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Chapter 1

Introduction

The development of a standardized containerization system has marked the era
of container terminals. Globalization of economic activities has promoted interna-
tional trade where maritime transportation remains an important mean, as its cost
to transport products from points of origin to points of destination is the cheapest
among other modes of transportation. The simplicity and standardized operations
of container cargoes have made them favorite in maritime transportation. Recently,
more than 17.1% of sea-borne cargo is transported in containers, and the yearly
growth is higher than other maritime transportation modes [83].

The importance of container terminal is shown with the annual growth of
containerized international trade of 6.4% [83]. In 2018 only, it was estimated that
195 million TEUs was transported in the world; almost five times more than those
two decades ago. Consequently, container terminals as one of the main actors
in maritime transportation have also enjoyed the growth in global containerized
trade. As presented in Table 1.1, the entire top ten terminals in the world have
experienced significant increase in yearly TEUs handled [1]. We can see that most
of recent top terminals lie in the East Asian region, which shows its outstanding
economic activities in recent years.

The complex operations of a container terminal are costly and include million
dollars investment in infrastructure and equipment [31]. The terminal operators

Table 1.1: Top 10 world container terminal seaports. Volumes are in million TEU.
Rank Port Volume Volume Volume

2016 2015 2014
1 Shanghai 37.13 36.54 35.29
2 Singapore 30.90 30.92 33.87
3 Shenzhen 23.97 24.20 24.03
4 Ningbo-Zhoushan 21.60 20.63 19.45
5 Busan 19.85 19.45 18.65
6 Hong Kong 19.81 20.07 22.23
7 Guangzhou 18.85 17.22 16.16
8 Qingdao 18.01 17.47 16.62
9 Jebel Ali 15.73 15.60 15.25
10 Tianjin 14.49 14.11 14.05
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meet unrelenting demand from shipping liners to provide efficient operations, since
the liners themselves are required to avoid any delay in the operations. A hold-up
in a seaport will create multiple delaying effect in the liners’ subsequent operations
[82].

The importance of container terminals in the international trade, high cost
incurred in the operation processes and stiff competition among terminals have
pushed terminal operators to improve their services. Two options that are com-
monly looked at are 1) investment in additional equipment; and 2) improvement
of the operation of the current process. The second option has motivated the
emergence of new research in this field.

The works presented throughout this thesis focus on the modeling, control de-
sign strategies and optimization for container terminal operations. In the following,
we will provide brief literature overview on topics that are related to our various
contributions throughout the thesis.

1.1 Container terminal operations

A container terminal operations can be classified into three main areas i.e. seaside,
storage, and transport [76]. The general layout of a container terminal is shown in
Figure 1.1. It is shown that a number of ships can dock at various berth positions
along the seaside and several quay cranes (QC) can be assigned to every berthed
ship for loading and unloading containers. There are internal trucks (IT) waiting
beneath the QC and they transport the containers to some specific destinations at
a container yard (CY). The containers are then stored in the CY and several yard
cranes (YC) re-allocate them internally within the CY or load/unload them to/from
the external trucks (ET).

The seaside is a section where incoming ships arrive to the seaport and the the
terminal operator allocates a berth positios and QC(s) to each vessel. This is known
as berth and crane allocation problem (BCAP), where a detailed review is provided
in [18]. A ship’s loads is represented by its number of containers, where each
box of container is measured as a twenty feet equivalent unit (TEU). The assigned
QCs will unload a pre-determined number of boxes, known as the inbound/import
containers, and they will finally be taken out by ET to the hinterland. Vice versely,
there are also outbound/export containers. There is also the third container type
called transshipment, in which a group of containers, after a temporary storage in
the terminal, are transferred to other ships.

As QCs are the most expensive equipment in the terminal, the seaside operations
is very important. Two measures are commonly used to evaluate the seaside’s
performance. The first is the gross crane rate (GCR) which is the average number
of containers lifted per QC working hour. The second one is the vessel waiting
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Figure 1.1: Standard multi-level control configuration

times (VWT) which is the total amount of time spent by ships to complete its load
and unload operations [64].

The storage operations pertain to the management of containers in the CY,
where the detail review is provided by [16]. A container position in the CY is
defined by its row, bay, and tier. There are two decisions in these sub-operations,
the positions a group of containers should be stored, and allocation of YC to
handle them from/to IT. The container placement at the right positions in the CY is
important. If an ET comes to the CY and the targeted container is not in the top tier,
the terminal operators has to assigned YC to re-arrange the containers positions.
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Sub-operations Strategical Tactical Operational
decision decision decision

Seaside Quay lengths, QC assignment QC and berth
Number of berths, to berths allocation and
Number of QCs scheduling

Storage CY capacity, YC assignment YC allocation
Number of blocks, to blocks and scheduling
Number of YCs

Transfer Number of ITs, IT assignment IT allocation
IT pooling area to blocks and scheduling

and berths

Table 1.2: Types of decision making level in container terminal operations.

This process is known as housekeeping/marshaling, and highly avoided due to its
unproductivity.

The seaside and storage sub-systems are connected with the transfer operations,
which is discussed in [17]. In these sub-operations, the transporter known as the IT
handles the container delivery between the QC and CY area. The terminal operators
have to allocate number of working ITs in the most efficent ways.

The decision making in container terminal operations usually fall into three
categories; strategical, tactical, and operational [76]. We divide the types of
decision performed by terminal operators in an integrated terminal operations in
Table 1.2.

The strategical level and operational level have the largest and the smallest
planning horizon, respectively. This classification also applies in other areas such
as supply chain management and production systems. For the decision making
process in the tactical-level (i.e. weekly) or in the strategical-level (i.e. monthly),
dynamical models have been developed to describe the dynamics in container
terminal operations, see e.g. [2, 4, 11]. These dynamical models are subsequently
used for resource allocation in container terminals using model predictive control.
In particular, the models are used as predictive models of the process during the
optimization step. In these papers, resource allocation is expressed as percentage
of servers (equipments) capacity to transport containers to the subsequent server.
As an alternative to [2, 4] where the percentage of servers is used as the decision
variable, the control variables used in [11] are mainly the starting and finishing
operation time of quay cranes, and the deployment of internal trucks and straddle
carriers in berth and container yard.

The aim of the terminal operators is to operate the container terminal to meet
the customers’ demand in efficient manner in the least possible cost. As presented
in Table 1.2, in this thesis we will focus on the tactical and operational levels of
decision making in the container terminals. The current research efforts to achieve
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this aim will be discussed in the Chapter 1.3.

1.2 Discrete-event systems

Discrete-event systems (DES) are a class of systems where the state variables
evolve according to discrete events that take place based on interactions among
different (continuous- and/or discrete-) state variables in the systems [21]. A
classical example of DES is a queuing system, in which, a new discrete-event is
associated to the serving of new customer after the previous one from the previous
discrete-event time has been served. We refer interested readers to [19] for an
extensive discussion on the modeling and analysis of DES.

For the past few decades, DES framework has been used to model and to control
a large class of physical and cyber-physical systems, which includes, the control
of logistics systems, internet congestion control, manufacturing systems and many
others that can be described by petri nets or finite-state machine/automata. With its
wide application, the DES has attracted many researchers, including in the control
community. Some examples of these works are discussed in [21, 27, 63, 68].
Fairly recent applications of DES in transportation and manufacturing systems are
presented in [70] for general transportation and manufacturing systems.

Container terminal operations are highly suited with the evolving of event
time framework in the DES. The state variables in the terminal operations are for
instance the starting time, operations time, and finishing time of each equipment in
the seaside, storage, and transfer sub-systems. Those state variables evolve every
time an equipment finishes its operations. The asynchronous state-time among
many equipment in the terminal add the complexity of the DES in the terminal
operations.

When DES involve discrete-state with discrete input variables, the optimiza-
tion/control of such DES leads to a combinatorial optimization problem which is
NP-hard. The nature of DES as a class of NP-hard problems make it often deals
intensively with combinatorial optimization. One can resort to a standard algo-
rithm for solving combinatorial problems in DES which is the branch and bound
(BB) method. As shown in [58], the BB method can converge to the global max-
ima/minima for some classes of DES optimization problems. Other well-known
heuristic methods for solving combinatorial optimization problems with DES are ge-
netic algorithm and particle swarm methods. In the paper, an analysis is presented
and shows that from the Chebyshev inequality, the solutions obtained from the BB
method converge to the global maxima/minima. It is also further shown that the
discrepancy between the heuristic and global optimization is not significant.

Although the BB and other heuristic methods can be used to find a sub-optimal
solution to the combinatorial problem for DES, the main drawback lies with the
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facts that the algorithms are limited only to the case where the problem can be
recasted as a static optimization problem [25]. In this case, the static refers to
constraining the dynamic problem by some terminal conditions and all possible
control inputs are well-defined or known apriori within the given time interval (up
to the terminal time).

This approach may no longer be feasible when the terminal conditions are
free with infinite time horizon and when the input set changes dynamically and
cannot be known apriori ahead of time. The latter case is commonly found in
many DES application, such as transportation, scheduling, and logistics, where
the actual incoming and outgoing goods always differ from the transmitted goods
manifest and where the actual incoming and outgoing vehicles always differ from
the precomputed plan. By static, we define that the input sets are known a priori
before the optimization processes start. Therefore, a dynamic input set with possible
changing input set cannot be handled by the BB method. The real time inputs are
commonly found in many DES application, such as transportation, scheduling, and
logistics.

Containers terminal operations are a class of logistics systems where semi-
Markov models are commonly used, especially in inventory management [26, 73,
92]. Inventory in terminals can be seen as the containers, where the operators
would like to manage it efficiently. While semi-Markov models can also capture
the state evolution of the systems, the conditional probability that describes the
transition from a state to another is usually known apriori [26, 73, 92]. Therefore,
to handle real-time aspects in the terminal operations, some works in this area use
the DES approach [2, 3, 4, 11, 89, 90, 91]. To model a system where its natural
evolution is discrete (such as container terminals), [19] also recommends to use
the DES modeling framework.

In [25], a dynamic DES model is developed for train scheduling problem where
the frequent changes to the train operations (schedule, obstacle, rail availability)
have limited the use of BB and similar algorithms. Instead of using BB, a greedy
travel advance strategy is proposed in [25] on the basis of a dynamic DES model,
which is able to find the sub-optimal control inputs of the train schedules with
a framework similar to line search algorithm. The possible solutions in each
iteration are limited to the group of trains in the same vicinity of direction and
speed. Another related paper is [32], which studies a particular DES with dynamic
input sets. The problem setting which includes complex systems in [32] falls into
combinatorial problems. In this case, the events in DES are asynchronous where
the states of each sub-system do not necessarily follow the same clock times and
an LMI-based controller is proposed to solve such problem. By solving some linear
matrix inequalities (LMI) that correspond to a desirable Lyapunov function, the
controller are able to give sufficient results, where the cost function monotonically
decreases.
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A similar DES with asynchronous event transition can also be found in our
previous works in [12, 13]. In these works, a model predictive allocation (MPA)
method is proposed in conjunction with a pre-conditioning step. In particular,
the DES model of container terminal operations is used to compute an optimal
input sequence for a finite event horizon where the input sequence is heuristically
pre-conditioned for accommodating the combinatorial optimization step. The
proposed MPA method follows the same procedure as the model predictive control
approach. The efficacy of our proposed method has been shown in both simulation
as well as in real-life experiment. In this method, we have used the well-known
first-come first-serve (FCFS) or the heavy-first light-last (HFLL) pre-conditioning
step to the current input sequence and then truncate it, prior to computing the
optimal solution in the model predictive step.

1.3 Container terminal optimization

The needs of more efficiency in complex container terminal operations have mo-
tivated researchers to put efforts in this field. The works mainly deal with the
optimization of the terminal. As reviewed in [16, 17, 18], the typical operations
that have been studied assume that the entire information is precisely known apri-
ori, so that linear programming can be applied for solving the equipment allocation
in the seaport. Examples of the information are for instance, ship arrivals and
availability of storage positions both in container yard and vessel bays. However,
this setting does not capture the operational-level decision making process where
in fact terminal is a volatile environment and the set of inputs dynamically changes.
The terminal operator knows about the ship arrivals or exact available storage posi-
tions only for a brief time horizon and the operations process itself is a dynamical
process. Hence, the non-robustness and non-adaptiveness of the state-of-the-art
approach to the dynamically changing environment has led to the wide adoption
of a heuristic approach that is a combination of the first-come first-serve allocation
strategy in the terminal.

When we talk about modeling in general container terminals, for the decision
making process in the tactical-level (i.e. weekly) or in the strategical-level (i.e.
monthly)1, dynamical models have been developed to describe the dynamics in
container terminal operations, see e.g. [2], [4], [84] and [42] where containers,
trucks and ships are considered as a continuous flow, as opposed to considering
them as discrete events. These dynamical models are subsequently used for resource
allocation in container terminals using model predictive control. In particular, the

1There are three types of decision making in container terminal operations as in [76, 86] i.e.
strategical, tactical, and operational level. The strategical level and operational level have the largest
and the smallest planning horizon, respectively. This classification also applies in other areas such as
supply chain management and production systems.
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models are used as predictive models of the process during the optimization step. In
these papers, resource allocation is expressed as percentage of servers (equipments)
capacity to transport containers to the subsequent server. As an alternative to
[2] and [4] where the percentage of servers is used as the decision variable, the
control variables used in [84] are mainly the starting and finishing operation time
of quay cranes, internal trucks and straddle carriers deployed in berth and container
yard. These dynamical models are subsequently used for resource allocation in
container terminals using model predictive control. The similar concept with
more elaboration is found in [43], where not only the allocation of the cargo is
considered, but also the cargo due date is optimized with a predictive horizon
approach. In this regard, the setting in [43] also falls into tactical-level decision
making process, since the operations time (i.e. the scheduling) of the equipment in
the terminals are not considered.

In particular, the models are used as predictive models of the process during the
optimization step. In these papers, resource allocation is expressed as percentage
of servers (equipments) capacity to transport containers to the subsequent server.
As an alternative to [2, 4] where the percentage of servers is used as the decision
variable, the control variables used in [84] are mainly the starting and finishing
operation time of quay cranes, internal trucks and straddle carriers deployed in
berth and container yard.

The container terminal operations are dependent on each sub-system. For
instance, the exact deployment of transporters are only known after QC work
schedule and CY storage plan are definitive. Therefore, to make an optimal
planning, the entire systems have to be considered when making decisions. Whereas
in reality, the ongoing research tends to make limitations in each of the terminal’s
sub-system [16]. In practice, the terminal operators usually use traditional methods
in creating terminal daily planning, for instance first-come-first served (FCFS) in
making the berth and quay crane allocation (BCAP), ship stowage plan, and CY
storage plan preferred are. Even in the commonly used Terminal Operating Systems
(TOS), these methods are commonly found, whose its optimal performance cannot
be guaranteed.

The aim of the terminal operators is to operate the container terminal efficiently
in the least possible cost with minimal dissatisfaction level from its customers.
The terminal operators execute a series of works to deliver the containers into:
1) CY, for the inbound ones, and 2) vessel, for the outbound ones. The storage
configuration of the inbound containers in the CY and of the outbound containers in
the vessels are known as the storage plan and stowage plan, respectively [24, 94].
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1.4 Contributions

We discuss the contribution of this thesis in this sub-chapter. The contributions
are five fold. The basic system observed in this research is the integrated berthing
and crane allocation process. The systems are asynchronous and as our first
contribution, we propose a dynamical modeling framework for such systems.
Secondly, to guarantee effective solutions, we propose a MPA method. Thirdly, we
analyse the optimal allocation problem using our proposed MPA method from the
mathematical aspect. Lastly, we conduct experiments with large-scale hypothetical
data and also field experiment in a real-life container terminal for the integrated
berth and crane allocation problem. We also extend the dynamical modeling
framework for two cases in maritime transportation network optimization and
end-to-end integrated terminal operations. In those two cases, the MPA method
that we have tested on large-scale simulation has shown the efficacy of the solution.

1.4.1 DES modeling for integrated berthing process

We propose in Chapter 3 a dynamical modeling framework using a DES formulation
that describes both the real-time and continuously changing set of ship arrivals at
any given time, as well as, the discrete-event dynamics during the berthing and
loading/unloading process. A result in this endeavor has appeared in [13]. The
proposed approach improves the one used in the DBAP as in [30] and [39]. To
the best of our knowledge, the dynamic aspect of ship arrivals has not yet been
discussed in the present research.

The DES formulation fits better to terminal operations than the usual periodic
discrete-time systems description since there is aperiodicity in the ships’ arrival time
and the operations’ time among different berthing positions is usually asynchronous.
The book [19] provides an excellent exposition to the modeling and analysis of
DES. In [70] such DES modeling framework is used to describe manufacturing
and transportation systems. While in [11], the event is triggered every time
uncertainty occurs in the terminal. Our proposed modeling framework fits well
with the common practice in the terminal operations. Firstly, the berth planning is
done based on the pro forma windows of incoming ships where the information
may be incomplete and will change during the execution window. In the current
state-of-the-art operations research (OR) modeling framework, such uncertainty is
embedded in the constraints and introduces sub-optimality in the solution. In our
framework, the dynamical modeling of ships’ arrival allows for a real-time planning
according to real-time factual information from the arriving ships. Secondly, the
state equations (which are given by difference equations) capture the sequential
process in seaside operations to a large extent and is also validated later in our
real life experiment. Thirdly, the simple model allows us to not only gain insight to
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the sequential process, but also to deploy it in our real-time integrated allocation
algorithm.

As reviewed in [18], the BAP (and container terminal operations problems in
general) falls into NP-hard problems because of its complexity. The complexity itself
is caused by the dimension of the problem i.e. the number of ships, the number of
berth positions, and the number of quay cranes. One of the popular methods in
solving the NP-hard problems, including the BAP, is genetic algorithm (GA) [18].
The GA allows flexibility for its users to solve the original problem through GA
specific algorithm. The GA is employed in [20] and [40]. Another technique to
solve the BAP is Tabu search as in [71] where the objective function is to minimize
the housekeeping cost that is affected by the resulting ship schedule. While in [93],
Lagrangian relaxation is used.

1.4.2 Model predictive allocation method for integrated berthing
process

The non-robustness and non-adaptiveness of the above mentioned approaches to
the dynamically changing environment have led to the wide adoption in real-life
condition of a very simple heuristic approach, that is a combination of the first-come
first-served strategy for the berthing allocation and of the density-based strategy
for the quay crane allocation. In order to handle such dynamic environment
(including the real-time information on arriving ships), we propose a novel real-
time integrated berthing and crane allocation method in the present paper as our
second contribution of this thesis in Chapter 3 which is based on model predictive
control principle and rolling horizon implementation.

1.4.3 Mathematical analysis

We study an optimal input allocation problem for a class of discrete-event systems
with dynamic input sequence (DESDIS) as presented in presented in Chapter 4. A
similar DES with asynchronous event transition can also be found in Chapter 3. In
these works, a model predictive allocation (MPA) method is proposed in conjunction
with a pre-conditioning step. In particular, the DES model of container terminal
operations is used to compute an optimal input sequence for a finite event horizon
where the input sequence is heuristically pre-conditioned for accommodating the
combinatorial optimization step. The proposed MPA method follows the same
procedure as the model predictive control approach. The efficacy of our proposed
method has been shown in both simulation as well as in real-life experiment. In
this method, we have used the well-known first-come first-serve (FCFS) or the
heavy-first light-last (HFLL) pre-conditioning step to the current input sequence and
then truncate it, prior to computing the optimal solution in the model predictive
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step. While the re-ordering of the sequence (either using FCFS or HFLL) has played
an important role in [12, 13], the mathematical analysis on the re-ordering of the
input sequence in the pre-conditioning step is still missing.

In this case, the input space is defined by a finite sequence whose members will
be removed from the sequence in the next event if they are used for the current
event control input. Correspondingly, the sequence can be replenished with new
members at every discrete-event time. The allocation problem for such systems
describes many scheduling and allocation problems in logistics and manufacturing
systems and leads to a combinatorial optimization problem. We show that for a
linear DESDIS given by a Markov chain and for a particular cost function given by
the sum of its state trajectories, the allocation problem is solved by re-ordering the
input sequence at any given event time based on the potential contribution of the
members in the current sequence to the present state of the system. In particular,
the control input can be obtained by the minimization/maximization of the present
input sequence only.

1.4.4 Field experiment and numerical analysis

The discrete-event modeling is also implemented for integrated container terminal
operations and terminal network optimization in Chapter 5 and 6, respectively.
In both cases, we evaluate the performance of our model predictive allocation
strategy using: (i). extensive Monte-Carlo simulations using realistic datasets; (ii).
real dataset from a container terminal in Tanjung Priuk port, Jakarta, Indonesia.
The numerical experiments are provided to show the ability of the DES models
in replicating the actual complex operations in the terminals. The large scale
simulations also test the efficacy of the MPA algorithm which has been developed
in Chapter 3. From the simulations, we understand that firstly, the DES models
are able to mimic the complex operations in the terminal. This is further shown in
the field experiment, where the state variables obtained from the models follows
the data from the experiment. Secondly, from the large-scale simulations with
hypothetical datasets, it shows the efficacy of the MPA compared to the meta-
heuristic methods which are commonly used in this field of research. Even though,
we have to note that the MPA needs bigger computation efforts than the existing
methods. For the BCAP problem in Chapter 3, in addition to the two kind of
aforementioned simulations, we also performed real life field experiment in the
same container terminal. As has been mentioned in [86], the contribution on the
real life field experiment provides an important insight to the performance of novel
allocation method in reality which is typically not reported in the literature.
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1.4.5 Extension of BCAP models to the seaport network and
integrated terminal operations

We extend the implementation of the dynamcal models that has been developed
in the BCAP to the cases in seaport network (Chapter 5) and integrated container
terminal operations (Chapter 6). We study container terminal network perfor-
mance under heterogeneous distributed operational BCAP policy. The operational
optimization policy in each terminal is confined only to the seaside operations
problem. Hence, only berth and quay crane allocation is considered in each seaport.
We have two valid reasons for this research boundary. First, shipping liners which
call to a seaport deal greatly with seaside operations. Second, an effective BCAP
will contribute hugely to the whole performance of the terminal, since bottlenecks
often occur in this sub-system, where the discussion is provided in [18, 40, 48, 66].
The bottlenecks in berthing process has even more important consideration, since
QC is usually the most expensive equipment in the terminal [13, 48]. Therefore
improvement in BCAP will greatly profit the overall operational performance of
a single terminal, and it has been explained extensively in [53, 82, 87] that the
terminal network’s performance is heavily affected by the performances of each
terminal in the network.

We analyze the container terminal network operations under heterogeneous
distributed BCAP policy as the main bottleneck in terminal operations, and con-
sequently affect greatly to the network performance. We study the improvement
of the network operations from the perspective of terminal operators [48, 81].
Currently, as exemplified in [6] and [87], the common point of views of network
operations improvement are from the shipping liners. In our case, we provide
analysis and insights for the terminal operators on the optimization of network
operations in a distributed way and with minimal effort. We investigate the perfor-
mance of state-of-the-art MPA-based BCAP approach as proposed in [12] and [13]
to improve network operations. The MPA gives better results compared to the state-
of-the-art methods in BCAP [13]. We also propose methods for selecting important
seaports in the network to which the MPA-based BCAP policies are applied.

In Chapter 6, we extend the modeling framework in [12, 13] to the integrated
container terminal setting. In the state-of-the-art research, the integrated operations
are commonly modeled with static OR-based approach as can be found in [33, 36,
44]. Subsequently, we propose a simultaneous allocation and scheduling of QC,
YC, and IT in the operations planning as our second contribution. The approach is
based on the model predictive algorithm (MPA) as presented in [12, 13] and its
efficacy is demonstrated in a real experiment in Jakarta’s main seaport, Tanjung
Priok. The MPA is based on model predictive control (MPC) which is often use to
find optimal solution of DES models [70]. Recently, a preliminary mathematical
analysis of the MPA algorithm has been reported in [14]. This proposition is a
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prominent aspect that can not be completely achieved in [11, 89, 90], where only
the lower-level controllers of equipments’ scheduling are modeled dynamically
while the allocation itself is done via a deterministic and static perspective with
linear programming techniques.

1.5 Publications

Several peer-reviewed journal and conference papers contributing to this thesis are
as follows.

Journal papers

• ”Discrete-event systems modeling and the model predictive allocation algo-
rithm for integrated berth and quay crane allocation”, IEEE Transactions on
Intelligent Transportation Systems, 2020, 21(3), pp. 1321-1331. (Chapter 3
of this thesis)

• ”Towards a competitive terminal network via heterogeneous and distributed
dynamic optimization policies in the berth and quay crane allocation opera-
tions”, under review. (Chapter 5 of this thesis)

• ”Simultaneous allocation and scheduling of quay cranes, yard cranes, and
trucks in dynamical integrated container terminal operations”, under review.
(Chapter 6 of this thesis)

Peer-reviewed conference papers

• ”On the optimal input allocation of discrete-event systems with dynamic input
sequence”, 58rd IEEE Conference on Decision and Control, December 11-13,
2019, Nice, France. (Chapter 4 of this thesis)

• ”Dynamic berth and quay crane allocation for multiple berth positions and
quay cranes”, 14th European Control Conference, July 15-17, 2015, Linz,
Austria. (Chapter 3 of this thesis)

Some materials on this thesis have been also partially presented at (local)
scientific meetings as follows.

Conference abstracts

• ”Dynamic berth and quay crane allocation for complex berthing process in
container terminals”, 34th Benelux Meeting on Systems and Control, March
24-26, 2015, Lommel, Belgium.

• ”Analysis of dynamic container terminal networks”, 35th Benelux Meeting on
Systems and Control, March 22-24, 2016, Soesterberg, The Netherlands.
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Poster

• ”Towards an integrated modeling of container terminal optimization”, ENTEG
PhD Meeting, October 8, 2016, Groningen, The Netherlands.

1.6 Thesis outline

This thesis is organized as follows. Chapter 1 presents motivation and contribution
of this thesis. Chapter 2 starts with preliminaries that provide necessary theoretical
backgrounds for DES and MPC. The same chapter also provides the definition
and examples of operations systems, especially their relation with DES modeling
framework.

Chapter 3 discusses the DES modeling framework and MPA algorithm for
integrated berth and quay crane allocation problem (BCAP), which will be the main
foundation of this thesis. The framework in Chapter 3 is analysed mathematically
in Chapter 4, which focuses on an optimal input allocation problem for a class of
DES with dynamic input sequence (DESDIS). The modeling framework in Chapter 3
will later be used in Chapter 5 and 6 that discuss the extension for two applications.
Firstly, the container network operations and secondly, the integrated end-to-end
operations in container terminals. Finally, the conclusions and future works are
given in Chapter 6.
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Chapter 2

Preliminaries

We present in this chapter preliminaries of DES which later in Chapter 3 will
serve as the modeling framework in this thesis. To bridge between the DES and
operations systems, we also discuss the examples of DES in operations systems,
especially related to the container terminal operations systems when available.
Finally, we briefly present the concepts of model predictive control (MPC) as a
popular method to solve the DES models.

2.1 Discrete-event systems

The discussion of DES is divided into three main parts. Firstly, we would like to
remind the readers that DES is a class of systems, where the systems themselves
can be modeled in several approaches, for instance state-space and operations
research (OR). In this sub-chapter we focus to compare DES-based with OR-based
modeling approach. The latter is currently ubiquitous and ’standard’ to model
operations systems, which is in fact the object of research in this thesis. Secondly, we
discuss the characteristic of DES, and what kind of systems that suit the properties,
especially in relation to operations systems. Thirdly, we will present one framework
to graphically model DES problems with Petri nets.

2.1.1 Approaches in modeling

There are plenty of modeling techniques in science and engineering. For the clarity,
in this thesis we only discuss the methods of systems modeling which have affinity
with the utilization of quantitative approach. The term quantitative itself is closely
related with mathematics. This to further distinguish with qualitative approach,
which in some branches of sciences, conceptual framework design such as block
diagrams is also called ’models’ [22].

The input-output (I/O) modeling technique is briefly discussed in [46]. This
method models the changes in outputs as the results from changes in inputs. We
take the formulation of I/O modeling from [19]. The input and output variables
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are represented through two column vectors, u(t) and y(t), respectively

u(t) = [u1(t), .., up(t)]
T

y(t) = [y1(t), .., ym(t)]T .

We assume that there is some mathematical relationship between input and output,
therefore there exists functions

y1(t) = g1(u1(t), ..., up(t)), ..., ym(t) = gm(u1(t), ..., up(t))

The I/O model is then defined in (2.1)

y = g(u) = [g1(u1(t), .., up(t)), ..., gm(u1(t), .., up(t))]
T . (2.1)

Another less common method in management science and operations commu-
nities is simulation [47], where a rule-based (if-then-else) approach is used to
resemble the studied system. This is usually depicted in flowchart where each
process or decision shows the sequence of events. The stochastic aspects of the
systems are incorporated through random variates, which derived from statistical
functions [47]. The common random variates is defined in (2.2)

Xi = f−1(Ui), Ui ∈ {0, 1}. (2.2)

where Xi is the i−th random variate. The index i implies that the simulation is
done step by step based on event/time-counters. Ui is the i−th random number
whose value is distributed continuously uniform from zero to one, and f−1() is the
inverse of statistical function considered in the system.

Others mathematical modeling methods which we will be the main focus in this
thesis are state-space and operations research. One of the most common methods
to model an observed system with a mathematical approach is state-space. This
method emerged in the 1950s which uses differential equations to represent the
systems [69]. A state-space involves the input u(t), the output y(t), and the state
x(t). The complete equations is given in (2.3) and (2.4) [19]

ẋ(t) = f(x(t),u(t), t), x(t0) = x0, (2.3)

y(t) = g(x(t),u(t), t). (2.4)

The other method is operations research (OR), which emerged earlier during
the 1940s. Interested readers in OR-based modeling can refer to [22, 35, 77].
The method mainly uses linear programming (LP) related technique to solve
problems limited to several constraints. It has become the most popular technique
in management science and operations management, hence the name [35, 77]. A
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Table 2.1: The difference between state-space and OR modeling

Aspect of modeling State-space Operations research
Evolution of time Dynamic Static
Linearity Linear and non-linear Linear system by

systems model’s default
Feedback Incorporated Not-incorporated
Parameters Deterministic and stochastic Deterministic by

model’s default
Measurement of state Incorporated Not-incorporated
over time

standard LP model is given in (2.5) [35, 77].

max/min Z = cTx

subject to

Ax = b (2.5)

x ∈ R+.

The typical problem in LP is to select the best n decision variables which is repre-
sented by the vector x. The evaluation of the decision variables is based on the
cost function which is given by Z. We denote c as the column-vector (n × 1) of
the cost-function coefficients. The decision variables have to satisfy constraints
imposed by right-hand constraint of the column-vector b (m× 1), and A (m× n)
is the matrix of technical coefficients.

Despite their common goals to accurately mimic systems into mathematical
models, state-space has polar opposite approach to the OR counterparts. Based on
summary from [35, 46, 69, 77] we show the difference between state-space and
OR modeling in Table 2.1.

The differences naturally creates advantages of state-space models. The LP
technique in OR has four main assumptions [35, 77]: 1) linearity, 2) certainty,
3) proportionality, 4) additivity. The two first assumptions make static-approach
in OR-based modeling inevitable. The OR models usually assume that a set of
parameters are known in the beginning of time-horizon. By default, the set can not
change (in (2.5), there is no index of time in the LP model), therefore a real-time
situation is not incorporated [77]. To make it ’real-time’, OR-based models often
use statistical functions, to reflect the possibility of changes in the parameters.
The concept of real-time is important in this thesis, and will be discussed more
thoroughly in Chapter 3.

An OR model receives sets of parameters, and tries to seek the best decision
variables from the many possible combinations of such variables, such that the cost
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function is optimal. What happens in systems during optimization is not recorded.
The information that is truly measured in the OR-model are what kind of effects
(outputs) caused by the inputs. This black-box approach [22, 77] is quite similar
with I/O based model as in [46].

We give an example with warehouse operations, which will later be discussed
in Chapter 2.1.2. The goal of the operations is to seek optimum procurement policy,
in which the observer determines the quantity of goods that the warehouse should
acquire. In OR-model, the result will typically be firstly, the units of goods in each
procuring period, and secondly, the interval between each period in the whole
planning horizon [80]. The evolution of end inventory in each time-period t (or
k) can not be tracked from OR-model’s results. The deterministic parameters of
OR-model as in Table 2.1 impose changes in OR-model’s inputs. For instance, the
inventory demand parameter is assumed fix for the whole planning horizon [80].
The changes in demand is facilitated through a specific statistical function, which
is still not real-time. Those two drawbacks are not found in state-space modeling.
The state in each time period (t or k) can always be traced. While the dynamic in
state-space modeling incorporates the real-time aspect of the systems.

2.1.2 DES modeling

We have discussed in Chapter 2.1.2 the two superiority of state-space to OR model-
ing. Those are, 1) the inclusion of dynamic in the models, and 2) the recording
of state changes in each time period during the whole planning horizon. In this
sub-chapter we will present the discussion of DES modeling, to bridge into its
application in the operations systems.

There are two types of states, continuous and discrete, where the combination
of both are the hybrid state [19]. In accordance with the main topic in this thesis,
we will discuss an example of a system with discrete states and later model the
problems with DES as has been presented in [19]. In some cases, modeling a
system of discrete-state approach is more natural and simpler to visualize than
continuous-state [19, 69]. This is because the DES modeling is a series of logical
statements. An example of the statements is, ”if current state is x and something
happens, then the next state is x′, if those something else happens, then next state
is x̂”. The DES application is found in many systems, no exception in the operations
systems, such as queuing systems, manufacturing, transportation, and logistics.

We will discuss briefly an example of a simple warehouse system [19], which has
been briefly presented before in Chapter 2.1.1. By using DES-modeling approach
as in [19], we propose two input (control) variables namely u1(k) and u2(k) as
the arriving and departure products, respectively. Those two inputs are defined as
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follows:

u1(k) =

{
1 if product arrives at the time k
0 otherwise

(2.6)

u2(k) =

{
1 if product departs at the time k
0 otherwise

(2.7)

The state of the system is x(k) which is the end inventory in k−th time period. It is
defined by the end inventory in the previous period (x(k − 1)) and the two control
variables. If a product arrives, and no one departs, there is an additional product at
the warehouse. On the other hand, if no product arrives and a product is taken, the
end inventory will be one less from the previous time period, provided there is at
least one inventory left at the beginning of time period k, since negative inventory
is not allowed. The DES model for the warehouse problem is given as follows in
2.8

x(k) =


x(k − 1) + 1 if (u1(k) = 1, u2(k) = 0)

x(k − 1)− 1 if (u1(k) = 0, u2(k) = 1, x(k) > 0)

x(k − 1) otherwise.
(2.8)

We have seen the contrast between the warehouse modeling with DES and OR
as has been explained in Sub-Chapter 2.1.1. With DES modeling, not only the
inventory policy (u1(k) and u2(k)) that can be optimized (with some techniques
that will be later discussed in this thesis), but the state of systems (x(t)) can always
be traced. We will later show that keeping the records will be useful to perform
validation between the model we have built and the actual systems. In OR-based
modeling, the validation is usually only performed as comparison between the cost
functions from model, and the actual systems [22, 35, 77].

In Sub-Chapter 2.1.1, the depiction of a general continuous system is presented
in (2.3)-(2.4). According to [19], the technique which are usually used to analyse
continuous state-space is differential equation. As the opposite, in the discrete-
state, the state-space X is discrete set. In this case, the discrete state-variables are
only able to move from a discrete state-value to another at the discrete time step
[19]. As a consequence from the integer numbers to describe the states, difference
equations are usually used in DES modeling [19, 69].

There are two approaches in modeling DES, namely time-driven, and event-
driven. The difference between these two approaches are what factor (time or
event) triggers the movement of time k to k + 1. In real worlds, it can also be seen
when the observers review the systems’ states. Most cases in DES are event-driven
[19]. For instance, in the aforementioned warehouse systems modeling, the time
counter of k − 1 is moved to k if there are changes in x(k), and it is not necessary
for the two input variables u1(k) and u2(k) to exactly happen in exactly periodical



20 2. Preliminaries

k (e.g. k evolves from 08:00, 08:15, 08:30, etc).

According to [19], an event in DES is described as a trigger from one state
to another in the DES-system which happens instantaneously. In the inventory-
warehouse example, the two events are E = {A,D}, where A denotes the product
arrival, and D denotes the product delivery event. An event-driven DES can lead to
asynchronous process, and it is more difficult to solve than the time-driven model
[19, 69]. This is because, in event-driven DES the time counters for the parallel
processes are not necessarily the same among each other. In a two parallel server
queuing system, the k is moved to k + 1 not based on time-counter, but possibly
according to the ending of service time at any server. This lead to complexity, since
at the other server, the service may still running. The asynchronous DES modeling
will be the main focus of this thesis.

After discussing the example of DES and the approaches to model DES, the
general representation of DES as cited from [19] is defined by

x(k + 1) = f(x(k),u(k), k), x(0) = 0, (2.9)

y(k) = g(x(k),u(k), k). (2.10)

The state space representation for the discrete state in 2.9-2.10 can be contrasted
with the continuous state as in 2.3-2.4. For the case of linear DES is defined by

x(k + 1) = A(k)x(k) + B(k)u(k), (2.11)

y(k) = C(k)x(k) + D(k)u(k), (2.12)

and the state-space for a DES in the time-invariant case is

x(k + 1) = Ax(k) + Bu(k), (2.13)

y(k) = Cx(k) + Du(k), (2.14)

where A, B, C, and D are all constant matrices of the systems parameters. The solu-
tion of a linear difference equation with initial condition x(0) and input u(0), ..,u(t)

is taken from [69] as follows in (2.15)

x(k) = Akx(0) +

k−1∑
j=0

Ak−j−1Bu(j),

y(k) = CAkx(0) +

k−1∑
j=0

CAk−j−1Bu(j) + Du(k). (2.15)
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2.2 Operations systems

We have mentioned in the beginning of this sub-chapter that the object of this
research (container terminal operations) is one kind of operations systems. The
definition of operations is manufacturing and service processes that try to transform
and create products and services in firms that will be used by customers [41]. As a
consequence of the definition, transportation, physical distribution, and logistics
also fall into the class of operations systems, because all of those subjects also deal
with finding best efforts to deliver products and services to customers.

In this chapter, we will discuss the operations systems in relation with the
application of DES in the systems. We begin with the common operations systems.
Afterwards, we will focus with recent efforts to apply DES in container terminal
operations.

2.2.1 DES in operations systems

As presented in Sub-Chapter 2.1 that OR is currently the most common modeling
method in operations systems, there are some endeavors to use DES in operations
systems modeling. We found in [21] an early application of DES in manufacturing
systems. The study models production processes, where application can be found
in flexible manufacturing systems and automated material handling systems. In
this research, events are defined as the beginning and ending of a job in a particular
machine. The state space of discrete production process in [21] is formulated as
follows in (2.16) and (2.17)

X = XA⊕ UB (2.16)

Y = XC (2.17)

where X = (x1, ..., xN ) is the set of earliest starting times the production activities,
and U = (u1, ..., uR) is the control variables which show the sequence of parts
processed in machines.

A is a weighted incidence matrix with dimension N×N , where N is the number
of all processing tasks for producing part in machine. B is the starting activities
for all machines. Matrix C is a bipartite graph of last processing sequences in the
corresponding machines. The goal is to order the jobs in the appropriate machines
as given in (2.18)

Y (n) = Y (n− 1)D ⊕
∑
j∈J

(Y (n− qj)Dj ⊕ Y (n− qj − 1)D̄j) (2.18)

where D = KBA∗C, and K is a feedback matrix. It is possible to order (2.18) so
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that

Y (n) = (

4∑
r=1

Y (n− r)Hr)H0∗ (2.19)

if and only if (H0)∗ = E ⊕H0 ⊕ (H0)2 ⊕ ... exists. More detail explanation can be
found in [21].

Another application of DES in operations systems can be found in [70]. In
the research, the authors study DES with hard and soft constraints which later be
solved by an MPC algorithm. In operations systems, hard constraints are defined
as conditions that have to met to perform a task/job. On the other hand, soft
constraints reflect pre-determined predecessors that can be violated with some
penalties.

The systems studied are comprised of several operations and some cycles. The
starting time of operation j in cycle k is defined in (2.20)

xj(k) > dj(k) (2.20)

The cycle k can be seen as an event based system as have been explained in
Sub-Chapter 2.1.2. Hard and soft synchronization constraints are defined

xj(k) > xi(k − δ∗ij(k)) + aij(k) ∀i ∈ Chard
j (k) (2.21)

xj(k) > xi(k − δ∗ij(k)) + aij(k)− vij(k) ∀i ∈ Csoft
j (k) (2.22)

where delay in each cycle between operations is denoted by δ∗ij(k) and in soft
synchronization constraints, the synchronization can be broken by some penalties
vij(k). The soft synchronization constraints are later re-casted into MPC problems,
whose solution is based on this following remark.

Remark 2.1. If t̂slack
ij (k + l) is non-positive (or if there is another index i′ such that

t̂slack
ij (k + l) > t̂slack

i′j (k + l)), then vij(k + l) does not influence the value of the
objective function anymore. Therefore, the MPC cost function could be extnded
with extra term

ρ

Np−1∑
l=0

n∑
j=1

∑
i∈Csoft(k+l)

j

vij(k + l) (2.23)

with ρ > 0 a small number. In that way, the smallest possible values of the vij(k+ l)

is obtained. This also determines which synchronizations are broken or not.

The modeling of MPC for DES with soft synchronization constrains in [70] is
then applied to a production system. It is shown that the production problem can
be solved by the proposition and online (real-time) inputs can be handled.
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DES with partial synchronization is discussed in [23]. The DES is divided into
two parts, the main system and the secondary system, and the interaction of two
systems is governed by partial synchronizations. In this setting, the authors propose
time-based DES, which differs from the event-based DES as cited in [21, 70].

The vectors defined in [23] are x, u, y which represents the vectors of coun-
ters associated with state, input, and output events. The index of the main and
secondary system are 1 and 2, respectively. The behaviour of the system satisfy

x1(t) > A10x1(t)⊕A11x1(t− 1)⊕B1u1(t) (2.24)

y1(t) > C1x1(t),

where the matrices A10, A11, B1, C1 are the parameters of synchronizations in the
main system. The behaviour of the secondary system is given in (2.25)

x2(t) > A20x2(t)⊕A21x2(t− 1)⊕B2u2(t)

y2(t) > C2x2(t) (2.25)

∀i,(3 x1.j ∈ δi|x1.j(t− 1))

=⇒ x2.i = x2.i(t− 1).

The problems are then formulated in an MPC setting, and the solution of DES with
partial synchronizations is given as follows.

Theorem 2.2. Denote ȳε, the output induced by the input ūε, defined by ūε(τ) = ε

for t+ 1 6 τ 6 t+ T and assume that rj(τ) ∈ N0 for t+ 1 6 τ 6 t+ T . Then, the
unique solution of the MPC problem, denoted ūopt, is given by

ūopt(τ) =
∧

τ>j>t

ṽ(j) for t+ 1 6 τ 6 t+ T

The application of partial synchronizations can be found for instance in trans-
portation and supply chain where several sub-systems are inter-connected into a
single main system.

In this sub-chapter we have presented some preliminaries in DES application in
operations systems. Most of the research formulate DES in event-based systems,
and solve with MPC settings. The detail discussion of DES is later presented in
Chapter 4.

2.2.2 DES in container terminal operations systems

We will discuss some efforts to use DES in container terminal operations systems
in this sub-chapter. A DES framework is used in [11] to model rail operations in
container terminal. The railway lines are the internal transporters among sections
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in the container terminals such as berth, CY, and gate. These sections are denoted
as set of queues, where the state variables are number of containers or equipment
(i.e. cranes) waiting in lines.

The subset of the dynamic of the transfer operations is as follow

qM1
i (t+ 1) = qM1

i (t) + [aMi (t)− ui(t)]4 t, i = 1, ...,M, t = 0, ..., T − 1 (2.26)

qM2
i (t+ 1) = qM2

i (t) + [ui(t)− uM+i(t)]4 t, i = 1, ...,M, t = 0, ..., T − 1 (2.27)

qSi (t+ 1) = qSi (t) + [aSi (t)− u2M+i(t)]4 t, i = 1, ..., S, t = 0, ..., T − 1 (2.28)

qR(t+ 1) = qR(t) + [

2M+S∑
i=M+1

ui(t)−
I∑
j=1

uRj (t)]4 t, t = 0, .., T − 1, (2.29)

where 4t is the sample time. The modeling in [11] is not entirely dynamic. The
DES formulation is only to show the interrelation among sections in the terminal,
for instance stacking area (M1,M2), crane (R), and trucks (I), where q represents
the queues and a is the container input flows from berth.

The tactical planning itself is done through static modeling to determine the
capacity of the queues, and later solved by MILP technique. The sub-optimal
solutions of the DES model are found by an MPC-based algorithm.

The two way modeling system can also be found in [89, 90]. In [89], firstly,
integer linear programming (ILP) models provide the scheduling of three state
processes in the terminal, namely QC, AGVs and ASCs. The decision variables
of the ILP models are xij , yij , zij which represent the sequences of flow shop of
the three kinds of equipment. The scheduling then triggers the dynamics in the
controllers as follows

ṙ(t) = g(r(t), u(t)) (2.30)

ṙ1(t) = r2(t) (2.31)

ṙ2(t) = u(t), r2(t) ∈ [vmin, vmax], u(t) ∈ [umin, umax] (2.32)

where the controllers are the position (r1(t)), velocity (r2(t)), and acceleration
(u(t)) of the equipments that have been scheduled through the higher level ILP
models.

The DES controllers in the lower level is formulated as follows

r(k + 1) =

[
1 4T
0 1

]
r(k)

[
0.54 T 2

4T

]
u(k) = Ar(k) + Bu(k) (2.33)

J =

Ns∑
k=1

0.5m(r2(k))2 (2.34)

where (2.34) describes the goal of to minimize the total energy used to operate
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the equipments in the terminal. The Hamiltonian function is solved through
Pontryagin’s Minimum Principle [89]. A similar approach is found in [90], where
a predictive controller is used to allocate the number of containers handled by
the equipment in the terminal, namely QC, automated guided vehicle (AGV), and
automated straddle carrier (ASC). The scheduling of QC, AGV, and ASC itself are
obtained with OR-based techniques.

A DES approach to model operations in container terminal is studied in [2, 4].
The studies are on tatical level decision-making where percentage of equipment
capacities are determined. A similar approach can also be found in [3], where the
case is in supply chain, and optimum capacities are sought in the each node of the
chain, namely factories, warehouses and retailers. The subset of dynamics in [4] is
as follows

xzi (t+ 1) = xzi (t) + azi (t)−4Tµzi (t), i = 1, 2, ..., Nz, z = b, p, r (2.35)

xyi (t+ 1) = xyi (t) +4T (

Nz∑
j=1

µzj (t)u
z
j (t)− µ

y
i (t)uyi (t)) (2.36)

uy7(t) = min{x
y
7(t) +4Tµy4(t)uy4(t)(1− β1(t))

4Tµy7(t)
(2.37)

γ(t)(1− uy4(t), uy5(t), uy10(t), uy11(t))}

where x represents the vectors of queues of containers in each type of equipment,
namely QC, rubber-tyre gantry crane (RTGC), reach staker (RS) and rail-mounted
gantry crane (RMGC). The control variable is represented by u, which is the
percentage of servers allocated for the operations. In the research, (2.37) represents
the re-handling process or also known as housekeeping.

As similar with [2, 4], a DES approach to model the dynamics of container
handling is also discussed in [91]. There are three state variables where xquay

p (k),
xyard
pq (k), and xland

p (k) are the remaining quantity of cargo p to be unloaded at the
quayside, the remaining quantity of cargo p to be loaded in the yard-slot q, and
the remaining quantity of accumulated cargo p to be loaded and the hinterland at
event-time k. The dynamics are as follows

xquay
p (k + 1) = xquay

p (k)−
∑
q∈Q

δin
pq(k)uin 4 T (2.38)

xyard
pq (k + 1) = xyard

pq (k) + δin
pq(k)uin 4 T − δout

pq (k)uout 4 T (2.39)

xland
p (k + 1) = xland

p (k) +
∑
q∈Q

δout
pq (k)uout 4 T (2.40)

where δin
pq(k), δout

pq (k) ∈ {0, 1} are the binary control variables to determine if the
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stacker/reclaimer will or will not do the operations of inbound/outbound cargo p
at slot-yard q from event time k to k + 1. The other control variables are uin 4 T

and uout 4 T as the unloading/loading rate of the cranes, respectively.
In this sub-chapter, we have shown the brief review of DES application in

container terminals. The development of DES models for the specific settings in
this thesis will be discussed in Chapter 3 and 6.

2.2.3 Petri nets

We present brief review of Petri nets in this sub-chapter which is taken from [19].
Petri nets is a graphical tool to represent interrelations of events in a DES model.
There are two main parts of Petri nets, transitions and places. Events which
are represented by transitions occur after several conditions are satistifed. The
informaton of those conditions are stored in places.

Definition 1. A Petri net graph is a weighted bipartite graph

(P, T,A,w)

where P = {p1, p2, ..., pn} and T = {t1, t2, ..., tm} are the finite set of places
and transitions, respectively. A ⊆ (P × T ) ∪ (T × P ) is the set of arcs from places
to transitions and from transitions to places, where usually an arc is represented
by (pi, tj) or (tj , pi). w : A → {1, 2, 3, ...} is positive integer weight function
of the arcs. The set of input/output places to/from transition are repsented by
I(tj) = {pi ∈ P : (pi, tj) ∈ A} and O(tj) = {pi ∈ P : (tj , pi) ∈ A}, respectively.

Example 2.1. A Petri net graph as shown in Figure 3.1 is defined by

P = {p1, p2} T = {t1} A = {(p1, t1), (t1, p2)} w(p1, t1) = 2 w(t1, p2) = 1

The input and output are I(t1) = {p1} and O(t1) = {p2}, respectively. There are
two places p1 and p2 in the Petri nets, which are represented by the two circles.
The transition t1 is indicated by the bar. The two input arcs from p1 indicate the
weight, thereby explains w(p1, t1) = 2.

One of the Petri nets’ goals is to model the dynamic in the DES, therefore the it
is able to capture the state transitions. To be enabled, the number of tokens in pi
has to be at least as large as the weight of the arc (pi, tj).

Definition 2. A transition tj ∈ T i a Petri net is enabled if

x(pi) > w(pi, tj) ∀pi ∈ I(tj)
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Figure 2.1: Petri net graph for Example 2.1 where x = [2, 1]

The control input in a Petri net is defined by a vector u = [0, ..., 0, 1, 0, ..., 0]

where 1 means that the j−transition is being performed, where j ∈ {1, ...,m}. An
m× n incidence matrix A is defined from the net flows of input and output as its
(j, i) entry as aji = w(tj , pi) − w(pi, tj). Therefore, given an initial state x0, the
sequences of the state is

xk+1 = f(xk, tk) = xk + ukA.

We have briefly discussed the concepts of Petri nets in this sub-chapter. In Chapter
3 we will apply Petri nets to our case in BCAP.

2.3 Model predictive control

In Sub-Chapter 2.2 it is shown that MPC is a common approach to solve DES models
[4, 11, 70, 89, 90, 91]. MPC is suitable because of its nature to seek the solution
step per step, where the steps correspond to events in DES. The MPC in general
consists of prediction model, objective function, and algorithm to obtain control
law [15].

The prediction model has to represent the system that is being analysed, and
for instance, the system can be represented as follow in a state-space form

x(t) = Mx(t− 1) +Nu(t− 1) (2.41)

y(t) = Qx(t) (2.42)

where x is the state, M,N,Q are the matrices of the system, and u is the control
input, respectively. The prediction for the system’s model as given in (2.41)-(2.42)
is as follow

ŷ(t+ k|t) = Qx̂(t+ k|t)

= Q[Mkx(t) +

k∑
i=1

M i−1Nu(t+ k − i|t)]. (2.43)



28 2. Preliminaries

The prediction model is the fundamental in MPC which is used to predict the future
outputs ŷ(t + k|k) (value of variables at time t + k calculated at time t) based
on known predicted states x̂(t + k|k), and future control inputs u(t + k|t), k =

0, ..., N − 1, where the prediction is performed for a prediction horizon N .
The objective function of the predicted model in (2.43) is a cost function used

to evaluate the optimal control law. The objective function can be generalized as
follows

J(Nmin, Nmax, Nu) =

N2∑
j=N1

δ(j)[ŷ(t+ j|k)− z(t+ j)]2

+

Nu∑
j=1

λ(j)[4u(t+ j − 1)]2. (2.44)

The future output ŷ(t+ j|k), which is the value of the input at time j+ k calculated
at time k should follow an external reference signal z and sample time 4u which
represents the control effort. The parameters of the objective/cost function are
Nmin and Nmax which are the minimum and maximum cost horizons and Nu is the
control horizon which is not necessarily has to be the same with Nmax. The last
parameters are δ(j) and λ(j) which if necessary can be used to represent future
behaviour. For instance, the exponential weight of δ(j) during the horizon is

δ(j) = αNmax−j (2.45)

where α is the exponential parameter whose value is between 0 and 1.
The control law is obtained by selecting u(t+k|k) which minimizes the objective

function in (2.44). The optimal control inputs are acquired by calculating the values
of the predicted outputs ŷ(t+ k|k) where the current value of inputs and outputs,
as well as the future inputs are considered. Some MPC algorithm discussed in [15]
are dynamic matrix control, model algorithmic control, and predictive functional
control. Some algorithms have been developed specifically to solve the prediction
model of a DES. For an instance in [70], the control law is obtained by using some
techniques from mixed-integer linear programming (MILP).
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DES modeling and model predictive
algorithm for integrated BCAP

We study in this chapter the problem of integrated berth and quay crane allocation
(I-BCAP) in general seaport container terminals and propose model predictive
allocation (MPA) algorithm and preconditioning methods for solving I-BCAP. Firstly,
we explain the generic dynamical model of berthing process for multiple berthing
positions and multiple quay cranes. The proposed model predictive allocation
algorithm and the corresponding pre-conditioning steps are presented are later
discussed. Afterwards, we present the simulation setup and results. The field
experimental setup and results are presented in the simulation sub-chapter. Finally,
some concluding remarks are provided in the discussion.

3.1 Introduction

An important process in the terminal operations is the seaside operations-level
decision making for the berth and quay cranes allocation. The assignment of berth
positions and quay crane (QC) to incoming ships for handling their cargo plays an
important role in minimizing the turnaround time. We refer interested readers to
the papers [8] and [18] for an extensive review on the berth allocation problem
and its current available solutions.

In the current literature, there are mainly two classes of berth allocation (BAP)
problems which are based on the way they model the ship arrivals. These classes
are the static BAP and the dynamic BAP, which is known as the DBAP as reviewed
recently in [8] and [18]. In the former problem, as presented in [9], [72], [28],
and [79], the entire arriving ships are assumed to have arrived at the port when
the planning for the entire time interval is being made. Hence the berth allocation
problem is solved based on a static set of ships’ arrival time. First come first served
(FCFS) rule, which is the most common method in allocating berth positions and
cranes, is also based on the same assumption. It has been known that the FCFS
method, which is simple and is easily adopted to the incoming ships, is not always
efficient and applicable [39]. For instance, the FCFS can not be used if there is
priority in seaport service where some ships can have higher priority than the
others.
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As opposed to the static set of ships’ arrival time, DBAP takes into account the
uncertainty in the arrival time of the ships within the planning horizon [30], [39],
[40], [52], and [37]. Although the ships’ arrival time is allowed to vary (hence the
“dynamic” term is used), the berthing allocation method in these works is based on
recasting the time-varying problem to a (mixed-integer) linear programming where
the uncertainties is defined as stochastic constraint; similar to the ones used in [30]-
[52]. As another example, in [39], the model of the berthing process comprises of
a set of linear equations (without dynamics) and inequalities that describe physical
bounds as well as uncertainty variables which represent the variation of the ships’
arrival time. The model in [39] does not incorporate dynamical equations that
describe the dynamics of the berthing operations and does not use the available
real-time information of the arriving ships. Consequently the resulting allocation is
conservative as it has to deal with the prescribed uncertainties on the ships’ arrival
and it does not feed back the real-time factual information of the arriving ships.
For enabling a real-time allocation method that can handle a dynamically changing
environment, a simple (yet useful) dynamical model is needed that can capture the
essential elements in the terminal operations dynamics and be applicable for the
development of optimal predictive allocation methods.

A closely related problem to BAP in the terminal operations is the crane allo-
cation problem (CAP). While BAP is related to the allocation of incoming vessels
to specific berth positions, CAP deals with the allocation and scheduling of QC
to the already-assigned berthing ships. Until now, there have been works that
focus on the integration of the BAP and CAP, such as in [20], [71], [40], [93], and
[67] which is known as berth and crane allocation problem (BCAP). But, there are
two main common limitations in the current literature that leads to sub-optimal
solution in practice. The first limitation is related to their inability for handling
real-time factual information that differs from the apriori information used for the
planning, as discussed before. The second limitation is that they solve BAP and
CAP in separate (but sequential) steps, due to complexity in the problem. The first
step is solving the BAP without considering the CAP. The next step is allocating QC
to the already-assigned ships.

As reviewed in [18], the BAP falls into NP-hard problems because of its complex-
ity. The complexity itself is caused by the dimension of the problem i.e. the number
of ships, the number of berth positions, and the number of quay cranes. One of
the popular methods in solving the NP-hard problems, including the BAP, is genetic
algorithm (GA) [18]. The GA allows flexibility for its users to solve the original
problem through GA specific algorithm. The GA is employed in [20] and [40].
We will use a GA-based method as a benchmark for our optimization algorithm.
Another technique to solve the BAP is Tabu search as in [71] where the objective
function is to minimize the housekeeping cost that is affected by the resulting ship
schedule. While in [93], Lagrangian relaxation is used.
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For the CAP, the same techniques as mentioned above are not always used. This
is due to the fact that the BAP and CAP are not solved simultaneously. Therefore,
the method used to solve BCAP can vary. For instance, in [40], GA is used to solve
the BAP, but the same method cannot be applied to solve the CAP because of GA
limitation. Therefore, in [40] the CAP is modified into a maximum flow problem-
based algorithm. While in the works of [20], [71], and [93], GA, a mixed-integer
linear programming (MILP) and sub-gradient method are used, respectively.

A recent work on the integrated berth and quay-crane allocation is the paper
[37]. In [37], the authors propose the use of Particle Swarm Optimization, which
is another nature-inspired computational tools, to solve the integrated allocation
problem. Similar to the setting in [40], as well as, other existing methods for the
integrated BCAP as discussed before, the “dynamics” refers to the uncertainty in the
parameters (which is the number of allocated QC in [37]) and is not suitable for
dealing with real-time information. The inclusion of event-based berth plan which
is able to incorporate the changing in ship arrivals is one of the main contribution
of [37].

The non-robustness and non-adaptiveness of the above mentioned approaches
to the dynamically changing environment has led to the wide adoption in real-life
condition of a very simple heuristic approach, that is a combination of the first-come
first-served strategy for the berthing allocation and of the density-based strategy
for the quay crane allocation.

In order to handle such dynamic environment (including the real-time infor-
mation on arriving ships), we propose a dynamical modeling framework using
a discrete-event system (DES) formulation that describes both the real-time and
continuously changing set of ship arrivals at any given time, as well as, the discrete-
event dynamics during the berthing and loading/unloading process. The DES
formulation fits better to terminal operations than the usual periodic discrete-time
systems description since there is aperiodicity in the ships’ arrival time and the
operations’ time among different berthing positions is usually asynchronous. In
order to handle such dynamic environment (including the real-time information
on arriving ships), we propose a novel real-time integrated berthing and crane
allocation method which is based on model predictive control principle and rolling
horizon implementation.

We also evaluate the performance of our model predictive allocation strategy
using: (i). extensive Monte-Carlo simulations using realistic datasets; (ii). real
dataset from a container terminal in Tanjung Priuk port, Jakarta, Indonesia; and
(iii). real life field experiment in the aforementioned container terminal. To the
best of our knowledge, the latter contribution on the real life field experiment
provides an important insight to the performance of novel allocation method in
reality which is typically not reported in literature.
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3.2 Dynamical modeling of berthing process

We explain a generic dynamical model of berthing process in general seaport
container terminals. First, in order to simplify the presentation, let us consider a
simple berthing problem where there is only one berthing position and one QC. In
this particular case, the decision variable is the berthing ship that is chosen from
the set of ships-ready-to-be-berthed. In the generalization of this simple problem
to the multiple berthing positions and multiple QC, we consider also the number
of QC per berthing position as an additional decision variable. We summarize the
notations in our modeling framework in Table 3.1.

3.2.1 The dynamic modeling of a simple berthing process

Before we start describing the berthing process dynamics, let us briefly recall
the concept of DES which is a class of dynamical systems as expounded in [19].
Generically, DES are characterized by a discrete set of state space whose state
transition is driven by (asynchronous discrete) events over time. Such class of
systems encompasses systems described by automata and petri nets and it includes
queueing systems, traffic systems, communication systems, etc. We refer interested
readers to the book [19].

The DES is usually depicted with a Petri net [19]. The Petri net for the simple
berthing process is provided in Figure 3.1. There are three kind of events which
represent the infrastructure and equipment in berthing process, namely ships, berth
positions and QCs. The events related to ship arrivals are Sb, Sr, Sd which represent
conditions that a ship needs berth, a ship is ready for loading or unloading, and
a ship is ready to depart, respectively. The events related to berth positions are
Bs, Bf which are information telling that a berth position is ready and a berth
operation has just finished, respectively. The events related to QCs are QCs, QCf
which are the conditions that a QC is ready and a QC has departed, respectively.
Two tokens which are available in the Petri net are u and v, the control variables of
ship allocation to berth positions and number of QC allocated to a berthed ship,
respectively. There are three transitions in the Petri net, tbst, tqcs, tfin, which are the
berth starting time, the QC starting time, and the berth/QC finishing time. Those
three transitios will be the state variables in the next-discussed DES model for a
simple berthing process.

Using such DES formalism, let us introduce the event time k ∈ N as a discrete
sequence of events that corresponds to every initiation of a berthing process (at any
berthing position). Thus, each event time k is related one-to-one to a unique time
instance when a berthing process commences and such relation is denoted later by
tbst(k). We denote S(k) as the set of arriving ships to seaport at event time k ∈ N.
Here, arriving ships refer to all ships that have already reported to the port on
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Table 3.1: List of mathematical notations
Notation Description

Decision variables
u(k) a control variable of the ship to be berthed chosen

from the set S(k)

vb(k) a control variable of the number of QC allocated to
the b−th berth position
Parameters

µa Measure defined on elements of S(k) that
gives the arrival time of the element(s)

µo Measure defined on elements of S(k) that
gives the operations time of the element(s)
State variables

tbst(k) the state variable of berth starting time
for the simple BCAP

tqcs(k) the state variable of QC operations time
for the simple BCAP

tfin(k) the state variable of berth finishing time
for the simple BCAP

zb(k) the state variable of berth starting time
of the b-th berth position for the complex BCAP

yb(k) the state variable of remaining operations
time of the b-th berth position for the complex BCAP

xb(k) the state variable of finishing time
of the b-th berth position for the complex BCAP
Sets and indices

k event time
N the set of natural numbers
S(k) a dynamic set of arriving ships to seaport

at event time k
Si(k) The i−th element (ship) in the set S(k)

B The discrete set of berthing positions
|B| The cardinality of the set B
Q The discrete set of quay cranes
|Q| The cardinality of the set Q
j Index of the first earliest available berth position
b Index of the other berth positions, where b 6= j

N The planning horizon
M The dimension of S(k) where M > N

their incoming. We denote the i−th element of S(k) by Si(k). For instance, using
the actual set of ships from our experimental dataset (Table XXX), the set S(k)

can be S(k) = {”Berlian”, ”Fatima”, ”Meratus I”} and consequently S2(k) refers to
”Fatima”.

Associated to S(k), we define two different measures, µa and µo which corre-
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Figure 3.1: A Petri net for a simple berthing process.

spond to the arrival time and operations time, respectively. As an illustration using
the above example of S(k), µa(S2(k)) refers to the arrival time of the ship ”Fatima”,
as it is the second element in the set. Similarly, µo(S1(k)) and µo(S(k)) refer to the
operation time of the ship ”Berlian” and to the total operation time of all ships in
S(k), respectively. Here, the measure µo(Si(k)) refers to the i-th ship operations
time for unloading and loading the entire containers by a single QC. This choice
will be useful later when we take the number of QC as another decision variable.
The total operations time itself depends on the number of containers in a ship,
represented by twenty-feet equivalent unit (TEU), number of QC assigned to the
ship, and quay crane capacity, that is usually in TEU per hour.

As one of the decision/input variables, we denote u(k) as the ship to be berthed
chosen from the set S(k). By defining tbst(k) as the berth starting time, tqcs(k)

as the QC operation time and tfin(k) as the berth finishing time, the state space
equation of the berthing process at a given event time k can be given by

tbst(k) = max{µa(u(k)), tfin(k − 1)} (3.1)

tqcs(k) = max{tbst(k), tfin(k − 1)} (3.2)

tfin(k) = tqcs(k) + µo(u(k)) (3.3)

S(k) = S(k − 1)\u(k) ∪ U(k).

The state space for tbst, tqcs and tfin is N and for S is the discrete set of all
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(admissible) arriving ships to the port. One can further simplify (3.1)-(3.3) into
only two state equations as follows

x(k) = max{µa(u(k)), x(k − 1)}+ µo(u(k)) (3.4)

S(k) = S(k − 1)\u(k) ∪ U(k) (3.5)

where the state x(k) denotes the finishing time tfin(k) and U(k) is the set of new
arriving ships that comes at the event time k. In (3.5), we have that the set of
incoming ships at each time k is the same set from the previous time step modulo
(c.f. the symbol \) the ship that has been taken out from the set for berthing (e.g.,
the ship u(k)) and is added by (c.f. the symbol ∪) a (possible) set of incoming
ship(s) U(k) arriving at time k.

Remark 3.1. Compared to the existing literature ([2], [4], ), our dynamical model-
ing framework for the berthing problem has resulted into state equations involving
set dynamics (c.f. (3.5)). The analysis of such dynamics in the context of sea-
ports interconnection is not trivial and we will not treat this issue in this chapter.
However, we still take into account the set dynamics in our optimization problem
later.

3.2.2 Generalization to the multiple berthing positions and mul-
tiple QC

In this sub-chapter, we will extend the dynamical modeling of a simple berthing
process in (3.4)-(3.5) into multiple berth positions and multiple QC. For defining the
domain of our decision variables, we denote the set of discrete berthing positions
by B where |B| is the total number of positions and we denote Q as the set of QC
where |Q| defines the total number of available QC. Note that we consider only
discrete berthing positions in this chapter. We denote xb(k) as the finishing time of
the b-th berth position at the event time k, for all b = 1, .., |B|.

In this setting, every time an assigned QC has finished an operation at a particu-
lar berth position, a new berthing process will commence where a new ship needs
to be allocated and berthed. This means that this is an event-based dynamical
model, since k is triggered from a completed event from previous k − 1. As before,
the finishing time for the b-th position will be denoted by xb(k).

To capture the complexity, in contrast to the dynamical modeling for the simple
berthing process, we need at least three state variables for every berthing position
that record the starting time tbst, the estimated finishing time tfin and the remaining
operations time. For every b − th berth position, we denote new state variables
zb(k) as the berth starting time and yb(k) as the remaining operations time. We
define an additional control variable vb(k) ∈ N which is the number of QC allocated
to the b-th berth position at step k and we assume that the total number of QC
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is constant during the entire operations. For every event time k, the dynamics is
given as follows. By letting

j = arg min
b

[xb(k − 1)] (3.6)

the dynamics of the j-th berth position is given by

zj(k) = max{xj(k − 1), µa(u(k))} (3.7)

yj(k) = µo(u(k)) (3.8)

xj(k) = zj(k) +
yj(k)

vj(k)
(3.9)

and the dynamics of the other berth positions b 6= j is given by

zb(k) =

{
xj(k − 1) if xj(k − 1) > zb(k − 1)

zb(k − 1) otherwise
(3.10)

yb(k) = yb(k − 1) (3.11)

− [zb(k)− zb(k − 1)]vb(k − 1)

xb(k) = zb(k) +
yb(k)

vb(k)
(3.12)

|B|∑
b=1

vb(k) = |Q| (3.13)

S(k) = S(k − 1)\u(k) ∪ U(k). (3.14)

Equation (3.6) refers to the earliest available berth position (denoted by j)
based on the finishing time of each berth position at the previous event time
k − 1. The state variable z in (3.7) and (3.10) defines the berthing time for every
berth position at every event time k. The state variable y in (3.8) and (3.11) is
the remaining operations time at every berth positions. Finally, as in the simple
berthing process, the state variable x describes the estimated finishing time for
every berth position based on the allocated QC given by the input variable v. The
equation (3.13) ensures that the total number of QC assigned to all berth positions
is the same as the total number of available QC.

An illustration of the complex berthing process is provided in Figure 3.2. In this
figure, two berthing positions are considered namely, the j − th and b− th berth
positions. As discussed above, at the event time k, the j − th and the previously
allocated QC become available since the berthing operations has been completed.
Hence, a new allocation process is started where a new ship u(k) is allocated to
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Figure 3.2: Illustration of the discrete-event systems in the berthing process with multiple
berthing positions and multiple QC. It shows the dynamical relationship between two
berthing positions at each event time k. The variables xj , zj , xb and zb are as defined in
(3.7)-(3.12).

the vacant berth position. Simultaneously, the QC can be redistributed during the
event time k which can result in the in the changes to the remaining operation time
for the other berthing positions (e.g. the b− th berth position in this figure). We
can notice from this figure that the berthing process is an asynchronous process
where we cannot define a periodic time sampling as commonly used for modeling
dynamical systems. Instead we use the event time k.

From the state equation (3.9) and (3.12), one can deduce that the domain of
the state space is

{(x, y, z) ∈ R|B|+ × R|B|+ × R|B|+ | xi > zi, i = 1, . . . , |B|}.

It can also be seen from (3.7) and (3.10) that the state trajectories of the berthing
time z is monotone non-decreasing.

3.3 Model predictive allocation strategy

In this sub-chapter, we propose a model predictive allocation (MPA) strategy
for solving the I-BCAP where we modify the standard model predictive control
approach to our discrete-event systems formulation presented in the previous sub-
chapter. In our proposed approach, the DES model of berthing process as presented
in Sub-Chapter 3.2, is used to optimize the berthing control input u and quay
cranes control input v for a finite events horizon in the future and subsequently,
the solution for the current event is implemented and the horizon is rolled by one
event time further.

In the following, we discuss first the cost functions that will be optimized
by our proposed model predictive allocation algorithm, as well as, be used for
comparing our methods with existing approaches. Subsequently, we present our
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proposed algorithm and discuss two preconditioning steps for tractably solving the
optimization problem.

We explain the structure of the problem. The models given in the previous sub-
chapters are nonlinear with nonlinear dynamics. The nonlinearity of the dynamics
is resulted from the asynchronous dynamics (operations) among berth positions
b at each time step k. Since the problem is nonlinear, the MPA is not necessarily
convex [74]. The problem’s state variables are continuous which represent the
starting time, remaining operations time, and finishing time (zb(k), yb(k), xb(k)).
The control variables of the problem are discrete, first the ship allocation to berth
(u(k)) and second, the number of QC allocated to each ship (vb(k)). As we have
discussed in the previous sub chapters, the difference between our approach (DES-
based model) with the OR-based model is the inclusion of the dynamics of the
input sets. Therefore, the setting of the inputs is more incline to real-time (such as
real-time arrival of the ships (S(k))) than the deterministic/probabilistic aspects
of the sets, which in the state-of-the-art research is usually facilitated by some
statistical function [37, 39, 40].

3.3.1 Objective functions

The cost function of the berthing process, whether for the simplest one or for the
multiple berth positions and QC, is based on both the operations cost and waiting
cost. These two cost components are closely related to the time that the ships spent
at the assigned berth positions for completing their berthing process. The cost
function which will be described in this sub-chapter is nonlinear and this add the
complexity of the MPA.

The operations cost is the cost of operating the QC that are allocated to a
particular ship. Let us denote the operating cost of a QC unit (Euro/hour) by
Co. The operational cost between the step k − 1 to step k is then defined by Co
multiplied by the time needed for unloading/loading containers from/to a ship. In
other words, it is given by Coµo(u(k)) and

Co

(
[xj(k − 1)− zj(k − 1)]vj(k − 1)

+
∑
b6=j

[zb(k)− zb(k − 1)]vb(k − 1)
)
, (3.15)

for a single QC and multiple QC case, respectively, where j is as in (3.6).
On the other hand, the waiting cost is associated to the total time that a

particular ship spends at seaport, i.e. from the time it arrives until it leaves after
the assigned QC have completed the operations. It may happen that the particular
ship has to wait after its arrival, since all berth positions are occupied. We denote
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Cw the waiting cost of a ship unit (Euro/hour).
For simplicity of notation, for the multiple berth positions and multiple QC, we

denote the earliest available berth position at event time k by w(k) which is defined
by

w(k) = arg min
b

[xb(k − 1)]. (3.16)

Based on this description, the cost functions (defined from the step k with
horizonN) for the simple berthing process and for that with multiple berth positions
and multiple QC are given by

J(x, u) =

k+N∑
n=k

µo(u(n))Co + [x(n)− µa(u(n))]Cw (3.17)

and

J(x, y, z, u, v)

=

k+N∑
n=k

(
[xw(n)(n− 1)− zw(n)(n− 1)]vw(n)(n− 1)Co (3.18)

+ max{xw(n)(n− 1)− µa(u(n)), 0}Cw

+
∑

b 6=w(n)

[zb(n)− zb(n− 1)](vb(n− 1)Co + Cw)


respectively.

In this formulation, we have explicitly defined the cost function as a function of
state variables x, y and z and of input variables u and v that satisfy (3.6)–(3.14).
Note that since x > z (as remarked after (3.14)), the cost function J in (3.18) is
positive definite.

3.3.2 Model predictive allocation algorithm

Let us now describe our model predictive allocation (MPA) algorithm. For every
event time k, we denote ẑ(l), ŷ(l), and x̂(l), with the integer l > 0, as the predicted
state variables at event time k + l based on known/measured state variables at
current event time k. Using this notation, ẑ(0) = z(k), ŷ(0) = y(k) and x̂(0) = x(k).
Also, ẑ(−1) = z(k − 1), ŷ(−1) = y(k − 1) and x̂(−1) = x(k − 1). Similar to (3.16),
we define ŵ(l) = arg minb x̂b(l − 1). Using these notations, the MPA algorithm
for the berth and quay cranes is given as follows where we use the event horizon
{0, 1, 2, . . . N} with N > 0 for the predictive state variables (ẑ, ŷ, x̂), which is equiv-



40 3. DES modeling and model predictive algorithm for integrated BCAP

alent to the rolling event horizon {k, k+ 1, k+ 2, . . . , k+N} for the state variables
(z, y, x). For generality, we will describe the algorithm for the multiple berthing
positions and multiple QC case. It is straightforward to adapt the algorithm for the
simple berthing process.

MPA Algorithm

1. For a new event time k, we update the current state variables as in (3.6)–
(3.14).

2. Solve the following optimization problem

min
û,v̂

J(x̂, ŷ, ẑ, û, v̂)

subject to

ẑŵ(l)(l) = max{x̂ŵ(l)(l − 1), µa(û(l))} (3.19)

ŷŵ(l)(l) = µo(û(l)) (3.20)

x̂ŵ(l)(l) = ẑŵ(l)(l) +
ŷŵ(l)(l)

vŵ(l)(l)
(3.21)

and for every b 6= ŵ(l)

ẑb(l) =

{
x̂ŵ(l)(l − 1) if xŵ(l)(l − 1) > zb(l − 1)

zb(l − 1) otherwise
(3.22)

ŷb(l) = ŷb(l − 1) (3.23)

− [ẑb(l)− ẑb(l − 1)]v̂b(l − 1)

x̂b(l) = ẑb(l) +
ŷb(l)

v̂b(l)
(3.24)

|B|∑
b=1

v̂b(l) = |Q| (3.25)

Ŝ(l) = Ŝ(l − 1)\û(l), (3.26)

where l = 0, 1, N , û and v̂ are the predicted control input within the horizon.

3. Implement the berthing control input u(k) = û(0) and the quay crane control
input v(k) = v̂(0).

4. Increment the event time k by one and return to 1).
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3.3.3 Preconditioning steps

For solving the optimization problem in Step 2 of the MPA algorithm above in
the event horizon {0, 1, . . . N}, we need to find an optimal berthing control input
û(0), . . . , û(N) from the space of S(k) and an optimal quay cranes control input
v̂(0), . . . , v̂(N) from the available number of quay cranes |Q|. If |S(k)| and |Q| are
small, one can easily solve the optimization problem by using an exhaustive search.
When they are very large (with, for instance, M := dimS(k)� N), solving such
combinatoric problem is NP-hard and one can use a heuristic method, such as, the
Genetic Algorithm (a popular nature-inspired computational method and is used
for solving I-BCAP in [40]), for finding a (sub)-optimal sequence of N ships that
minimizes the cost function.

As an alternative to GA and HPSO for solving the aforementioned optimization
problem, we propose a preconditioning step, called N -level FCFS, which is a
quasi-exhaustive search that combines FCFS and exhaustive search approaches.
The approach is detailed as follows.

N -level First-Come First-Served (N -level FCFS)

1. Order the set of ships-to-be-berthed at step k, S(k) based on the measure of
the arrival time µa such that

µa(S1(k)) 6 µa(S2(k)) 6 . . . 6 µa(SM (k))

holds where M is the dimension of S(k) and is assumed to be larger than the
horizon N .

2. Pick the first N ships from the ordered set and denote such subset of ships as
D(k).

3. Perform exhaustive search of optimal berthing control input û from D(k)

and v̂ from the available number of quay cranes that solves the optimization
problem in the given event horizon as above.

The above N -level FCFS replaces the optimization step 2 in the MPA algorithm
as given before. This combination will be referred to as MPA-FCFS method through-
out this research. One can also propose another pre-conditioning step based on the
measure of operations time µo that is closely related to the size or container den-
sity of the incoming ships. This method is called N -level Heavy-First Light-Last
N -level HFLL. It has the same procedure with the (N -level FCFS), but, the ship
ordering in the step 1 is now based on the measure of the operational time µo such
that µo(S1(k)) > µo(S2(k)) > . . . > µo(SM (k)). The ordering ensures that the first
N ships that is defined as D(k) in Step 2 will consist of the N heaviest ships from
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the current set of ships at the port S(k). The combination of N -level HFLL and the
MPA algorithm will be referred to as MPA-HFLL method.

3.4 Simulation

To evaluate the efficacy of our proposed method, as well as, for comparing it with
standard and state-of-the-art approaches, we firstly conduct numerical simulations
as presented in this sub-chapter. Subsequently, we present experimental validation
in the next sub-chapter, i.e., Sub-Chapter 3.5. The simulations comprise of two
different setups. In the first simulation, we use an actual dataset obtained from
a real container terminal. In the second one, we use large-scale realistically
generated datasets to test the robustness of our proposed method through Monte-
Carlo simulations.

3.4.1 Simulation setup

Let us describe the simulation setup for both types of datasets where we define
how the data are gathered (or generated) and discuss the underlying assumptions.
For the computer simulations, we use a standard personal computer with a 1.60
GHz Intel Core i7-720QM processor. The experimental data are stored in microsoft
Excel and processed using VBA 2016 and Matlab version 2016a. All other data
processing is done using Matlab version 2016a.

In both settings, we will compare our proposed approach with two different
benchmark methods which are commonly used in practice. The first benchmark
method is the combination of FCFS and density-based QC allocation (DBQA) which
are also the current policies in the terminal considered in the field experiment. The
DBQA allocates the QCs according to the container density of the entire ships that
are currently berthed in the seaport. The second benchmark method is the GA-
based solution as recently proposed in [40]. We remark that Hybrid Particle Swarm
Optimization (HPSO) algorithm, which is another nature-inspired computational
algorithm, has been used to solve the I-BCAP in [37]. In [37], it is reported that the
performance of HPSO-based solution is comparable to the GA-based one. Therefore
we compare our results with the original GA-based solution as in [40] and the
HPSO-based method as in [37].

For the first method, FCFS allocates ships based on their arrival times. The first
earliest arriving ship will be allocated before the second earliest and this process is
recursed until the entire ships are allocated. While for the DBQA, it allocates the
number of QC based on the density of the already-berthed ships. The density of a
ship is defined as the proportion of the particular ship’s load to the total load of the
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Table 3.2: A subset of an actual dataset from an Indonesian seaport in Jakarta used in the
first simulation setup.

No Ship’s name TEU Arrival time Operations
time (QC min)

1 ”Berlian” 665 20-01-14 23:59 1,995
2 ”Fatima” 713 20-01-14 23:59 2,139
3 ”Meratus I” 750 21-01-14 2:20 2,250
4 ”Sejahtera” 463 21-01-14 3:00 1,389
5 ”Vertikal” 894 22-01-14 8:00 2,682
6 ”T. Rejeki” 429 22-01-14 8:15 1,287
7 ”Meratus II” 318 23-01-14 8:30 954
8 ”Meratus III” 392 23-01-14 16:00 1,176
9 ”Perintis” 368 23-01-14 23:00 1,104
10 ”Meratus IV” 807 24-01-14 23:59 2,421

entire ships which berth during the same period of a event time k. The number of
QC allocated to each ship is proportional to its density.

For the second method, the proposed method in [40] consists of two separate
procedures for solving I-BCAP. The berth allocation part is solved using genetic
algorithm (GA) following the same procedure as outlined in [57]. For details
on both the GA-based and the HPSO-based I-BCAP methods, we refer interested
readers to the Supplemental Material in [13] and the paper [37].

We use the terminal standard for the Co, i.e. the cost spent by the terminal
operator to operate QC for loading and unloading containers and it is approximately
given by Euro 1,250 per hour. For the waiting cost of Cw, since there is no data
available, we use information from the terminal, i.e. the estimated hourly cost
spent by every ship to wait for the completed operation in the seaport, which is in
our case is Euro 7,500 per hour [61]. As a benchmark, we refer into [71] which
states that the delay cost for a 15,000 TEU ship is about a million Euro per day.
Since the ships considered in our simulations are at most below 7,000 TEU, our
estimation of Cw is appropriate.

Let us now discuss the two datasets that will be used in our simulation below.

First simulation setup

For the first simulation setup, we used an actual dataset from a seaport in Tanjung
Priuk, Jakarta. The data is obtained from the smallest terminal in the seaport
which consists of 2 berth positions and 7 QC with the same technical specification.
The data is collected from the primary source of Pelindo II from which we get the
permission to use the data for an academic purpose. The time period of the dataset
is from 20 January 2014 to 31 January 2014. There are 28 incoming ships to the
terminal whose loads range from 327 to 2,156 TEU.
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Table 3.3: The setting of simulation scenario.
Scenario Mean Std. dev. Lower bound Upper bound

load (TEU) load (TEU)
Light load 6.0 0.6 1,000 3,000

Normal load 5.5 0.5 3,000 5,000
Heavy load 5.0 0.4 5,000 10,000

A subset of the data for the first 10 ships is shown in Table 3.2. The measure µa
and µo that we define in Sub-Chapter 3.2.1, can be obtained from the arrival time
and from the operations time (in QC min.), respectively.

Second simulation setup

For the second simulation setup, we generate large-scale realistic datasets for
evaluating the efficacy of our method via Monte-Carlo simulations. In total, there
are 300 different datasets, representing a combination of various different terminal
settings, as well as, ship loads which are generated as follows.

For each dataset, we generate a set of 50 arriving ships according to one of the
following scenarios: light load, normal load, and heavy load. The first scenario is
the case where incoming ships arrive to the seaport in sparse inter-arrival times,
and the loads are not high. On the other hand, the heavy load scenario is the
opposite situation of the light load scenario.

The ship arrivals data is generated based on log-normal distribution to avoid
negative value of inter-arrival times. We obtain the parameters from real data as
described in Sub-Chapter 3.4.3, where from the 29 ship arrivals, the log-normal
mean and standard deviation are 5.96 and 0.63 hours, respectively. Based on
interviews with the operators who work at the seaport of Tanjung Priuk from which
the data were taken, the arrivals can be categorized as a light one [61]. We also
generate the ships loads (TEUs) based on the uniform distribution. The basis to
categorize ships loads is derived from common container vessels classifications.
The feeder ships’capacity are usually up to 3,000 TEUs. The Panamax ships are up
to 5,000 TEUs. While the Post-Panamax is a generation of ships that are able to
carry 10,000 TEUs. The important assumption is each of berth positon can handle
all kind of ships regardless of their sizes. Hence, we generate our parameters as
follows in Table 3.3.

For each different ship load setting, we test our method with four different
terminal settings. The number of berth positions in each setting are 2, 3, 4, 5,
respectively, while the QC numbers are 5, 7, 9, and 11, respectively. In all of these
types of terminals, the technical specifications of the berth and QC are all the same.
Table 3.4 – 3.6 are subsets of realistically generated datasets that are used in the
Monte Carlo simulation
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Table 3.4: A subset of a dataset of the first 10 of 50 arriving ships for the light load scenario.
Ship Arrival Arrival Load
index date time (TEU)

1 1 March 2016 05:50 AM 1,829
2 1 March 2016 12:04 PM 1,952
3 1 March 2016 14:08 PM 2,891
4 1 March 2016 18:25 PM 1,750
5 1 March 2016 22:29 PM 1,674
6 2 March 2016 07:38 AM 1,149
7 2 March 2016 13:50 PM 1,709
8 2 March 2016 20:07 PM 2,079
9 2 March 2016 23:57 PM 1,697
10 3 March 2016 05:29 AM 1,478

Table 3.5: A subset of a dataset of the first 10 of 50 arriving ships for the normal load
scenario.

Ship Arrival Arrival Load
index date time (TEU)

1 1 March 2016 02:26 AM 3,211
2 1 March 2016 07:17 AM 4,137
3 1 March 2016 09:17 AM 4,372
4 1 March 2016 14:08 PM 3,288
5 1 March 2016 18:59 PM 3,089
6 2 March 2016 02:29 AM 4,383
7 2 March 2016 06:16 AM 4,363
8 2 March 2016 11:58 AM 3,403
9 2 March 2016 15:04 PM 3,786
10 2 March 2016 21:47 PM 4,539

3.4.2 Benchmarking methods

We use two benchmarking methods from [37] and [40] as comparison to our
proposed MPA algorithm. We modify the HPSO algorithm used in [37] to:

1. Estimate the working duration of a ship which includes the QC setup time
and handling time. In the simulation, we assume the setup time is fixed while
the handling time follows the formulation of operations time (µo).

2. Set general parameters values of n, m, q, i, C1, C2, C3, ρ, α, β, ts, tm as in
[18]. Based on those parameters, we initialize a population of particles and
seed of random positions (Xi) which is used in the iteration.

3. Determine speeds (Vi).

4. Determine the positions of the swarm particles that represent the berth
position and number of QC allocated.
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Table 3.6: A subset of a dataset of the first 10 of 50 arriving ships for the heavy load
scenario.

Ship Arrival Arrival Load
index date time (TEU)

1 1 March 2016 01:47 AM 9,607
2 1 March 2016 04:16 AM 9,362
3 1 March 2016 06:25 AM 6,127
4 1 March 2016 08:55 AM 5,300
5 1 March 2016 10:26 AM 5,540
6 1 March 2016 14:17 PM 8,713
7 1 March 2016 16:19 PM 8,929
8 1 March 2016 18:51 PM 5,712
9 1 March 2016 22:11 PM 5,881
10 2 March 2016 00:40 AM 5,818

5. Identify events, their event times, owners (ships), and types which is enumer-
ated for the entire possible combinations.

6. Find the next event time t(k).

7. Transform the swarm particles into rank sets that follow dynamic rank order
values (DROVs).

8. Compare the fitness value (FV) of the events. Select the events with the
highest FVs.

The second benchmark method is the GA-based I-BCAP algorithm from [40].
We modify the original algorithm to suit our problem settings as follows:

1. Set the number of chromosomes where each chromosome is represented as
character strings and the length/digits of the strings is

|S|+ |B| − 1 (3.27)

which is number of ready-to-be-berthed ships plus number of berth positions
minus one. The |B| − 1 character strings are used as separator so that the
remaining character strings (associated to ships) can be grouped into |B| berth
positions. For each group of ships, the order of the berthing is determined by
the position of the character string in that particular group.

2. For initialization, randomize the sequence in each chromosome.

3. Following the formulation in (3.6)-(3.5), calculate the current objective
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function which is given by

g =

N∑
k=1

([xj(k − 1)− zj(k − 1)]Co. (3.28)

+ max{xj(k − 1)− µa(u(k)), 0}Cw
+
∑
b6=j

[zb(k)− zb(k − 1)]Co + Cw).

4. Transform the objective function g to a fitness value defined by

f = 1/(1 + exp(g/10, 000)) (3.29)

where f has a value range from 0 to 0.5.

5. Reproduction. This step is to copy each of individual chromosome with the
probability that is proportional to the fitness values. Thus, a chromosome
with a higher fitness value will have more copies at the next generation.

6. Crossover. After reproduced chromosomes constitute a new population, this
step is performed to introduce new chromosomes (or children) by recombin-
ing current strings. The crossover operator is the 2-point crossover [40].

7. Mutation. We perform this step to introduce random changes to the chromo-
somes.

8. Repeat the steps 3-7 for a predetermined number of generations.

Based on the above ship sequencing result, a maximum flow algorithm is used
to allocate the QC following the procedure in [40]. As in a standard maximum
flow algorithm, a network is evaluated in order to find an optimum flow between
two nodes in each edge. The network here is the ship schedule obtained from the
BAP where the nodes/vertices represent the ships and the edges represent transfer
link between two ships. There are two additional nodes which are the sink and the
source nodes which serve as the start and end nodes. After solving the algorithm,
the prior ship schedule from the BAP algorithm may be changed due to infeasibility
of the crane allocation.

3.4.3 Simulation results

In this sub-chapter, we provide simulation results for the multiple berthing positions
and multiple QC case.
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Table 3.7: Simulation result of the berth and quay crane allocation for multiple berth
positions and multiple QC using our proposed MPA with N -level FCFS pre-conditioning step.

N Allocation Total cost Total cost
Strategy MPA-FCFS MPA-HFLL

1 FCFS & DBQA 3,921,923 3,921,923
2 MPA-FCFS 3,828,642 3,883,197
3 MPA-FCFS 3,642,352 3,775,005
4 MPA-FCFS 3,547,157 3,619,357
5 MPA-FCFS 3,364,535 3,586,977
6 MPA-FCFS 3,230,941 3,434,669
7 MPA-FCFS 3,162,912 3,370,241
8 MPA-FCFS 3,115,403 3,308,427

GA-based method 3,445,444 3,445,444
HPSO-based method 3,246,945 3,246,945

First simulation results

Using the first simulation setup as presented before, we apply N -level FCFS and N -
level HFLL pre-conditioning step to our proposed MPA method and the simulation
results are shown in Table 3.7 where the event horizon length N is taken between
1 and 8. In these tables we provide also results using the two benchmark methods
as described in Sub-Chapter 3.4.1.

As shown in Table 3.7, the total cost using our proposed MPA method monoton-
ically decreases as the event horizon length N increases. The MPA with N -level
FCFS and N -level HFLL with a horizon of 8 can already decrease the total cost of
20.56% and 15.64%, respectively, compared with the traditional FCFS and DBQA
methods. In comparison to the benchmark from [40], the MPA method with 8-level
FCFS and 8-level HFLL pre-conditioning result in cost reduction of 9.58% and
3.98%, respectively.

To show the effect of these various allocation methods, we present in Figure
3.3(a)-(d) the allocation results using the FCFS & DBQA, our proposed MPA-FCFS
methos with N = 8, the HPSO-based I-BCAP method as in [37], and the GA-based
I-BCAP method as proposed in [40], respectively.

The small box in the right-upper part of every ship’s schedule box represents
number of QC assigned to the particular schedule. We can observe from these
figures that the different methods can produce different berthing and QC allocation.
For instance, it can be seen from Figure 3.3(a) which shows the allocation result
using FCFS & DBQA, that ”Meratus I” is berthed prior to ”Sejahtera” which conforms
to the arrival data as given in Table 3.2. On the other hand, our proposed method,
which gives up to 20% cost reduction as shown in Table 3.7, gives priority to
”Sejahtera” over ”Meratus I”. Surprisingly, the GA-based method yields a similar
allocation strategy as the FCFS & DBQA, as shown in Figure 3.3(d), although there
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Figure 3.3: The resulting berth and quay crane allocation for the first 7 event time using:
(a). the de-facto FCFS and DBQA method; (b). our proposed MPA-FCFS method; (c).
HPSO-based I-BCAP method as in [37]; and (d). GA-based I-BCAP method as proposed in
[40]. The berth positions are shown in the vertical axis and the actual real time (and the
event time k) is shown side-by-side in the horizontal axis.Each box represents allocated ship
at different berth position where the label describes the ship’s name and the number on the
top-right corner of every box gives the allocated QC.

are differences for the higher event time k not shown in the figures.
One can notice from Table 3.7 that as the event horizon length N increases, the

complexity has also increased and resulted in longer calculation time per event
time. The complexity will also increase as the dimension of the problem increases,
i.e. the number of berth positions, quay cranes, and incoming ships. But, we can
see that with N of 8 the numerical optimization only needs calculation time of
156 sec which is relatively fast in comparison to the average operational time for
loading and unloading ships. It can be seen from Figure 3.3(a) and Figure 3.3(b)
that the completed ship operation time is around four hours at the lowest.

Second simulation results

We simulate each of 300 datasets according to discrete-event system as in (3.6)
– (3.14). For each dataset, we evaluate the performance of the FCFS & DBQA,
MPA with N -level FCFS, as well as, with N -level HFLL pre-conditioning steps (with
N = 8), the GA-based and HPSO-based I-BCAP methods.

The average BCAP cost reductions are presented in Figure 3.4, 3.5, and 3.6,
where we present a summary of cost reduction for each berth and quay crane
configuration from 100 simulations each with respect to the de-facto method of
FCFS & DBQA (in percentage). The standard deviation is also given for each
method and each scenario in these figures. The horizontal and the vertical axis
are the seaport configuration and the average reduction cost, respectively. The
cost reduction is calculated as a percentage from the traditional FCFS & DBQA
method. Vertical line at each average cost point gives the standard deviation. We
also present the average calculation time for each method and for each scenario in
Figure 3.7.
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Figure 3.4: Average BCAP cost reduction from 100 datasets for each berth and QC configu-
ration with the light load scenario.

Figure 3.5: Average BCAP cost reduction from 100 datasets for each berth and QC configu-
ration with the normal load scenario.

From these results we can see that for the entire scenarios, our proposed MPA
with both pre-conditioning steps outperform the traditional method, as well as,
when compared to the benchmark method as in [40]. Note that in all of these
simulations, the ships in each scenario are not necessarily the same, because the
datasets for each simulation run is different.

Table 3.8 – 3.11 give the simulation results of I-BCAP that are solved using
our proposed methods (MPA-FCFS and MPA-HFLL), the de-facto FCFS & DBQA
combined method and the GA-based I-BCAP method.
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Figure 3.6: Average BCAP cost reduction from 100 datasets for each berth and QC configu-
ration with the heavy load scenario.

Figure 3.7: The average calculation per time-step of each method for normal load scenario.
The horizontal and vertical axis are seaport configuration and calculation time in seconds,
respectively.

3.5 Field Experiment

In this sub-chapter, we present field experimental results using our proposed
method to a real container terminal in Tanjung Priuk, Jakarta. The main purpose
of the experiment is to validate our approach in a real-life field experiment. We
first discuss the experimental setup in Sub-Chapter 3.5.1 and then present the
experimental result in Sub-Chapter 3.5.2.
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Table 3.8: Simulation result of I-BCAP for a terminal with two berth positions and five
QC using our proposed methods (MPA-FCFS and MPA-HFLL) which are compared with the
standard method of FCFS & DBQA and state-of-the-art method.

Allocation Average Ave. Calc. time
Strategy Total cost (Euro) per step (s)
Sc. 1: Light load
FCFS & DBQA 7,824,079 0.097
MPA-FCFS 7,342,260 99.739
MPA-HFLL 7,529,231 99.145
HPSO 7,530,542 68.185
GA-based approach 7,704,715 45.244
Sc. 2: Normal load
FCFS & DBQA 15,765,822 0.097
MPA-FCFS 15,080,885 101.066
MPA-HFLL 15,261,459 98.701
HPSO 15,212,767 67.120
GA-based approach 15,591,721 45.137
Sc. 3: Heavy load
FCFS & DBQA 31,696,101 0.102
MPA-FCFS 29,988,507 99.699
MPA-HFLL 30,374,911 104.284
HPSO 30,400,539 68.344
GA-based approach 31,302,216 44.962

3.5.1 Experimental setup

The experiment was conducted in Port of Tanjung Priuk, Jakarta for one week in
2016. Indonesia Port Corporation (IPC) as the port owner as well as the operator
in the terminal that we study, has given us permission to do the real life field
experiment for an academic purpose. In this work, to protect the identity of
shipping liners, we anonymize the ship names, as well as, the time information
where we initialize the time according to the first arriving ship and maintain the
information on the inter-arrival time and on the load information. The original
data are available upon request.

We study the arrivals of ships to a terminal which has two berth positions and
seven QC, the same terminal from which the data in Sub-Chapter 3.4.1 is obtained.
There were, in total, eleven ships which came to the terminal as anonymously
shown in Table 3.12.

We can see in Table 3.12 that the arrival time is separated into two different
data. The planned arrival time, known as the expected arrival time (ETA) reflects
the schedule sent by each shipping liner to the terminal operators as an integrated
part of container manifests and is one of the main information sources used
by the terminal planner. Considering the very dynamics situation of maritime
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Table 3.9: Simulation result of I-BCAP for a terminal with three berth positions and seven
QC using our proposed methods (MPA-FCFS and MPA-HFLL) which are compared with the
standard method of FCFS & DBQA and state-of-the-art method.

Allocation Average Ave. Calc. time
Strategy Total cost (Euro) per step (s)
Sc. 1: Light load
FCFS & DBQA 6,535,782 0.098
MPA-FCFS 5,969,846 100.541
MPA-HFLL 6,028,286 99.792
HPSO 6,004,895 67.453
GA-based approach 6,109,702 45.964
Sc. 2: Normal load
FCFS & DBQA 13,095,712 0.099
MPA-FCFS 12,004,630 100.697
MPA-HFLL 12,136,182 100.649
HPSO 12,158,785 67.569
GA-based approach 12,311,713 45.345
Sc. 3: Heavy load
FCFS & DBQA 25,116,485 0.099
MPA-FCFS 23,816,582 100.042
MPA-HFLL 24,100,122 108.388
HPSO 24,106,448 68.392
GA-based approach 24,831,863 45.685

transportation, the planned schedule may alter due to many factors. The two most
known factors causing delay are weather and delay from previous seaports. As
a result, the actual arrival time may differ from the planned one, as given in the
fourth column of the table. Ship index 5, for instance, arrived five hours late. Due
to its real-time optimization capability, our proposed method can use the actual
arrival time information. We note that there is other source of uncertainties that is
not taken into account in our modeling framework explicitly which has influenced
the performance of our algorithm. It is the delay caused by the movement of quay
cranes from one berthing position to another. Despite this, as shown in the next
sub-chapter, our algorithm can still perform very well.

3.5.2 Model validation and experimental results

As we have a limited amount of time (one week) and as the incoming ships
always vary (in terms of loads and arrival time), it is not possible to conduct field
experiments using different algorithms under exact condition. Therefore, we used
the whole week operations for evaluating our proposed MPA-FCFS method where
the parameters in our predictive model as in (3.6) – (3.14) are based on apriori
information from the bill of lading and from the real-time information. Note that



54 3. DES modeling and model predictive algorithm for integrated BCAP

Table 3.10: Simulation result of I-BCAP for a terminal with four berth positions and nine
QC using our proposed methods (MPA-FCFS and MPA-HFLL) which are compared with the
standard method of FCFS & DBQA and state-of-the-art method.

Allocation Average Ave. Calc. time
Strategy Total cost (Euro) per step (s)
Sc. 1: Light load
FCFS & DBQA 5,500,804 0.100
MPA-FCFS 5,030,628 99.245
MPA-HFLL 5,153,078 99.517
HPSO 5,095,430 68.982
GA-based approach 5,329,191 45.561
Sc. 2: Normal load
FCFS & DBQA 10,726,893 0.098
MPA-FCFS 10,207,620 99.803
MPA-HFLL 10,346,651 99.078
HPSO 10,428,365 66.981
GA-based approach 10,488,030 45.073
Sc. 3: Heavy load
FCFS & DBQA 21,479,989 0.099
MPA-FCFS 19,982,082 99.665
MPA-HFLL 20,331,890 99.387
HPSO 20,503,879 68.548
GA-based approach 20,873,761 44.874

the implementation of MPA-FCFS policy to the incoming ships is based on the
simulation results in Sub-Chapter 3.4.3 where it is shown that MPA-FCFS method
performs consistently better than MPA-HFLL policy. Based on the resulting schedule
using our MPA-FCFS, we then validate our predictive model (3.6) – (3.14) against
the information from the actual berthing process. Figure 3.8 shows the evolution
of one of the state variables (namely, the state of finishing time for the first berth
position, denoted by x1(k)) based on our predictive model using the optimized
ships schedule in comparison to that obtained from the actual one. In this figure,
we can see clearly that our modeling framework in (3.6) – (3.14) captures well the
dynamic behaviour of berthing process. The small discrepancy that is observed in
this figure is mainly due to the extra dynamics introduced by the QC’s movement.

Using the validated predictive model (without incorporating the delay caused
by the movement of QC), we compare the performance of our MPA-FCFS with the
de-facto FCFS & DBQA combined method, with the GA-based I-BCAP method and
with the HPSO-based I-BCAP method. The results are summarized in Table 3.13.
We calculate the cost incurred according to formula as described in Sub-Chapter
3.2.1, where we used the same unit costs as provided in Sub-Chapter 3.4.1. From
this table, we see that our proposed MPA-FCFS method has a lower cost of 6%, 3%
and 1.8% than the standard method, the GA-based method [40] and the HPSO-
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Table 3.11: Simulation result of I-BCAP for a terminal with five berth positions and eleven
QC using our proposed methods (MPA-FCFS and MPA-HFLL) which are compared with the
standard method of FCFS & DBQA and state-of-the-art method.

Allocation Average Ave. Calc. time
Strategy Total cost (Euro) per step (s)
Sc. 1: Light load
FCFS & DBQA 4,155,288 0.098
MPA-FCFS 3,910,259 100.714
MPA-HFLL 4,046,987 100.377
HPSO 4,054,390 67.103
GA-based approach 4,122,165 45.069
Sc. 2: Normal load
FCFS & DBQA 8,495,331 0.099
MPA-FCFS 7,879,732 100.661
MPA-HFLL 8,130,301 100.950
HPSO 8,210,458 67.010
GA-based approach 8,297,125 45.361
Sc. 3: Heavy load
FCFS & DBQA 17,320,403 0.099
MPA-FCFS 15,512,533 100.788
MPA-HFLL 15,828,258 100.638
HPSO 16,000,541 67.946
GA-based approach 16,240,233 45.334

Table 3.12: Anonymized dataset of arriving ships in the field experiment.
Ship Arrival Planned Actual Load
index date arrival arrival (TEU)

time time
1 Day 1 00:00 06:43 7,379
2 Day 1 17:00 17:12 5,428
3 Day 2 01:00 01:00 5,639
4 Day 3 12:00 12:00 6,988
5 Day 4 08:00 13:00 6,523
6 Day 4 11:35 11:20 4,625
7 Day 5 09:40 09:40 4,028
8 Day 5 13:00 13:50 6,853
9 Day 6 07:10 08:00 7,219

10 Day 6 17:00 17:00 7,629
11 Day 7 10:40 11:00 8,725

based method [37], respectively. This agrees qualitatively with our simulation
results discussed in the previous sub-chapter. When we take into account the extra
cost incurred due to the delay in moving the assets (quay cranes), it provides an
explanation to the lower performance than that expected from the simulations
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Table 3.13: Comparison of berth and quay crane allocation performance using the proposed
MPA-FCFS method, using the standard FCFS & DBQA combined method and using the GA-
based I-BCAP method as in [40]. The MPA-FCFS method is based on a field experiment in
Tanjung Priok, Jakarta, while the others are based on a validated predictive model that is
used in the field experiment.

Allocation Average
Strategy Total cost

FCFS&DBQA 3,921,923
MPA-FCFS 3,687,532

HPSO-based approach as in [37] 3,754,765
GA-based approach as in [40] 3,812,345

Figure 3.8: The plot of trajectory of state variable x1(k) that describes the finishing time of
the 1st berth position. The trajectory that is based on the predictive model (3.6) – (3.14) is
shown in + while that obtained from the actual field experiment is shown in ×. The abscissa
is the event-time k and the ordinate is the value of the state variable at each event-time.

where we can potentially gain up to 8%-9% of cost reduction (c.f. Figure 3.4,
3.5, 3.6). It is therefore foreseen that the inclusion of additional DES models
that describe the dynamics of various assets in the berthing process can increase
the predictive capability of such integrated models and subsequently improve the
real-time optimization algorithm in our MPA method.

3.6 Discussion

We have formulated a dynamical modeling framework of berthing process for
general seaport container terminals. The framework can capture the discrete-event
dynamics of multiple berthing positions and multiple quay cranes, as well as,
asynchronous berthing time for different berthing positions. The discrete-event
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model has been used in the development of a real-time model predictive allocation
strategy for solving the I-BCAP. We have also presented several pre-conditioning
steps to tractably solve the optimization problem. Simulation results have shown
the efficacy of our proposed method where Monte Carlo simulations have been
performed using large-scale realistically-generated datasets.

We have also conducted a field experiment in an actual operational container
terminal where our proposed method was applied. The results show that our
proposed method still outperforms both the standard and the state-of-the-art
methods (based on the validated model).

The BCAP dynamical models and the MPA algorithm that have been developed
in this chapter will be the main foundation in this thesis. The modeling framework
will later be extended to two different implementation. In Chapter 5, an analysis
of container terminal network with implementation of MPA-based BCAP in the
selected seaports. In Chapter Chapter 4, the modeling framework is extended to
the integrated container terminal operations, in which, not only the seaside, but
the storage and transfer operations are also considered. The mathematical analysis
of the BCAP modeling framework and MPA algorithm are provided in Chapter 4.
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Chapter 4

On the optimal input allocation of DES with
dynamic input sequence

We present an analysis to the re-ordering of the input sequence to the combinatorial
optimization problem in this section. The mathematical analysis in this chapter
is based on the modeling framework of the discrete dynamical and asynchronous
berth and quay crane allocation problem in Chapter 3. We will firstly explain
the systems’ descriptions of our discrete-event time systems with dynamic input
sequence (DESDIS) and the associated combinatorial optimization problem. Later
on, we present the problem of combinatorial optimization where the input sequence
changes dynamically with possible new additional sequence and we propose a
simple control law that solves the optimization problem. In particular, we show
that the resulting control law is based on a particular re-ordering of the input
sequence.

4.1 Introduction

Discrete-event systems (DES) are a class of systems where the state variables
evolve according to discrete events that take place based on interactions among
different (continuous- and/or discrete-) state variables in the systems [21]. A
classical example of DES is a queuing system, in which, a new discrete-event is
associated to the serving of new customer after the previous one from the previous
discrete-event time has been served.,We refer interested readers to [19] for an
extensive discussion on the modeling and analysis of DES.

For the past few decades, DES framework has been used to model and to
control a large class of physical and cyber-physical systems, which includes, the
control of logistics systems, internet congestion control, manufacturing systems and
many others that can be described by petri nets or finite-state machine/automata.
With its wide application, the DES has attracted many researchers, including in
the control community. The research efforts in DES from the control systems
perspective can be found in [21], [27], [63] and [68]. Fairly recent applications
of DES in transportation and manufacturing systems are presented in [12] and
[13] for container terminal operations and in [70] for general transportation and
manufacturing systems.
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When DES involve discrete-state with discrete input variables, the optimiza-
tion/control of such DES leads to a combinatorial optimization problem which is
NP-hard. One can resort to a standard algorithm for solving combinatorial problems
in DES which is the branch and bound (BB) method. As shown in [58], the BB
method can converge to the global maxima/minima for some classes of DES opti-
mization problem. Other well-known heuristic methods for solving combinatorial
optimization problems with DES are genetic algorithm and particle swarm methods.
In [58], an analysis is presented and shows that from the Chebyshev inequality, the
solutions obtained from the BB method converge to the global maxima/minima.
It is also further shown that the discrepancy between the heuristic and global
optimization is not significant.

Although the BB and other heuristic methods can be used to find a sub-optimal
solution to the combinatorial problem for DES, the main drawback lies with the
facts that the algorithms are limited only to the case where the problem can be
recasted as a static optimization problem [25]. In this case, the static refers to
constraining the dynamic problem by some terminal conditions and all possible
control input are well-defined or known apriori within the given time interval (up
to the terminal time).

This approach may no longer be feasible when the terminal conditions are
free with infinite time horizon and when the input set changes dynamically and
cannot be known apriori ahead of time. The latter case is commonly found in
many DES application, such as transportation, scheduling, and logistics, where
the actual incoming and outgoing goods always differ from the transmitted goods
manifest and where the actual incoming and outgoing vehicles always differ from
the precomputed plan. By static, we define that the input sets are known a priori
before the optimization processes start. Therefore, a dynamic input set with possible
changing input set cannot be handled by the BB method. The real time inputs are
commonly found in many DES application, such as transportation, scheduling, and
logistics.

In [25], a dynamic DES model is developed for train scheduling problem where
the frequent changes to the train operations (schedule, obstacle, rail availability)
have limited the use of BB and similar algorithms. Instead of using BB, a greedy
travel advance strategy is proposed in [25] on the basis of a dynamic DES model,
which is able to find the sub-optimal control inputs of the train schedules with a
framework similar to line search algorithm. The possible solutions in each iteration
are limited to the group of trains in the same vicinity of direction and speed.
Another related paper is [32] where stabilization problem for a particular DES with
dynamic input set is considered. In this case, the events in DES are asynchronous
where the states of each sub-system do not necessarily follow the same clock times
and an LMI-based controller is proposed to solve such problem. By solving a
Lyapunov function and linear matrix inequalities (LMI), the controller are able to
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give sufficient results, where the cost function monotonically decreases.
A similar DES with asynchronous event transition can also be found in our

previous works as in [12, 13]. In these works, a model predictive allocation (MPA)
method is proposed in conjunction with a pre-conditioning step. In particular, the
DES model of container terminal operations is used to compute an optimal input
sequence for a finite event horizon where the input sequence is heuristically pre-
conditioned for accommodating the combinatorial optimization step. The proposed
MPA method follows the same procedure as the model predictive control approach.
The efficacy of our proposed method has been shown in both simulation as well as
in real-life experiment. In this method, we have used the well-known first-come
first-serve (FCFS) or the heavy-first light-last (HFLL) pre-conditioning step to the
current input sequence and then truncate it, prior to computing the optimal solution
in the model predictive step. While the re-ordering of the sequence (either using
FCFS or HFLL) has played an important role in [12, 13], the mathematical analysis
on the re-ordering of the input sequence in the pre-conditioning step is still missing.

In this research, we present an analysis to the re-ordering of the input se-
quence to the combinatorial optimization problem. The systems’ descriptions of
our discrete-event time systems with dynamic input sequence (DESDIS) and the
associated combinatorial optimization problem are presented in Sub-Chapter 4.2.
In Sub-Chapter 4.3, we present the problem of combinatorial optimization where
the input sequence changes dynamically with possible new additional sequence and
we propose a simple control law that solves the optimization problem. In particular,
we show that the resulting control law is based on a particular re-ordering of the
input sequence. Finally, conclusions and future works are presented in Sub-Chapter
4.4.

4.2 Preliminaries and Optimal Input Allocation Prob-
lem

Notations. We denote the vector of all ones by 1. A matrix A ∈ Rn×n is called a
stochastic matrix if Aij > 0 for all i, j and

∑
j Aij = 1 for all i where Aij is the (i, j)

element of A. Let us consider an undirected graph G given by the (V,E) where V
is the set of vertices and E ⊂ V × V is the set of edges.

Such graph G can be represented by the stochastic matrix A where the element
Aij shows the communication weight from the j-th vertex to the i-th vertex. The
graph G is called connected if for every pair vertices there is a path on the graph
that connects these vertices. Equivalently, it is connected if the kernel of A has rank
one and is given by 1.

Let us consider the following generic model of discrete event system Σ whose
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input is taken from a time-varying sequence:

Σ : x(k + 1) = Ax(k) +Bf(x(k), u(k)), (4.1)

where x(k) ∈ Rn+ denotes the state variables (such as, the berth starting time, berth
operations time, berth finishing time, etc.), k is the discrete-event time variable,
A ∈ Rn×n and B ∈ Rn×m is assumed to be non-negative matrix, i.e., aij > 0 and
bij > 0. This system description is relevant for describing the dynamic behaviour of
planning and scheduling in logistics systems, particulary in the container terminal
operations, which will be shown later in our example.

We remark that if we consider the case where f = 0 then our assumption on A
implies that (4.1) describes a positive discrete-event system. In this case, x(0) > 0

(where the inequality is interpreted element-wise) implies that x(k) > 0 for all
k > 0. Each element in the function f : Rn+ × Rm+ → Rm+ is assumed to be positive
definite function, i.e., fi(x, u) > 0 for all (x, u) 6= (0, 0) and for all i, which is
monotonically increasing with respect to the second argument and is uniformly
with respect to the first argument. More precisely, f satisfies

(u2 − u1)T [f(x, u2)− f(x, u1)] > 0 ∀u1 6= u2,∀x.

The proof of the lemma follows trivially from the property of a contracting
non-negative matrix A. A transition matrix whose eigenvalues are outside the
open unit circle (i.e. σ(A) ∈ C\B1 with B1 be an open ball with radius of one and
centered at the origin).

Let us describe again our general system in (4.1). In fact, for logistics systems
example as given below, we may consider the case where ρ(A) = 1, in which case,
the state x grows exponentially. This is relevant for the situation where x describes
the time variables of the underlying process, such as, loading time, finishing time,
or the variables that describe the cumulative number of the processed goods.

The input variable u(k) ∈ Rm is the decision/input variable that is taken from
a (possibly, infinite) sequence Uk = {υi}i∈{1,2,...,N}. We further assume that the
evolution of u(k), x(k) and Uk follow the following rule.

Discrete-Event Systems with Dynamic Input Sequence (DESDIS):

(A1). (Initialization.) Let the initial sequence U0 be given by U0 := {υi}i∈{1,2,...N}
with υi ∈ Rm+ for all i = 1, . . . N with N be the dimension of initial sequence
and let k = 0. For every step k = 0, 1, . . . , N the following operation is
executed:

(A2). (Decision making step and state evolution.) If Uk 6= ∅ then let the input u(k)

be given by an element from Uk, i.e., u(k) ∈ Uk (which can be based on a
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particular input allocation/control law which will be discussed later) and the
state is updated according to (4.1). Otherwise, u(k) = 0.

(A3). (Update of the input sequence.) If Uk 6= ∅ then the decision sequence is
updated according to Uk+1 = Uk\u(k)_Vk where \ is the element removal
operation from the sequence, _ is a concatenation operator of two sequences
and Vk is the possible new additional sequence at step k. In other words

Uk+1 = {Uk\u(k), Vk}.

Otherwise Uk+1 = Vk.

(A4). (Update of the event time.) Let k = k + 1 and return to (A2).

Note that for the particular case of Vk = u(k) (i.e., Uk+1 = Uk or the element
that is taken from U(k) is directly replenished by an identical element {u(k)}), we
have the usual description of linear discrete-time systems with atomic input set
U . For the control of such systems with a fixed atomic input set U , we can refer
interested readers to the literature on discrete-event control systems, on hybrid
control systems and on finite-state automata.

When A is a stochastic matrix and f = 0, it is well-known that the state trajec-
tories of the autonomous system will reach consensus (see, for instance, [10, 34]).

Lemma 4.1. Consider the system (4.1) with f = 0 and A be stochastic matrix. Then
for every x(0) ∈ Rn+, there exists x∗ ∈ Rn+ such that limk→∞ x(k) = x∗, i.e., the state
trajectory x converges to a positive constant vector. Moreover if the graph associated
to A is strongly connected then x∗ = a1 for some constant a > 0.

Example 4.1. As a simple example to the system described in (4.1), we can
consider the following system

x(k + 1) = x(k) + F (u(k)) (4.2)

where x(k), u(k) are scalar and the function F is a positive definite function. This
simple dynamics may represent many logistics systems where the state x represents
a particular operations time. For example, a simple berthing process [12] can
be described by (4.2) where x(k) defines the berthing time for the k-th event
and F defines the operational time of loading/unloading the ship whose size is
associated to u(k). In this case, each element in the sequence Uk represents the set
of ship’s size that are waiting to be berthed. When a ship u(k) has been assigned
for berthing, then this ship will be no longer in the set Uk and at the same event,
a new set of arriving ships Vk can call to the port for berthing. After the berthing
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process of the ship u(k) is completed, the ship will continue its journey to its next
destination and therefore it will also not appear in the next input sequence Uk+1

and Vk will be added to this new sequence.
Other example that can be described by (4.2) is the discrete production pro-

cess where x(k) describes the finishing production time for the k-th event, u(k)

represents the set of number of products to be produced in the line and F is the
operational production time which is a (nonlinear) function of the product order.

For a higher-order example, we can consider Markov chain describing Markov
processes where A is a stochastic matrix. 4

We remark that the assumption on A and the positive definiteness of f ensures
that ‖x(`)‖ > ‖x(m)‖ for all ` > m when u = 0. This property is shown in the
following lemma.

Lemma 4.2. Consider the system (4.1) as above with u = 0 and positive definite
function f satisfying ‖f(ξ, 0)‖2 > L‖ξ‖2 where L > 0 satisfies

L >
1− λmin(ATA)

λmin(BTB)
(4.3)

with λmin denotes the minimum eigenvalue. Then ‖x(`)‖ > ‖x(m)‖ for all ` > m.

Proof : By taking ` = m+ 1, we have that

‖x(`)‖2 = ‖Ax(m) +Bf(x(m), 0)‖2

= xT (m)ATAx(m) + 2xT (m)ATBf(x(m), 0)

+ fT (x(m), 0)BTBf(x(m), 0)

> λmin(ATA)‖x(m)‖2 + λmin(BTB)‖f(x(m), 0)‖2

> ‖x(m)‖2

where the first inequality is due to the non-negativity of x(m), A and B, and last
inequality is due to the bound on ‖f(ξ, 0)‖2 in (4.3). �

The above results show that under the hypothesis of Lemma 4.2, we have the
following ordering of the norm of state trajectories.

‖x(0)‖ < ‖x(1)‖ < . . . < ‖x(k)‖ < ‖x(k + 1)‖ < . . .

Furthermore, if we restrict to the classes of system where the diagonal elements
of A are greater than or equal to 1 then we have ordering of every element of the
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state trajectories.

Lemma 4.3. Suppose that (4.3) holds and aii > 1 for all i. Then we have

xi(0) < xi(1) < . . . < xi(k) < xi(k + 1) < . . .

for all i = 1, . . . n.

Proof : The proof of the lemma follows immediately from the dynamics of each
state variable xi that is given by

xi(k + 1) = aiixi(k) +
∑
j 6=i

aijxj(k) + bif(x(k), u(k)).

Since xj(k) > 0 for all j 6= i and f is a positive definite function, the claim follows
trivially. �

In the above results, we have shown nice ordering properties in terms of the
state trajectories of (4.1). In particular, when the system is driven by integrators
(such as the one in Example 4.1) each state trajectory is a monotonically increasing
signal.

Let us now introduce how the decision process in the input allocation can
influence the state dynamical behaviour by using the simple example as in Example
4.1.

Example 4.2. Consider the simple system as in (4.2) with F (s) = s. For simplicity,
let us consider U0 = {1, 5, 4} and the state is initialized at the origin, i.e., x(0) = 0.
Since the cardinality of U0 is 3 (dim(U0) = 3) and we do not consider replenishment
to the input sequence (e.g., Vk = ∅ for all k), then the state evolution following
the DESDIS rule reaches steady state in a finite-time.

First-Come First-Serve (FCFS) rule. If the input is assigned according to the
first-come first-serve rule (where the order in the sequence U0 determines the
assignment timing, i.e., the first element is used first and the last element will be
applied lastly) then the input is given by u(0) = 1, u(1) = 5, u(2) = 4. In this case,
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the trajectory of x is given by

x(0) = 0

x(1) = x(0) + u(0) = 1

x(2) = x(1) + u(1) = 6

x(3) = x(2) + u(2) = 10

x(4) = x(3)

...

x(k + 1) = x(k)

and the evolution of the input sequence is

U1 = U0\u(0)_∅ = {5, 4}
U2 = U1\u(1)_∅ = {4}
U3 = U2\u(2)_∅ = ∅
Uk = ∅ ∀k > 3.

Reordering the input sequence. Instead of assigning the input using FCFS rule as
above, we can also set the input u(k) according to a certain control law/allocation
mechanism based on the available elements in the current input sequence Uk.
One particular instance for this is by firstly rearranging the input sequence U0 in
the ascending order and then apply the FCFS rule. Note that this control law is
equivalent to taking the minimum over Uk, i.e., u(k) = min{Uk}. For the above
example, we can rearrange U0 into {1, 4, 5} and then we apply the FCFS rule. This
gives us u(0) = 1, u(1) = 4, u(2) = 5, u(k) = 0 for all k > 2 and subsequently,
x(0) = 0, x(1) = 1, x(2) = 5, x(3) = 10 = x(k) for all k > 3. The input sequence
evolution is given by U1 = {4, 5},U2 = {5},U3 = ∅ = Uk for all k > 3. We
remark that since the cardinality of U0 is 3 then there are 6 combinations for the
reordering of the input sequence U0. In the rest of the chapter, we will discuss such
allocation/control problem for finding an optimal reordering of the input sequence
that minimizes a given cost function. 4

In Example 4.2, two possible state trajectories have been shown based on two
different ways the input is allocated from the initial input sequence. As remarked in
Example 4.2, there are in total six possible state trajectories where all of them will
reach the same steady-state value of 10. In fact, the property of steady state value
that is invariant to all possible combination of input allocation can be extended
to the system (4.1), where f is only a function of u, as given in the following
proposition.
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Proposition 4.4. Consider the system (4.1) with f : (x, u) 7→ F (u) where F is a
function of u and A is a doubly stochastic matrix. If Vk = ∅ for all k then for all initial
input sequence U0 with card{U0} =: N0, the systems with dynamic input sequence
described by (A1)-(A4) satisfies

1Tx(k) =

N0−1∑
n=0

1TBF (u(n)) ∀k > N0,

i.e., the sum of the state x(k) is constant for all k > N0.

Proof : As the input sequence is not replenished for every input allocation, it follows
from the DESDIS rule (A3) that Uk = ∅ for all k > N0. This means that for all
k > N0, u(k) = 0 and therefore,

1Tx(k + 1) = 1TAx(k) = 1Tx(k) ∀k > N0

= 1TAx(N0 − 1) + 1TBF (u(N0 − 1))

= 1Tx(N0 − 1) + 1TBF (u(N0 − 1))

= 1TAx(N0 − 2) +

N0−2∑
n=N0−1

1TBF (u(n))

...

=

N0−1∑
n=0

1TBF (u(n)).

This equality holds for arbitrary choice of input allocation u(k), k = 0, . . . , N0 − 1

from U0. �

When we furnish the current input sequence Uk with an additional new sequence
Vk at every time step k (as in the step (A3) of the DESDIS update rule), the number
of possible state trajectories can increase dramatically.

For the system in (4.1), suppose that we can define a cost function J(x, u) that
must be minimized by optimally allocating the input u(k) from the available finite
sequence Uk. Using such J , we can define our optimal allocation/control problem
as follows.

Optimal input allocation problem: For a given discrete-event system (4.1)
with dynamic input sequence satisfying (A1)-(A4), with given expansion input
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sequences Vk, k ∈ N and cost function J(x, u) : l∞(N,Rn) × l∞(N,Rm) → R+,
determine the optimal input allocation u∗(k) ∈ Uk for all k such that

u∗ = argmin
u

J(x, u)

where the state trajectory x satisfies (4.1) and the DESDIS rule in (A1)-(A4).

In the following proposition, it is shown that for the particular case when
Vk = ∅ for all k, the solution to the above optimal input allocation problem corre-
sponds to a particular ordering of U0 that depends on B and the nonlinear function
F .

Proposition 4.5. Consider the system as in Proposition 4.4 and suppose that the cost
function is given by

J(k) =

k∑
n=0

1Tx(n). (4.4)

Then the optimal input allocation u∗ satisfies

1TBF (u∗(0)) 6 1TBF (u∗(1)) 6 · · · 6 1TBF (u∗(N0)) (4.5)

where N0 := card(U0) and u∗(k) = 0 elsewhere.

Proof : Following the computation in the proof of Proposition 4.4, we can expand
(4.4) as follows.

J(k) = 1Tx(k) + 1Tx(k − 1) + · · ·+ 1Tx(0)

=

k−1∑
n=0

1TBF (u(n)) +

k−2∑
n=0

1TBF (u(n)) + · · ·

+ 1TBF (u(0)) + k1Tx(0)

= k1TBF (u(0)) + (k − 1)1TBF (u(1)) + · · ·
+ 1TBF (u(k)) + k1Tx(0).

It follows immediately from this equality and since U0 is finite that the minimum of
J is reached if and only if (4.5) holds which is independent of the initial condition
x(0). �

We want to recall the readers that as the DESDIS fulfills (A1) - (A4), the optimal
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input sequence satisfies

(u∗(0), u∗(1), . . . , u∗(N0)) ∈ PN0
(U0)

where PN0
(U0) denotes the set of N0-permutations of U0.

As defined in (4.4), the cost function in the above proposition is given by the
sum of all state values at all time. Thus the minimization of the cost function
means that at any given time the state values must be made as small as possible by
allocating proper input sequence. If we refer to Example 1, this cost function can
be interpreted as the sum of all berthing time and the minimization of this function
implies that the optimal input allocation will ensure that the berthing time is kept
as small as possible. Consequently the berth position will be made vacant as earlier
as possible.

We have shown in Proposition 4.5 that in the absence of input sequence expan-
sion Vk, the solution to the optimal input allocation problem is given by ordering
the sequence (u∗(0), u∗(1), . . . , u∗(N0)) such that (4.5) holds. In particular, if x(k)

is a scalar, i.e., B = 1, and F is positive definite and non-decreasing then (4.5)
becomes

u∗(0) 6 u∗(1) 6 · · · 6 u∗(N0),

i.e., the scalar input u∗(k) is ordered from the lowest to the largest. On the other
hand, if F is non-increasing then we have that u∗(0) > u∗(1) > · · · > u∗(N0).
Such an ordering property in the optimal input sequence is closely related to the
reordering input sequence approach as discussed in Example 2. In this example,
instead of allocating the input according to the sequence U0 (i.e., u(0) = 1, u(1) = 5

and u(2) = 4), we can firstly reorder U0 and then assign the input according to the
re-ordered sequence.

In general, such ordering property in the optimal input sequence is not true
for arbitrary cost functions J . This can again be exemplified by Example 4.2. In
this example, if the cost function is given by J(3) =

∑3
n=0 x(n) then the optimal

control input is u(0) = 1, u(1) = 4, u(2) = 5, u(k) = 0 for all k > 2. However, when
the cost function is modified into J(3) =

∑3
n=0 x(n) +

∑3
n=0 2u(n)n, where we

penalize the allocation of high control input at a later time, the optimal control
input becomes u(0) = 5, u(1) = 4, u(2) = 1, u(k) = 0 for all k > 2. In this case the
order of optimal input allocation is reversed despite the fact that F is an identity
(contrary to what has been described before on non-decreasing F ).

In the following sub-chapter, we consider the aforementioned optimal input
allocation problem when Vk 6= 0.
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4.3 Optimal Input Allocation with Vk 6= 0

Previously, we have seen that when the input sequence is not dynamically expanded
by Vk as defined in step (A3), the optimal input allocation is based on a particular
order of the initial input sequence U0. In fact, it can be described by

u(k) = argmin
ξ∈Uk

11TBF (ξ)

where Uk is always updated according to (A3). We will now study whether the
above control law solves also the optimal input allocation problem for the case of
Vk 6= 0.

Proposition 4.6. Consider the system (4.1) with f : (x, u) 7→ F (u) where F is a
function of u, A is a doubly stochastic matrix and the system satisfies (A1)-(A4).
Let Vk, k ∈ N, be the expansion sequences for the input sequence Uk that is updated
according to (A3). Suppose that the cost function is given by (4.4). Then for all initial
input sequence U0, the control law defined by

u(k) = argmin
ξ∈Uk

1TBF (ξ) ∀ event time k ∈ N (4.6)

solves the optimal input allocation problem.

Proof : We prove the proposition by induction. When we want to minimize J(1), it
is straightforward to see that the optimal input u∗(0) is given by (4.6) with k = 0.
When k = 2, we need to show that the optimal cost function J∗(2) is obtained by
taking

u(0) = argmin
ξ∈U0

11TBF (ξ)

and
u(1) = argmin

ξ∈U0\u(0)_V0

11TBF (ξ),

where we have applied (A3) to get U1 = U0\u(0)_V0. Indeed, by direct computa-
tion, we have that

J∗(2) = min
u
J(k)

= min
u(0)∈U0
u(1)∈U1

(
21TBF (u(0)) + 1TBF (u(1))

)
+ 21Tx(0). (4.7)
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It remains to show that the above equality can be written as

= min
u(0)∈U0

21TBF (u(0)) + min
u(1)∈U1

1TBF (u(1))

+ 21Tx(0),

in which case, the claim of the proposition for the minimization of J∗(2) holds. We
prove it by contradiction. Suppose that there exists u(0) ∈ U0 and u(1) ∈ U1 such
that (4.7) holds while the above equality is not satisfied. In this case, we have two
cases: (i). both u(0), u(1) ∈ U0; or (ii). u(0) ∈ U0 and u(1) ∈ V0. For the first case,
we arrive at a similar situation as in Proposition 4.5 which also implies that the
above equality holds, a contradiction. On the other hand, for the second case, it
follows trivially that the above equality holds; again a contradiction.

For the last part of proof by induction, we will now show that given the optimal
input allocation U∗k := (u∗(0), u∗(1), . . . , u∗(k)), which is calculated recursively as
in (4.6) and minimizes J(k+1), the minimizer of J(k+2) is given by (U∗k , u

∗(k+1))

where u∗(k + 1) is computed as in (4.6). Similar as before, we have that

J∗(k + 2)

= min
u(0)∈U0

...
u(k+1)∈Uk+1

(
(k + 1)1TBF (u(0)) + k1TBF (u(1)) + · · ·

· · ·+ 21TBF (u(k)) + 1TBF (u(k + 1))
)

+ (k + 1)1Tx(0).

Using the same arguments as before, we can prove by contradiction that the above
equality is equivalent to

J∗(k + 2)

= min
u(0)∈U0

...
u(k)∈Uk

(
(k + 1)1TBF (u(0)) + k1TBF (u(1)) + · · ·

· · ·+ 31TBF (u(k − 1)) + 21TBF (u(k))
)

+ min
u(k+1)∈Uk+1

1TBF (u(k + 1)) + (k + 1)1Tx(0).

The solution to the first term of the above equality is the same as the minimization
of J(k + 1), which is U∗k . For the second term, it is the solution u∗(k + 1) to (4.6)
for k + 1. Therefore, we have that U∗k+1 =

(
U∗k , u

∗(k + 1)
)

as claimed.
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Firstly, as U0 is not influenced by V0, it follows from (4.7) that

J∗(2) = min
u(0)∈U0

21TBF (u(0)) + min
u(0)∈U0
u(1)∈U1

1TBF (u(1))

+ 21Tx(0)

�

In this proposition, we have shown that the optimal input allocation can be
computed recursively. In particular, at each event time k, u∗(k) is obtained based
only on the current input sequence Uk and is independent on the possible expansion
sequence in any future event time. In this regards, the optimization of J(k + 1)

requires only card(Uk) =: Nk operations instead of Nk! (or even larger when we
take into account all possible permutation with the inclusion of future Vn, n > k).

Example 4.3. Let us consider again the system as in Example 2. Suppose that
V0 = {3, 2}, V1 = {1, 3, 5} and Vk = ∅ for all k > 2. Using the input allocation law
as in Proposition 4.6, we can recursively compute the optimal input allocation u(k)

as follows:

u(0) = argmin
ξ∈{1,5,4}

ξ = 1, U1 = {5, 4} ∪ {3, 2}

u(1) = argmin
ξ∈{5,4,3,2}

ξ = 2, U2 = {5, 4, 3} ∪ {1, 3, 5}

u(2) = argmin
ξ∈{5,4,3,1,3,5}

ξ = 1, U3 = {5, 4, 3, 3, 5}

u(3) = argmin
ξ∈{5,4,3,3,5}

ξ = 3, U4 = {5, 4, 3, 5}

u(4) = argmin
ξ∈{5,4,3,5}

ξ = 3, U5 = {5, 4, 5}

u(5) = argmin
ξ∈{5,4,5}

ξ = 4, U6 = {5, 5}

u(6) = argmin
ξ∈{5,5}

ξ = 5, U7 = {5}

u(7) = 5 and u(k) = 0 ∀k > 7.

Thus, the maximum number of operations is on the computation of u(2). We can
compare this with the exhaustive search of (u∗(0), u∗(1), u∗(2), . . . , u∗(7)) where
we evaluate all permutation of the combined input sequence (U0, V0, V1, V2) =

{1, 5, 4, 3, 2, 1, 3, 5} and evaluate the state evolution of DESDIS for each of possible
permutation of input sequence according to (A1)–(A4). 4
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4.4 Discussion

Based on the DES modeling framework and MPA algorithm from Chapter 3, we
have shown that for a particular case of allocation problem in DESDIS, re-ordering
of the input sequence at every discrete-event time is needed for determining the
optimal sequence. The DES is a class of dynamic system with wide applications,
such as in transportation, scheduling and logistics. The DES often interrelates
with combinatorial optimization and the current algorithm, such as the branch
and bound (BB) is only suitable for the static problem setting. Although some
analyses of the optimality condition in DES have been taken into account, a special
condition of DES with input sequence has not yet studied rigorously. The analysis
provides a good basis for the development of model predictive allocation methods
for DESDIS as pursued, for instance, in [12, 13]. The results show that the DESDIS
produce optimal allocation when the controller follow some of the remarks that
we imposed, namely the preconditing of the sequence. It is further shown that the
same precondition in a model predictive control (MPC) problem setting will yield a
monotonically decreasing cost function as the MPC time horizon grows. Further
works are needed on the re-ordering of input sequence Uk (and the subsequent
expansion sequences Vk for a finite event horizon) when a general cost function is
considered.
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An analysis of competitive terminal network
via BCAP optimization policies

We present in this chapter an analysis of the deployment of a distributed dynamic
optimization algorithm to a sub-network of the container terminals. We extend
the I-BCAP dynamical DES model which has been developed in Chapter 3 to the
operations of network of container terminals. In each network, we select the
selected seaports to implement the MPA-based I-BCAP. We discuss the framework
of container terminal modeling. We later review the BCAP model and the MPA
algorithm proposed in Chapter 3. Afterwards, simulation setup, data set, and
results are discussed. Finally, some findings will be discussed.

5.1 Introduction

Container terminals as one of the main actor in maritime transportation has also
enjoyed the growth in global containerized trade. This mutual benefit is more likely
shown in container terminal networks [56]. We define the network as a group of
specific container terminals, which a number of ships frequently call at. A network
can be managed by the same terminal operator.

A cost-optimal container terminal network will hugely profit the terminal op-
erators ([82], [6], [60]). It is discussed in [45, 62, 88] that a group of operators
always seek novel ways to improve the terminal networks’ performances. At the
same time from the shipping liners’ point of view, it is also an asset [6], where
the main interest of the liners is to optimize their operations in a network. As
another important stakeholder, terminal operators are looking for ways to optimize
their overall performance in the network with minimal implementation cost while
maintaining the autonomy of each terminal in regulating their own operations and
keeping the independency of the liners that they serve [6, 87]. As emphasized in
[82] most works in container terminal network are in optimization of shipping
liners, but there is also important interest from the terminal operators to improve
the performance of terminal networks’ operational performance [81]. In the later
explanation, we will discuss the importance of optimization from the terminal
operators’ perspective.

Consequently, in this chapter, we investigate the terminal network optimization
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through the deployment of distributed (e.g. locally implemented) optimization
methods for container terminal operations. In particular, our main research ques-
tions are how the heterogeneity in the local decision making process of every
terminal affects the whole terminal network performance and how we can effec-
tively deploy distributed optimization methods in the network. We implement the
decision in one section of terminal, namely berthing process, since the literature
has shown that BCAP is the major bottleneck in container terminal [18, 40, 48, 66].
We also will discuss more detail the relations of optimization in BCAP and the
improvement of container terminal networks overall operational performance.

As a particular example, we consider the maritime transportation sector in
Indonesia, which is an archipelago across an area of 5,271 km from West to East
and 2,210 km from North to South and where the network of islands are only
served by four operators, namely ”Pelindo I”, ”Pelindo II”, ”Pelindo III”, and ”Pelindo
IV”. In contrast to the customers of the break-bulk and general cargo terminals
which can be classified as tramper, the main customers in container terminal in
Indonesia are the shipping liners [85]. As opposed to the shipping liners, ships
engaged in tramp do not have fixed schedule of ports to call.

With the aforementioned example, an operational optimization policy applied
in one node in the ”Pelindo” network can greatly affect the network performances
in Indonesia. This statement is even more highlighted considering the fact that con-
tainer throughput in Indonesia has been growing rapidly for the past decade. For
realizing its potential, The Government of Indonesia has launched a program to en-
hance its maritime transportation network, namely ”The Indonesian sea-highways”.
The aim of this project is to improve the network performance comprising of a
selected main seaports that cover Indonesia trade area from West to East.

The importance of container terminal networks has motivated some research
activities in this topic. In [82] the authors evaluate a number of decisions involved
in a network, namely the container routing, fleet management and network design.
Container routing is an optimization problem where every single container move-
ment in a network needs to be determined optimally. Many other works focus on
balancing ship assignments such as the minimization of empty containers in the
return journey [38], [65]. Fleet management deals mainly with scheduling and
speed optimization of shipping liners in the networks. Network design is usually
related to selecting combination of container terminals that will serve the shipping
liners.

Recently, the optimization of a container network is usually studied from the
perspective of shipping liners. Hence, liners’ performance criterion is used primarily
in the optimizations’ cost function. One important criterion is the ship speed, as
used in [38] where the vessel speed is used as the decision variable for determining
the shipping liners schedule. In another work [65], a different criteria is considered
for determining optimal vessel schedules where fuel emissions are used in the
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cost function. From a more tactical level, a number of vessel voyage in a network
is also a decisive determinant in network efficiency. Large players in shipping
industry usually receive multiple demands from freight forwarders (who represent
consignees). Accommodating the entire demand can be inefficient, since some of
the demands are in small numbers; therefore, economic of scale will not be met.
Selecting only important voyages is thus beneficial for shipping liners, as discussed
in [53].

While many papers have discussed how a stakeholder should develop a compet-
itive network (see [6] and [87] for examples), less attention has been put on the
optimal operations of a network. In fact, the operational performance (i.e. efficient
cost) of container terminal network is one of main factors for freight forwarders
to route cargo through the chain of seaports, hence port operators always seek
creative ways to decrease the cost charged to the customers [81]. In [49], the
general movement of cargo within a terminal and between terminals are modeled
into a integer linear programming (ILP) to minimize the network operational cost.

So far, the network operations optimization is driven by the shipping liners. As
discussed above, an optimal network operations involve not only the liners but also
the operators [59]. As one of the contributions of this chapter, we study container
terminal network performance under heterogeneous distributed operational BCAP
policy. The operational optimization policy in each terminal is confined only to
the seaside operations problem. Hence, only berth and quay crane allocation is
considered in each seaport. We have two valid reasons for this research boundary.
First, shipping liners which call to a seaport deal greatly with seaside operations.
Second, an effective BCAP will contribute hugely to the whole performance of the
terminal, since bottlenecks often occur in this sub-system, where the discussion is
provided in [18, 40, 48, 66]. The bottlenecks in berthing process has even more
important consideration, since QC is usually the most expensive equipment in the
terminal [13, 48]. Therefore improvement in BCAP will greatly profit the overall
operational performance of a single terminal, and it has been explained extensively
in [53, 82, 87] that terminal network’s performance is heavily affected by the
performances of each terminal in the network.

5.2 Preliminaries on BCAP modeling & optimization

As have been explained in Sub-Chapter 5.1, we seek optimum BCAP strategy in each
terminal in the same seaport network. The strategy uses our recent work in [13]
where DES models are developed for BCAP. The DES modeling includes dynamics
in the berthing process, for instance the real-time changing of ship arrivals. The
dynamics are not incorporated in the state-of-the-arts BCAP models in [37, 40, 52],
and to include ship arrival variations, some probabilistic parameters are instead
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used while in fact the probems are later re-casted into static mixed-integer-linear
programming (MILP) models.

The ability to capture the dynamics are essential, because in container terminal
networks, a scheduled vessel can arrive later due to delay in the previous seaport.
In [13], we also did a real-life experiment and the arrival of some ships indeed
deviated from the original plan. In static problems ([37, 40, 52]), the MILP needs
to be re-run with new set of inputs, while in [13] the set will dynamically alter.
To solve the DES model, we propose an MPA to seek the optimal berth and QC
allocation. In particular, we compare the MPA with operations research (OR)-based
approach in [37, 40] where the former method shows improvement, as well as
cost reduction in the real-life experiment. We also mathematically analyze the
novel allocation method in [14] where the control inputs can be obtained by our
proposition.

We will discuss the description of the berthing and loading/unloading process
model which is based on the works in [12] and [13]. We will briefly discuss this
model as well as the MPA-based BCAP policy in this sub-chapter. Interested readers
are referred to [13] for detail of the model and approaches. In the following,
we will provide an intuitive explanation of the model, as well as, the dynamic
optimization method.

5.2.1 Dynamical discrete-event system models

At every discrete-event time step, we determine two control variables, namely the
ship allocation to the selected berth position and the number of QCs allocated to
every berth position.

The models are event-triggered, where the event-time step is incremented every
time a ship finishes loading/unloading containers. The allocated ship is taken from
a dynamic set of ready to-be-berthed ships where a number of ships may arrive or
leave from the set during the computation process. Every ship in this set has its
own arrival and operations time.

In the discrete-event systems (DES) model, we employ three state variables,
namely berth starting time, berth operations time, and berth finishing time. The
BCAP model has been validated in real-life field environment as in [13], where the
state variable of berth finishing time is used for validation.

5.2.2 Cost functions

The cost functions used to evaluate the decisions are based on the operations cost
and waiting cost. The operation cost is obtained based on the operation cost per
unit of time multiplied by the total operations time, which is defined by the time
spent by ships for completing their loading and unloading operations. The waiting
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cost is given by the waiting cost per unit of time multiplied by the total waiting
time, which is the total idle time spent by every ship before it berths.

5.2.3 BCAP strategies

Using the aforementioned dynamics and cost functions, two strategies are available
and will be considered in this chapter. They are the traditional FCFS (first-come-
first-served) & DBQA (density based quay crane allocation)- based BCAP and the
MPA-based BCAP method.

FCFS & DBQA-based BCAP strategy

This strategy is the most common method used in container terminals because of
its easiness and fairness to the ship. At every time step we allocate a ship with
the earliest arrival time; hence the name FCFS is originated from. Afterward, the
number of QCs are allocated proportionally to the densities of containers in the
berthed ships. The density is defined by a proportion of the number of containers
in a particular ship to the number of containers in the entire berth positions.

MPA-based BCAP strategy

As opposed to the traditional method, the MPA-based strategy looks into the future
where we compute an optimal allocation for a given discrete event time horizon.
At each event time, the method calculates optimal decisions/allocation for a given
event time horizon and subsequently, we implement only the decisions/allocation
for the current event time step. The process is recursed in a rolling horizon manner
until all ships from the set have already been scheduled, or the computation
reaches the termination time. In [13], it has been shown, both numerically and
experimentally that the performance of MPA-based BCAP policy always outperforms
the genetic algorithm (GA) and the hybrid particle swarm optimization (HPSO)
based BCAP methods.

5.3 Container terminal network

Container terminal network problems are presented in this sub-chapter, and firstly
we would like to discuss the modeling setting used in this research as shown in
Figure 5.1. A seaport network consists of many terminals, where each terminal
owns equipment (berth positions and QCs). We rank the important seaports with
models from [54], which generally based on transportation cost between two
connected terminals and will later be explained in Sub-Chapter 5.3.3.
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Figure 5.1: Modeling seaport network methodology

In each container terminal, we determine the BCAP policy, namely the berth
positions and QCs based on DES analytical models from our recent works in [13].
The reasoning of this has been intensively discussed in Sub-Chapter 5.1. The
DES applied in this research is not to be confused with discrete-event simulation,
which are popular in logistics and based on random variate generation from some
probabilistic functions (see [78]). We use instead DES framework as in [19]
which is based on analytical models from series of discrete-events in the operations
systems.

We then find the solution (berth and QC allocation) from the DES-based BCAP
models. We compare the traditional FCFS & DBQA with our novel MPA method in
[13]. To further differentiate with discrete-event simulation in [78] whose solutions
are obtained from logical rule-based algorithms, the MPA is based from model
predictive control (MPC) whose preliminaries mathematical efficacy is shown in
[14].

The BCAP models are provided in [13]. In summary, the decision variables in
each discrete step k are u(k) and vb(k) which are the berthing position and number
of QC allocated to an incoming ship, respectively. The incoming ship is from a
dynamic set of arrivals S(k). One of the main differences with the BCAP-static
models in [37, 40, 52] are the ability of the DES model in [13] to record the state
variables in each k, namely zb(k), yb(k), and xb(k) which are the starting time,
operations time, and finishing time, respectively. The allocation are evaluated with
a cost function J(x, u), which consists of operational and waiting cost.

To give clearer understanding, let us first consider a simple network as presented
in Figure 5.2. In this figure, the network consists of only two seaports, namely ”Port
A” and ”Port B”. Each seaport has infrastructure (berth positions) and equipments
(QC), whose numbers can be different. In Figure 5.2, container vessels travel back
and forth between the two seaports. The transporting vessels are members of
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Figure 5.2: A simple network with two seaports. Each seaport has its own number of berth
positions and QC, where both seaports have to decide which local policy that needs to be
implemented.

dynamic sets, which means that they are real time and not pre-determined. A
vessel may arrive at the seaport later than the scheduled time because of delayed
operations in the previous terminal.

Given these settings, each container terminal has to decide what BCAP policy it
should use. Two possible options are available, i.e. the traditional FCFS and DBQA
or the optimal MPA-based policy as explained before in Sub-Chapter 5.2. In this
work, we also assume that the ships use the optimal traveling speed as assigned by
shipping liners. Hence, speed optimization is not considered in this chapter.

One of our hypotheses is that by implementing the optimal policy to a selected
number of seaports, the whole network cost will decrease significantly compare to
implementing optimal policy at arbitrary seaports.

In general, container terminals that use our algorithm will have efficient oper-
ations according to the simulation and experimental results as reported in [13].
Both of the simulation and experiment show that the MPA performs better than
the traditional FCFS & DBQA method. Therefore, waiting times in those selected
terminals can be reduced. This will further affect the other terminals, whether
using MPA or traditional FCFS-DBQA methods. The low waiting times can minimize
delay in ships’ arrival times, which, in turn, reduces the total operations’ time of
the whole network.

5.3.1 Network types

We consider three standard network topologies in our investigation. They are
ring/loop network, hub & spoke network and mesh network as illustrated in Figure
5.3[55]. In our simulation setup, we vary the number of nodes in each topology.
Each seaport is represented by a node which has to determine what type of BCAP
policy it will apply.

A ring/loop is typically used in a network in which shipping liners deploy its
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Figure 5.3: An illustration of three network types used in this work. The arrows indicate
the direction of the containers and vessels flow. The number of container terminals used
later in the simulation does not necessarily be the same as in this figure.

vessels to travel circularly from the port of origin, traversing the intermediate and
end ports, and then back to the origin. This network type can be found when a
terminal operator is the main stakeholder whose prime interest is to regulate such
network. Although arguably the rarest type in maritime transportation, a circular
network is a good example that represents the typical behavior of a maritime
network, where the number of containers travel from origin to end likely stays the
same. In addition, our specific case in Indonesia which will later be explained in
the next sub-chapter also uses this type of network.

The hub & spoke is probably the most well-known network type, as it can be
traced in some cases in South East Asia. One leading example is the network where
Port of Singapore is the corresponding hub. In this case, big-size vessels from all
parts of the world call to this hub. Small vessels from surrounding regions also
call regularly to the Port of Singapore. They act as feeders for the hub seaport. An
example of the partners are Port of Tanjung Priuk in Indonesia, Port of Klang in
Malaysia, and Port of Laem Chabang in Thailand.
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Figure 5.4: The maritime transportation in Indonesia. Red nodes and orange arrows indicate
that particular seaports and networks are part of the ”Indonesian sea highways” project. The
weight of the arcs is an exact visualization of demand volumes between two seaports in
the particular link. Blue nodes mean that particular seaports are among Indonesia’s main
container terminals, but not parts of the project.

For the last network type, the mesh network represents network when no
seaport serves as the ”formal” hub. Therefore, the traffics look like scattered. This
network type reflects almost all container flows in Indonesian maritime industry.
For an example, although Port of Tanjung Priuk is the largest seaport owned and
partially operated by ”Pelindo II”, it is not the focal point of trade like in Port
of Singapore. Considerable and balanced amounts of container are transported
among other seaports, where they are ran by different terminal operators.

5.3.2 The ”Indonesian sea highways” case

For a real case study, we present the case of ”Indonesian sea highways” which
is initiated by the Government of Indonesia. The map of Indonesian maritime
industry is presented in Figure 5.4. Since every edge in this network is bidirectional,
it is a particular case of the ring/loop network.

Indonesia is an archipelago where its vast area is not yet covered with a reliable
sea transportation [85]. Therefore, from almost 50 container terminals spread
in the country, the government have selected six prominent seaports whose geo-
graphical positions are deemed strategic to serve the national trade flow. Those
seaports are Port of Kuala Tanjung in the almost western most province namely
North Sumatera, Port of Batam which is less than 10 nautical miles to Port of
Singapore, the busiest Port of Tanjung Priuk in the country’s capital in Jakarta, the
second busiest Port of Tanjung Perak in East Java, the Makassar seaport in South
Sulawesi and the last one the Port of Sorong in West Papua.

It can be seen in Figure 5.4 that maritime trade in Indonesia is not balanced. A
significant volume of the trade lies in the center, where Java island, the center of
economic activities is located. The weight of the arcs itself is an exact visualization
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of demand volumes between two seaports in the particular link. Since the data
of the demand is not available, we use approximation from volume of all types of
cargo transportation accordingly. The volume represents the trade flow in which
each particular seaport lies. This assumption is reasonable since the profile of
container transport volume will not differ too much. The aforementioned demand
data is shown in Table 5.1. In the simulation setting, it will further be explained
that the raw demand is transformed into number of ship arrivals, where every
arriving ship has its own load (TEU).

Table 5.1: Transportation demand between each region which represents each seaport
[85].

Origin-Destination Transportation value (ton/yr.)
North Sumatera - Riau Islands 4,225,156
Riau Islands - North Sumatera 4,521,140
Riau Islands - DKI Jakarta 1,166,743
DKI Jakarta - Riau Islands 1,096,483
DKI Jakarta - East Java 33,779,731
East Java - DKI Jakarta 32,284,745
East Java - South Sulawesi 37,503,830
South Sulawesi - East Java 13,274,245
South Sulawesi - West Papua 949,343
West Papua - South Sulawesi 631,214

The more detail illustration of trade flows in the ”sea highways” is shown in
Figure 5.5, where now there are two trade flows in each sub-network between two
seaports. The conclusion from this figure is the same as that from the previous
picture, but we can now see clearly that the ”Tanjung Perak-Makassar” link is
heavily unbalanced. It is also important to note that each container terminal has
different size, meaning that different number of berth positions and QCs are owned.

Figure 5.5: Six seaports of the ”Indonesian sea highway”. The diameter of each circle
represents the size of the seaport. The directed arcs show the direction of container flows
among seaports. The weight of each arc represents the volume of container flow.

The ultimate goal of the government is to enhance the performance of the ”sea
highways”, which is still an open measure. Several interesting considerations are
efficiency of the network, which is highly related to operational cost; and how to
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promote trade balance especially to the eastern part of Indonesia. Speaking of
balance of trade, it is of course an aspect that the government cannot fully control.
As Indonesia adheres to the free trade policy, hence, the maritime industry cannot
be forced to ship containers more to the east than their current operations. This
brings us to the research motivation as given in the Introduction where terminal
operators are interested to optimize the network performance with minimal cost
while maintaining the autonomy of every terminal and every liner.

By imposing a certain policy to a particular seaport, the government can further
analyze what the effects to the network are. It is also useful to analyze what priority
should be given if only a limited number of seaports can use the optimal BCAP
policy, but significant improvement from the whole network is still desired. This is
an interesting decision since each terminal has different specifications and each
terminal has different constraints and willingness to apply such an optimal BCAP
strategy.

5.3.3 Determining important seaports

Instead of applying the MPA-based BCAP strategy to arbitrary seaports, we can
implement it to a number of important seaports. By this approach we are looking
for methods to identify such sub-network so that the network’s cost decreases
significantly with only implementing the optimal BCAP policy to the terminals in
this sub-network.

Each terminal’s importance is determined using a modified ranking method as
proposed in [54]. In the original literature, the importance is not directly defined
on seaports, but instead on arcs connecting seaports. For a given network, the
entire arcs’ importance are normalized, so their summation is equal to one.

In each arc, the importance is defined by the function of container flows,
transportation cost, and capacity associated to this arc. The more containers flow
and its associated transportation cost in a particular arc, the more important the
connecting arc is.

For simplicity, in the basic network types, we assume that the transportation
cost is the same for every arc. While in the Indonesian sea highways case, different
transportation cost is obtained from historical trade data among provinces.

We present the model from [54] as follows. The cost function for link/arc i is
given by

ci(fi) = ti

(
1 + k

fi
ui

β
)

(5.1)

where the amount of flow, transportation cost and capacity in the link i are denoted
by fi, ti, and ui, respectively. We take the model parameters of k and β from the
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paper in [54] as k = 0.15 and β = 4.
The total cost of the i-th link is given by

ĉi = ci(fi)fi (5.2)

= ti

(
1 + k

fi
ui

β
)
fi (5.3)

Using ĉi, we can define the importance/weight of each link i by

αi =
ĉi
G
, (5.4)

where G is the total cost for the whole links in the network and is defined by
G =

∑
i ĉi.

Based on αi, we can rank the terminals importance as follows: Let us denote Aj
as the set of all links/arcs where the j-th terminal/node is at their heads and tails.
Correspondingly, the links that are taken into account are both of the incoming and
outgoing ones. Then, each terminal’s importance rj is given by

rj =
∑
i∈Aj

αi (5.5)

and subsequently we can order or rank the terminals based on rj where terminal
with the highest rj is ranked first.

5.4 Simulation setup

5.4.1 Container terminal configuration

We use hypothetical data for the three basic network types as explained in the
last sub-chapter. In each network type, the distance between any two adjacent
seaports is set randomly according to uniform distribution whose the lower and
upper bound is 200 and 400 km, to reflect the actual distance in Indonesian seaport
networks. All of the vessels are assumed to constantly follow the designated speed
for container vessels, which is 24 knots.

For ring/loop and mesh network types, the number of nodes is fixed at 50
seaports. While for the hub and spoke, to reflect real practice, we limit the number
of seaports only to 20, where one seaport serves as a hub and the rest as feeder
seaports. In a mesh network, every single seaport may access multiple seaports,
i.e., an adjacent seaport that is connected with a circular arc and other seaports
with non-circular arcs as connectors. As one can see in Fig. 5.3, there are loops in
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the mesh network type, such as a sub-network that consists of nodes 1, 4, and 5
and the route is 1-4-5-1. Other possible loops are 5-2-4-5 and 1-2-3-1.

Table 5.2: An example of a subset of the first 8 of 50 seaports configuration for the ring/loop
and mesh network types.

Seaport Seaport Num. of Num. of
index type berth QCs

positions
1 Large 11 19
2 Medium 8 13
3 Medium 5 9
4 Small 3 6
5 Large 9 14
6 Large 11 12
7 Small 3 5
8 Medium 7 12

Every seaport has different number of berth positions and QCs. For the ring/loop
and mesh network types, we divide 50 seaports proportionally into three categories:

1. Small. Number of berth positions is between 2 and 4. Number of QCs is
between 3 and 8.

2. Medium. Number of berth positions is between 5 and 8. Number of QCs is
between 6 and 16.

3. Large. Number of berth positions is between 9 and 12. Number of QCs is
between 10 and 24.

When a seaport already falls into a particular size, its number of berth positions
and QCs are determined randomly with a uniform distribution. A subset of seaports
configuration for these two network types is presented in Table 5.2.

As for the hub and spoke type, the first seaport is the hub, where its number
of berth positions and QCs are randomized between 24 to 30, and 45 to 50,
respectively. This estimation is based on benchmarking from hub terminals such as
Port of Singapore and Port of Rotterdam.

The remaining 19 feeder seaports follow the aforementioned procedure for the
other two network types, in which the seaports are balanced into small, medium,
and large categories. The subset of the first 8 of 20 seaports configuration is
presented in Table 5.3.

We present the setup of ship arrivals used in the simulation. The set of ship
arrivals for the three network types is divided into three load scenarios: reduced
load, normal load, and heavy load. The first scenario is a set where the incoming
ships arrive to the seaport in sparse inter-arrival times, and the loads are not high.
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Table 5.3: An example of a subset of the first 8 of 20 seaports configuration for the hub
and spoke network type.

Seaport Seaport Num. of Num. of
index type berth QCs

positions
1 Hub 26 49
2 Medium 5 8
3 Medium 6 7
4 Large 12 21
5 Medium 5 8
6 Large 12 16
7 Small 2 4
8 Small 2 3

Table 5.4: A subset of a dataset of the first 10 of 50 arriving ships for the reduced load
scenario.

Seaport Arrival Arrival Load
index date time (TEU)

1 1 March 2020 05:50 AM 1,829
2 1 March 2020 12:04 PM 1,952
3 1 March 2020 14:08 PM 2,891
4 1 March 2020 18:25 PM 1,750
5 1 March 2020 22:29 PM 1,674
6 2 March 2020 07:38 AM 1,149
7 2 March 2020 13:50 PM 1,709
8 2 March 2020 20:07 PM 2,079
9 2 March 2020 23:57 PM 1,697
10 3 March 2020 05:29 AM 1,478

On the other side, the heavy load scenario is set completely to the opposite of the
reduced one.

In each dataset, we generate 50 ships arrivals. The entire ships arrive at the first
seaport in the network. For the ring/loop network type, after the BCAP operations
are completed in the first seaport, the ship starts its journey to the next adjacent
seaport. While for the mesh type, a ship that has just finished its operations follow
the following procedure:

1. The first ship goes to the second adjacent seaport that is connected with the
current seaport through a circular arc.

2. The second ship goes to another seaport that is connected with a non circular
arc. Since there are multiple possibilities, the destination seaport is selected
randomly.



5.4. Simulation setup 89

Table 5.5: A subset of a dataset of the first 10 of 50 arriving ships for the normal load
scenario.

Seaport Arrival Arrival Load
index date time (TEU)

1 1 March 2020 02:26 AM 3,211
2 1 March 2020 07:17 AM 4,137
3 1 March 2020 09:17 AM 4,372
4 1 March 2020 14:08 PM 3,288
5 1 March 2020 18:59 PM 3,089
6 2 March 2020 02:29 AM 4,383
7 2 March 2020 06:16 AM 4,363
8 2 March 2020 11:58 AM 3,403
9 2 March 2020 15:04 PM 3,786
10 2 March 2020 21:47 PM 4,539

3. The subsequent odd numbered ships follow the procedure for the first one
while the rest follows that for the second one.

For the hub and spoke type, every ship starts from the hub and then it is assigned
to a random spoke for its next destination.

All simulation ends after 60 days and we assume that all seaports in the networks
work 24 hours per day and 7 days a week.

We generate 100 datasets for each load scenario. Therefore, there are 300
datasets available for each network. The ship arrivals data is generated based on
log-normal distribution to avoid negative value of inter-arrival times. We obtain the
parameters from a real-data as in [12], where from the 29 ship arrivals, the mean
and standard deviation are 5.96 and 0.63, respectively. Based on interviews with
the operators who work at the seaport of Tanjung Priuk from which the data was
taken, the arrivals can be categorized as the reduced one. Hence, we generated our
parameters as follows.

• The reduced load scenario has mean of 6.0 and standard deviation of 0.6.

• The normal load scenario has mean of 5.5 and standard deviation of 0.5.

• The heavy load scenario has mean of 5.0 and standard deviation of 0.4.

We also generate the ships loads (TEUs) based on the uniform distribution as
follows.

• The reduced load scenario has a lower bound of 1,000 TEUs and an upper
bound of 3,000 TEUs.

• The normal load scenario has a lower bound of 3,000 TEUs and an upper
bound of 5,000 TEUs.
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Table 5.6: A subset of a dataset of the first 10 of 50 arriving ships for the heavy load
scenario.

Seaport Arrival Arrival Load
index date time (TEU)

1 1 March 2020 01:47 AM 9,607
2 1 March 2020 04:16 AM 9,362
3 1 March 2020 06:25 AM 6,127
4 1 March 2020 08:55 AM 5,300
5 1 March 2020 10:26 AM 5,540
6 1 March 2020 14:17 PM 8,713
7 1 March 2020 16:19 PM 8,929
8 1 March 2020 18:51 PM 5,712
9 1 March 2020 22:11 PM 5,881
10 2 March 2020 00:40 AM 5,818

• The heavy load scenario has a lower bound of 5,000 TEUs and an upper
bound of 10,000 TEUs.

The basis to categorize ships loads is derived from common container vessels
classifications. The feeder ships’capacity are usually up to 3,000 TEUs. The
Panamax ships are up to 5,000 TEUs. While the Post-Panamax is a generation of
ships that are able to carry 10,000 TEUs. There are in fact Super-Panamax and
Mega-Panamax ships. But since the load range is too wide, we do not consider
them in this research.

5.4.2 The sets of ships arrivals

We set the first ship to arrive on 1 March 2020. The datasets for each load scenario
are the same for the three network types.

To give an illustration, we provide one dataset example for each load scenario.
The subset of the datasets is presented in Table 5.4, 5.5, and 5.6 in the Appendix,
respectively for the reduced, normal, and heavy load scenarios. The probability
density functions of these datasets are depicted in Figure 5.6. Based on the 100
datasets in each scenario, the average hours of inter-arrival times are 18.41, 15.69,
and 4.86 for the reduced, normal, and heavy load scenarios, respectively.

It is important to note that the ship’s loads as in Table 5.4, 5.5, and 5.6 in the
Appendix are only for the first seaport. In the subsequent seaports, the ships also
have container loads that we define randomly. In our simulation, we have prepared
sets of ships load in each subsequent seaport.
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Figure 5.6: The probability density functions for the three ship arrivals scenarios for the
ring/loop, mesh, and hub & spoke network types. The horizontal axis shows the ship
inter-arrival time (in minutes) and the vertical axis shows the probability (non-cumulative).

5.5 Simulation results

5.5.1 Simulation results of basic network types

Since there are three network types and three load scenarios, where each scenario
has 100 datasets, we have generated 900 cases. In every case, we simulate two
different approaches in the deployment of MPA-based BCAP. In the first one, we
randomly select a number of seaports at which the MPA policy are implemented. In
the second one, our selections are based on the seaports’ importance as discussed
before in Sub-Chapter 5.3.3.

The results for the normal load scenario for the three network types are pre-
sented in Figure 5.7 which provide a summary of network cost for each network
type and load scenario plan from 100 simulations each. Note that in all of these
simulations, the most important seaports in each scenario are not necessarily the
same terminals, because the datasets for each simulation run are different.

For both different deployment methods, the results are intuitive. The network
cost in both cases decreases monotonically as more seaports use the MPA-based
BCAP methods. More importantly, it is shown that by implementing the optimal
policy only to the important seaports, we obtain more efficient cost reduction than
the arbitrary-chosen seaports. For instance, in the ring/loop network, the costs
from applying MPA to 10 and 20 important seaports are comparable to randomly
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Figure 5.7: Average network cost reduction from 100 datasets with normal load scenario for
the (a). ring/loop network; (b) mesh network; (c) hub and spoke network. The horizontal
and the vertical axis are the number of seaports using MPA and the average network cost
reduction in thousand Euro, respectively. The reduction is calculated from a basic network
where no seaport uses MPA. Vertical line at each average cost point is the standard deviation
error bars.

implementing the optimal policy to 20 and 35 seaports. Although not as salient,
we also see the similar behavior in the other two network types.

From the practical perspective, applying MPA-based BCAP policy only to impor-
tant seaports is an advantage to the terminal operators as well. With the MPA-based
BCAP, the order of the ships’ arrival is not necessarily the same as the order of the
berthing. Although applying MPA to more seaports is beneficial to the whole net-
work operations, it may not be the case for the shipping liners. Therefore, limiting
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the optimal BCAP policy only to few seaports reduces dissatisfaction among liners.

5.5.2 Simulation results of the Indonesian sea highway case

We repeat the same procedure for the Indonesian sea highway case, in which we
determine important seaports as given before in Sub-Chapter 5.3.3. The weight of
all links in the network are presented in Table 5.7.

Table 5.7: Weight value of each link in the network as described in (4) in Subsection 3.3.
Link no (i) Link Weight value (αi)

1 Kuala Tanjung-Batam 0.039
2 Batam-Kuala Tanjung 0.040
3 Batam-Tg. Priuk 0.010
4 Tg. Priuk-Batam 0.011
5 Tg. Priuk-Tg. Perak 0.261
6 Tg. Perak-Tg. Priuk 0.256
7 Tg. Perak-Makassar 0.250
8 Makassar-Tg. Perak 0.129
9 Makassar-Sorong 0.003
10 Sorong-Makassar 0.001

We then rank the importance of each terminal as given in the Table 5.8. It
is obvious that the two most important seaports are Tanjung Priuk and Tanjung
Perak, since trade flows are heavily concentrated in network arc involving these
two seaports. But contrary to the generally accepted stance, the results in Table 5.8
shows that the most important seaport is Tanjung Perak, instead of Tanjung Priuk in
the capital city of Indonesia, since it connects the heaviest container transportation
in Indonesia. Based on the importance in Table 5.8, the simulation result can be
seen in Table 5.9.

Table 5.8: Importance value of each terminal in the network as described in (5) in
Subsection 3.3.

Node Terminal Importance Rank of
no. (j) value (rj) importance

1 Tg. Perak 0.896 1
2 Tg. Priuk 0.528 2
3 Makassar 0.382 3
4 Kuala Tanjung 0.079 4
5 Batam 0.061 5
6 Sorong 0.004 6

By applying MPA only to seaports in rank 1 and 2 (Tanjung Priuk, Tanjung Perak,
Makassar), the network’s cost reduction does not much differ when we apply MPA
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Table 5.9: Network cost of each different strategy.
Scenario Cost

(Mill. Euro)
All seaports use FCFS 23,742
All seaports use MPA 20,292
Rank 1 (Tg. Perak) & 2 (Tg. Priuk) use MPA, the rest use FCFS 20,695
Rank 1 (Tg. Perak) use MPA, the rest use FCFS 21,245
Rank 2 (Tg. Priuk) use MPA, the rest use FCFS 21,791
Rank 3 (Makassar) use MPA, the rest use FCFS 23,432

to the all six seaports. Even by only applying MPA to seaports in rank 2 (Tanjung
Perak and Makassar), the cost reduction is still quite significant. We observe that
the optimal strategy can be applied only to number of selected seaports.

5.6 Discussion

Based on the simulation results with three network topologies (ring/loop, mesh, and
hub & spoke), we consistently observed that the more seaports implementing the
optimal MPA-based BCAP policy, the lower network cost is. We have analyzed three
different network types with different ships routing rules where similar results are
observed. It shows that local actions (distributed optimization of arbitrary number
of container terminals) lead to an improved global performance (a competitive
network with reduced network’s cost). It means that for a large container terminal
network, it is always a benefit to apply the optimal BCAP method to as many
terminals as possible.

To deal with this dilemma of ships’ dissatisfaction if they are assigned to the
berth position later than their arrival time (with the MPA method), we also propose
how to implement the optimal BCAP policy only to some important seaports. From
the simulation results, we obtain the second conclusion where significant cost
reduction is still obtained with fewer number of seaports than those seaports
chosen arbitrarily.

In practice, this method is logical. From the simulation results, we see that the
important seaports are the large ones, where the terminal operators usually have
strong authority to impose such policy. This proposition is further verified with a
study case from the Indonesian container terminal network, where we observe that
even by applying MPA policy only to the two most important seaports, we still get
significant cost reduction.
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We present in this chapter a dynamical modeling of integrated (end-to-end) con-
tainer terminal operations using finite state machine (FSM) framework where each
state machine is represented by a discrete-event system (DES) framework, which is
the extension of I-BCAP modeling framework in Chapter 3. The asynchronous DES
operations in the I-BCAP is applied not only to the seaside, but to the whole sections
in container terminals, which are the operations of quay cranes (QC), internal
trucks (IT), and yard cranes (YC) and also the selection of storage positions in
container yard (CY) and vessel bays. The QC and YC are connected by the IT in our
models. After research motivation is presented in the first chapter, the explanation
of container terminal operations is provided, which will serve as the foundation
of the dynamical mathematical models. Afterwards, the allocation strategy of the
models will be given. Subsequently, we also describe the simulation set-up and
results. The simulations use the MPA method from our previous research and the
benchmarking methods from the state-of-the-art literature. Finally findings are
provided in the discussion.

6.1 Introduction

Container terminals have been important nodes in global maritime transportation
network for the past six decades. The standardization and low cost of container
boxes have made them the foremost choice of transportation means in the interna-
tional trade [64]. The trend of containerization growth has been twice the growth
of the total world and maritime trade for the past decade [76]. The increasing
demand in container trade has made the terminal operators to put efforts to opti-
mize and streamline their operations in order to guarantee an efficient service to
the shipping liners, as well as the inland shippers and consignees as the terminal’s
main customers [75].

In general container terminal, a number of ships can dock at various berth
positions along the seaside and several quay cranes (QC) can be assigned to every
berthed ship for loading and unloading containers. There are internal trucks
(IT) waiting beneath the QC and they transport the containers to some specific
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destinations at container yard (CY). On the other way around, IT also deliver
containers from CY to QC, which will load them to the pre-determined stacking
point at the vessels. The CY is divided into two parts. The section which is closer
to the berth is dedicated to the export (hence, outbound) containers, and the
other part is for the import/inbound ones. The containers are stored in the CY
and several yard cranes (YC) re-allocate them internally within the CY (known
as housekeeping/re-handling) or load/unload them to/from external trucks (ET),
which finally deliver the containers to their owners (consignees) in the factories or
warehouses.

Container terminal operations are typically divided into three main areas,
namely seaside, storage, and transfer [75, 76]. The seaside is a section where
incoming ships arrive at the seaport and the the terminal operator allocates berth
positions and QC(s) to each vessel. This is known as the integrated berth and crane
allocation problem (I-BCAP), where a detailed review is provided in [18]. A ship’s
load is represented by its number of containers, where each box of container is
measured as a twenty feet equivalent unit (TEU), approximately six meters long,
while the longer container is forty feet (FEU). The typical decisions in BCAP are
allocation of berth positions and QCs to the incoming ships [18]. In more detailed
levels, the terminal planners determine the exact positions of outbound containers
should be at the vessels, which usually identified by bays and tiers [18].

The storage operations is the management of containers in the CY and we refer
to [16] for a review on this specific operations. A container position in the CY
is defined by its row, bay, and tier, which is comparable to x − y − z axis in the
Cartesian systems. There are three typical decisions in this sub-operations. Firstly,
the positions where a group of containers should be stored. Secondly, the allocation
of YC to handle them from/to IT. The container placement at the right positions in
the CY is important. Thirdly, if an ET comes to the CY for pick-up operations, and
the targeted container is not in the top tier, the terminal operators has to assign YC
to re-arrange the containers positions. This situation therefore leads to the third
process, which is known as housekeeping/marshalling. Due to its cost-inefficiency,
marshalling is highly avoided in terminal operations [16].

The seaside and storage sub-systems are connected with the transfer operations,
whose review is discussed in [17]. In this sub-operations, transporters handle the
container delivery between QC and CY area. Common transporters in container
terminals are rail-mounted gantry crane (RMGC), rubber-tyre gantry crane (RTGC),
reach stakers (RS) and internal trucks (IT). In this chapter, we will focus on the
IT. The decisions in this sub-sytems are the allocation of IT to serve as the link
between QC and YC, and vice versa. The scheduling of IT to QC or YC is also
important, therefore we found significant works of vehicle routing problems (VRP)
in the container terminals. The most common method for scheduling is currently
performed in daily basis, where the schedule of IT is created at the beginning of
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each day, based on ships’ arrivals, outbound containers’ stowage plans, and inbound
containers’ external delivery. In this setting, variations of these three inputs are
often neglected [17].

In accordance with the complex seaport operations, the aim of the terminal
operators is to operate the container terminal efficiently in the least possible
cost with minimal dissatisfaction level from its customers [33, 36, 64, 76]. The
purpose of the terminal operators can be summarized into container delivery whose
destinations are to: 1) CY, for the inbound boxes, and 2) vessel, for the outbound
boxes [33, 36, 44]. The storage configuration of the inbound containers in the CY
and of the outbound containers in the vessels are known as the storage plan and
stowage plan, respectively [24, 94].

The complexity of container terminal operations has been studied extensively in
literature and some literature reviews in this topic are presented in [75, 76]. The
container terminal operations in the three sub-systems as above are dependent to
each other. For instance, the exact deployment of IT can only be executed after
the QC and YC allocation are definitive. For allocating cost-effective QC and YC
themselves, the detailed knowledge on the schedule is required.

To make an optimal operations planning, the entire sub-systems in the terminal
have to be considered [33, 36, 44]. However, in practice, the complexity of the
operations makes the state-of-the-art research in container terminal operations
limited only to each sub-system [75, 76]. Excellent reviews for the seaside, storage,
and transfer operations are provided in [16, 17, 18]. To the best of authors
knowledge, there is no literature review dedicated for the container terminal
integrated operations.

In the practical level, the terminal operators almost exclusively rely on the
non-integrated decision making process to produce planning in each sub-system
of the terminal operations. The QC, YC, and IT are allocated according to the
first-come-first-served (FCFS) criteria, which does not guarantee the optimality of
the planning [16, 17, 18, 64].

There are indeed several works on the integrated terminal operations such as
in [2, 4, 11, 33, 36, 44, 89, 90, 91]. Although the end-to-end operations process
is modeled in [2, 4], the problems are more in the tactical level, which relate to
resource allocation. In these papers, resource allocation is expressed as percentage
of servers (equipment) capacity to transport containers to the subsequent server.
A similar tactical approach is found in [91] where dynamical models are used to
depict the integrated operations in dry terminals. In this research, two control
variables are considered, the in and out stacking rate of of the stacking carriers
in the terminals. In [36], a genetic algorithm (GA)-based pseudo code is used
to create the planning. The non-existence of mathematical models makes the
test-ability of the problems can not be guaranteed.

One noticeable drawback of the state-the-art models is the static approach,
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in which the inputs are known apriori. In the state-the-art (static), operations
research is the main technique used in the container terminal operations modeling
[16, 17, 18, 75, 76], and linear programming (LP) can be applied for solving the
equipment allocation in the seaport. One assumption of LP is the inputs have to be
deterministic, which implies that the changing of inputs during solution searching
is not permitted

For instance, in [33], the IT are pre-determined before the schedule of QC, IT
and YC are solved through linear programming technique. In fact, during terminal
operations, there are chances of disruption of the equipment conditions [17, 64].
This dynamic behavior is not yet represented in [33]. The discussion of modeling
approach in seaport operations is heavily discussed in [13], which concludes that
the dynamical approach is more suitable to capture the changing environment. A
discrete-event system (DES) model is developed in [13] and it is important to note
that the DES here is not the same terminology that commonly used in operations
systems, where some probabilistic functions are employed to represent the random
behavior of systems. The latter approach is know as discrete-event simulation as
exemplified in [78].

Some works in terminal operations have tried to incorporate dynamical mod-
eling as studied in [11, 89, 90, 91]. In these two works ([11, 89]), a partially
dynamical aspect in the lower-level controllers is included, which is the detail
movement of QC, YC and IT/rail in terminal. However, prior to this step, the
allocation of the three equipment to berth and CY are solved from a static model
so-called the higher-level controllers, where a similar concept of LP is used to find
the solutions. In [11, 89] the mixed-integer linear programming model (MILP)
technique is used to find the optimal allocation of QC, YC, ASC, and rail.

This setting does not completely capture the real equipment allocation problems
in the terminal. In the beginning of each planning period, the terminal operators
allocate the QC, YC, and IT based on available information in the terminal, namely
vessel arrivals and CY storage status. But later on, the equipment detail scheduling
in [11, 89] is handled via a linear programming technique which in reality is static.
The changing in berth and CY configuration will be seen by the terminal operators
as new possible storage/stowage plan, and will subsequently change the entire
previous allocation and scheduling of QC, YC, and IT. This dynamics behaviour
in container terminal operations is not considered in the modeling framework in
[11, 33, 89].

As opposed to the static modeling, we employ a dynamical model based on
discrete-event systems (DES) in this chapter. The DES framework is suitable for
describing the terminal operations problems, since each job completed by either QC,
YC, or IT can be seen as a discrete-event time step [19]. For terminal operations,
the DES modeling framework has been successfully applied to a sub-system of
terminal operations, namely the berth and and quay crane allocation [12, 13].



6.2. Container terminal operations 99

As stated in [12, 13], the generalization of the work to the complete terminal
operations remains open. The lack of dynamical models in container terminal
operations as mentioned before has motivated us to study dynamical modeling
in integrated terminal operations. In particular, we also use finite state machine
(FSM) framework, where the DES formulation is represented in each of the state
machine formulation. As discussed in [51], FSM framwork incorporates a set of
several discrete variables. In this regard, the FSM suits our problems where the
complex systems of terminal operations can be represented by discrete variables.

The rest of this chapter is organized as follows. After research motivation is
presented in the first sub-chapter, Sub-Chapter 6.2 is devoted for the explanation of
container terminal operations, which will serve as the foundation of the dynamical
mathematical models presented in the Sub-Chapter 6.3. The allocation strategy of
the models is given in Sub-Chapter 6.4. Subsequently, we describe the simulation
set-up and results in Sub-Chapter 6.5. The simulations use the MPA method from
our previous research and the benchmarking methods from the state-of-the-art
literature. Finally concluding remarks and possible future works are discussed in
Sub-Chapter 6.6.

6.2 Container terminal operations

We present the generalization of integrated container terminal operations frame-
work in this sub-chapter. The framework will serve as the basis for the dynamical
models development in the Sub-Chapter 6.3.

6.2.1 General assumptions

Based on the previous studies in [2, 33, 36, 89], we summarize the integrated
container terminal operations which is defined as the sequential series of processes
to unload inbound containers from ships to CY, and correspondingly, the set of
processes to load outbound containers from CY to vessels, where in both types of
operations, the vessels are already allocated berth positions in the terminals. The
schematic diagram of an end-to-end container terminal operations is depicted in
Figure 6.1.

This chapter discusses the loading and unloading and loading processes in
container terminals which will be focused for the inbound containers. The reasoning
for the omission of outbound containers is presented in Sub-Chapter 6.3. The
receiving and delivery operations, which are performed by the ET, are neglected
in this research. This limitations operations framework can also be found in
[11, 33, 89] due to complexity of ET operations, which includes random aspects of
time to pick and deliver containers to/from hinterlands [50].
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Figure 6.1: An illustration of an integrated container terminal operations. The bracket refers
to the two (begin and end) parties which are involved in every process. The arrows show
the direction of container flow. The green-dashed arrow refers to transportation process of a
container by an IT. The blue-solid arrow represents the transportation of a container by an
ET, which is not considered in this work.

Regarding the handling operations of containers, the goals of the terminal
operators are to, firstly, locate the inbound containers into import sub-blocks in
CY, which is known as the unloading process, and secondly, place the outbound
containers into vessels, which is reversely the loading process. The output the first
and second goals are the CY’s storage plan and vessel’s stowage plan, respectively.
Examples of operations and modeling for CY’s storage and vessel’s stowage plan
are discussed in [24, 94], and the illustrative example is given in Figure 6.2.

In a ship, the smallest unit to store containers is the sub-bay, whose capacity
is more than 5 TEUs [94]. A group of several sub-bays is the bay. The containers
in the seaside are handled by QCs. Some QCs work on several berthed-ships,
and in practice the QCs do not have some specific working areas, as long as their
movement do not interfere among each other [18]. In this research, we assume
that a bay at a vessel is allocated by a QC which handles the container from the
beginning of unloading/loading until finished.

A container yard consists the areas for the outbound and inbound containers.
The smallest unit to place containers in the CY is the sub-block, whose capacity
is more than 20 TEUs [94]. A group of some sub-blocks in the same ordinate
is defined as a block, where a set of blocks in physically marked region is the
preferred area, which is usually designated for specific customers (shipping liners).
A yard crane is assigned to some specific specific preferred areas. An inbound YC
cannot move to the outbound CY preferred areas, and vice versa. We assume in
this research that a YC is allocated to a specific block in the CY. Figure 6.2 shows
an illustration of a CY configuration.

A storage plan is the set of decisions that the terminal operators know to
which CY’s sub-blocks the inbound containers will be allocated. On the other
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Figure 6.2: A top view layout of the CY (left) and vessel (right). Both of CY and vessel serve
as temporary storage in a container terminal. CY is usually divided into inbound (import)
and outbound (export) sections, where the storage positions are identified by blocks. Vessels
carry both of import and export containers where the storage positions are identified by
bays. CY and vessels are served by YCs, and QCs, respectively.

Table 6.1: The subset of inbound containers handling sequence from a vessel’s bays. The
sequence are created by the terminal operators and based on this information, the stevedore
pick the containers from the vessel and transport them into appropriate CY blocks with ITs.

Sequence Container ID Vessel bay Row Tier
1 MAL-110 53 1 3
2 MAL-113 53 1 2
3 MAL-109 53 1 1
4 GOT-580 52 3 3
5 GOT-582 52 3 2

hand, a stowage plan is the information on vessel’s sub-bays where the outbound
containers will be allocated. The inputs to create those two plans for the inbound
and outbound containers are the handling sequences, which are illustrated in Tables
6.1 and 6.2, respectively.

The direction of handling sequence in Tables 6.1 and 6.2 are from and to vessels,
respectively. In Table 6.1 the terminal operators have to create CY storage plan,
while in Table 6.2, the vessel stowage plan need to be devised. The range of
container numbers that can be handled each ship is 1,000 to 10,000 TEU per ship
[13]. The two examples in Tables 6.1 and 6.2 do not necessarily belong to the
same vessel. The alphabetical characters in the container ID in Tables 6.1 and 6.2
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Table 6.2: The subset of outbound containers handling sequence from several blocks in
the outbound CY. The sequence are created by the terminal operators and based on this
information, the stevedore pick the containers from the CY’s blocks and transport them into
appropriate vessel’s bays with ITs.

Sequence Container ID CY block Row Tier
1 HUT-904 12 5 3
2 HUT-907 12 5 2
3 HUT-910 12 5 1
4 MAE-881 11 2 3
5 MAE-880 11 2 2

usually refer to the customers/owners of the containers. As have been explained
in Sub-Chapter 6.1, the container handling sequences may dynamically change.
Therefore, the information given to load or unload containers has to be updated
regularly based on latest condition in the field.

For modeling purpose, we assume that the X, Y, and Z coordinate (position)
of each inbound container in the CY blocks and each outbound container in the
vessel bays are not stipulated. Instead, we determine the CY’s sub-block and the
vessel’s sub-bay to which the containers will be located, and the exact placement of
containers in CY’s blocks and in vessel’s bays are assumed to be properly managed.
This limitation is also found in [4, 11]. We believe that the dynamical models of
integrated terminal operations which still in the initial phase in this research will be
too complicated if this setup is considered. For detail treatment in the modeling of
CY’s storage plan and ship’s stowage plan, we refer interested readers to [24, 94].

6.2.2 Job definition

As explained in the previous sub-chapter, the container handling sequence which
is explained in Sub-Chapter 6.2.1 is performed by three main equipments in
the terminal, namely QC, YC, and IT. Correspondingly, we define a job as an
operation/work that is either 1) to unload each of inbound container from the
vessel to the inbound CY; or 2) to load each of outbound container from the
outbound CY to the vessel. For the former one, Table 6.1 presents a subset of
jobs for the inbound container handling sequence, and similarly, for the latter one,
Table 6.2 shows a subset of jobs for the outbound container handling sequence. In
both cases, a job is performed by the terminal operators by pairing a QC and a YC,
which is connected by an IT, as exemplified in Figure 6.3. In each job, the terminal
operators select a QC, if a loading job is about to executed, and in reverse, a YC is
selected if an unloading job is being considered. In both kind of jobs, the IT has to
be selected from the group of available ITs to perform the operations.

In this chapter, we focus mainly on the modeling and optimization of the former
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Figure 6.3: An illustration of two kinds of job available in the integrated container terminal
operations. An unloading job refers to the terminal operations of an import/inbound
container with the start and end operations at QC (vessel’s sub-bay) and YC (CY), respectively.
A loading job refers to the handling of an export/outbound container with the start and end
operations at YC (CY) and QC (vessel’s sub-bay), respectively. In both types of jobs, internal
trucks need to be allocated to transport the containers between the two cranes.

one, e.g., the unloading processes of inbound (import) containers. Hence we
incorporate detailed model for the inbound container sequence while the outbound
one is simplified by a lumped model.

Figure 6.3 illustrates the container handling sequence in both types of job. As
shown in Figure 6.3a, an unloading job for the inbound container is initiated by
the unloading of an assigned container with the prescribed QC from the vessel to
the empty IT chassis, which is mostly located beneath the QC. Subsequently, the
loaded IT brings the inbound container to a pre-determined inbound CY’s sub-block
location before it is picked up by the allocated YC. This particular job is completed
when the YC has successfully placed the container into the allocated sub-block in
the inbound CY.

The reverse process is applied for the outbound container as shown in Figure
6.3b. A loading job starts when a YC at the export CY picks up an already assigned
outbound container from the outbound CY and places it on an empty IT’s chassis,
which is normally situated under the YC. The loaded IT will then transport the
outbound container to the allocated QC. When the QC is ready, it takes the container
from the IT and brings it to a prescribed sub-bay location in the vessel. Once the
outbound container is positioned at the right location in the vessel, the loading job
is completed. It is important to note that the YC in the unloading job is different
with the YC used in the loading job, while a QC can perform operations both for
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unloading and loading jobs.
The same job definition is also used in the works of [11, 33, 89], where IT act as

connectors between QC and YC for handling the containers. As have been discussed
in Sub-Chapter 6.1, the allocation and scheduling are done separately in all these
works. Particularly, the dynamics of the integrated container terminal operations
problems is only used for the scheduling. In this research, we perform simultaneous
allocation and scheduling where the process’ dynamics play an important role in
both types of decision.

We also assume in this research that the detail movement of the QC, YC, and IT
is not included in the modeling. For instances, in the operations of seaside cranes,
the hoist and release operations are not considered. Instead, we will later assume
that each QC and YC operations requires a constant operational time. The speed of
each IT when transporting is also assumed to be constant.

6.3 Dynamical modeling of integrated container ter-
minal operations

In this sub-chapter we present the dynamical models based on the integrated
terminal operations framework presented in Sub-Chapter 6.2. As have been intro-
duced in Sub-Chapter 6.1, we follow the modeling framework in [13] using DES
for describing the operations of the cranes and trucks and it is combined with a
finite-state machine (FSM) for distinguishing between the loading and unloading
jobs. The DES model in our present work uses a discrete event time k ∈ N which
corresponds to the start or initiation of an unloading or a loading job as explained
in Sub-Chapter 6.2.2.

As briefly mentioned before, we focus the DES modeling effort on the inbound
handling sequence in the present work while for the outbound sequence, we
simplify the DES modeling of it by simply assuming a block of area in CY instead of
detail sub-blocks of area as in the inbound case.

The involvement of external parties (e.g. the external trucks (ET)) adds to
the complexity of the DES modelling. Due to the schedule constraints of the
departing vessels, the terminal operators usually apply stricter schedule for ET
to deliver outbound containers than for ET to bring the inbound containers to
the hinterland [50]. Some traditional terminals, as later shown in our case in
Sub-Chapter 6.5, do not have the truck appointment systems for notifying IT that
the import containers are ready for clearance from the CY. The random aspect on
hinterland container transport by trucks introduces complexity for the inbound
operations [50]. Consequently, we focus on a detailed modelling of the inbound
CY in this work that represents closely to the integrated operations of container
terminals in practice.
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In the following sub-chapters, we will firstly described the general setup of the
DES and FSM model. It is followed by the DES-FSM model development of the
integrated terminal operations. Lastly, we present the predictive model that is used
for the development of model predictive control along with the associated cost
function.

6.3.1 General DES & FSM setup

Throughout the chapter, we will use various mathematical notations in our mod-
elling and methods that are summarized in Table 6.3. The discrete-event time
is denoted by k that corresponds typically to the start of a discrete event in the
operations, such as, the start operation of a QC, IT or YC.

Let us define the variables of sets involved in such integrated operations based
on the three main operating areas in the terminal, namely, the seaside (berth), the
storage (CY), and the transporter (IT). For the seaside operations, S(k) denotes the
set of available sub-bays in ships at an event time k. The set of all sub-bays in all
berthed vessels is denoted by Stot(k). As before, it follows that S(k) ⊂ Stot(k) for
all discrete-event time k. We emphasize here that both S(k) and Stot(k) accumulate
sub-bays information from all berthed vessels at any given discrete-event time k.

As discussed in the Introduction, the seaside and the storage operations are
connected by the transporters. While there are different forms of transporter,
we restrict ourselves to the use of internal trucks (IT) in this work since it is
still the dominant mode of internal transportation in many terminals worldwide,
particularly, those in the developing countries [17, 50]. We denote the set of indices
of internal trucks by Ttot = {1, 2, . . . , L}.

It has been mentioned before that there are two jobs for the import/inbound
and export/ outbound containers and we will associate each job with a state in the
FSM. Correspondingly, we denote J = {l, u} as the state space of the FSM where l
refers to the state of loading job and u corresponds to the state of unloading job.
As described before, we will focus on the detailed modeling for the unload jobs for
the inbound containers. The set J(k) ⊂ J denotes the state of the FSM at event
time k. The guard condition for the FSM will be given later in Sub-Chapter 6.3.2
which is based on the state variables of the DES.

At each event-time k, when a job is assigned (e.g., loading or unloading), all
assigned internal trucks proceed to their next position. As described before, we
will focus on the detailed modeling for the unload jobs for the inbound containers.
Therefore, we assume that the inbound and outbound CY are located in different
area of the terminal, as commonly found in practice [16]. We also assume that
there is only one block of outbound CY with its own dedicated crane. At any
given event time, we have the set Tout which is a set of trucks that are positioned
and readily available at the outbound CY. Hence, in this work, the outbound job
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Table 6.3: List of mathematical notations used in the dynamical models of integrated
container terminal operations

Notation Description
Decision variables

u(k) Control variable for assigning job from the set J (k)

t(k) Control variable for assigning an inbound truck from the set of IT Tin(k)

t̄(k) Control variable for assigning an outbound truck from the set
of outbound IT Tout(k)

s(k) Control variable for assigning a vessel’s sub-bay from/to which
an inbound/an outbound container is sent/delivered

n(k) Control variable for assigning a CY sub-block from the set Y(k)
for inbound operations
Parameters

L The number of inbound internal trucks
M The number of positions of QCs
N The number of positions of inbound CYs
v Average speed of an IT
d(a, b) Distance between point a and b in the terminal
α Average time needed by a QC to handle a container
β Average time needed by a YC to handle a container

State variables
xit(k) The state variable of the position of the i-th IT
xiq(k) The state variable of finishing time of the i-th QC
xic(k) The state variable of finishing time of the i-th QC

Sets
Stot(k) Set of all sub-bays in ships at event time k
S(k) Set of available sub-bays in ships at event time k
Sarr,tot(k) Set of new sub-bays from newly berthed vessels
Sarr,empty(k) Set of available sub-bays from newly berthed vessels
Sdep,tot(k) Set of new sub-bays from recently departed vessels
Sdep,empty(k) Set of available sub-bays from recently departed vessels
Ttot Set of all internal trucks
Tin(k) Set of all available IT assigned for unloading jobs at event time k
Tout(k) Set of all available IT assigned for loading jobs at event time k
J State space of the FSM for jobs: loading job (l) and unloading job (µ)
J(k) The state of the machine/job at event time k

Indices
k Event time
K Planning horizon time
j Index of the first earliest available QC
l Index for a loading job
u Index for an unloading job

depends only on the availability of cranes in QC and of sub-bays in the vessel. When
a loading job is executed, we can replenish the truck in Tout to replace the assigned
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outbound truck. However, for the set of inbound IT Tin, they are not necessarily
available at all cranes of QC. Thus when an unloading job is executed, we need to
allocate a truck from Tin that will move from its current position in the terminal to
the assigned QC crane. Note that at any given event time k, the sets of IT satisfies
the following relations

Ttot = Tin(k) ∪ Tout(k) (6.1)

with Tin(k) ∩ Tout(k) = ∅. Due to this conservative relation, for the rest of this
chapter, we will only describe the dynamics of Tout(k) while the state of Tin(k) can
be deduced directly from (6.1).

For each truck index i = 1, ..., L, we denote

xit(k) ∈ {0, 1, 2, ...,M,M + 1,M +N} (6.2)

as the position state of i−th truck where 0 refers to the outbound CY position,
1, ...,M refer to each of M cranes of QC and the rest represent each of N cranes in
the inbound CY. For example, xit(k) = 2 corresponds to the state of i−th truck at
event time k which is located at the 2nd crane in QC while xit(k) = M + 2 means
that the i−th truck is located at the 2nd yard crane in the inbound CY at event time
k. The position of each truck xtt is initialized at xit,0 ∈ {1, 2, ...,M,M + 1,M +N}
for all i ∈ Tin(0) and xit,0 = 0 otherwise.

Following the modeling framework for berth and quay-crane allocation in [13],
the state variables will be given by the finishing time of the two equipment (the
cranes in both QC and YC) and the position of all IT at each event-time k. Namely,
xit(k) describes the position state of the i−th IT at event-time k, xiq(k) refers to the
finishing time of the i−th QC at event-time k and xic(k) denotes the finishing time
of the i−th yard crane in the inbound CY at event time k.

6.3.2 DES-FSM of integrated container terminal operations

Based on the description of variables and sets in the previous sub-chapter, we
can now present the DES-FSM modeling of integrated container terminal op-
erations. Firstly, a new event time k is triggered whenever a QC has finished
unloading/loading job from/to an assigned IT from the previous event time k − 1.
Thus the actual time associated to the new event time k is given by

j = arg min
i

[xiq(k − 1)]. (6.3)

Simultaneously, a guard condition is used to determine the transition of state
machine at the new event time k. Before defining the guard condition, we denote
d(a, b) as the distance between the two points a and b in the container terminal,
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and the route from a to b has to follow pre-defined possible paths in the terminal.
We also assume that the operations time needed by a QC to handle a 20-feet
container at the sub-bay s ∈ S (loading or unloading) is described by the function
µ : Stot → R+. It is dependent on the location of the sub-bays in the vessel, e.g.,
the Cartesian coordinate of the sub-bays on the vessel. Using these notations and
given j as in (6.3), the guard condition and the transition of state machine are as
follows.

Guard: If there exist n ∈ {1, ..., N}, s ∈ Stot\S(k− 1) and ` ∈ Ttot\Tout(k− 1) such
that

xnc (k − 1) < xjq(k − 1) + µ(s)

+
1

v
[d(x`t(k − 1), j-th QC) (6.4)

+ d(j-th QC, n-th YC)]

then

J(k) = u, (6.5)

or otherwise

J(k) = l, (6.6)

where v is the constant velocity of an IT.

Roughly speaking, the inequality (6.4) in the guard condition means that there
will be an available yard crane in the inbound CY (the n-th CY crane) at the next
event time when we allocate the `-th truck (which is not currently located in the
outbound CY) to unload a container at the s-th sub-bay in the vessel from their
current position x`t(k − 1) to the final destination of the n-th YC. As we have
explained in Sub-Chapter 6.2.2, an inbound container can be processed in the
inbound CY only when both the YC and the IT are ready. When these conditions
hold then the empty IT moves from its current position to the QC, holds its position
at QC until it has received the container from the crane, and subsequently the
loaded IT proceeds on to the designated YC.

After the new event time and the associated state machine have been updated,
we proceed to the decision making process. Based on the guard condition as before,
if J(k) = l then three decision variables for the outbound process have to be made,
namely, the outbound internal truck t̄(k) taken from Tout(k − 1), the internal truck
t(k) taken from and Ttot\Tout(k−1) for marshalling trucks in Tout(k) and the vacant
sub-bay in the vessel s(k) taken from S(k − 1).
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Otherwise, when J(k) = u then three decisions for the inbound process have to
be made. They are the inbound internal truck t(k) taken from Ttot\Tout(k − 1), the
available yard crane n(k) that satisfies (6.4) and the inbound container sub-bay
s(k) in the vessel that belongs to Stot\S(k − 1). We note that as there can be more
than one solution of n and ` that satisfy (6.4), a combinatorial optimization on
the truck and the crane may be required to optimize the operations. In the next
sub-chapter, we will return back to the allocation strategy.

Subsequently, after these decision variables (depending on the particular job)
have been taken, the state variables xit, x

i
q, x

i
c and the dynamic sets S, Tin and Tout

are updated as follows. On the one hand, when the system is in the loading mode
with J(k) = l, we have the following update rule:

xjq(k) = xjq(k − 1) + µ(s(k))

+
1

v
d(j-th quay, outbound CY crane) (6.7)

x
t̄(k)
t (k) = j, x

t(k)
t (k) = 0 (6.8)

where j is as in (6.3), µ(s(k)) denotes the crane operations time for loading the
container to the sub-bay s(k) and

xiq(k) = xiq(k − 1) ∀i 6= j (6.9)

xic(k) = xic(k − 1) ∀i (6.10)

xit(k) = xit(k − 1) ∀i 6= t̄(k) or t(k) (6.11)

Tout(k) = Tout(k − 1) ∪ t(k)\t̄(k) (6.12)

S(k) = S(k − 1)\s(k) ∪ Sarr,empty(k)\Sdep,empty(k) (6.13)

Stot(k) = Stot(k − 1) ∪ Sarr,tot(k)\Sdep,tot(k), (6.14)

where Sarr,tot(k) and Sarr,empty(k) is the set of new sub-bays and available sub-bays
from the newly berthed vessel(s), respectively, and correspondingly, Sdep,tot(k) and
Sdep,empty(k) are those from the recently departed vessel(s).

On the other hand, when the unloading job occurs (e.g., J(k) = u), these
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variables are updated according to

xjq(k) = xjq(k − 1) + µ(s(k))

+
1

v
d(xt(k)

t (k − 1), j-th quay) (6.15)

xn(k)
c (k) = xjq(k − 1)

+
1

v
d(xt(k)

t (k − 1), j-th quay) + µ(s(k))

+
1

v
d(j-th quay, n(k)-th CY crane) + β (6.16)

x
t(k)
t (k) = n(k) +M (6.17)

where j is as in (6.3), µ(s(k)) gives the crane operations time for unloading the
container from the sub-bay s(k) and

xiq(k) = xiq(k − 1) ∀i 6= j (6.18)

xic(k) = xic(k − 1) ∀i 6= n(k) (6.19)

xit(k) = xit(k − 1) ∀i 6= t(k) (6.20)

Tout(k) = Tout(k − 1) (6.21)

S(k) = S(k − 1) ∪ s(k) ∪ Sarr,empty(k)\Sdep,empty(k) (6.22)

Stot(k) = Stot(k − 1) ∪ Sarr,tot(k)\Sdep,tot(k). (6.23)

In contrast to the quay crane operations, the operations time for the yard crane is
approximately constant and is given by β (c.f. (6.16)). It is assumed here that the
yard cranes are well-placed in the container yard such that the operations time for
unloading any container to the yard is relatively constant.

Roughly speaking, the dynamics of the state variables and the sets of IT and
sub-bays in (6.7)-(6.23) can be described qualitatively as follows. During the
loading mode, Eq. (6.7) describes the finishing time of loading process at the j-th
quay crane that comprises of the standard crane operations time and the travel time
of the internal truck t̄(k) from outbound CY to the crane. The latter is described
in (6.8) along with the marshalling of an IT truck t(k) to the outbound CY. The
rest of the state variables of the quay cranes, yard cranes and internal trucks are
the same as the previous event time as presented in (6.9)-(6.11). Due to the use
and marshalling of trucks from and to the container yard, respectively, the set of
available outbound trucks Tout is updated accordingly as in (6.21). Lastly, the used
sub-bay is removed from the set of available sub-bays in the vessel S(k) in (6.22).

Similarly, for the unloading mode, Eqns. (6.15)-(6.17) describe the unloading
process. In (6.15), the finishing time of j-th quay crane xjq is updated according
to the unloading operations time µ(s(k)) and the travel time from the current
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Figure 6.4: An illustration of the state machine transition for the two types of jobs and the
update of state variables after each transition.

position of t(k)-th truck to the crane. The finishing time of the n(k)-th yard crane
is computed in (6.16) based on the accumulation of total quay crane operations
time, the travel time from the j-th quay crane to the yard crane and the yard
crane operations time β. The final position of t(k)-th truck position will be at the
n(k)-th yard crane as given in (6.17). The rest of equations (6.18)-(6.22) can be
understood similarly to those for the loading job as before.

The transition of this finite state machine is shown in Figure 6.4. The illustration
explains the guard condition and the state machine transition as given in (6.4).

Similar to our previous work in [13], the model considers the set dynamic
of available trucks and of ship’s sub-bays at each event time k. The dynamic
aspect of these sets is not yet considered in the state-of-the-art approaches, as
found for example in [33, 36]. In these works, it is commonly assumed that the
entire information is known and can directly be used in its entirety for the whole
planning horizon. Whereas in practice, the availability of vessels’ bays and trucks in
a terminal is very dynamic which can be due to disruptions, such as, the equipment
breakdowns or the non-existence of human operators [5, 24, 48] or due to an
incomplete/incorrect container manifest in the vessel. The integration of the above
model with the following model predictive allocation strategy will allow us to
monitor the operations and to adjust the planning in real-time in dealing with such
dynamically changing environment.
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6.4 Model predictive allocation method for integrated
terminal operations

In this sub-chapter, we will use the integrated terminal model from the previous
sub-chapter as a predictive model for optimizing the allocation of trucks, cranes and
sub-bays. We will present the adaptation of model predictive allocation strategy as
presented in [13] to such integrated terminal operations.

In general, the model predictive allocation strategy can be described as follows.
As shown in the previous sub-chapter, at each event time k, we have to make a
decision for a number of operational variables according to the admissible jobs at
the time and based on which, the state will transition to the next state.

Instead of making decision to these variables based only on the information at
each event time k, we can use the model to predict the outcome of the future states
within a finite horizon of event time when a given sequence of decisions is being
evaluated. Subsequently, the first action from the optimal sequence of decisions
can be implemented in the terminal operations for the current event time. This
allocation strategy is recursively done for all subsequent events. We note that the
update of the states based on the available information at any given time ensures
that the model will always be up-to-date with the current terminal operations.

We will firstly describe the objective functions that will be optimized by our
proposed model predictive allocation algorithm. We will then describe the algorithm
and the preconditioning steps to solve the recursive optimization problem. As there
are two sets of decision variables that correspond to two possible jobs, the predictive
model will take into account all possible future machine states that depend on the
outcome of a particular sequence of decisions within a finite horizon of event time.

6.4.1 Cost function

The cost function used to evaluate policies in our dynamical models is related
to the operations time. The use of operations time in the cost function for the
optimization has been used extensively in literature, see for instance, [36]. Other
types of cost function, such as, the length of queue [11] and the energy expenditure
[33, 89], can be considered as well in our setting as the dynamical model described
in the previous sub-chapter can include information on the queue of IT and fuel
consumption of IT by tracking the distance travelled.

We recall from the previous sub-chapter that n(k) is one of the decision variables
on the yard crane unit that will be assigned for processing an inbound container
in CY. Let us denote w(k) the earliest available QC at the next event time k for
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unloading/loading job based on the available information/predicted state at k − 1:

w(k) = arg min
i

[xiq(k − 1)] (6.24)

As we are interested with the total operations time, the objective function for
the optimization of terminal operations can be the total time to unload the entire
import containers and to load all the export containers starting from the initial event
time k = 0 up to the event time equal to the total number of inbound and outbound
containers. By Bellman’s principle of optimality, the optimization of this operations
is equivalent to the optimization of the cost-to-go or Bellman value function at
every event time k, which will be the total operations time from the event time
k until the end of operations. We note that, the latter involves combinatorial
optimization that includes future machine states J (k) whose number of states can
grow exponentially with the future event time. By adopting the receding horizon
control (known also as the model predictive control (MPC)) approach, instead of
using the aforementioned cost-to-go, we can consider a (shorter) finite horizon of
event time for the cost function.

Consequently, at every event time k, we consider the following receding horizon-
based cost function

Z(k) =

K∑
m=k

z(m) (6.25)

where K is the length of horizon, z(m) in (6.25) is the total time spent in the
container terminal to allocate a single inbound/outbound container that is defined
by

z(m) =

{
x
w(m)
q (k)− xw(m)

q (k − 1) if J (k) = l

x
n(m)
c (k)− xn(m)

c (k − 1) if J (k) = u,
(6.26)

where the future state and decision variables follow the model as in (6.7)–(6.22).
From (6.26), we have that the total operational time for loading an outbound
container is given by the difference of finishing time of QC at k and k− 1. Similarly,
the time for unloading an inbound container is based on the difference of finishing
time of the assigned yard crane at k and k − 1.

6.4.2 Allocation algorithm and pre-conditioning steps

We follow the framework of model predictive allocation (MPA) as provided in [13].
At every event time k, we denote x̂it(h), x̂iq(h), x̂ic(h) and ŵ(h) with integer h > 0

as the predicted state variables and the predicted available quay crane, respectively,
at event time k + h computed using a copy of the model. Using these notations,



114 6. Modeling and optimization of integrated container terminal operations

the MPA algorithm is given as follows.
MPA algorithm (for integrated terminal operations):

1. For a new event time k, identify the available quay crane j according to (6.3)
and evaluate the Guard condition for determining the current job J (k).

2. Based on the previous information of the state variables, j and J (k), solve
the following receding horizon optimization problem

min
n̂,t̂,ˆ̄t,ŝ

Z(k)

subject to the following state equations for all h = 0, 1, . . .K with K be the
length of the horizon

x̂
ŵ(h)
q = x̂

ŵ(h−1)
q + µ(ŝ(h))

x̂
ˆ̄t(h)
t,p (h) = ŵ(h)

x̂
t̂(h)
t,p (h) = 0

x̂iq(h) = x̂iq(h− 1),∀i 6= ŵ(h)

x̂ic(h) = x̂ic(h− 1),∀i
T̂out(h) = T̂out(h− 1) ∪ t̂(h)

\¯̂t(h)

Ŝ(h) = Ŝ(h− 1)\ŝ(h)

∪Ŝarr,empty(h)\Ŝdep,empty(h)

Ŝtot(h) = Ŝtot(h− 1)

∪Ŝarr,tot(h)\Ŝdep,tot(h)

n̂(h) = ∅



if Ĵ (h) = l
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or else (whenever Ĵ (h) = µ)

x̂
ŵ(h)
q = x̂

ŵ(h−1)
q + µ(ŝ(h))

x̂
n̂(h)
c (h) = x̂

ŵ(h−1)
q

+ 1
vd(x̂t̂(h)

t,p , ŵ(h)-th quay) + µ(ŝ(h))

+ 1
vd(ŵ(h)-th quay, n̂(h)-th CY crane)

+β

T̂out(h) = T̂out(h− 1)

Ŝ(h) = Ŝ(h− 1) ∪ ŝ(h) ∪ Ŝarr,empty(h)

\Ŝdep,empty(h)

Ŝtot(h) = Ŝtot(h− 1)

∪Ŝarr,tot(h)\Ŝdep,tot(h)

x̂iq(h) = x̂iq(h− 1),∀i = ŵ(h)

x̂ic(h) = x̂ic(h− 1),∀i 6= n̂(h)
ˆ̄t(h) = ∅

3. Using the optimal solution in 2), assign the inbound yard crane n(k) = n̂(0),
the outbound vessel’s bay s(k) = ŝ(0), the inbound internal truck t(k) = t̂(0)

and the outbound internal truck t̄(k) = ˆ̄t(0). When n̂(0) or ˆ̄t(0) is an empty
set, it means that there is no assignment of yard crane or outbound internal
truck, respectively.

4. Increment the event time k by one and return to 1).

For solving the optimization problem in Step 2 of the above-mentioned MPA
algorithm with the event horizon h = {0, 1, . . .K}, we need to compute the
optimal inbound yard cranes n̂(0), . . . , n̂(K) ∈ {1, . . . , N}, the vessel’s sub-bays
ŝ(0), . . . , ŝ(K) ∈ Stot(k), the inbound internal trucks t̂(0), . . . , t̂(K) ∈ Ttot\Tout(k)

and the outbound internal trucks ˆ̄t(0), . . . , ˆ̄t(K) ∈ Tout(k). Solving this combina-
torial optimization for a finite length of horizon will still be non-trivial when the
horizon length K is large. In order to facilitate this, we introduce preconditioning,
similar to that used in [13]. The preconditioning is based on the ordering of the
elements in the discrete sets of the decision variables (according to some mea-
sures), and followed by a truncation of the ordered sets. The optimization is then
performed based on the truncated sets. In particular, we consider the following
optimization steps using the above mentioned preconditioning:

1. Let Sunload
ordered(k) ⊂ Stot(k) be the ordered set of sub-bays containing the re-

maining containers to be unloaded at time k, which are ordered based on
the container handling sequence predetermined by the terminal operator
(as exemplified in Table 6.1 and 6.2). Set A(k) as the first K elements of
Sunload

ordered(k).
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2. Similarly, we define S load
ordered(k) = {s1, s2, . . .} ⊂ S(k) as the ordered set of

the available sub-bays at time k, which is ordered based on the quay-crane
operations time such that

µ(s1) 6 µ(s2) 6 µ(s3) 6 . . . .

Set B(k) as the first K elements of S load
ordered(k).

3. Let Y(k) = {y1, y2, . . . , yN} be the ordered set of inbound yard cranes at time
k such that

xy1c (k) 6 xy2c (k) 6 . . . 6 xyNc (k)

holds where N is the number of yard cranes. Accordingly, set the truncated
ordered set C(k) as the first K elements of Y(k).

4. Define Tordered(k) = {t1, t2, . . .} as the ordered set of internal trucks at time k
based on the distance to the w(k)-th quay crane where w(k) is as in (6.24),
e.g.,

d
(
xt1t,p, w(k)

)
6 d

(
xt2t,p, w(k)

)
6 . . .

holds. Based on this ordered set, setD(k) as the firstK elements of Tordered(k).

5. Using the truncated ordered sets A(k),B(k), C(k),D(k), compute the optimal
sequence of sub-bays ŝ ∈ A(k) (for unloading) or B(k) (for loading), optimal
sequence of inbound yard cranes n̂ ∈ C(k) and optimal sequence of inbound
trucks t̂ ∈ D(k) that solve the receding horizon optimization problem in step
2) of the MPA algorithm.

The above optimization with pre-conditioning algorithm replaces then step 2)
of the MPA algorithm as given before. The preconditioning step that is described
above is similar to the one used in [13]. In particular, the model predictive alloca-
tion algorithm in [13] uses also the truncated ordered set of berthed ships prior to
finding an optimal sequence of ships that solves the receding horizon optimization
problem for allocating berth and quay cranes. Instead of dealing with a truncated
ordered set, the proposed algorithm above involves four truncated ordered sets,
which makes it harder to solve the problem. Yet this preconditioning step facili-
tates significantly the search of optimal sequences, in comparison to solving the
combinatorial optimization using the whole sets of sub-bays, internal trucks and
yard cranes. In the following sub-chapter, we will compare the performance of our
proposed algorithm above with the state-of-the-art genetic algorithm and particle
swarm optimization.
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Table 6.4: Simulation parameters used to test the dynamical models of integrated container
terminal operations. The parameters are empirically obtained from observation in Port of
Tanjung Priuk, Jakarta, Indonesia. In each of the equipment, we measured 100 container
handling operations and took the average operations time.

Parameter Value Unit
QC 1 operations time 180.03 seconds/container
QC 2 operations time 171.37 seconds/container
QC 3 operations time 154.85 seconds/container
YC export operations time 128.53 seconds/container
YC import 1 operations time 115.78 seconds/container
YC import 2 operations time 114.94 seconds/container
Average IT speed 21.02 km/hour

6.5 Simulation

In this sub-chapter, we present the simulation use to evaluate the effectiveness
of the model-based allocation algorithm proposed in Sub-Chapter 6.4, which is
developed based on the model presented in Sub-Chapter 6.3. We present two
kind of simulations. Firstly, we simulate the dynamical models based on real-data
collected from a real container terminal and compare the results from the MPA
algorithm with the results obtained from the existing policies in the terminal.
Secondly, we use Monte Carlo simulation based on large datasets to test the efficacy
of the algorithm.

6.5.1 Simulation set-up

The parameters which are used in the simulation are collected from a field observa-
tion in international container terminal of Port of Tanjung Priuk, Jakarta, Indonesia.
The terminal consists of two berth positions, three quay cranes, two yard cranes in
the import side of container yard for the inbound containers, one yard crane in the
export side of container yard for the outbound containers, and ten internal trucks.
The parameters are shown in Table 6.4.

The parameters are obtained from one hundred observations of operations time
for each equipment. As an example, for obtaining the quay crane operations time,
we assume that

µ(s) = α+
1

vQC
d(s, 0)

where α is the average time for a QC to unload/load a container, vQC is the average
travel speed of the crane and d(s, 0) is the distance between the sub-bay s to the
crane. For the first QC, we measured the time needed by the QC to unload/load 100
set of containers, and by taking the average, we obtain the parameter α = 180.03
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seconds/container (c.f. Table 6.4). The corresponding speed vQC is obtained by
literature studies from [7, 29] with value of 90 meter/minute. This value is also
confirmed by the terminal. The operational time variances among cranes are caused
by the difference in specifications or equipment’s ages. To obtain the parameters
of IT speed, we collected one hundred observations for each of the ten trucks and
subsequently, based on the average, we set v = 21.02 km/hour.

The parameters will be used to simulate the dynamical models of the integrated
container terminal operations. To compare with the state-of-the-art methods
in this topic, we select two benchmark methods from [33] and [36]. In [33],
linear programming (LP) problems are defined for determining the allocation and
scheduling of QC, YC, and IT. The problems are solved through genetic algorithm
(GA) and particle swarm optimization (PSO) approach. We present the summary
of the GA and PSO below, and for the completeness the readers can refer to [33].

1. Select randomly q initial routes of job to handle containers to a QC where
θqj = 1 as in [33]. Calculate the insertion cost as in [33] to obtain one of the
decision variables, which is the IT selected to perform the operations for the
QC, which is represented by C12(j, u, j′) = aqj′u − aqj′. Calculate the best
insertion task, and select the set of jobs for the QC. Repeat the process for all
the QC.

2. Select randomly y initial routes of job to handle containers to a YC where
ψyj = 1 as in [33]. Calculate the insertion cost as in [33] to obtain one of the
decision variables, which is the IT selected to perform the operations for the
YC, which is represented by C12(j, u, j′) = aqj′u − aqj′. Calculate the best
insertion task, and select the set of jobs for the YC. Repeat the process for all
the YC.

3. Select randomly j initial routes of job to handle containers to an IT. Calculate
the insertion cost as in [33] to obtain two of the decision variables, which
are the QC and the YC to which the IT will operate, which is represented by
C12(j, u, j′) = Sj′u − Sj′ , and Sj = (1− λy).ayj + λy.aqj . Calculate the best
insertion task, and select the set of jobs for the IT. Repeat the process for all
the IT.

4. The sets of jobs selected for the QCs, YCs, and ITs in Step (1), (2), (3) by
the GA algorithm will be the initial inputs for the PSO. Select the S best
individuals from the GA as a particle. Calculate and update the particle to
find the best position according to xpj(t+ 1) = xpj(t) + vpj(t+ 1) as in [33].
Evaluate the fitness of the sets of the particles of PSO with the same procedure
as GA, by the equation F = 1/(CP.

∑
i∈X f1i + CE.f2), and select the best

jobs.
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The second benchmark is from [36]. We slightly modify the problem setting in
[36], which considers the operations of automated container terminals, while we
consider in this work a modeling framework for generic terminals. The solution in
[36] is obtained through GA, and the procedure is summarized as follows:

1. Select initial populations of the tasks for the cranes (QC and YC), the vehicle
(IT), and the storage (CY position) for the sets of inbound and outbound
containers.

2. Consider the precedence of tasks/operations and select a random string of
numbers whose dimension is N =

∑K
k=1

∑Qk

i=1 Tki =
∑M
m=1

∑Nm

n=1Omn as in
[36].

3. Evaluate the chromosomes in Step (2) with fitness criterion from objective
functions in [36], perform mutation and crossovers and repeat until no task
with better fitness is obtained.

6.5.2 Simulation results and validation

In this sub-chapter we will present the simulation results based on data which
has been collected from the international container terminal of Port of Tanjung
Priuk, Jakarta. The terminal is the smallest in the seaport and the regular vessels
that call to the terminal historically range from 300 to 1,000 TEU. To comply
with the settings in the dynamical models that we have developed in Sub-Chapter
6.3.1, export and import containers refer to the outbound and inbound containers,
respectively.

The terminal operators currently employ density-based quay crane allocation
(DBQA) method to allocate QC to the vessels. With this method, the QCs are
allocated proportionally with the container density along the quay/berth, or in
other words, the number of container per meter berth. The detail explanation
of DBQA can be found in [13]. For allocating the YC, the terminal operators use
first-come-first-served (FCFS) policy where a job to handle a container is assigned
to the earliest available YC. The existing allocation method for IT is also based on
FCFS, where a container to be handled is assigned to the earliest and nearest IT.
The latter criterion is observed since the ITs always move between the QCs and the
YCs.

We use a dataset which is collected from a week observations at the terminal.
During that period, four vessels arrived, where the specifications are provided in
Table 6.5. The entire containers in Table 6.5 are simulated with 1) terminal’s exist-
ing policy, 2) MPA algorithm as explained in Sub-Chapter 6.4, 3) two benchmark
methods as explained in Sub-Chapter 6.5.1. The simulation results are presented
in Table 6.6.
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Table 6.5: Dataset collected from observation at the Port of Tanjung Priuk, Jakarta,
Indonesia. The observations are conducted for a week period, where four vessels arrived
with each its loads of inbound and export containers.

Vessel Total load Import load Export load
(TEU) (TEU) (TEU)

A 473 TEU 283 TEU 190 TEU
B 312 TEU 209 TEU 103 TEU
C 527 TEU 358 TEU 169 TEU
D 323 TEU 171 TEU 152 TEU

Table 6.6: Simulation results based on dynamical models of integrated container terminal
operations in (6.3)-(6.19) with parameters and dataset in Table 6.4 and 6.5. The MPA is
performed until K = 8, and the objective functions of total operations time is compared
with the existing method in the terminal, and two benchmarking methods from [33] and
[36].

K Allocation strategy Total operations
time (minutes)

- FCFS & DBQA (existing) 2,572.16
1 MPA 2,713.64
2 MPA 2,667.82
3 MPA 2,614.92
4 MPA 2,605.51
5 MPA 2,541.84
6 MPA 2,535.33
7 MPA 2,469.03
8 MPA 2,405.78
- GA as in [36] 2,502.06
- GA & PSO as in [33] 2,435.15

We can see in Table 6.6 that the MPA algorithm with K > 5 improves the
performance of the existing method by 1.69%. With K = 8, MPA’s result is
6.48% better than the existing methods used by the terminal operators. The two
benchmarking methods from [36] and [33] also have better performances than the
FCFS & DBQA methods. With K = 8, our MPA method is 3.21% and 1.03% better
than the GA in [36] and the GA and PSO in [33], respectively.

To validate the dynamical models, we compare the one of the state variables,
which is the finishing time of the first QC (x1

q(k)). The state variables in each time k
are obtained from the observation and the outputs from the simulation as provided
in Figure 6.5.2.

From the one week observation, we recorded the realization of QC, YC, and IT
allocation in the terminal, where the total operations time needed to handle 1,635
TEU in Table 6.5 was 2,624.84 minutes. From the same dataset, we then find the
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Figure 6.5: The plot of trajectory of the state variable x11(k) which describes the finishing
time of the first quay crane. The horizontal axis is the discrete time step (k). The vertical
axis is the time in minutes. In each k, two x1c(k)s are plotted, where the crosses (×) refer to
the actual data recorded from the observation in the terminal, and the plusses (+) show the
evolution of corresponding state variable from the simulation using (6.3)-(6.19) with the
same dataset as the former observation.

optimal control inputs according to dynamical models in (6.3)-(6.19) and the total
operations time for the existing FCFS & DBQA methods is 2,576.28 minutes as
presented in Table 6.6. The evolution of state variables from both of the observation
and simulation of the existing allocation methods were recorded, and the evolution
of the state variable of the finishing time of the first internal truck (x1

t (k)) for the
first ten discrete time steps (k) is presented in Figure 6.5.2.

It can be seen that the dynamical models are able to mimic the dynamic in the
container terminal operations. There are indeed discrepancies between those two
state variables. This mainly caused by variations in container handling by QCs
and YCs. From one operations to another, the time needed by a QC or a YC to
handle a container varies slightly, where we use constant parameters as in Table 6.4.
The variations are rooted from the detail operations of the cranes which are not
modeled yet in our dynamical models of integrated container terminal operations.

An example of container handling sequence by the three cranes using the MPA
algorithm is presented in Table 6.7. It can be seen from the the subset of of the
results that the job sequence do not necessarily follow the FCFS rule as now being
applied by the terminal operators in the observed seaport.

6.5.3 Simulation results using generated data

For evaluating further the performance of dynamical models in (6.3)-(6.19) and
MPA algorithm that has been developed, in this sub-chapter we present the sim-
ulation results using realistically generated terminal data inputs. We generate
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Table 6.7: The subset of yard cranes allocation results using MPA algorithm, where the
sequence of container handling is shown in each working cranes. The number shows the
index of each container.

Crane Container handling sequence
YC 1 import 01 - 02 - 03 - 04 - 12

13 - 14 - 15 - 16 - 20
YC 2 import 05 - 06 - 07 - 08 - 18

19 - 25 - 26 - 30 - 31
YC export 284 - 285 - 286 - 287 - 288

303 - 304 - 305 - 310 - 311

Table 6.8: The setting of simulation scenario using realistically generated datasets. This
table presents vessels’ loads configuration for each scenario.

Scenario Lower bound Upper bound
ship load (TEU) ship load (TEU)

Light load 300 800
Normal load 800 1,500
Heavy load 1,500 3,000

three scenarios with a total of 150 datasets of container operations as presented in
Table 6.8 and 6.9. The scenario is reflected from the common terminal operations
configuration. For instance, the terminal observed in this chapter can be classified
into a terminal with light loads.

In each scenario, 50 datasets are generated, with 100 vessels’ loads in each
dataset. The examples of the subset of a dataset for each scenario is presented
in Table 6.10, 6.11, 6.12. The total loads in every vessel are randomized with
uniformly distributed numbers whose lower and upper bounds parameters are
presented in Table 6.8. The lower and upper bound parameters of import and
export loads percentage are determined from observations and discussion with the
terminal operators. For the import load percentage, the lower and upper bound
are 40% and 70%, respectively, and the parameters for the export load percentage
are 25% and 40%, respectively. In each load, the percentages for the import and
export loads are randomized based on the bounds and weighted so the summation

Table 6.9: The setting of simulation scenario using realistically generated datasets. This
table presents number of equipment configuration in the terminal for each scenario.

Scenario Number of Number of Number of
QC YC IT

Light load 3 3 10
Normal load 6 6 20
Heavy load 10 10 30
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Table 6.10: A subset of dataset of light load scenario, where the loads of the first 10 vessels
are presented.

Vessel Total load Import load Export load
(TEU) (TEU) (TEU)

1 342 209 133
2 677 417 260
3 306 178 128
4 537 275 262
5 650 389 261
6 507 358 149
7 526 344 182
8 334 197 137
9 658 406 252

10 708 456 252

Table 6.11: A subset of dataset of normal load scenario, where the loads of the first 10
vessels are presented.

Vessel Total load Import load Export load
(TEU) (TEU) (TEU)

1 1,228 734 494
2 1,013 741 272
3 1,313 854 459
4 881 581 300
5 1,211 829 382
6 1,287 659 628
7 1,140 755 385
8 1,072 580 492
9 1,297 865 432

10 927 643 284

of both of the loads percentages are 100%.
We use constant parameters for the QC and YC operations time, with the time

to handle a container for both of the two types of cranes are 180 and 170 seconds,
respectively. This parameters are obtained from the standard (manufacturing)
specifications of the cranes. The summary of the Monte Carlo simulation results
with the large datasets are presented in Table 6.13. The average of total operations
time in each scenario shows that MPA always outperform the existing FCFS and
DBQA methods, as well as the two benchmarking methods from [33] and [36],
although it can be seen that the difference between MPA and GA & PSO method is
slight.

The graphical representations of the simulation results are provided in Figure
6.6 and 6.7. With K = 8, the average cost reduction from the existing FCFS &
DBQA methods of MPA are greater than GA and GA & PSO. The MPA indeed has
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Table 6.12: A subset of dataset of heavy load scenario, where the loads of the first 10
vessels are presented.

Vessel Total load Import load Export load
(TEU) (TEU) (TEU)

1 2,418 1,500 918
2 2,299 1,505 794
3 1,922 1,343 579
4 2,130 1,273 857
5 1,601 1,061 540
6 2,326 1,456 870
7 1,909 1,285 684
8 1,548 951 597
9 1,766 957 809

10 2,111 1,438 673

Table 6.13: Simulation result of dynamical models in (6.3)-(6.19) using the generated
datasets with our proposed MPA methods which are compared with the existing method of
FCFS & DBQA and two state-of-the-art methods.

Allocation Average total Ave. calc. time
Strategy opr. time (min.) per step (s)
Sc. 1: Light load
FCFS & DBQA 841.85 ± 6.18 0.111
GA as in [36] 824.95 ±4.18 51.876
GA & PSO as in [33] 813.84 ±4.14 53.784
MPA (with K = 8) 799.36 ±4.66 128.875
Sc. 2: Normal load
FCFS & DBQA 1,754.94 ±9.45 0.120
GA as in [36] 1,713.59 ±8.62 52.095
GA & PSO as in [33] 1,699.22 ±8.99 53.284
MPA (with K = 8) 1,658.61 ±10.08 135.899
Sc. 3: Heavy load
FCFS & DBQA 3,570.89 ±15.75 0.123
GA as in [36] 3,508.87 ±14.58 51.996
GA & PSO as in [33] 3,415.64 ±14.88 53.853
MPA (with K = 8) 3,395.64 ±15.32 137.088

obvious setback, where the calculation time is much greater than the other three
methods. This due the problems complexity, in which five control variables (job, YC,
vessel’s bay, and IT) have to be solved simultaneously. In comparison to the total
operations time of a single container, which takes more than fourteen minutes (see
Table XIII), the computational time of our proposed algorithm (which is slightly
more than two minutes) is still acceptable.
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Figure 6.6: Average cost reduction of GA, GA & PSO and MPA methods when compared to
the existing FCFS & DBQA method. The vertical axes in each bar are the error bars.

Figure 6.7: Average calculation time per step (in minutes) for each method in each scenario.

6.6 Discussion

We have formulated dynamical models of integrated container terminal operations
based on DES modeling framework. The operations is an end-to-end processes that
include the seaside, storage, and transfer sub-systems, which are usually analyzed
independently in the state-of-the-art literature. The difficulty in the optimization
caused by the asynchronous operations among quay cranes, yard cranes, and
internal trucks is overcome in this research.

The proposed model predictive allocation method allows us to plan the terminal
operations integratively and simultaneously: the allocation and scheduling of QC,
YC, and IT, as well as, the placement of the boxes in the CY and ship, based on ship’s
and CY’s unloading plan for the inbound and outbound containers, respectively.
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We have also conducted data collection from a real container terminal. The
simulation shows that given the same inputs, the state variables obtained from the
dynamical model, can closely follow the actual state variables collected from the
realization of equipment allocation in the seaport by the terminal planner. This
implies that the modeling framework can be used to describe any general integrated
container terminal operations. Moreover, we solved the optimization problem using
our proposed model predictive allocation algorithm with preconditioning. We have
shown that the proposed approach performed better than: 1) the existing FCFS
& DBQA methods used in the studied terminal, 2) the GA-based method from
literature, 3) the GA & PSO-based method from the literature, in which the former
two methods use commonly static modeling approach using operations research.
Based on the Monte Carlo simulation with large datasets, the MPA outperforms
those three methods, although the high computational time of the MPA needs to be
taken into account in the trade-off with the cost reduction of the operational time.
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We have presented in this thesis a body of works that are relevant with the optimiza-
tion and design of control for container terminal operations systems. The topics
include various operations in a terminal, which comprise of seaside, integrated,
and network operations among several connected terminal. Moreover, we discuss
mathematical analysis on the discrete-event systems framework and optimization
approach that is pertinent to the terminal operations. In this chapter, we provide a
reflection on the results that have been presented in Chapter 3-6 and provide some
suggestions for the future research avenue in this topics.

7.1 Conclusion

This thesis deals with the complexity of container terminal operations systems which
have mostly been studied in literature using methods from operations research
(OR) discipline. In particular, most of the recent works are limited by the use
of static optimization that does not handle well the dynamic environment and
obstructions that are commonly encountered by operators in actual container
terminals. Accordingly, this research focuses on development of discrete-event
systems modeling framework and model predictive allocation strategy that are
suitable for the operations of general container terminal systems.

In Chapter 3, we study the problem of integrated berth and quay crane allocation
(I-BCAP) in general seaport container terminals and propose model predictive allo-
cation (MPA) algorithm and preconditioning methods for solving I-BCAP. Firstly, we
propose a dynamical modeling framework based on discrete-event systems (DES)
that describes the operation of berthing process with multiple discrete berthing
positions and multiple quay cranes. Secondly, based on the discrete-event model,
we propose a MPA algorithm for solving I-BCAP using model predictive control
(MPC) principle with a rolling event horizon. The validation and performance
evaluation of the proposed modeling framework and allocation method are done
using: (i). extensive Monte-Carlo simulations with realistically-generated datasets;
(ii). real dataset from a container terminal in Tanjung Priuk port, located in Jakarta,
Indonesia; and (iii). real life field experiment at the aforementioned container
terminal. The numerical simulation results show that our proposed MPA algorithm
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can improve the efficiency of the process with the reduction of the total handling
and waiting cost in comparison to the commonly adapted method of first-come
first-served (FCFS) (for the berthing process) combined with the density-based
quay cranes allocation (DBQA) strategy. Moreover, the proposed method outper-
forms the state-of-the-art HPSO-based and GA-based method proposed in recent
literature. The real life field experiment also shows an improvement.

The dynamical models developed in Chapter 3 serves as the modeling framework
for the remaining of the research. The I-BCAP models also show that in complex
container terminal operations sytems, instead of well-known static modeling with
operations research, we can also use another approach, with dynamical discrete-
event systems (DES) modeling. In particular, the DES are able to incorporate the
asynchronous processes in the terminal operations.

In Chapter 4, we provide the mathematical analysis for the dynamical models
and MPA. A study an optimal input allocation problem for a class of discrete-
event systems with dynamic input sequence (DESDIS) is provided. In this case,
the input space is defined by a finite sequence whose members will be removed
from the sequence in the next event if they are used for the current event control
input. Correspondingly, the sequence can be replenished with new members at
every discrete-event time. The allocation problem for such systems describes many
scheduling and allocation problems in logistics and manufacturing systems and
leads to a combinatorial optimization problem. We show that for a linear DESDIS
given by a Markov chain and for a particular cost function given by the sum of its
state trajectories, the allocation problem is solved by re-ordering the input sequence
at any given event time based on the potential contribution of the members in the
current sequence to the present state of the system. In particular, the control input
can be obtained by the minimization/maximization of the present input sequence
only.

In Chapter 5, we analyze the deployment of a distributed dynamic optimiza-
tion algorithm to a sub-network of the container terminals. With the increasing
globalization of trade and consolidation of container terminal networks worldwide,
a competitive network has become an important determinant in attracting ship-
ping liners to call at a number of terminals in the network. For realizing such
competitive network with minimal effort, in particular, we focus on the dynamic
optimization of berth and quay crane allocation (BCAP) operations, since it has
been extensively discussed in the literature that BCAP is usually the bottleneck in
the terminal. Therefore, an improvement in one section of terminal operations will
significantly improve the overall terminal’s performance. Because seaport network
is heavily inter-related among each other, an improvement in one section of termi-
nal operations (BCAP) also improves the network operational performance. We use
our recently proposed model predictive allocation (MPA) strategy to solve BCAP
which has been shown to outperform state-of-the-art methods for a single terminal
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operations. Afterwards, we present a ranking method to determine significant
terminal nodes which can improve the overall network performance significantly
when the MPA-based BCAP strategy is implemented to this sub-network. Finally,
using both simulations and real data from the Indonesian terminal network, we
show the efficacy of our method.

In Chapter 6, we present a dynamical modeling of integrated (end-to-end)
container terminal operations using discrete-event system (DES) framework that
incorporates the operations of quay cranes (QC), internal trucks (IT), and yard
cranes (YC) and also the selection of storage positions in container yard (CY) and
vessel bays. The QC and YC are connected by the IT in our models. As opposed to
the commonly adapted modeling in container terminal operations, in which the
entire information/inputs to the system are known for a defined planning horizon,
in this research we use real-time trucks, crane, and container storage operations
information, which are always updated as the time evolves. The dynamical model
shows that the predicted state variables closely follow the actual field data from
a container terminal in Tanjung Priuk, Jakarta, Indonesia. Subsequently, using
the integrated container terminal DES model, we proposed a model predictive
algorithm (MPA) to obtain the near-optimal solution of the integrated terminal
operations problem, namely the simultaneous allocation and scheduling of QC, IT,
and YC, as well as selecting the storage location for the inbound and outbound
containers in the CY and vessel. The numerical experiment based on the extensive
Monte Carlo simulation and real dataset show that the MPA outperforms both of
the policies currently implemented by the terminal operator and the state-of-the-art
method from the current literature.

7.2 Outlook

In this thesis we have presented some finding in modeling, design of control, and
optimization of container terminal operations. We have imposed some assumptions
in the research, and in this chapter we discuss some improvement that can be
accommodate in the future research to alleviate the drawbacks.

In Chapter 3 and 6, the dynamical models do not yet consider the detail
movement of the terminal operations. For instance, in handling containers, the
hoisting or lowering cranes operations are not yet modeled. The movement of QC,
YC, and IT, which is not incorporated yet in the current models, is an interesting
research avenue for the future works. The consideration of the movement will
make the models more realistic. There are plenty research on the detail operations,
and they also commonly use static approach. We would like to further investigate
the application of the dynamical modeling framework in this research into those
kind of problem settings.
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We also would like to observe the obstructions that occur in the integrated
container terminal operations in the simulation. The obstructions mainly come
from the changing in CY’s storage levels from time to time, due to some random
containers pick-up and delivery from ET, and will subsequently change the original
CY’s storage plan and ship’s stowage plan. This setting attests the propositions of
the models presented in this work, which should be able to accommodate such
dynamic and changing inputs. A guarantee in the model to incorporate double-cycle
operations in QC and YC operations will also be relevant future work.

In Chapter 3 and 5, the MPA algorithm makes a ship that arrives earlier at the
terminal do not necessarily receives priority in berthing over other ships that arrive
later. Although the MPA results in lower total cost from the terminal operators
perspective, it has been observed during the field experiment period that some
of the arriving ships had shown their dissatisfaction due to a possible uncommon
schedule, i.e. a ship may be berthed after another ship which actually arrives
later after the former vessel. Therefore, taking into account the shipping liners’
dissatisfaction in the cost function can be an interesting and relevant future work.

Applying the optimal BCAP policy in Chapter 5 is not an easy decision to a
terminal operator, even if it owns the entire terminals in the same network. The
network cost, which is a combination of berth operations cost, ships’ waiting costs
in terminal, and ships’ transportation costs among terminals, is defined from the
perspective of the terminal operator, and not yet an integrated cost borne by
the shipping liners as well. Therefore, an improved network performance is not
always a prominent interest of the shipping liners, even though it obviously also
benefits them, since lower waiting time in a terminal means reducing delay in the
subsequent terminals. Such terminal operators’ difficulty is rooted from a fact that
the MPA-based BCAP policy does not allocate berth positions to the incoming ships
in a time orderly manner as the traditional BCAP & DBQA methods. In spite of the
fact that the optimal policy reduces average ships waiting times, some ships can
have dissatisfaction if it is assigned to the berth position later than their arrival
time. This can be another research avenue in this topic.

We did mathematical analysis to show efficacy of the MPA algorithm in Chapter
4. In the analysis, the cost function is limited into positive definite one. Further
works are needed on the re-ordering of input sequence Uk (and the subsequent
expansion sequences Vk for a finite event horizon) when a general cost function is
considered.
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Summary

This thesis discusses the dynamical modeling of complex container terminal oper-
ations. The operations are usually divided into three main parts namely seaside,
storage, and transfer. In the current literature, the systems are usually modeled in
static way using linear programming techniques. This setting does not completely
capture the dynamic aspects in the operations, where information about external
factors such as ships and trucks arrivals or departures and also the availability of
terminal’s equipment (QC, YC, IT) can always change.

We propose a dynamical modeling of container terminal operations using
discrete-event systems (DES) modeling framework. The basic framework in this
thesis is the DES modeling for berth and quay crane allocation problem (BCAP)
where the systems are not only dynamic, but also asynchronous. In order to handle
such dynamic environment, we propose a novel berth and QC allocation method,
namely the model predictive allocation (MPA) which is based on model predictive
control principle and rolling horizon implementation.

The DES models with asynchronous event transition are mathematically an-
alyzed to show the efficacy of our method. We study an optimal input alloca-
tion problem for a class of discrete-event systems with dynamic input sequence
(DESDIS). We show that in particular, the control input can be obtained by the
minimization/maximization of the present input sequence only.

The DES modeling framework is extended to the cases in seaport network and
integrated container terminal operations. We study container terminal network
performance under heterogeneous distributed operational BCAP policy. We investi-
gate the performance MPA-based BCAP to improve network operations. We also
propose methods for selecting important seaports in the network to which the
MPA-based BCAP policies are applied. The MPA give better results compared to
the state-of-the-art methods in BCAP. In the second case, we propose a dynamical
modeling of integrated (end-to-end) container terminal operations using finite
state machine (FSM) framework where each state machine is represented by a
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discrete-event system (DES) framework. The proposed MPA method allows us to
plan the terminal operations integratively and simultaneously. We have shown
that the proposed approach performed better than the existing method used in the
studied terminal and state-of-the-art methods in the literature.



Samenvatting

Dit proefschrift gaat over het dynamisch modelleren van complexe containerter-
minal activiteiten. De activiteiten worden doorgaans verdeeld in drie onderdelen,
namelijk kust, opslag, en overslag. In de huidige literatuur worden deze syste-
men doorgaans gemodelleerd op een statische wijze door middel van lineaire
programmeringstechnieken. In deze setting worden dynamische aspecten in de
activiteiten niet volledig meegenomen, omdat informatie over externe factoren,
zoals de aankomst of het vertrek van schepen en vrachtwagens en de beschikbaar-
heid van voorzieningen van de terminal (kadekranen, werfkranen, IT), continu aan
verandering onderhevig zijn.

In dit proefschrift wordt het modelleren van containerterminal activiteiten ver-
richt volgens het discrete-event systemen (DES) modelleringskader. Het basiskader
hiervoor is het DES modelleren van de ligplaats en kadekraan toewijzingsprobleem
(BCAP), waarbij de systemen een dynamisch én asynchroon karakter bezitten. Deze
eigenschappen in acht nemend, stellen we een innovatieve ligplaats en kadekraan
toewijzingsmethode voor, namelijk een model predictive allocatie (MPA), welke
berust op model predictive control en een rollende horizon implementatie.

Om de doeltreffendheid van onze methode aan te tonen zijn de DES modellen
met asynchrone event-overgangen op wiskundige wijze geanalyseerd. We bestu-
deren een optimaal invoertoewijzingsprobleem voor een klasse van discrete-event
systemen met een dynamische invoerreeks (DESDIS).In het bijzonder laten we zien
dat de invoerregeling verkregen kan worden door slechts de huidige invoerreeks te
minimaliseren/maximaliseren.

Het DES modelleringskader is vervolgens uitgebreid naar de situaties van zee-
haven netwerken en gëıntegreerde containerterminal activiteiten. We bestuderen
de prestatie van een containerterminal netwerk volgens het beleid van heterogene
gedistribueerde BCAP activiteiten. We onderzoeken ook de prestatie van het op
MPA-gebaseerde BCAP beleid voor het verbeteren van netwerk activiteiten. Daar-
naast bieden we methoden aan voor het selecteren van belangrijke zeehavens
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binnen het netwerk waarbij het op MPA-gebaseerde BCAP beleid wordt toegepast.
Het op MPA-gebaseerde beleid geeft betere resultaten in vergelijking met de aller-
nieuwste methoden in BCAP. In het tweede geval bieden we een ontwerp aan voor
het dynamisch modelleren van gëıntegreerde (eind-tot-eind) containerterminal
activiteiten middels het eindigetoestandsautomaat (FSM) raamwerk. Hierbij wordt
elke toestandsautomaat vertegenwoordigd door een discrete-event systeem (DES).
De voorgestelde MPA methode staat ons toe om de terminal activiteiten integraal
en simultaan te plannen. We hebben laten zien dat de voorgestelde aanpak beter
presteert dan de bestaande methode, terwijl deze methode volop gebruikt wordt
en tot de allernieuwste methoden uit de literatuur behoort.
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