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ABSTRACT

Context. With the growth of the scale, depth, and resolution of astronomical imaging surveys, there is increased need for highly
accurate automated detection and extraction of astronomical sources from images. This also means there is a need for objective
quality criteria, and automated methods to optimise parameter settings for these software tools.
Aims. We present a comparison of several tools developed to perform this task: namely SExtractor, ProFound, NoiseChisel, and
MTObjects. In particular, we focus on evaluating performance in situations that present challenges for detection. For example, faint
and diffuse galaxies; extended structures, such as streams; and objects close to bright sources. Furthermore, we develop an automated
method to optimise the parameters for the above tools.
Methods. We present four different objective segmentation quality measures, based on precision, recall, and a new measure for the
correctly identified area of sources. Bayesian optimisation is used to find optimal parameter settings for each of the four tools when
applied to simulated data, for which a ground truth is known. After training, the tools are tested on similar simulated data in order
to provide a performance baseline. We then qualitatively assess tool performance on real astronomical images from two different
surveys.
Results. We determine that when area is disregarded, all four tools are capable of broadly similar levels of detection completeness,
while only NoiseChisel and MTObjects are capable of locating the faint outskirts of objects. MTObjects achieves the highest scores
on all tests for all four quality measures, whilst SExtractor obtains the highest speeds. No tool has sufficient speed and accuracy to be
well suited to large-scale automated segmentation in its current form.

Key words. techniques: image processing – surveys – methods: data analysis

1. Introduction

Segmentation maps, which are images that match specific pix-
els of an image to a particular source or sources, are used
extensively to preprocess observational data for analysis. They
are used for masking sources, estimating sky backgrounds, and
creating catalogues, amongst other applications. It is therefore
essential that the tools used to create these maps are accurate
and reliable. Otherwise, the subsequent scientific process may
be invalidated by errors in the measurements of sources.

Unfortunately, astronomical images have many properties
that cause problems for traditional image-segmentation algo-
rithms. Images may be highly noisy and have an extremely large
dynamic range. Objects generally have no clear boundaries, and
their outer regions may extend below the level of background
noise (see Fig. 1). As many generic segmentation algorithms are
edge-based (Pal & Pal 1993; Wilkinson 1998), they are unable
to accurately process these images.

In addition, with growth of the scale of astronomical sur-
veys, there is increased need for a fast and accurate tool for
segmentation. This is illustrated by current projects such as the
Legacy Survey of Space and Time (LSST), which aims to pro-
duce around 15 TB of raw data per night (Ivezić et al. 2019).
With surveys of this scale, human intervention will no longer be
feasible, meaning that the tools should ideally be robust to vari-
ations in images without manual tuning.

Because of these unique challenges, a number of tools have
been developed for the sole purpose of accurately detecting
sources in astronomical images. The most well-known of these
for optical data is SExtractor (Bertin & Arnouts 1996). How-
ever, in recent years, a number of alternatives have been pro-
posed, including ProFound (Robotham et al. 2018), NoiseChisel
(Akhlaghi & Ichikawa 2015), and MTObjects (Teeninga et al.
2013, 2016).

In this paper, we evaluate and compare these segmenta-
tion tools in order to study their strengths and weaknesses.
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A thorough comparison provides a means for astronomers to
choose the algorithm that is best suited for their scientific
goals. In addition, several of these tools are still under active
development, and such an analysis can help to direct future
advancements.

For this comparison, we developed numerical measures for
segmentation quality (Sect. 3.3), and propose a method for auto-
matic configuration of tool parameters (Sect. 3.2). This approach
to evaluating segmentation maps is designed to provide an objec-
tive measure of quality. To test this, we use simulated images
with a known ground truth (Sect. 3.1) to provide evaluations that
are not dependent on visual bias and preconceptions. We supple-
ment our results by demonstrating the performance of our auto-
matically configured parameters on real survey images (Sect. 5).

Throughout this paper we use the terms ‘segmentation’,
‘source detection’, and ‘source extraction’ interchangeably to
refer to the process of identifying unique sources in astronom-
ical images and marking the pixels of the image in which each
source is the dominant contributor.

2. Source-extraction methods

2.1. Previous methods

For as long as astronomical images have been produced, it has
been necessary for their contents to be catalogued and measured
in order that they may be used for scientific applications. As
manually locating and outlining objects is a slow and subjec-
tive process, particularly when considering the faint outskirts
of objects, many attempts have been made at automating this
process.

Early automatic tools directly scanned photographic plates to
locate sources and produce measurements. A notable example is
COSMOS (Pratt 1977), which used a process of repeated thresh-
olding to produce ‘coarse measurements’ of images, essentially
quantising the image over an estimated local background level.
It then used ‘fine measurements’ to produce more accurate
measurements of the object profiles. Later additions included
improved deblending of adjacent sources (Beard et al. 1990).

Whilst modern tools no longer use digitised photographic
plates, instead working directly with data captured by CCDs, the
overall process used in recent tools is fundamentally very simi-
lar to that used in their predecessors. Almost all tools follow the
same four main steps:
1. Identify and measure the background level.
2. Threshold the image relative to the background.
3. Locate (and deblend) sources appearing above the threshold.
4. Produce a catalogue of sources and their measured

properties.
SExtractor, described in more detail below, uses a very similar
method to COSMOS, namely repeated thresholding. In contrast,
several other tools make use of dendrograms, that is, hierar-
chical representations of images, in which nodes representing
local maxima are connected at the highest brightness level where
thresholding would show a single, unbroken object. Users may
subsequently ‘prune’ the dendrogram by removing nodes con-
necting very small or faint regions, and may automatically or
manually mark objects meeting some criteria. Dendrograms
have been used to visualise and analyse hierarchical structure
in both infrared images (Houlahan & Scalo 1992) and radio data
cubes (Rosolowsky et al. 2008; Goodman et al. 2009).

Other tools have deviated from a thresholding-based
approach. Many of these tools and their methods are described
in Masias et al. (2012).

2.2. Deblending

Deblending, the process of separating overlapping or nested
sources, is closely linked to source extraction; all of the tools we
discuss in this paper make some attempt at deblending. How-
ever, for some scientific purposes, the tools do not produce suffi-
ciently accurate separation of sources, leading to problems such
as poor photometry (Abbott et al. 2018; Huang et al. 2018), and
systematic measurements of physical properties such as redshift
(Boucaud et al. 2020) and cluster mass (Simet & Mandelbaum
2015). Consequently, several tools also exist to perform deblend-
ing as a separate process. As these tools are predominantly either
designed to use the results of another source extraction tool
(such as SCARLET Melchior et al. 2018, which uses SExtractor
for initial source detection), or are predominantly designed for
smaller images with only a few galaxies (such as the machine-
learning-based methods proposed in Reiman & Göhre 2019), we
chose not to include them in the comparisons in this paper. How-
ever, the evaluation process we define in Sect. 3 could equally be
used to compare deblending-specific tools.

2.3. Compared tools

We chose to focus our comparison on four tools: SExtrac-
tor (Bertin & Arnouts 1996), which is in common use, and
three recent alternatives: ProFound (Robotham et al. 2018),
NoiseChisel + Segment (Akhlaghi & Ichikawa 2015), and MTO-
bjects (Teeninga et al. 2013, 2016). We chose to exclude several
other source-extraction tools from this comparison for various
reasons, notably DeepScan (Prole et al. 2018), which is depen-
dent on the use of another tool (such as SExtractor) to produce
an initial mask; and AstroDendro (Robitaille et al. 2013), which
was prohibitively slow to run on large images.

2.3.1. SExtractor

SExtractor (Bertin & Arnouts 1996) is a widely used tool for the
creation of segmentation maps. It was developed with the goal of
producing catalogues of astronomical sources from large-scale
sky surveys.

The first step in the SExtractor pipeline is the estimation
and subtraction of the background. The image is divided into
tiles, and a histogram is produced for each. Values more than
three standard deviations from the median are removed. Tiles
are then classified into crowded and uncrowded fields based on
the change in histogram distribution, and a background value is
estimated based on the median and mode of each tile.

The image is then thresholded at a fixed number of expo-
nentially spaced levels above a user-defined threshold. This
converts the light in the image into trees, with branches rep-
resenting bright areas within larger, fainter objects. Pixels in
branches that contain at least a given proportion of the light
of their parent objects are marked as individual objects, whilst
branches containing a lower amount of light are regarded as
part of the parent object. Pixels in the outskirts of objects are
allocated labels based on the probability that a pixel of that
value is present at that point, using profiles fitted to the detected
sources.

In practice, SExtractor may be used in multiple passes,
particularly when detecting extended sources. For example, a
hot/cold method may be used, wherein a sensitive pass captures
the outskirts of objects, and a less sensitive pass identifies which
objects are not false-positive detections (Rix et al. 2004). It may
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also be used to identify candidate objects, which are then manu-
ally verified.

SExtractor version 2.19.5 was used for this comparison,
using the default filter: a convolution with a 3 × 3 pyramidal
function that approximates Gaussian smoothing. We found in
subsequent testing, described in Appendix A, that using a 9 × 9
Gaussian PSF with a full width at half maximum of 5 pixels pro-
duced marginally better results, although this difference is not
significant, and does not affect the general conclusions of this
paper.

2.3.2. ProFound

ProFound (Robotham et al. 2018), like SExtractor, was designed
as a general-purpose package for detecting and extracting astro-
nomical sources; however, it is designed to produce a more accu-
rate segmentation, which may be used for galaxy profiling.

Instead of using multiple thresholds, ProFound uses a sin-
gle threshold after the background estimation stage in order
to demarcate pixels containing sources. These pixels are then
processed in descending order of brightness, with a watershed
process being used to allocate less bright pixels (within some
tolerance) neighbouring the object of the brightest pixel in a
region, until all pixels bordering the object are either allocated
to other objects, are marked as background, or have higher flux
than neighbouring pixels within the object.

Following this process, the background is re-estimated, and
an iterative process of calculating photometric properties of the
segments and repeatedly dilating them is performed, to produce
a final segmentation map. ProFound version 1.1.0 was used for
this comparison.

2.3.3. NoiseChisel + Segment

NoiseChisel (Akhlaghi & Ichikawa 2015) was designed with
the goal of finding ‘nebulous objects’, such as irregular or faint
galaxies, accurately. NoiseChisel is intended to be hand-tuned
for individual images; the tutorial states that configurations are
‘not generic’ (GNU Astronomy Utilities 2019).

NoiseChisel separates the image into areas containing light
from objects, and areas containing only background. To do this,
it uses a threshold below the estimated background level, and
performs a series of binary morphological operations to create
an initial detection map. Further morphological operations are
then performed on the ‘objects’ and ‘background’ separately,
and area and signal-to-noise thresholds are used to remove false
detections. Segment then produces a map of ‘clumps’ by locat-
ing connected regions around local maxima in the image with a
watershed-like process. It then discards those that do not meet
a signal-to-noise threshold, and grows the remaining clumps to
create a final segmentation map.

Since the publication of the original paper, the program has
been split into two separate tools within the GNU Astronomy
Utilities package: NoiseChisel, and Segment. For the purposes
of this comparison, the tools are treated as a single pipeline, and
evaluated together, and we examine only this final ‘objects’ out-
put. We used the latest version at the start of our comparison,
version 0.7.42a. Several new versions have since been released,
which may contain different parameters and produce different
results.

2.3.4. MTObjects

MTObjects (Teeninga et al. 2013, 2016) takes a similar approach
to SExtractor; both operate on the principle that after a

background subtraction step, objects can be detected by a thresh-
olding process. However, where SExtractor uses a small number
of fixed thresholds, MTObjects uses tree-based morphological
operators.

A max-tree (Salembier et al. 1998) is constructed from the
smoothed and background-subtracted image. The max-tree is a
tree of the image: the leaves represent local maximum pixels,
nodes represent increasingly large connected areas of the image,
with decreasing minimum pixel values, and the root represents
the entire image. This tree is then filtered, using tests to deter-
mine which nodes of the tree – or areas of the image – contain
an amount of flux, given their area, that is statistically significant
relative to their background. If a node has no significant ‘parent’,
or its parent has another ‘child’ with greater flux, it is marked
as an object. Despite representing all connected components at
all grey levels in the image, building the max-tree is typically
very efficient (O(N log N) for floating-point images Carlinet &
Géraud 2014).

The max-tree structure used in MTObjects is very similar
to the dendrogram used in several astronomical applications as
described above (Houlahan & Scalo 1992; Rosolowsky et al.
2008). There are two main differences. Firstly, the dendrogram
only contains nodes where areas connect, whereas the max-tree
contains a node for every difference in brightness value. Sec-
ondly, MTObjects uses a single statistical significance test to
detect objects, combining multiple attributes of the node, whilst
the dendrogram methods frequently filter small and faint objects
at fixed thresholds.

There have been no official software releases of MTObjects.
We used a Python and C implementation1, which we adapted
from the software used in the original paper. We used signifi-
cance test 4 as recommended by Teeninga et al. (2016).

3. Methodology

3.1. Data

In this section we describe the data with which we tested the
tools. Simulated data (Sects. 3.1.1 and 3.1.2) allow us to accu-
rately quantify performance on a simplified version of the prob-
lem, whilst survey images (Sect. 3.1.3) allow us to qualitatively
explore behaviour in a range of different real situations.

3.1.1. Simulated data

Testing source-detection algorithms on real observational data
has several limitations. Firstly, the ground truth is not known;
even if objects have been manually labelled, it is possible that
objects have been missed, or incorrectly measured. In particu-
lar, it is difficult to establish the true extent of objects at a low
brightness level, as their outer regions may not be clearly visu-
ally distinguishable from background.

Secondly, the abundance of many features of interest –such
as ultra-diffuse galaxies (Van Dokkum et al. 2015)– is not yet
fully understood. This means that it is difficult to establish a sta-
tistical measure of how accurately they can be detected. As these
objects are also more difficult for algorithms to detect, a larger
sample is required to determine the accuracy of the algorithms.

By using simulated data, we gain the ability to test the algo-
rithms on large datasets with a known ground truth. This means
that we can make accurate measures of precision and accuracy
for faint features, while taking into account the true extent of

1 https://github.com/CarolineHaigh/mtobjects
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Fig. 1. A gri-composite image of IAC Stripe82 field f0363_
g.rec.fits showing a large structure of Galactic cirri. Such complex,
overlapping structures are challenging for source-detection tools.

objects. We can also measure the accuracy of algorithms in
different controlled conditions, such as with high noise, back-
ground variation, and overlapping sources (see Fig. 2).

We created ten frames of data emulating images in the r′-
band of data in the Fornax Deep Survey (FDS). This is a deep,
medium-sized ground-based survey of the nearby Fornax clus-
ter, which is located at a distance of 20 Mpc (Iodice et al. 2016;
Venhola et al. 2018). Each simulated image contains approxi-
mately 1500 ‘stars’, 4000 ‘cluster galaxies’, and 50 ‘background
galaxies’. Stars were simulated as point sources and galaxies as
Sérsic models (Sersic 1968). The number and structural parame-
ters of the stars and galaxies were drawn from distributions sim-
ilar to those found in the FDS. In the simulated images, stars
have magnitudes between 10 and 23 mag, and galaxies have
mean effective surface brightnesses between 21 mag arcsec−2

and 31 mag arcsec−2. Background galaxies have effective radii
between 0.5 and 3.5 arcsec and Sérsic indices between 2 and 4.
Cluster galaxies have effective radii between 2.5 and 40 arcsec,
and Sérsic indices between 0.5 and 2. Axis ratios varied from
0.3 to 1.0. To replicate observation conditions, images were con-
volved with the r-band point spread function of the OmegaCAM,
and Poissonian and Gaussian noise were added (Venhola et al.
2018). For further details of the process, see Venhola (2019,
Chapter 5).

3.1.2. Choosing a ground truth

Astronomical sources have no clear boundary; their light merely
becomes insignificant in relation to noise and background light
at some point in their outskirts. This means that when we create
a ground truth for simulated images –a ‘correct’ segmentation
map– we need to choose a threshold, t, below which we judge
light from sources to be undetectable. Assuming a flat back-
ground, this threshold can be expressed as a sum of the back-
ground level, bg, and some multiple, n, of the standard deviation

Fig. 2. Simulated survey images.

of the noise, σ:

t = bg + (n ∗ σ). (1)

Sources may also overlap, meaning that each pixel contains
light from multiple sources. In segmentation maps, each pixel is
allocated to a single source; therefore, it is necessary to deter-
mine the source that has the strongest relationship with a given
pixel. It should be noted that whilst segmentation maps are the
traditional method of demarcating sources within an image, they
are limited by their inability to represent the reality that pix-
els contain light belonging to multiple sources2. Consequently,
tree-based methods, which inherently model nested objects, are
unable to capture this structure within segmentation maps. As
such, information contained in the models is lost, and not mea-
sured in the evaluation.

We initially considered allocating each pixel to the source
which contributed the most flux to it. However, this meant that
fainter sources in the vicinity of bright sources were entirely
erased, as they had a lower raw flux contribution.

Instead, we chose to allocate labels based on a combination
of the importance of the pixel to the source and the importance
of the source to the pixel. For a source with total flux Fs, con-
tributing a flux fs,p to a pixel with total flux Fp, the pixel contains
fs,p
Fs

of the flux of the source. Conversely, the source contributes
fs,p
Fp

of the light contained within the pixel.
These measures may be combined to give a single measure:

fs,p
Fs
×

fs,p
Fp
· (2)

When allocating a pixel to a source, Fp will be constant for all
sources contributing to the pixel. Therefore, the pixel may be
allocated to the source with the highest value for

( fs,p)2

Fs
(3)

and fs,p ≥ t.

2 A new data format would be required to clearly represent this nested
data. This could prove to be a challenging problem because of the com-
plexity of allocating multiple labels and proportional brightnesses to
each pixel.
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(a) (b)

(c) (d)

Fig. 3. Ground-truth segmentations of a
simulated image, with a varying thresh-
old (n ∗ σ). The coloured regions label
distinct objects, and the black regions
make up the background. (a) Simu-
lated image. (b) Ground truth (1.0σ).
(c) Ground truth (0.5σ). (d) Ground
truth (0.1σ).

The value of n has a substantial effect on the areas allocated
to objects, as shown in Fig. 3. Consequently, it has a large impact
on the evaluation of the segmentation maps produced by the
tools.

As we aim to evaluate the performance of the tools at levels
of low surface brightness, we chose to use a value of n = 0.1 for
our ground truths. This pushes the tools to optimise their param-
eters to capture and correctly allocate as much of the light in the
images as possible.

3.1.3. Real-world data

Whilst testing algorithms on real-world data is subject to several
limitations, as discussed above, it is nevertheless essential, as it
allows us to subjectively evaluate performance on structures and
conditions which cannot be easily simulated, such as streams,
spiral galaxies, and unusual artefacts.

With this in mind, we selected a number of images in the
optical which contained examples of these features. We chose
images from the Fornax Deep Survey (FDS; Iodice et al. 2016;
Venhola et al. 2018), IAC Stripe 82 Legacy Project3 (hereafter
IAC Stripe82; Fliri & Trujillo 2016; Román & Trujillo 2018)
which is a 2.5 degree stripe (−50◦ < RA < 60◦,−1.25◦ < Dec <
1.25◦) with a total area of 275 square degrees in all the five Sloan
Digital Sky Survey (SDSS) bands and the Hubble Ultra Deep
Field (HUDF; Beckwith et al. 2006), a 11 arcmin2 region in the

3 http://research.iac.es/proyecto/stripe82/

Southern Sky. As the simulated images were designed to mimic
the FDS, using real images from this survey allowed us to test
the optimised parameters with similar imaging conditions, where
they would be expected to perform well. The additional use of
IAC Stripe82 and HUDF images allows us to examine the con-
sistency of parameters on images with very different imaging
conditions.

While the FDS and IAC Stripe82 are deep surveys using
ground-based telescopes, namely the VLT Survey Telescope
(VST) and the SDSS Telescope, respectively, the well-studied
HUDF extends our analysis to the higher resolution, space-
based data from the Hubble Space Telescope. In terms of depth,
the HUDF is the deepest with a 5σ point source depth of
∼29 mag computed over 0.6′′ apertures (see Bouwens et al.
2009, Table 1), which corresponds to a surface brightness
limit of µV606 ∼ 32.5 mag arcsec−2 in the V606-band, com-
puted as a 3σ fluctuation with respect to the background of
the image in 10 × 10 arcsec2 boxes (3σ; 10 × 10 arcsec2). The
FDS images in the SDSS r-band have a limiting depth of µr ∼

29.8 mag arcsec−2 (3σ; 10 × 10 arcsec2) and the IAC Stripe82
survey is ∼1 mag shallower than FDS with a limiting surface
brightness depth of µr ∼ 28.6 mag arcsec−2 (3σ; 10× 10 arcsec2)
and µg ∼ 29.1 mag arcsec−2 (3σ; 10 × 10 arcsec2). In order to
select the deepest imaging from all these surveys in the optical
regime, we use the V606-band images in the HUDF and the SDSS
r- and g-band images from FDS and IAC Stripe82 respectively.

Additionally, the FDS, IAC Stripe82 and HUDF datasets col-
lectively represent deep data with different surface brightness
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Table 1. Summary of qualitative evaluation.

MTObjects NoiseChisel ProFound SExtractor

Optimised parameters 2 20 8 6
Language Python/C C R C
Clean edges of detected objects – X X Sometimes
Detects elongated galaxy (FDS – Fig. 17) X Fragmented – Fragmented
Detects galaxy close to star (FDS – Fig. 18) X Fragmented – Fragmented
Detects cirrus (Stripe82 – Fig. 19) X X – Sometimes
Isolates spiral substructures (HUDF – Fig. 24) X – – –

depths and spatial resolutions: FDS is >1 mag deeper and
two times higher in spatial resolution than IAC Stripe82 (0.2
arcsec pixel−1 resolution in FDS (rebinned from the 0.21
arcsec pixel−1 of the VST) compared to 0.396 arcsec pixel−1 in
SDSS) and the HUDF is >2 mag deeper than FDS, with the best
resolution currently possible from space ∼0.05 arcsec pixel−1.
Therefore, the optimised parameters of each algorithm are tested
on real images with varying depth and resolution. However, in
this work we specifically chose images in the optical wave-
lengths to test the limits of current detection algorithms for
upcoming deeper and wider surveys such as LSST. In future
work, a similar analysis to that performed here could readily be
extended to other wavelengths.

3.2. Parameter optimisation

To produce a fair comparison of the capabilities of the algo-
rithms, they should be tested with parameters that are as close
to optimal as possible. Due to the extremely large parame-
ter spaces of some of the tools, it was not feasible to manu-
ally optimise the tools, or to test every possible combination of
parameters.

We therefore chose to use an automatic method to select
good parameters for each tool. We initially considered using
a genetic algorithm for this purpose; however, this proved to
be prohibitively slow, as a high number of time-consuming
runs of each tool was required. Instead, we used Bayesian
optimisation.

Bayesian optimisation is a method of black-box optimisation
well-suited for functions that take a long time to evaluate (Jones
et al. 1998). It operates by creating a model of how the function
behaves, identifying the regions in parameter space where it may
perform well or where it may not be well-fitted, and choosing
points in these regions to evaluate, in order to improve the model.

In the context of source-extraction tools, the input takes the
form of a set of relevant parameters, as dictated by each tool’s
documentation. The parameters are evaluated by running the tool
on a training image, comparing the output to a known ground
truth, and choosing a metric (as detailed in Sect. 3.3) as the out-
put score to optimise.

We used the GPyOpt optimisation library (The GPyOpt
authors 2016) to perform the optimisations. For each metric,
each tool was optimised on every image individually, and the
found parameters were then applied to all of the remaining
images to assess their performance. The tools’ default param-
eters were used as a starting point. Using the local penalisa-
tion method, 120 evaluations were performed on each image in
batches of four, and the best set of parameters was chosen.

3.3. Metrics

The quality of a segmentation can be measured both in terms of
the presence and absence of ground-truth objects and the simi-
larity between the true objects and segmented shapes.

3.3.1. Matching detections

When measuring detection rates, it is necessary to match
detected objects with ground-truth objects. It may be the case
that a detected object covers the area of multiple true objects,
or conversely that multiple detected objects are found within the
area of a single true object. Therefore, a one-to-one mapping is
required in order to prevent algorithms from being rewarded for
failing to correctly distinguish between sources.

We chose to use the brightest pixel in each object as an iden-
tifier, and the detected object containing the brightest pixel in a
ground-truth object was matched to this identifier. In the event
that a detected object contained the brightest pixel of multiple
ground-truth objects, the object containing the pixel with the
highest flux was chosen as a unique match.

Three measures made use of this matching procedure:
– Detection recall (completeness): the proportion of objects

that are detected.
– Detection precision (purity): the proportion of segments that

can be matched to real objects.
– F-score: the harmonic mean of precision and recall:

F-score = 2 ×
precision × recall
precision + recall

· (4)

3.3.2. Evaluating areas

In order to quantify the accuracy of the areas of segmented
objects, we used a modified version of over-merging and under-
merging scores (Levine & Nazif 1981). The under-merging score
measures the extent to which objects that should be a single seg-
ment are broken into multiple pieces by the segmentation tool.
The over-merging score measures the opposite, that is, the extent
to which multiple objects are incorrectly combined into a single
segment by the tool. Combining these scores gives a measure of
the overall quality of the segmentation.

In the original method, the ground-truth segmentation is
divided into N segments, R1 . . .RN , with areas A1 . . . AN , and the
test segmentation is divided into M segments, T1 . . . TM , with
areas a1 . . . aM . The original metrics are calculated by finding Rk
to maximise T j ∩ Rk,for each test segment, T j:

– Under-merging error (UM):

UM =

M∑
j=1

(Ak − (T j ∩ Rk))(T j ∩ Rk)
Ak

· (5)
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– Original over-merging error (OM0):

OM0 =

M∑
j=1

(a j − (T j ∩ Rk)). (6)

In these original definitions, we found that the over-merging
score did not penalise segmentations, which divided large
objects into many small pieces. This meant that tools could find
enormous numbers of false positives, fragmenting the ‘back-
ground’ segment, without penalty. Consequently, we chose to
redefine the over-merging score to become symmetric to the
under-merging score, which better takes into account the num-
ber and size of segments. We also defined an Area score, which
combined the two measures to give an overall score.

– Over-merging error (OM): for each reference segment, Rk,
find T j to maximise T j ∩ Rk

OM =

N∑
k=1

(a j − (T j ∩ Rk))(T j ∩ Rk)
a j

· (7)

– Area score:

Area score = 1 −
√

OM2 + UM2. (8)

As the Area score alone does not take into account precision and
recall, we also defined two combined scores. These give us the
ability to optimise for a balanced F-score and Area score.

– Combined score A:√
Area score2 + F-score2. (9)

– Combined score B:
3
√

(1 − OM) × (1 − UM) × F-score. (10)

We additionally measure speed, that is, the rate at which images
can be processed, in megapixels per second.

4. Results

Whilst the original intent was to compare all four programs on
all metrics, ProFound proved to be very slow to optimise and
run, making it impractical for use on large images and surveys.
As such, it was optimised only on F-score and Area score. Pro-
cessing speeds are discussed in more detail in Sect. 4.6.

4.1. Detection accuracy

Figure 4 shows the range of F-scores produced when each tool is
optimised for F-score. Two plots are shown for each tool: one in
which the scores are grouped by the image being evaluated, and
one in which the scores are grouped by the training image used
to optimise the parameters. The scores of the training image are
excluded from both graphs.

For both MTObjects and SExtractor, it is notable that the
scores have smaller interquartile ranges and more varied medi-
ans when grouped by test image. This suggests that for these
tools, the factor limiting the performance is the structure of each
individual test image, rather than the particular parameter set
chosen. In contrast, ProFound has a smaller interquartile range
when scores are grouped by optimisation image, suggesting that
in this case, performance is limited by the image used in the opti-
misation process.
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Fig. 4. F-score test distributions. The parameters of each tool were
optimised for F-score on each of the ten images, and evaluated on the
remaining nine images. Boxes extend from first (Q1) to third (Q3) quar-
tiles of the results, with median values marked; whiskers extend to the
furthest F-score less than 1.5 ∗ (Q3−Q1) from each end of the box.
(a) F-scores grouped by image evaluated. (b) F-scores grouped by
image used to optimise parameters.

Overall, we see the strongest performance from MTObjects,
with median scores of over 0.80 for the majority of images. The
weakest performance was produced by SExtractor, with scores
of under 0.78 in most cases.
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Fig. 5. Precision vs. recall. The parameters of each tool were optimised
for F-score on each of the ten images, and evaluated on the remaining
nine images.

Examining the precision and recall scores that make up the
F-scores shows that all programs are capable of broadly simi-
lar performance, with recall between 0.61 and 0.7 and precision
greater than 0.93. Whilst the recall scores appear low, many of
the faintest objects in the image are not even visible to the human
eye, and may in fact be impossible to detect with any tool; these
objects are included in order to fully explore the limits of the
tools’ capabilities. It is therefore useful to regard recall scores
primarily as a relative measure, to compare the tools’ perfor-
mances.

Differences between the programs become apparent when
the scores are plotted against each other, as shown in Fig. 5.
All the tools have a moderate spread of recall scores, which
may be caused by differences in difficulty between the individual
images.

MTObjects and NoiseChisel both produce generally higher
levels of precision than SExtractor; with MTObjects giving a
slightly higher maximum value, and a lower spread. ProFound
achieves the greatest values for both precision and recall, but has
a very wide spread.

When optimised for Area score, SExtractor showed a sub-
stantially lower precision; it found an enormous number of false
positives, as shown in Fig. 6. Here, we clearly see that optimising
for Area score is detrimental to the F-score results. This appears
to be the result of a very low threshold being selected in order to
maximise the area of large shapes, meaning that a large number
of small areas of noise are incorrectly marked as objects.

In contrast, NoiseChisel and MTObjects were capable of
increasing their Area scores without substantially compromis-
ing their F-scores. ProFound performed inconsistently, covering
the full range of precision scores across the ten optimisations.

4.2. Area measures

Unsurprisingly, all tools were capable of reaching higher Area
scores when optimised for Area score rather than F-score, as can
be seen in Fig. 9.

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Re
ca

ll

SE
NC
MT
PF

Fig. 6. Precision vs. recall. The parameters of each tool were optimised
for Area score on each of the ten images, and evaluated on the remaining
nine images.

When optimised for Area score, NoiseChisel and MTObjects
both performed well, showing Area scores substantially higher
than the other two tools, with MTObjects performing slightly
better than NoiseChisel. Both tools also showed lower variation
when scores were grouped by test image, as shown in Fig. 7,
suggesting that the performance of these tools is being limited by
the content of the test images, rather than the parameters found
in the optimisation.

In contrast, ProFound showed much greater variability in
Area scores when grouped by test image, and indeed, substan-
tial variation between the parameter sets. It also produced the
weakest Area scores overall. SExtractor was capable of produc-
ing higher Area scores than ProFound, but at substantial cost to
precision, as discussed above.

4.3. Combined scores

The two combined metrics offered a way of optimising for both
Area and F-score, differing in the balance between the two mea-
sures. As such, optimising for these metrics gives an indication
of the overall peak performance of the tools.

In practice, both metrics produced broadly similar results in
terms of both Area and F-score, as shown in Fig. 8. MTObjects
produced the highest values for both F-score and Area score,
with NoiseChisel producing slightly lower values in both met-
rics. SExtractor produced lower F-scores, with a large degree
of variability, and substantially lower Area scores, as would
be expected from its limited success when optimising purely
for area. These results indicate that optimisation for combined
scores prevents a large number of spurious detections being
found by SExtractor, when compared to Area score alone.

4.4. Overview of optimisation metrics

Figure 9 shows an overview of the results of the optimisation
in the form of scatter plots of F-score and Area score. Points
represent the result of evaluating the performance of the four
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Fig. 7. Area score test distributions. The parameters of each tool were
optimised for Area score on each of the ten images, and evaluated on
the remaining nine images. (a) Area scores grouped by image evaluated.
(b) Area scores grouped by image used to optimise parameters.

tools when applied to each image using the parameters found
by optimising for each metric on every other image individually.
From this, we can make several observations about the tools’
performance.

Firstly, the tools designed specifically for locating low-
surface-brightness structures (NoiseChisel and MTObjects) are
unsurprisingly capable of achieving higher Area scores than
the general-purpose tools. Secondly, all the tools must to some
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Fig. 8. F-score vs. Area score. The parameters of each tool were opti-
mised for the combined measures on each of the ten images, and eval-
uated on the remaining nine images. (a) Optimised for Combined A.
(b) Optimised for Combined B.

degree compromise F-score to obtain a higher Area score, but
this trade-off is much greater for the general-purpose tools.
Thirdly, MTObjects has less spread than the other tools; indeed,
it finds identical parameters and consequently produces identical
results for nearly all optimisations over area or combined scores.

Examining Figs. 10 and 11 provides further insight into the
behaviour leading to these scores. We see that both NoiseChisel
and MTObjects capture regions of light with visually similar
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Fig. 9. A summary of test scores for
each program using each optimisation
method. Each point represents the eval-
uation of the segmentation of one image
using parameters found by optimising
on a different image. Each plot shows
results for a different optimisation met-
ric. We note that ProFound was only
optimised on F-score and Area score.

boundaries, but that MTObjects marks many small, frac-
tured sections in the outer regions as background. Meanwhile,
NoiseChisel captures an area of light with fewer holes, but seg-
ments it into objects rather arbitrarily. In contrast, SExtractor and
ProFound, which both have generally lower Area scores, cap-
ture the compact centres of objects and only limited areas of the
outskirts.

4.5. Background values

Each program makes internal estimations of background, which
may be global or localised. We may also examine the pixels in
the image which are not allocated to any segment in the final
map. As the simulated images have a flat background with a
mean of zero, we can use the mean value of these unallocated
pixels as an indication of whether pixels containing no source
light are being incorrectly allocated to sources or, conversely,
pixels are incorrectly regarded as belonging to sources.

ProFound and SExtractor both consistently overestimated
the background, giving values on the order of 10−1σ, where σ is
the standard deviation of the background noise (1.1 × 10−12 for
the simulated images). This suggests that they are not detecting
some parts of the sources; visual inspection of Figs. 10 and 11
confirms that this is the case. There was one exception to this
behaviour: SExtractor generally underestimated the background
when optimised for area, with values on the order of −10−2σ.
This corresponds to the large number of small false-positive
detections made under this optimisation thanks to the low back-
ground threshold used (see Table B.1).

MTObjects also underestimated the background, with values
of around −10−1σ when optimised for metrics including area
measures; it underestimated to a lesser degree (−10−2σ) when
optimised for F-score. This behaviour may be a consequence of
the holes in the outskirts of objects causing the optimisation pro-
cess to select parameters that overestimate the size of objects,
thereby increasing the solid area within objects but also the num-
ber of incorrectly labelled background pixels.

The strongest background estimation performance was pro-
duced by NoiseChisel. Whilst optimising for F-score lead to an
overestimation in a similar range to SExtractor and ProFound,
it produced mean backgrounds in the order ±10−3σ when opti-
mised for a metric including area measures. Not only were the
values closer to the goal of zero, but there was also no evidence
of systematic over- or underestimation.

4.6. Speed

The speed at which an image can be processed is very important
when we consider the size and quantity of images produced by
modern surveys.

At its best, SExtractor was the fastest of all the tools by
a considerable margin, as shown in Fig. 12. When optimised
for area, this advantage vanished completely, potentially due
to the vast increase in the number of false positives and large
objects. When optimised for combined metrics, processing speed
depended heavily on the individual set of parameters, producing
a wide spread of speeds.
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Fig. 10. Segmentations of a full simulated image using the parameters which gave the highest median score for each combination of optimisation
measure and tool on the simulated images: SExtractor (SE), NoiseChisel + Segment (NC), MTObjects (MT) and ProFound (PF). The coloured
regions label distinct objects, and the black regions make up the background. In the interest of speed, PF was not optimised for Combined A and
B. (a) Original simulated image. (b) Ground truth (0.1σ). (c) Segmentation maps.

MTObjects had the most consistent speed across optimi-
sations. Neither SExtractor nor MTObjects used parallel pro-
cessing, which potentially reduced their speed. It should be
noted that the original C implementation of MTObjects is faster
than our current Python and C implementation. As reported by
Teeninga et al. (2016), SExtractor was only 2.5 times faster than

the C version of MTObjects in terms of median performance,
and only 1.3 times faster on average. Some code optimisation
and using a parallel max-tree algorithm Moschini et al. (2018)
should be able to improve the performance in terms of speed.

NoiseChisel showed fast performance when optimised for
F-Score alone, but was much slower when Area score was
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Fig. 11. Segmentations of a section of a simulated image using the parameters which gave the highest median score for each combination of
optimisation measure and tool. For more information, see Fig. 10. (a) Original simulated image. (b) Ground truth (0.1σ). (c) Segmentation maps.

included in the optimisation criterion. This appears to be due to
a combination of factors; predominantly a lower value for ‘det-
growquant’, which affects the extent to which objects are grown
after detection4.

4 We find that some non-optimal parameter combinations also cause
substantial slowdown, which is due to the program requiring large
amounts of memory and consequently writing some data structures to
disk.

As mentioned previously, ProFound consistently had a very
long processing time, which greatly reduced its viability as a
tool for processing large images from surveys with many images.
This is due in part to it writing temporary data to disk, which is
discussed in the original ProFound publication (Robotham et al.
2018): ProFound offers a low-memory mode which reduces the
amount of data stored, allowing the processing of larger images
without a drastic slowdown; however, as noted, the method is
fundamentally rather slow. The use of R as the implementation
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Fig. 12. Distributions of processing speed across all combinations of
images and optimised parameters for each tool and optimisation metric.

language may further reduce the potential speed of the tool. The
authors of ProFound are rewriting parts of the code in C++,
which should significantly improve its performance.

4.7. Parameter consistency

MTObjects was by far the most consistent of the tools; having
only two relevant parameters, it had a much smaller parameter
space to explore. While its optimised parameters varied slightly
when optimising only over F-score, all other metrics gave the
same optimal parameters for all cases but one, as shown in
Table B.4.

SExtractor and NoiseChisel, optimised over 6 and 20 param-
eters respectively, displayed far less consistency in the param-
eters that were found (Tables B.1–B.3). This could potentially
have been reduced by increasing the number of iterations of
the optimisation process. However, the similar scores produced
using very different parameters suggest that there is no single
best choice, and many combinations of settings perform equally
well overall, but are better or worse in certain contexts.

4.8. Inserted galaxies

As a final step, we evaluated the performance of the tools on
a sample of real galaxies, inserted into a frame of the Fornax
Deep Survey (FDS), which the simulated data was designed to
emulate. Testing the tools on real galaxies allows us to verify
that the behaviour of the tools generalises to galaxies which are
not perfect ellipticals.

We selected a sample of 22 galaxies from the EFIGI cat-
alogue (Baillard et al. 2011), which contains images from the
fourth data release of the Sloan Digital Sky Survey (SDSS;
Adelman-McCarthy et al. 2006). Galaxies were selected with
D25 (diameter measured at the 25.0 mag arcsec−2 isophote, in
units of log 0.1 arcmin) between 1.7 and 1.999, a heliocen-
tric velocity <2000 km s−1, and a galactic latitude of between
60◦ and 70◦. This is a representative sample of galaxies in the
nearby Universe, with high-quality SDSS images and detailed

(a) (b)

(c) (d)

Fig. 13. Galaxy from the EFIGI sample inserted into the FDS frame
at the four given brightness scalings. (a) 10−10. (b) 10−11. (c) 10−12.
(d) 10−13.

morphological types. We isolated the galaxy at the centre of each
image using k-flat filtering (Ouzounis & Wilkinson 2010), which
removed areas of light not connected to the central pixel, whilst
preserving the galaxy’s internal detail. We then convolved each
galaxy with the r-band point spread function of the OmegaCAM,
and added Poissonian noise.

In order to examine the performance of the algorithms on
galaxies of different brightnesses, we scaled the images to four
different brightness levels, as shown in Fig. 13. At the brightest
level, the brightest pixel in each galaxy had a value on the same
order as the brightest pixels in the image, (around 10−10, corre-
sponding to a surface brightness of 21.5 mag arcsec−2). At the
faintest, the brightest pixels were barely visible to the human
eye (around 10−13, corresponding to a surface brightness of
29 mag arcsec−2). We selected 22 locations in the FDS frame
where there were very few objects present in order to minimise
interference with the inserted galaxies. We then created four
images, with the 22 galaxies inserted into the same locations
in the FDS frame using a different brightness scaling for each
image. We then ran all four tools on each image with the four
sets of optimised parameters obtained on the simulated images.

Whilst using inserted galaxies meant that we had a ground
truth for those galaxies, there may still have been other objects
present around them in the FDS frame, which would also be
detected by the tools. This means that we are unable to rely on
the previously defined metrics, as other detected objects would
be marked as false positives and raise the under-merging error.

Instead, we use a modified process to determine whether
an inserted galaxy has been detected. If the brightest pixel in
an object is contained within a non-background segment of the
segmentation map and is also the brightest pixel in that segment,
we determine that the object has been detected.

Additionally, we classify detections into two types: those
where the galaxy has been mostly detected as a single object,
and those where the algorithm has substantially fragmented the
galaxy. To do this, we check for other detected segments whose
brightest pixel is contained within the area of the inserted galaxy,
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(a) (b)

Fig. 14. Segmentation maps showing the two defined types of detection.
(a) A ‘whole’ detected galaxy. (b) A fragmented galaxy.

suggesting that they are not primarily detecting some other back-
ground object. If there are multiple segments which meet this
criteria, we check that the segment containing the most light
from the inserted galaxy has at least ten times the amount of
light contained in the segment containing the second-most light.
If it does, we mark the detection as ‘whole’; otherwise as frag-
mented. Whilst lacking the numerical accuracy of the previously
defined Area score, this provides an indication of the quality of
detections. Examples of the two types of detection are shown in
Fig. 14.

The results of this process are summarised in Fig. 15.
At higher brightnesses, most tools perform well, with only
NoiseChisel failing to detect any objects at the two highest
brightness levels.

At fainter levels, the tools show more variation. At the 10−12

brightness level, ProFound shows the strongest performance,
fully detecting nearly over 90% of the objects under an Area
score optimisation. SExtractor shows high levels of fragmenta-
tion at this level, consistent with its low Area score found on
the simulated data. NoiseChisel maintains a roughly consistent
rate of fragmented detections, but with fewer detections over-
all, whilst MTObjects begins to show some fragmentation and a
lower detection rate at this level.

At the faintest brightness, very few of the inserted galax-
ies are visible to the human eye, and this is reflected in the
results. Again, ProFound has a stronger performance than the
other tools, with up to 40% of galaxies detected, but a higher
rate of fragmentation than at higher brightness levels. SExtrac-
tor reaches a similar detection rate under an Area score optimi-
sation, but only produces fragmented detections; visual inspec-
tion shows that this is due to the tool finding many tiny objects,
as with the simulated images. Both NoiseChisel and MTObjects
find very few objects at this low brightness level.

These results are generally consistent with the results shown
in the preceding sections: all tools were capable of similar
F-scores, and this is reflected in the similar detection rates found
on the inserted galaxies. Similarly, variations in Area score
roughly correspond to the fraction of the inserted galaxies with
substantial fragmentation for each tool, particularly at the 10−12

brightness level.
It is notable that when the inserted galaxies are fainter, opti-

misations for F-score appear to be less effective than optimisa-
tions for Area score. This may be due to the higher sensitivity to
noise and lower thresholds generally found in area-based opti-
misations causing the fainter objects to be detected, whilst the
F-score-based optimisations ignore these objects in order to min-
imise false detections.

5. Qualitative evaluation

In this section, we evaluate how the optimised parameters for
each tool transfer to different surveys and instruments. We
selected three surveys for application of the tools, using the
parameters with the highest median test score following the opti-
misation process: the Fornax Deep Survey (FDS; Iodice et al.
2016; Venhola et al. 2018); the IAC Stripe82 Legacy Project
(Fliri & Trujillo 2016; Román & Trujillo 2018); and the HUDF
(Beckwith et al. 2006). All of these datasets are deep surveys,
with surface brightness limits fainter than µ ∼ 28 mag arcsec−2,
and have been used in several studies of galaxies of low sur-
face brightness; for example, Venhola et al. (2017, 2019) and
Iodice et al. (2019) for FDS, Román & Trujillo (2017a,b) for
IAC Stripe82, and Oesch et al. (2009) and Bouwens et al. (2008)
for HUDF. As far as we are aware, all these works used SExtrac-
tor for masking sources of light and processing observational
data. Therefore, evaluating the quality of segmentation for these
deep datasets using the other available source-extraction tools
is an added value to ongoing research on faint structures of
galaxies.

Moreover, using the source-extraction tools to derive seg-
mentation maps of a completely new dataset with the ‘best’ opti-
mised parameters allows us to assess whether or not the param-
eters perform in a consistent manner across different datasets
acquired in very different conditions. It is also a test of the practi-
cal applicability of each tool to large astronomical surveys of the
future, such as those produced by Euclid (Amiaux et al. 2012)
and the LSST (Ivezić et al. 2019).

The ‘best’ parameters derived from our optimisation scheme
for each test score that are used for the tools are highlighted with
an asterisk in Appendix B.

5.1. Fornax Deep Survey

As the simulated images were created using the characteristics of
the Fornax Deep Survey (FDS), using images from the real sur-
vey allows us to check that the parameters found on simulated
data perform similarly on data that contain more unusual struc-
tures. The limiting surface brightness for r-band images of FDS
is 29.8 mag arcsec−2 (3σ; 10 × 10 arcsec2; Venhola et al. 2017).

Here we show a complete frame of the survey, and two
smaller areas of the same frame, containing faint and challeng-
ing objects. For each combination of training image and optimi-
sation method, the parameters with the highest median test score
on the simulated dataset were used.

It is clear from Fig. 16 that the parameters lead to a very
similar performance with the real images to with the simulated
images. MTObjects and NoiseChisel both capture similar areas
of light, but segment them very differently; whilst ProFound and
SExtractor capture only the centres of objects.

Examining smaller details of the images gives more insight
into behaviour on challenging sources. Figure 17 shows the seg-
mentation of a faint, elongated galaxy. SExtractor only detects a
small area of the galaxy when optimised for area, and incorrectly
merges it with other surrounding objects; in all other optimisa-
tions it fails to detect the galaxy at all, perhaps because of an
overly high detection threshold. ProFound detects small blobs
covering the area of the galaxy, but does not identify an under-
lying structure. Similarly, NoiseChisel, whilst locating a larger
area of light, breaks it into chunks appearing to correspond to
smaller objects, losing the large structure. MTObjects was the
only tool to capture the entire structure as one object, but incor-
rectly labelled it as the same object as the bright source in the
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Fig. 15. Percentage of inserted objects found, grouped by tool, brightness scaling, and optimisation metric, using the parameters which gave
the highest median score for each combination of optimisation measure and tool. Lighter, stacked bars represent galaxies that are detected but
substantially fragmented. (a) MTObjects. (b) NoiseChisel. (c) ProFound. (d) SExtractor.

bottom right corner, and also connected it to the outskirts of the
object in the bottom left.

Figure 18 contains another faint structure located near a
bright star, which is extremely difficult to visually detect. All
four tools struggle to produce ideal results in this situation. As
before, ProFound and SExtractor do not detect the faintest parts
of objects, which here gives the advantage of allowing both tools
to distinguish between smaller sources. SExtractor again pro-
duces a high number of false positives when optimised for area,
but does begin to detect areas of structure in Combined A and
B. In contrast, ProFound produces a blobby segmentation, with
less visual similarity to the input image, but again covering a
good deal of the smaller structures. NoiseChisel and MTOb-
jects mark almost all of the image section as containing sources,
but with a very different segmentation. The area optimisation
of NoiseChisel fails to detect any substructures in this part of
the image, marking all objects as a single large structure. In the
other optimisations, it shows very little visual similarity to the
input image. MTObjects correctly detects many of the sources
in the area, although it again joins the outskirts of some objects,
and produces a ragged appearance.

5.2. IAC Stripe 82 Legacy Project

As an added layer of generalisation, we test the parameters
with the highest median test score found for each combination
of training image and optimisation method on deep g-band

IAC Stripe82 images. The limiting surface brightness is 29.1
mag arcsec−2 (3σ, 10× 10 arcsec2; Román & Trujillo 2018).

These images consist of faint and diffuse structures such as
Galactic cirri, tidal streams, interacting galaxies, and include
scattered light from point sources.

Similarly to the segmentation of the simulated images seen
Figs. 10 and 11, we find that SExtractor detects the least amount
of light compared to the other tools. In particular, it misses large
portions of the Galactic cirrus structure in Fig. 19, even when
optimised for the Area score. As in the case of the simulated
images, the fact that many smaller objects (including many false
positives) are detected in the background when optimised for the
Area score is most likely a consequence of the very low threshold
used to find larger areas. However, the Galactic cirrus structure is
highly extended and diffuse with low- and high-density regions,
so the tool is unable to segment the structure as a single object,
and fragments it into several pieces. However, this ‘failure of
detection’ may be taken advantage of (with some manual inter-
vention) for studying the properties of Galactic cirrus (Román
et al. 2020).

Remarkably, the performance of SExtractor on the image of
the interacting galaxies connected with a tidal stream in Fig. 20
is much better on the main objects with parameters optimised for
Area score and both combined scores, whilst performing poorly
in the background. Similar observations can be made in the case
of the elliptical galaxy with a large stream in Fig. 21, but this
stream is much fainter than in the interacting galaxies case, and
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(b)

Fig. 16. Segmentations of a complete FDS field (field 11). (a) Input image – the r-band of field 11 of the FDS. (b) Segmentations of the field using
the parameters that gave the highest median score for each combination of optimisation measure and tool. For more information, see Fig. 10.

SExtractor detects the stream in fragments (similar to the Galac-
tic cirrus).

In contrast, for all the IAC Stripe82 images, both Noise
Chisel and MTObjects detect the largest amount of light as dis-
tinct objects or diffuse regions (reflected in the highest optimi-
sation scores). Visually, the performance of NoiseChisel seems

better when optimised for F-Score compared to the other scores,
but there is still diffuse light around the objects which have
gone undetected. When optimised for Area score or the com-
bined scores, this missing light is recovered, but as mentioned
previously, the algorithm seems to segment structures within
larger objects rather arbitrarily. When comparing the outputs
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Fig. 17. Segmentations of a section
of an FDS field (field 11), showing a
low-surface brightness galaxy. (a) Input
image – the r-band of field 11 of the
FDS. (b) Segmentations of the field
section using the parameters that gave
the highest median score for each combi-
nation of optimisation measure and tool.
For more information, see Fig. 10.

from each optimisation method, we can see that the substruc-
ture is segmented quite differently in all the IAC Stripe82 exam-
ples. This is probably a consequence of growing the ‘clumps’
(as detected in the CLUMPS output of Segment) to cover the full
detected area; if the detected area is different, then the growth
of the clumps seems to vary. This effect is visible in compar-
ing NoiseChisel’s output when optimised for all four measures
in all the IAC Stripe 82 examples. The fact that the substructure
over the detected regions seems visually arbitrary may not be an
issue in some cases, such as when segmentation maps are used
for reducing datasets where all pixels with a significant amount

of signal above the background needs to be masked for process-
ing (see e.g. Borlaff et al. 2019), or when the user is simply not
concerned with the substructure of astronomical sources5.

However, for studies where more accurate segmentation of
tidal streams and nested objects (or substructure) is required
for photometric calculations, it is not possible to automatically

5 The NoiseChisel manual (https://www.gnu.org/software/
gnuastro/manual/html_node/NoiseChisel.html) states that the
user may choose to run Segment after NoiseChisel depending on
whether they want to analyse the substructure of sources.
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Fig. 18. Segmentations of a section of a FDS field (field 11), showing a very faint structure in the lower centre. (a) Input image – the r-band of
field 11 of the FDS. (b) Segmentations of the field using the parameters that gave the highest median score for each combination of optimisation
measure and tool.

allocate these fragmented regions to their host structure, and the
user may need to manually select regions of interest. This is
especially visible for the large Galactic cirrus in Fig. 19 and the
faint stream in Fig. 21 where the structures are segmented into
separate objects of all kinds of shapes.

For the same IAC Stripe82 examples, a similar observa-
tion can be made for MTObjects, but the partitioning better

follows the visual shape of all objects (background and nested).
This behaviour means that the user is able to make a visual
mapping between the input image and segmentation map much
more easily, if they need to manually select regions of interest.
In comparison, the outputs of the tool when optimised for the
different scores are very similar; the outputs for the area and
combined scores are the same, and the only visible difference
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(a)
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(b)

Fig. 19. Results for IAC Stripe82 field f0363_g.rec.fits showing a large structure of Galactic cirri. (a) Left: gri-composite image. Right: g-band
input image in log scale. (b) Segmentation maps using the parameters that gave the highest median score for each combination of optimisation
measure and tool. For more information, see Fig. 10.

with F-Score is the extent to which the edges are fractured out-
wards. Compared to the other tools, the existence of these highly
fractured edges of the segmented regions in MTObjects may not
be an appealing characteristic for the user if smoother edges are
required; such as for instance to make photometric calculations,
such as the total magnitude of objects6.

Another characteristic of MTObjects can be seen in the field
contaminated by a cluster of bright stars to the right of an ellip-
tical galaxy in Fig. 21. MTObjects allocates the diffuse stream
6 Of the tools, this effect in the segmentation maps can only be
controlled in NoiseChisel without compromising the extent to which
objects are detected.

and faint halo around the core of the galaxy to the cluster of
stars. This is clearly a problem with how the detected regions
are represented. MTObjects is finding the diffuse regions in the
image (at least those that could be visually identified in this
example), but allocating them to the wrong object. This means
that the user will need to once again manually select the regions
that belong to the galaxy, and this may not always be possible
to identify in advance when dealing with deep datasets. Apart
from these exceptions, MTObjects performs fairly similarly and
consistently across the IAC Stripe82 images tested in this work.

Due to speed, at the time of writing we are only able to
complete the optimisation of parameters for ProFound using the
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Fig. 20. Results for IAC Stripe82 field cropped to show two interacting galaxies (SDSS J031943.04+003355.64 and
SDSS J031947.01+003504.44). (a) Left: gri-composite image. Right: g-band input image in log scale. (b) Segmentation maps using the
parameters that gave the highest median score for each combination of optimisation measure and tool. For more information, see Fig. 10.
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Fig. 21. Results for IAC Stripe82 field zoomed in on an elliptical galaxy with an extended, very faint tidal stream (SDSS J235618.80-001820.17)
and a bright collection of stars with a significant amount of scattered light contaminating the galaxy from the right. (a) Left: gri-composite image.
Right: g-band input image in log scale. (b) Segmentation maps using the parameters that gave the highest median score for each combination of
optimisation measure and tool. For more information, see Fig. 10.

F-Score and Area score. In this work, we find that when opti-
mised for these scores, only in the merging galaxies case in
Fig. 20 does the tool segment the galaxy shape and its compan-
ion (though also fragmented into several arbitrary pieces, as in
NoiseChisel’s segmentation). In all of the other images, the large
galaxies or structures are barely visible, and only because our
eye is able to connect the smaller fragments into one connected
region.

5.3. The Hubble Ultra Deep Field

In order to examine the behaviour of the tools on space-based
observations, we ran the tools on the V606-band of the HUDF.
As mentioned in Sect. 3.1, the HUDF is the deepest data used in
this work, with a point source depth of 29.3 mag (Beckwith et al.

2006) which is equivalent to a limiting surface brightness depth
of µV606 ∼ 32.5 mag arcsec−2 (3σ; 10 × 10 arcsec2).

As the original drizzled image contained wide, zero-valued
borders, we rotated and cropped it to contain as much of the field
as possible, while excluding the borders. We then ran the tools
on the image, using the same optimised parameters as in the pre-
vious sections. We show here the complete image (see Fig. 22)
and two smaller areas of interest containing a type of feature not
common in the other surveys: face-on spiral galaxies with visible
substructures.

Besides these artefacts, the behaviour of all four tools on the
HUDF image appears to be generally similar to their behaviour
on the images from other surveys, despite the higher depth and
the different telescope type.

This is further corroborated by the results shown in
Fig. 23, which shows a face-on spiral galaxy, as well as
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Fig. 22. Segmentations of the rotated and cropped Hubble Ultra Deep Field. (a) Input image – the V606-band of the field. (b) Segmentations of the
field, using the parameters that gave the highest median score for each combination of optimisation measure and tool. For more information, see
Fig. 10.

several smaller elliptical galaxies. As before, SExtractor finds
only the bright centres of objects, except when optimised
for area; however, it noticeably divides the spiral galaxy into
chunks where there is substructure. Somewhat arbitrary divi-
sion of the galaxy is also visible in the results of NoiseChisel
and ProFound; with NoiseChisel capturing more of the out-
skirts, as before. MTObjects appears to be the most success-
ful at segmenting the spiral, with the majority of the galaxy
captured as a single object, with smaller structures nested
within it; although, as in previous instances, the outskirts are
fractured.

In Fig. 24, which shows a larger spiral galaxy displayed at
the same scale, the tools have even greater difficulty segmenting
the galaxy in a meaningful way. As before, MTObjects has the

most success in separating nested structures without fragmenting
the overall structure of the object. NoiseChisel is also consistent
with previous behaviour. In contrast, ProFound produces quite
different segmentations, with a far less blobby appearance. SEx-
tractor produces quite poor segmentations when area is included
in the optimisation; with elongated ovals being found in both of
the combined score images.

It must be borne in mind that the parameters were optimised
for images in quite different conditions, and so it is difficult to
quantify the extent to which these inaccurate segmentations are
caused by parameters ill-suited to this context. However, as the
behaviour is very similar to that shown in the images from dif-
ferent surveys, it is reasonable to expect that it is largely caused
by inherent limitations of the tools.
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Fig. 23. Segmentations of a section of the Hubble Ultra Deep Field. (a) Input image – the V606-band of the field. (b) Segmentations of the field
using the parameters that gave the highest median score for each combination of optimisation measure and tool. For more information, see Fig. 10.

5.4. Usability

As shown in the parameter tables in Appendix B, only MTO-
bjects reliably found the same set of ‘optimal’ parameters over
multiple optimisations. All of the other tools appeared to have
multiple locally optimum parameter combinations. This has a
negative impact on ease of use; users manually configuring a tool
through trial and error may fail to find globally optimum param-
eters, and be unaware of this fact. The best parameters may also
be dependent on the image used for optimisation, that is, the
parameters found for one image or survey may not produce opti-
mal results when applied to others.

All four programs define parameters in terms of the individual
steps of the method (e.g. use n thresholds), rather than in terms of

how they affect the overall detection (e.g. detect objects to a given
degree of certainty). Without using an optimisation framework,
users have no choice but to manually select settings that visu-
ally produce a good result, but which do not necessarily have any
scientific justification for being chosen. This is further exacer-
bated by large parameter spaces in the cases of NoiseChisel and
ProFound allowing the user to infinitely adjust the behaviour of
the tools without the implications of their choices being clear. The
ability to define performance in terms of the result rather than the
process would greatly improve the ease of use of the tools, and
would reduce the opacity of their behaviour.

These are no major problems in the case of a user process-
ing a small number of images, but problems arise when large
surveys requiring automatic segmentation for many images are
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Fig. 24. Segmentations of a face-on spiral in the Hubble Ultra Deep Field. (a) Input image – the V606-band of the field. (b) Segmentations of the
field, using the parameters that gave the highest median score for each combination of optimisation measure and tool. For more information, see
Fig. 10.

considered. The user must select a set of parameters that pro-
duces good results for all images in their survey, an impossible
task if the tool requires manual tuning on individual images.

6. Conclusions

All the compared tools were capable of a reasonable level
of object detection, as measured by F-score. However, Pro-
Found and SExtractor were incapable of detecting the out-
skirts of objects with any degree of accuracy. NoiseChisel and
MTObjects were both much more efficient at finding these
fainter regions, but both had other difficulties: the ‘Segment’

tool used in NoiseChisel divided detected light into apparently
arbitrary regions, whilst MTObjects produced extremely ragged
edges and had a tendency to over-allocate faint regions to the
brightest objects. NoiseChisel also produced the most accurate
background values.

We found that there appears to be a trade-off between speed
and accurate detection of the outskirts of objects. SExtractor
was capable of the highest speeds by a substantial margin, but
was unable to accurately detect faint regions. MTObjects and
NoiseChisel were both able to detect these regions but at the cost
of processing speed. There may potentially be improvements to
be made on both tools by increased parallelisation and optimisa-
tion of the code.
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A common weakness in the tools was in accurately deblend-
ing nested objects. The MTObjects approach, using tree-based
connected morphological filters (Salembier & Wilkinson 2009)
deals relatively well when small, faint objects are nested within
larger, brighter ones, but performs poorly when more similar
objects overlap. In the latter case, the other methods, which are
generally based on a form of watershed segmentation (Beucher
1982; Roerdink & Meijster 2000) might give a better result. This
is a non-trivial problem, which merits further investigation.

MTObjects was the only tool to find stable parameters
across multiple optimisations, suggesting that it requires the least
adjustment for individual images, and may be the best-suited for
use in automatic pipelines. Furthermore, in the test on simulated
data, it consistently outperformed the other methods, regardless
of the quality measure used. The likelihood of MTObjects rank-
ing in first place out of four in the case of F-score and Area score
in ten tests is about 10−6 under the null hypothesis that all tools
have equal performance. Despite the modest performance mar-
gin with respect to the others, the result is statistically significant.

We find that the optimisation criteria must be chosen care-
fully in order to produce useful parameters. In particular, we find
that optimising for area alone causes a substantial drop in accu-
racy for SExtractor and ProFound, whereas combining multiple
criteria yields more meaningful results.

As discussed in the introduction, the growth of the scale
of modern surveys means that there is a need for segmenta-
tion tools which are fast, automatic, and accurate. We find that
of the tools tested, MTObjects is capable of the highest scores
on both area and detection measures, and has the most consis-
tent parameters, whilst SExtractor obtains the highest speeds,
but with much lower accuracy. As noted earlier, a faster imple-
mentation of MTObjects already exists, and the developers of
ProFound are rewriting parts of their tool to improve its speed.

In addition, we present a framework for automated parame-
ter setting and evaluation of astronomical source-detection tools,
which is generic, and can be used with any other quality measure
or model ground truth. This procedure could be used to analyse
improvements to existing tools, as well as to evaluate the capa-
bilities of future techniques.
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Appendix A: SExtractor filters
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Fig. A.1. Optimised test distributions. The parameters for each tool
were optimised for Combined A score on each of the ten images, and
evaluated on the remaining nine images. Boxes extend from first (Q1) to
third (Q3) quartiles of the results, with median values marked; whiskers
extend to the furthest F-score less than 1.5 ∗ (Q3−Q1) from each end
of the box. (a) F-scores grouped by image used to optimise parameters.
(b) Area scores grouped by image used to optimise parameters.

SExtractor uses a filter to pre-process the input image. A num-
ber of filters are provided with the tool, but custom filters
may also be used. The SExtractor manual suggests that the
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Fig. A.2. F-score vs. Area score. The parameters for each tool were opti-
mised for Combined A score on each of the ten images, and evaluated
on the remaining nine images.

symmetrical PSF of the data is an optimal filter for detecting
stars (Bertin 2006), whilst documentation provided with the fil-
ters suggests that Gaussian or top-hat filters are effective in
detecting extended, low-surface-brightness objects.

As the range of valid filters is infinite, it would not be feasible
to optimise the filter in addition to the other parameters. Accord-
ingly, we used the default filter throughout the main experiments
of the paper. We subsequently tested a subset of the available fil-
ters to determine whether or not they had a significant effect on
the tool’s performance:

– Default – 3 × 3 pyramidal function (approximating gaussian
smoothing).

– Gaussian – 9× 9 gaussian PSF with a full width at half max-
imum of 5 pixels.

– PSF – 9×9 symmetrical window of the PSF of the simulated
images.

– Top-hat – 5 × 5 top-hat PSF.
We optimised SExtractor’s parameters for Combined A score
as described in Sect. 3.2. Figure A.1 shows the distribution of
F-scores and Area scores for each of the four filters.

We find that the different filters have very little effect on F-
score, but that there is a slightly higher Area score on average
when using the Gaussian filter as compared to the default. Whilst
the Gaussian filter could therefore be recommended in this situa-
tion, the choice of filter has no effect on the overall conclusions.
As shown in Fig. 8, both MTObjects and NoiseChisel achieved
substantially higher Area scores of 0.4−0.6 compared to SEx-
tractor’s scores of 0.1−0.25. Plotting the four SExtractor filters
on the same axes as Fig. 8 shows the relative similarity of the
scores, as in Fig. A.2.
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Appendix B: Optimised parameter tables

Parameter sets marked in bold and with an asterisk produce the
highest median test score for their optimisation metric and tool.

Table B.1. Optimised parameters – Source Extractor.

Mode Image BACK BACK DEBLEND DEBLEND DETECT DETECT
SIZE FILTERSIZE MINCONT NTHRESH MINAREA THRESH

0 1 65 2 1.00E−03 33 6 1.45E+00
0 2 64 2 1.00E−03 34 9 1.35E+00
0 3 65 2 1.00E−03 35 5 1.59E+00
0 4 64 3 1.00E−03 33 5 1.48E+00
0 5 64 2 1.00E−03 31 5 1.51E+00
0 6 37 5 1.00E−03 23 7 1.46E+00
0 7 65 2 1.00E−03 33 5 1.78E+00
0* 8 63 3 1.00E−03 30 5 1.43E+00
0 9 63 3 1.00E−03 32 6 1.69E+00
0 10 17 7 1.73E−02 62 8 1.28E+00
1 1 88 5 1.00E−03 21 8 1.00E−01
1 2 36 9 1.00E−03 8 17 1.00E−01
1 3 63 5 9.82E−02 32 4 1.00E−01
1 4 22 7 9.81E−02 3 6 1.00E−01
1* 5 107 5 1.00E−03 41 30 1.00E−01
1 6 24 11 1.00E−01 8 49 1.00E−01
1 7 111 6 2.12E−02 6 14 1.05E−01
1 8 108 3 1.00E−03 26 34 1.00E−01
1 9 35 5 4.40E−02 48 28 1.13E−01
1 10 80 4 3.67E−02 23 2 1.06E−01
2 1 84 7 6.96E−02 44 36 6.56E−01
2 2 29 7 1.82E−02 3 49 5.96E−01
2 3 105 6 1.00E−03 63 37 6.03E−01
2 4 110 11 1.00E−03 60 32 7.28E−01
2 5 98 9 1.00E−03 40 28 7.07E−01
2 6 33 8 1.00E−03 47 29 6.19E−01
2 7 124 10 1.00E−03 50 29 1.24E+00
2* 8 98 7 1.00E−03 29 46 5.70E−01
2 9 85 4 1.00E−03 44 22 8.94E−01
2 10 118 3 6.87E−03 41 9 1.07E+00
3 1 123 7 1.00E−03 60 43 3.93E−01
3 2 71 5 2.53E−02 23 41 4.91E−01
3 3 119 2 2.33E−02 23 44 4.94E−01
3 4 72 11 1.00E−03 55 47 5.23E−01
3 5 61 7 9.62E−02 53 43 5.35E−01
3 6 101 3 1.00E−03 38 41 5.30E−01
3* 7 119 6 1.00E−03 20 49 4.37E−01
3 8 104 7 1.00E−03 49 37 5.11E−01
3 9 25 8 1.07E−02 39 25 6.56E−01
3 10 88 4 1.00E−03 49 16 8.23E−01
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Table B.3. Optimised parameters – Noise Chisel (Segment).

Mode Image tilesize snquant gthresh snminarea minriver- objbordersn minskyfrac
length

0 1 72 9.99E−01 1.00E+00 25 23 1.28E+01 4.00E−01
0 2 90 9.99E−01 1.00E+00 18 12 1.86E+01 5.75E−01
0 3 93 9.94E−01 8.65E−01 23 20 3.18E+01 6.67E−01
0* 4 60 9.99E−01 6.69E−01 25 9 2.56E+01 7.52E−01
0 5 20 9.99E−01 2.44E−01 20 40 2.00E+01 8.00E−01
0 6 20 9.99E−01 1.00E+00 19 5 1.12E+01 8.00E−01
0 7 29 9.99E−01 1.00E+00 21 37 1.49E+01 7.28E−01
0 8 72 9.99E−01 1.00E+00 20 40 3.16E+01 8.00E−01
0 9 45 9.99E−01 0.00E+00 20 14 2.26E+01 8.00E−01
0 10 91 9.99E−01 3.77E−01 25 25 1.51E+01 4.00E−01
1* 1 65 9.99E−01 5.41E−01 10 34 5.00E−01 4.00E−01
1 2 85 9.99E−01 1.00E+00 25 35 1.73E+01 8.00E−01
1 3 35 9.99E−01 0.00E+00 15 21 1.88E+01 4.00E−01
1 4 65 9.99E−01 1.00E+00 23 8 1.80E+01 7.43E−01
1 5 32 9.99E−01 6.34E−01 15 14 1.34E+00 8.00E−01
1 6 41 9.99E−01 4.41E−01 21 36 1.15E+01 5.99E−01
1 7 52 9.99E−01 0.00E+00 25 40 1.81E+01 4.00E−01
1 8 46 9.99E−01 2.85E−02 25 40 2.12E+01 8.00E−01
1 9 82 9.97E−01 5.72E−01 20 23 3.45E+01 7.81E−01
1 10 61 9.99E−01 2.14E−01 17 31 8.88E+00 5.64E−01
2* 1 25 9.99E−01 3.28E−01 25 24 3.11E+01 4.90E−01
2 2 45 9.99E−01 4.89E−01 24 21 1.77E+01 4.00E−01
2 3 80 9.99E−01 6.60E−03 22 30 5.88E+00 4.09E−01
2 4 81 9.99E−01 0.00E+00 22 8 1.03E+01 8.00E−01
2 5 31 9.99E−01 2.48E−01 22 16 7.32E+00 4.00E−01
2 6 74 9.99E−01 9.37E−03 25 22 6.71E+00 4.10E−01
2 7 38 9.99E−01 2.11E−01 20 31 1.29E+01 4.00E−01
2 8 20 9.99E−01 0.00E+00 25 33 7.35E+00 4.00E−01
2 9 90 9.99E−01 8.11E−01 14 27 3.96E+01 4.00E−01
2 10 48 9.99E−01 6.99E−01 18 15 2.60E+01 6.55E−01
3 1 72 9.99E−01 5.36E-16 24 13 1.29E+01 4.03E−01
3 2 94 9.99E−01 8.28E−01 25 30 2.42E+01 4.00E−01
3 3 31 9.97E−01 3.17E−02 25 5 2.21E+01 4.02E−01
3 4 20 9.99E−01 1.00E+00 25 11 1.63E+01 4.00E−01
3 5 32 9.99E−01 0.00E+00 25 25 1.81E+01 8.00E−01
3 6 20 9.99E−01 3.93E−01 22 26 9.46E+00 6.79E−01
3 7 78 9.99E−01 5.50E−02 24 21 2.89E+01 4.52E−01
3 8 47 9.99E−01 6.88E−01 16 16 3.86E+01 8.00E−01
3* 9 74 9.99E−01 0.00E+00 25 11 2.38E+01 8.00E−01
3 10 32 9.99E−01 2.18E−01 23 18 1.11E+01 5.88E−01
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Table B.4. Optimised parameters – MTObjects.

Mode Image Move_factor Min_dist

0 1 4.96E−02 1.49E−01
0 2 6.14E−02 1.15E−01
0 3 5.73E−02 1.57E−01
0 4 8.24E−03 1.32E−01
0 5 1.21E−01 1.45E−01
0 6 0 1.50E−01
0* 7 0 1.13E−01
0 8 9.34E−02 1.55E−01
0 9 1.13E−01 1.33E−01
0 10 3.07E−02 1.17E−01
1* 1 0 0
1 2 0 0
1 3 0 0
1 4 0 0
1 5 0 0
1 6 0 0
1 7 0 0
1 8 0 0
1 9 0 0
1 10 0 0

Table B.4. continued.

Mode Image Move_factor Min_dist

2* 1 0 0
2 2 0 0
2 3 0 0
2 4 0 0
2 5 0 0
2 6 0 0
2 7 0 0
2 8 0 0
2 9 0 0
2 10 0 0
3* 1 0 0
3 2 0 0
3 3 0 0
3 4 0 0
3 5 0 0
3 6 0 0
3 7 0 0
3 8 9.36E−03 0
3 9 0 0
3 10 0 0

Table B.5. Optimised parameters – ProFound.

Mode Image Skycut Tolerance Ext Sigma Pixcut Size Iters Threshold

0 1 7.22E−01 3.71E+00 1.92E+00 2.22E+00 4 5 7 7.50E−01
0 2 9.34E−01 2.06E+00 2.29E+00 1.35E+00 10 7 2 8.26E−01
0 3 1.00E+00 1.00E+00 7.03E+00 1.19E+00 7 7 4 7.50E−01
0 4 8.23E−01 1.58E+00 8.03E+00 2.23E+00 6 7 3 1.20E+00
0 5 1.22E+00 3.52E+00 3.89E+00 9.17E−01 6 5 6 1.78E+00
0 6 6.54E−01 1.00E+00 3.78E+00 3.00E+00 15 7 9 7.50E−01
0 7 9.34E−01 1.00E+00 4.55E+00 1.43E+00 16 5 0 1.96E+00
0* 8 5.56E−01 2.03E+00 3.28E+00 2.11E+00 15 7 6 9.49E−01
0 9 1.79E+00 3.90E+00 3.29E+00 8.76E−01 4 5 7 1.35E+00
0 10 6.25E−01 2.93E+00 4.33E+00 1.36E+00 14 9 8 2.00E+00
1 1 5.26E−01 5.29E+00 2.22E+00 1.98E+00 7 9 7 8.68E−01
1 2 2.38E−01 2.62E+00 9.01E+00 2.21E+00 11 7 6 1.12E+00
1 3 7.65E−01 5.71E+00 2.70E+00 1.45E+00 5 5 8 8.42E−01
1 4 6.13E−01 4.44E+00 4.77E+00 2.83E+00 5 7 7 8.00E−01
1 5 1.57E−01 3.72E+00 4.23E+00 2.74E+00 10 9 6 1.24E+00
1 6 2.77E−01 2.49E+00 8.57E+00 2.26E+00 15 7 9 8.31E−01
1 7 6.23E−01 3.68E+00 5.18E+00 1.01E+00 1 5 4 1.04E+00
1* 8 6.45E−01 6.00E+00 8.97E+00 1.13E+00 14 9 9 9.10E−01
1 9 2.82E−01 4.48E+00 6.28E+00 2.07E+00 3 7 4 7.50E−01
1 10 1.33E+00 3.23E+00 3.63E+00 1.82E+00 9 7 9 8.23E−01
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