to dissociate the relevant stimuli, both models learn equally quickly.

before it can map these stimuli to a usable policy, whereas the simplified
PBWM model effectively already does this upon initialization. However,
after this has been learned at the first difficulty level, both models show
similar convergence speeds for the higher difficulty levels. That is, once the
neural network is able to dissociate the relevant stimuli, WorkMATe per-
forms comparably to a symbolic architecture where stimuli are dissociated
by definition. Note that although the tabular, one-on-one mapping between
states and actions might benefit learning initially in the 12-AX setup used
here, it is also precisely this architecture that prohibits models like PBWM
from generalizing the acquired policies to new contexts with novel stimuli,
as WorkMATe was shown to do in section 3.1. The next section shows simi-
lar generalization capabilities in a more complex, hierarchical task setting.

3.3 Task 3: ABAB Ordered Recognition. In a series of elegant studies,
Miller and colleagues (Warden & Miller, 2007, 2010; Siegel et al., 2009; Rig-
otti et al., 2013), reported data from macaques trained in tasks in which
multiple visual stimuli needed to be maintained in WM. For example, in
the ordered recognition task, the monkey was trained to remember two se-
quentially presented visual stimuli (A and B), and to report whether the
stimuli were later presented again, and in the same order. On match trials,
the same objects were repeated (ABAB), and the monkey responded after a
match to both objects; on the fourth stimulus in the sequence. There were
mismatch trials in which the first or the second stimulus was replaced by
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a third stimulus C (ABAC or ABCB), as well as mismatch trials with the
same stimuli (A and B), but in reverse order (ABBA). In case of a mismatch,
the monkey waited until the A and B were shown in the correct order as
the fifth and sixth stimuli (e.g., ABACAB) and thus responded to the sixth
stimulus. In each recording session, three novel visual stimuli were used to
form the sequences, where each of these stimuli could take on the role of A,
B, or C on any trial.

This ordered recognition task requires selective updating and read-out
of memories in a way that shares features with the 12-AX and DR tasks from
the previous sections. As in the 12-AX task, two stimuli need to be main-
tained and updated separately, and the task goes beyond simply memoriz-
ing two items: the order of stimuli also needs to be stored and determines
the correct action sequence. As with the DR task, monkeys reached reason-
able accuracies, even though novel stimuli were presented in each session,
implying that they could generalize their policy to new stimulus sets.

We tested WorkMATe on this ordered recognition task. We trained 750
model agents, randomly selecting stimuli from the same set as we had
used for the DR simulation described above. Half of the trials were match
sequences, and the other half consisted of the three possible mismatch se-
quences, in equal proportion. Criterion performance was defined as an
accuracy of at least 85% on the last 100 trials, with an added requirement of
at least 75% accuracy on the last 100 trials in each of the four conditions. In
the static training regime, we kept the three selected stimuli identical for an
agent throughout a training run. In the dynamic regime, the three stimuli
were replaced by three new randomly selected stimuli after 3000 trials. This
meant that each of the three stimuli took on the role of A, B, or C approxi-
mately 1000 times before they were replaced by a new set.

The convergence rates for the static regime are plotted as solid lines in
Figure 6A. The agents learned the full task after a median number of ap-
proximately 106,000 trials (95% of the agents between 25,880 and 856,868
trials). Under the static regime, we found that learning the overall task was
primarily hindered by the condition Mismatch 1 (ABCB).

Convergence on this condition typically took much longer (median:
86,390) than on the other conditions (medians: 3128, 24,076 and 28,858 trials
for Match, Swap, and Mismatch 2, respectively). The increase in complex-
ity under the dynamic regime caused a total training time that was five
to six times longer (see Figure 6A, dashed lines) than in the static regime,
with convergence after a median of about 641,000 trials (95% of the models
converged within 139,907 to 3,797,200 trials). Interestingly, compared to the
static regime, initial convergence was comparatively quick on each of the
mismatch conditions, within a median of about 13,000 trials (75% correct).
The reason for this is that many agents initially learned to withhold their
response until the end of the trial but did not learn to store or update the
appropriate stimuli in WM. Although all mismatch conditions initially con-
verged rather quickly, we noticed that during training, increases in Match
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Figure 6: The ABAB ordered recognition task. (A) Convergence of 500 agents on
the full task (black traces) and on different conditions separately (colored traces)
under two training regimes: static (same stimuli used throughout training) or
dynamic (new stimulus sets after each 3000 trials). In both regimes, the task is
typically learned in approximately 105 trials, but convergence varies across con-
ditions. Note the logarithmic time axis. (B) The memorized mismatch. (C) The
memorized storage time policy. Both policies reflect generic, common solutions
found among converged agents and are discussed in the main text. Both are
plotted following the scheme of Figure 2C and 2D.

condition performance were often paired with decreases in performance on
the Mismatch 1 condition.

We qualitatively investigated the policies of converged agents to explore
why Mismatch 1 posed such a challenge for the model. Note that on trials
from the other conditions (Match, Swap, and Mismatch 2, which together
make up 83.3% of all trials), the correct response can be determined based
on relatively simple inferences: The agent merely has to learn to encode the
second stimulus (B) and maintain it for two time steps, and utilize its time
cell input to identify the fourth and sixth stimulus presentations. Then, if
the stimulus at t = 4 matches the stimulus that was encoded at t = 2, a go-
response is needed; otherwise, it is to be held until t = 6. The Mismatch
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1 condition, however, demands complex memory management. The agent
must store both the initially presented A and B, detect the mismatch at t = 3,
and somehow convey this mismatch in a manner that prevents responses
to the matching stimulus (B) at t = 4. However, in the present architecture,
WorkMATe has no way to encode this mismatch, so the agent is not capable
of such metacognition.

Nevertheless, agents typically found a solution that fell into one of two
classes. In both solutions, the first two stimuli (A/B) were separately en-
coded in the two memory blocks. The first solution, which we call the mem-
orized mismatch strategy (see Figure 6B), essentially followed the following
rule: if the stimulus at t = 3 does not match either stimulus in memory, and
the trial must therefore be of the Mismatch 1 condition, the agent replaced
the B stimulus in memory with the “new” stimulus C. As a result, stimu-
lus B at t = 4 no longer matched any stimulus in memory, which led the
agent to withhold a response. A second solution, the memorized storage
time strategy, made use of the fact that time cell activity at the moment of
encoding is incorporated in the memory representation in a manner that
the network could learn to interpret. In this strategy, the key step was that
if the stimulus at t = 3 did not match stimulus A, the mismatching stimu-
lus was overwritten in memory by the new stimulus. At t = 4, the correct
decision could then be made only by responding if the presented stimulus
matched stimulus B in one memory store, and if the other memory store
still contained temporal information from the first time step.

To conclude, these simulations demonstrate that WorkMATe can acquire
complex control over WM content in order to appropriately solve complex
hierarchical tasks with dynamically switching stimulus contexts—again,
solely on the basis of reinforcement signals.

3.4 Task 4: Pro-/Anti-Saccade Task. To compare WorkMATe to its gate-
less predecessor, AuGMEnT (Rombouts, Bohte, & Roelfsema, 2015), we sim-
ulated agents learning the delayed pro-/anti-saccade task, a classic task in
both human and nonhuman primate memory research, and on which AuG-
MEnT was also trained and evaluated. The task (see Figure 7A) requires an
agent to maintain fixation at a central fixation point. The agent should en-
code the location of a peripheral probe and memorize it during a delay.
Trials with a black fixation point are pro-saccade trials, and when the fix-
ation point disappears, the agent makes a saccadic eye movement to the
remembered location of the probe. On anti-saccade trials, the fixation point
is white, and now the agent has to make an eye movement in a direction
opposite to the remembered cue location, after the memory delay.

We trained 500 instances of our network and all learned the task (more
than 85% correct) within 100,000 trials (see Figure 7B, solid line). The me-
dian number of trials was approximately 15,000 (95% 6,835 to 56,155 tri-
als). This convergence rate is faster than that of monkeys, which typically
learn such a task only after several months of daily training with about 1000
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Figure 7: (A) Illustration of the four conditions in the pro-saccade/anti-saccade
task. The agent has to memorize the location of the probe and make a pro-
or anti-saccade after a delay, dependent on the trial type indicated by the cue
(white or black fixation point). The agent thus has to integrate the information
throughout the trial and make an “exclusive or” decision upon presentation of
the go signal. Of note, the gating policy in this trial, depicted in panel C, is ap-
plicable in each of the four conditions in this task. (B) Convergence rates for
2 × 500 simulated agents of two different types. The solid line depicts conver-
gence with WorkMATe. The dotted line depicts performance with a modified
version of the model, where the gating policy is not learned but correctly pre-
defined and fixed beforehand. (C) Policy (see Figure 2E) of an example agent
after convergence, during an antisaccade trial with a “left” probe. This gating
policy applies to all trial conditions.

trials per session. However, training took approximately three to four times
longer than with the original AuGMEnT architecture. Several differences
between AuGMEnT and WorkMATe could account for this. For example,
the parameters governing Q-learning were not optimized for WorkMATe
but adopted from AuGMEnT to facilitate comparison. The most critical dif-
ference between models, however, is that the gated memory store, the core
of the WorkMATe model, was overly flexible for this task. The gateless AuG-
MEnT architecture encoded all relevant stimuli into its memory so that an
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accumulation of relevant information was available at the go signal. The
WorkMATe architecture first had to acquire an appropriate gating policy
(see Figure 7C), to make sure that the correct decision can be made based
the fixation color and probe location on the go display when no informa-
tion is available anymore. Notably, the gating policy can be the same for all
conditions: if cue and probe are separately available in memory, a correct
decision can be made.

To examine if the added complexity of learning a gating policy could ac-
count for the difference in learning speeds between WorkMATe and AuG-
MEnT, we trained a new set of “gateless” agents on this task. These agents
were identical to WorkMATe, except that the gating actions were, from the
start, predefined to match those depicted in Figure 7C. With this setup, the
complexity was comparable to that of the AuGMEnT architecture. Indeed,
convergence rates for these gateless agents (median number of trials, about
5000; 95% 2076 to 20,334 trials) were very similar to those for AuGMEnT and
were approximately three times faster than those with gated WorkMATe
(see Figure 7B).

These simulations highlight the strengths and weaknesses of gateless
and gated memory architectures. Simpler, gateless models that project all
stimuli to memory suffice for tasks like pro-/anti-saccade task. These tasks
do not require selective updating of memory representations, and they do
not contain distractor stimuli that interfere with the memory representa-
tion. On the other hand, gating is essential for tasks in which access to WM
needs to be controlled in a rule-based fashion. In both the ABAB ordered
recognition task and the 12-AX task, a stimulus’s access to memory is con-
tingent on other items that are presented in the history of the trial. We en-
visage that both types of WM, gated and ungated, might exist in the brain,
so that the advantages of both strategies can be exploited when useful.

3.5 Model Stability. Our simulations demonstrate that the WorkMATe
model is able to learn accurate performance across a range of popular WM
tasks. Across these simulations, we have kept the model architecture and
parameters constant: that is, we used only the minimal number of memory
blocks (two) and the same learning parameters in each task. In this section,
we explore how sensitive WorkMATe’s performance is to these choices.

First, we explored to what extent learning is affected by the number of
memory blocks. For this, we used the DR task where the agent only has to
memorize one stimulus. Since that task can be solved with only one mem-
ory block, it makes it suitable to study the effect of additional, effectively re-
dundant blocks. We trained models with one to four memory blocks (500 ×
4 = 2000 models in total) and trained these models on three stimulus sets,
switching twice to a new set after convergence.

In a task like DR, the effect of adding redundant blocks has advantages
and disadvantages for the WorkMATe algorithm. On the one hand, having
more blocks to encode stimuli increases the number of policies that suffice
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Figure 8: Convergence of 500 agents with different numbers of memory blocks,
trained on the DR task with three different stimulus sets (see section 3.1). Con-
vergence on the first set is plotted on a logarithmic x-axis (left-most graph). Per-
formance is worse when only one memory block is used but similar across any
higher number of blocks.

to solve the task. In the DR-example in Figure 2C and 2D, for example, the
agent had learned to encode the probe in one memory store and to encode
the fixation stimulus in the other store alongside it. Since the fixation stim-
ulus is irrelevant for the task, ignoring it would also have sufficed. On the
other hand, a larger number of blocks causes a small disadvantage during
exploration, as the chance of choosing an optimal gating action decreases
with the higher number of options. This interplay is reflected in the results
in Figure 8, which shows that models with a redundant number of blocks
all have similar performance. Similar to the results in Figure 3, performance
on the first set took the longest (median number of trials, 12,501 to 12,659),
but was faster on subsequent sets (1055 to 1137 and 700 to 756 trials for sets
2 and 3, respectively). With only one memory block, it took almost twice
as long to converge on the initial set (median number of trials: 25,101), but
once a policy was acquired that could be used on subsequent sets, perfor-
mance gradually became similar to that with a redundant number of blocks
(median number of trials 1418 and 892 on sets 2 and 3, respectively). These
results suggest that the WorkMATe algorithm readily generalizes to larger
networks with a higher number of blocks, without obvious disadvantages
to its performance. Nevertheless, there are neurocognitive reasons to keep
the number of memory blocks low, which we will turn to in section 4.

Next, we explored to what extent the learning parameters affected model
performance. The values used for these parameters were kept constant in all
simulations and were chosen to be consistent with the original AuGMEnT
model. These parameters include β, which scales the magnitude of synaptic
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weight updates, and the SARSA learning parameter λ, which, together with
temporal discounting parameter γ , determines the decay of synaptic tags
through the relation α = 1 − λγ . In order to explore to what extent Work-
MATe’s performance depends on the exact values of these parameters, we
ran a grid-search exploration with different values of λ and β.

For this grid search, we used versions of the tasks defined for the simula-
tions above. For the DR task, we used only three stimulus sets. For the ABAB
ordered recognition task we only ran the “Static” learning regime (solid
lines in Figure 6A). For 12-AX, we again used curriculum learning, and
count only the critical trials at the highest difficulty level (see Figure 4C).
The pro-/anti-saccade task ran as-is (see the solid line in Figure 7B). We as-
sessed all combinations of β = [0.05, 0.10, 0.15, . . . , 1.0] and λ = [0.1, 0.2, 0.3,
. . . , 0.9], and for each parameter combination, we ran 100 model instances.
The simulations were ran on the Peregrine High Performance cluster of the
University of Groningen. Per task, each model instance was allotted the
same amount of wall clock time. Assuming comparable performance across
all cores, this implies a similar maximum number of iterations (trials) held
for these tasks. The maximum number of iterations in each task was approx-
imately 1,870,000 in the delayed recognition task, approximately 1,700,000
critical trials in the 12-AX task, approximately 790,000 trials for ABAB or-
dered recognition, and approximately 500,000 in the pro-/anti-saccade task.
The number of iterations reported in Figure 9 are the median number of it-
erations computed across all runs in which convergence was reached. In
general, we found that model runs with a high β had relatively low conver-
gence rates, an effect that was particularly pronounced for the ABAB task.
To yield better insight into model stability for this task, we ran additional
simulations where we varied β at a more finely-grained scale β = [0.025,
0.05, 0.075, . . . , 1.0].

The results are depicted in Figure 9. Across all tasks, a similar pattern
was found: performance was rather robust across a range of values for λ,
and more sensitive the precise value of β. With regard to β, the results sug-
gest that learning rates that are too high are detrimental for WorkMATe.
Values for the learning rate that are too high are generally harmful for con-
vergence in neural networks, and for WorkMATe, this might have been ex-
tra detrimental due to the all-or-none gating policy in the model. As large
weight changes could lead to sudden changes in the gating policy, this effec-
tively alters the model’s input state space. Large learning rates can therefore
hinder convergence by rendering previously learned state-action pairings
irrelevant. Although these sudden changes also occur with lower β values,
they are less frequent, so that the models can adapt.

The effects of the parameter λ seem to similarly reflect adverse effects of
large weight changes. Note that high weight changes are caused by high
values of β, high tag values, and large prediction errors. High values of
λ lead to slower weight decay and therefore result in relatively high tag
values. Variations in λ have the largest effect in the 12-AX task and the
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Figure 9: Model stability across the four different tasks. Each tile represents a
λ, β-combination. The blue shading of the tiles indicates the convergence rate,
and the red shading of the dots reflects the median number of iterations needed
for convergence. Note that the color axes are different for each task, and the
x-axis is different for the ABAB ordered recognition task (bottom left). The tile
with the green outline indicates the single parameter combination that was used
in all simulations in the preceding sections. It can be seen that model perfor-
mance is largely independent of values for λ and that lower β values were gen-
erally associated with faster convergence.

pro-/anti-saccade task. A feature shared among these tasks is that the mo-
ment of reward delivery is variable, which makes it difficult for an agent
to predict when exactly a reward is due, even when it behaves according
to policy. As a result, high values of λ impair convergence in these tasks
specifically.
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Of note, the influence of β and λ on learning was similar to that observed
with previous models (Rombouts et al., 2015; Todd et al., 2009). We conclude
that there are large regions of the parameter space with successful and con-
sistent performance in all four tasks. Within these regions, the performance
of WorkMATe is robust and stable.

4 Discussion

We have presented WorkMATe, a neural network model that learns to flex-
ibly control its WM content in a biologically plausible fashion by means
of reinforcement. The model solves relatively basic WM tasks like delayed
recognition and delayed pro/anti-saccade tasks, but also more complex
tasks such as the hierarchical 12-AX task and the ABAB ordered recognition
task. Furthermore, we show that the agent can learn gating policies that are
largely independent of the stimulus content and apply these policies suc-
cessfully to solve tasks with stimuli that were not encountered before. Thus,
WorkMATe exhibits a number of crucial properties of WM: trainability, flex-
ibility, and generalizability.

The terms working memory and short-term memory have often been used
interchangeably in the cognitive sciences, even though the term working
memory was popularized to place additional emphasis on the capability of
the brain to flexibly regulate and update memory content given task de-
mands (Baddeley, 2003). Many previous models of WM (Mongillo et al.,
2008; Schneegans & Bays, 2017; Fiebig & Lansner, 2017) focus on storage
of items and their retrieval. In our study, the focus was on learning to use
and update memory content according to potentially complex task require-
ments. This approach highlights challenges that the brain is faced with be-
yond mere issues of capacity and fidelity: decisions to store and retrieve
are cognitive operations that need to be learned in order to solve a task,
and the organization of memory content should support learning these
operations.

Previous models that we described in section 1 as action-oriented models
have addressed this problem at a different level of abstraction and thereby
have highlighted different aspects of these computational challenges. AuG-
MEnT models have used a basic neural network architecture to illustrate
a biologically plausible implementation of reinforcement learning princi-
ples that can be applied to different tasks and different architectures. LSTM
models have demonstrated the computational advantages of memory ar-
chitectures with separately trained control nodes but have typically not con-
sidered biological plausibility. PBWM has shown how such gating can be
implemented by the neural circuitry and activity patterns found in struc-
tures in the basal ganglia, and the subsequent simplification by Todd et al.
(2009) showed that PBWMs, core functionality can be expressed in a tra-
ditional reinforcement learning setup. WorkMATe builds upon all these
preceding models and offers a computationally tractable gated architecture
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that efficiently, yet in a biologically plausible fashion, learns to solve a range
of complex working memory tasks.

In addition to integrating views from these predecessors, WorkMATe
addresses a key problem faced by action-oriented models, which is that
the control operations acquired to solve a task should generalize to a new
context with novel stimuli. The neural circuitry in the memory store in
WorkMATe can store arbitrary representations and has a built-in capacity to
compute the degree of match between the representations in memory and
incoming sensory information. Using such circuitry, inspired by storage-
oriented models, we found that it is unnecessary to first learn specific mem-
ory representations and that, instead, a fixed, random projection for encod-
ing suffices. The properties of such an encoding scheme have been explored
before (Barak et al., 2013; Saxe et al., 2011), indicating that this is a func-
tionally rich approach that can be applied to a range of memory tasks. Our
simulations with the pro-/anti-saccade task demonstrate that such random
feedforward encoding suffices for at least some tasks where the relevant
features are given as feedforward inputs to the model. It seems likely how-
ever, that it will be insufficient for other tasks, in which the memoranda
require specific and nonlinear combinations of inputs. Recently, Boucha-
court and Buschman (2019) proposed a working memory storage archi-
tecture that was defined by two separate layers of neurons: a structured,
sensory layer with pools for separate items, which projected to a shared
unstructured layer via random recurrent connections, with balanced exci-
tation and inhibition for each neuron as the only constraint. The resulting
architecture could also store arbitrary representations and gave rise to ca-
pacity limits and forgetting dynamics that are also observed in humans. Fu-
ture work might explore how WorkMATe might also benefit from a more
sophisticated memory maintenance architecture, be it a multilayer subsys-
tem or one with recurrent connections to the sensory inputs, while still al-
lowing for the generic, built-in matching computations.

Because the WorkMATe architecture largely separates memory content
from gating and updating operations, the models acquire policies that im-
plement a type of symbolic memory control: in many of our simulations, the
acquired gating policy can be interpreted as a set of production rules that are
applicable to all stimuli. Previous studies have noted that the gap between
traditional artificial neural network architectures and symbolic systems is
one of the great challenges to be overcome by artificial intelligence (Reggia,
Monner, & Sylvester, 2014). Previous neural network models that attempt
to implement a similar approach to memory control have relied on prede-
termined, hand-coded sequences of memory operations, hard-coded into
the model (Sylvester, Reggia, Weems, & Bunting, 2013; Sylvester & Reggia,
2016; Eliasmith, 2005; but see Graves et al., 2016). Here we show, for the
first time, that such control over WM can be acquired in a neural system by
means of a biologically plausible reinforcement learning rule.
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WorkMATe makes several simplifying assumptions that touch on con-
tended topics in WM research and require further discussion. First, all our
simulations made use of two, independently maintained memory blocks
to store content, which proved sufficient for these tasks. There is an ongo-
ing debate regarding the storage capacity limits of WM and to what extent
these speak to the functional organization of items in memory. Two oppos-
ing views are slot-based models (Zhang & Luck, 2008), which state that stor-
age is limited by a discrete number of slots in memory, and resource-based
models, which propose that there is no limit on the number of items that can
be stored, but the total fidelity is limited by a certain amount of resources
(Van den Berg & Ma, 2018; Van den Berg et al., 2014; Bays & Husain, 2008).
Although WorkMATes memory circuit at a glance most closely aligns with
slot-based architectures, it should not be taken as direct evidence in support
of such models. While that debate focuses on memory capacity and fidelity,
our memory blocks served a different functional purpose: separate, inde-
pendent memory blocks directly allow for independent matching, gating,
and updating of memoranda. It is conceivable that similar control functions
could be implemented within a resource-based architecture, though this
would require additional assumptions on how memory items can be in-
dependently addressed and updated (see Stewart et al., 2011, for one possi-
ble approach). Conversely, the present work does not touch on the capacity
and fidelity of working memory. We have simulated tasks that require at
most two items in memory, which is well within the capacity limits of hu-
man working memory (Vogel & Machizawa, 2004; Cowan, 2010; Oberauer
& Hein, 2012). Even though we have demonstrated that WorkMATe’s con-
trol functions can in principle be scaled up to control more blocks, it seems
that a more complete model of working memory should also consider how
memoranda deteriorate under interference and decay.

Asecond simplifying assumption that we have made here is that matches
between sensory and memory representations are computed automatically
and in parallel. Whether multiple objects in WM can be matched simultane-
ously by a single percept is a topic of debate in cognitive psychology (Stern-
berg, 1966; Banks & Fariello, 1974; Olivers, Peters, Houtkamp, & Roelfsema,
2011; Wolfe, 2012; Konecky, Smith, & Olson, 2017). The tasks that we have
chosen to focus on here unfold at relatively slow speeds, which would allow
for serial comparisons. Previous research has shown that at high speeds,
matching multiple memory targets comes at a cost (Houtkamp & Roelf-
sema, 2009). A serial comparison circuit might introduce additional con-
trol operations to determine which representation should be prioritized for
matching. Here, we refrained from simulating such additional operations.
Related to this, some models such as LSTM can also gate WM output, in ad-
dition to the input. These might come into play in task-switching setups,
where multiple goals need to be maintained but only one should drive be-
havior (Monsell, 2003; Alport, Styles, & Hsieh, 1994; Chatham, Frank, &
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Badre, 2014; Myers et al., 2015; Myers, Stokes, & Nobre, 2017; Rushworth,
Passingham, & Nobre, 2002), and in sequential visual search tasks where
multiple items may be held in WM but only one drives attentional selection
(Houtkamp & Roelfsema, 2006; Soto, Humphreys, & Heinke, 2006; Olivers
et al., 2011; Ort, Fahrenfort, & Olivers, 2017; de Vries, Van Driel, & Olivers,
2017; de Vries, Van Driel, Karacaoglu, & Olivers, 2018; de Vries, Van Driel, &
Olivers, 2019). Recordings in macaque PFC suggest that sequential search
tasks, which require such prioritization, of one memory item over another,
are characterized by elevated cortical representation of the prioritized stim-
ulus in preparation of search (Warden & Miller, 2007, 2010; Siegel et al.,
2009). Future extensions of WorkMATe might investigate tasks that could
benefit from such output gating operations and whether they can be learned
through plasticity rules related to those studied here.

Interestingly, not every task benefited from a gated memory. Notably,
training on the pro-/anti-saccade task actually took three to four times
longer with the gated model than with a model without these gates. This
is important, as it shows that for certain tasks, it may indeed be beneficial
to merely accumulate relevant information into memory and learn a policy
that relies on these accumulated representations. These types of memory
tasks are actually more akin to perceptual decision-making tasks, which re-
quire an agent to aggregate information until a threshold is reached that
triggers a decision (Shadlen & Newsome, 2001; Gold & Shadlen, 2007),
rather than to flexibly store, update, and maintain memory representations.
This qualitative dissociation between different types of tasks might warrant
a model that comprises separate routes to a decision: one relying on the au-
tomatic integration of relevant information and one describing a more con-
trolled process that stores and updates information as variables to be used
in a task (Collins & Frank, 2018; see Masse, Yang, Song, Wang, & Freedman,
2019, for a similar conclusion derived from modeling work with a very dif-
ferent approach). We may therefore use models like WorkMATe to predict
more precisely which tasks will rely on flexible, controlled memory and
which tasks an organism should be able to solve without the necessity for
flexible control structures.

5 Conclusion

We have presented a neural network model of primate WM that is able to
learn the correct set of internal and external actions based on a biologically
plausible neuronal plasticity rule. The network can be trained to execute
complex hierarchical memory tasks and generalize these policies across
stimulus sets that were never seen before. We believe this to be an important
step toward unraveling the enigmatic processes that make WM work: that
is, be used as an active, flexible system with capabilities beyond the mere
short-term storage of information.
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