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Working memory (WM) comprises the temporary storage and manipulation of sensory 

information (Baddeley & Hitch, 1974). The ability to keep past experience “online” even 

though the sensory information is no longer present in the environment is a remarkable 

achievement of the brain. It provides the functional basis that moves past simple 

reflexive actions, and towards complex, goal-directed behaviours, and has been studied 

extensively by psychologists and neuroscientists for more than 50 years. 

The “working” in working memory implies that information are not only 

memorized, but also “worked” with; manipulated, transformed, and used to best suit 

future behavioural demands. WM is thus a core cognitive function and essential for a 

wide range of cognitive tasks, such as learning, planning, language comprehension, and 

problem solving (Baddeley, 1992; Kane & Engle, 2002) and WM impairments are 

present in many cognitive disorders (Devinsky & D’Esposito, 2003) as well as healthy 

aging (Gazzaley, Cooney, Rissman, & D’Esposito, 2005).  

The amount of information that can be maintained in WM at any one time is 

surprisingly limited, however. Its capacity has been estimated to only span between 3 to 

5 independent pieces of information (Cowan, 2010), which is in stark contrast to the 

essentially limitless storage of long-term memory. WM capacity can vary substantially 

between individuals and is a strong predictor of intelligence and academic achievement 

(Conway, Kane, & Engle, 2003; Rohde & Thompson, 2007). Given this limited capacity, 

it is important that only behaviourally relevant information enters WM, and irrelevant 

information is filtered out. WM is thus closely intertwined with attentional processes, 

which play a role at all WM stages to use the limited resources most efficiently (e.g., Awh, 

Vogel, & Oh, 2006; Cowan, 2011). Researching the neuroscience of WM therefore 

requires taking into account its interplay with attention, which can often change the 

interpretation of neural data (e.g. Lewis-Peacock, Drysdale, Oberauer, & Postle, 2011).  

Given its essential role in functional behaviour, it is of no surprise that establishing the 

neural basis of WM has been one of the main goals in cognitive neuroscience. Of interest 

is where and how in the brain information is maintained and potentially manipulated. 

Early neural recordings pointed towards a relatively simple and intuitive explanation, 

suggesting that persistent neural activity in the prefrontal cortex (PFC) maintains 

information in WM (Fuster & Alexander, 1971; Kubota & Niki, 1971), a view that has 

dominated the WM research literature for many decades (Curtis & D’Esposito, 2003). 

However, the recent surge of sophisticated analysis techniques that can be employed 

with the ever increasing computational power of modern hardware, and which can -

directly link neural activity patterns to specific WM content, has cast doubt on this classic 

theory (Miller, Lundqvist, & Bastos, 2018; Stokes, 2015).  
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Finding the neural correlate of WM 

Elevated neural activity in PFC 

Almost half a decade ago, a group of researchers independently made discoveries 

(Fuster, 1973; Fuster & Alexander, 1971; Kubota & Niki, 1971), that set the stage for 

decades of research on persistent neuronal activity during WM.  

Fuster and Alexander (1971) had monkeys perform a classic version of a now 

popular spatial WM task: An object is shown at a random location, in full view of the 

subject. Shortly after, the visibility of the object at the specific location is obstructed for 

a short time. At the end of this delay/maintenance period, location choices are presented, 

and the subject is instructed to select the location at which the object had appeared 

previously. While the monkeys performed many trials of this task, the activity of 

individual neurons in the PFC was recorded. The researchers found that a subset of the 

recorded neurons showed elevated and persistent spiking activity from the onset of the 

to-be-remembered location until the end of the maintenance period. The researchers 

proposed that this sustained activity is playing a major role in keeping the location-

specific information in WM, until it is no longer needed.  

These and similar findings and interpretations highlighted the importance of 

persistent neural activity in the PFC for WM and has shaped the WM research literature 

over the years accordingly. Numerous studies show elevated PFC activity during a variety 

of WM tasks (Curtis & D’Esposito, 2003; Funahashi, Bruce, & Goldman-Rakic, 1989; 

Goldman-Rakic, 1995) and lesion studies have found a causal relationship between 

specific parts of the PFC and WM tasks (Bauer & Fuster, 1976; Chao & Knight, 1998; 

Funahashi, Bruce, & Goldman-Rakic, 1993; M. H. Miller & Orbach, 1972). Thus, over 

the years, the PFC has clearly been the focus of WM research, which, without a doubt, 

has established the fundamental importance of the PFC for WM. However, it has not 

been entirely clear in which of the many aspects of WM it plays a role. During a WM 

task, subjects do not only need to maintain the object or location in WM, but pay 

continuous attention to the task, prepare to respond, encode only relevant information 

and disregard irrelevant information, and remember the tasks rules. For example, it has 

been found that it is not necessarily the retention of information that patients with 

frontal lesions struggle with, but rather the inhibition of irrelevant information, leading 

to a decrease in WM task performance (Chao & Knight, 1998). Furthermore, prefrontal 

activity has been found to ramp up in anticipation of the probe at the end of the trial (K. 

Watanabe & Funahashi, 2007), as if reflecting the preparation of the response. Similarly, 

in a human fMRI study it was found that activity in PFC only showed an increase when 

participants had to memorize a sequence of actions, not when memorizing a simple 

visuospatial stimulus (Pochon et al., 2001). Findings such as these suggest a more 

complex role of PFC activity, but the mixed nature of the results to date make it a 

challenge to define its exact role in WM. 

Thus, even though it had to be acknowledged that PFC activity can vary 

substantially depending on what kind of WM task is performed, it was largely assumed 
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that PFC is the neural substrate of WM maintenance (Curtis & D’Esposito, 2003). This 

was called into question however with the first paper that successfully used multivariate 

pattern analysis (MVPA) to “decode” the content of WM from recorded brain activity 

(Harrison & Tong, 2009). 

PFC: the executive control station? 

Research in the cognitive neuroscience has largely depended on finding neural activity 

in specific brain regions that increases or decreases in response to experimental 

manipulation. However, with the introduction of MVPA in cognitive neuroscience, 

spearheaded by Kamitani and Tong (2005), researchers did not have to rely on finding 

univariate difference in neural activity levels between experimental conditions, but could 

instead look for differences in neural activation patterns between tasks or conditions. By 

relating the neural activation patterns to individual items in WM, MVPA can be used to 

find brain areas that represent the actual content of WM.  

Numerous non-human primate, single-unit studies found that spatial locations, 

dissociated from motor preparations, are coded in PFC (Mendoza-Halliday, Torres, & 

Martinez-Trujillo, 2014; Qi, Meyer, Stanford, & Constantinidis, 2011; Rainer, Asaad, & 

Miller, 1998), as well as colour (Buschman, Siegel, Roy, & Miller, 2011), and natural 

images (Meyer, Qi, Stanford, & Constantinidis, 2011; Rao, Rainer, & Miller, 1997). 

However, these neural representations might not necessarily reflect the low-level sensory 

information, but rather more abstract neural representations of task-relevant dimensions 

and task requirements (Lara & Wallis, 2014). For example, Riggall and Postle (2012) 

found that while BOLD activity obtained in the PFC did not represent the visual 

information of the WM task, it did reflect the current task rules. Lee and colleagues (Lee, 

Kravitz, & Baker, 2013) also found that PFC activity reflected semantic information and 

not low level visual information. Buschman and colleagues (Buschman, Denovellis, 

Diogo, Bullock, & Miller, 2012) found that neural oscillations in the beta and alpha range 

represent specific and dynamically changing task rules during a perceptual task. In 

general, it seems that abstract, sensory independent information are coded in PFC, 

suggesting an executive role of the PFC during WM tasks (Postle, 2016). Indeed, many 

PFC neurons display mixed selectivity, demonstrating heterogeneous coding of different 

features of a cognitive task, and non-linear interactions between task relevant aspects  

(Fusi, Miller, & Rigotti, 2016; Mante, Sussillo, Shenoy, & Newsome, 2013; Rigotti et al., 

2013). The PFC is thus able to flexibly code for task categories, even when the presented 

stimuli are exactly the same (Freedman, Riesenhuber, Poggio, & Miller, 2001; McKee, 

Riesenhuber, Miller, & Freedman, 2014). Similarly, arbitrary boundaries on continuous 

scales are flexibly adapted in neural population activity in PFC (Wutz, Loonis, Roy, 

Donoghue, & Miller, 2018).  

Due to this highly heterogeneous coding of PFC activity across and within WM 

tasks, and the inconsistent findings regarding low level feature coding (Christophel, 

Klink, Spitzer, Roelfsema, & Haynes, 2017), PFC activity might more appropriately be 

regarded as the “central executive” of the classic model of WM, and not one of the 

1 
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storage modules (Baddeley, 1992; Serences, 2016). The central executive is thought to 

be responsible for controlling and regulating the WM system, by (among other things) 

tracking and updating task demands and utilizing the limited cognitive resources 

efficiently, which corresponds with the heterogeneous findings of PFC activity during 

WM tasks discussed above.  

Persistent, content-specific activity in sensory cortex 

In their spearheading study, published a decade ago, Harrison and Tong set out to find 

the brain area that maintains the neural representation of information in WM (Harrison 

& Tong, 2009). Human participants in their study undertook a now widely used retro-

cue WM task designed to dissociate stimulus driven effects from working-memory 

processes while fMRI was recorded. In each trial, two randomly orientated gratings were 

presented serially. After a short delay a retro-cue (a number) indicated which of those 

two orientations is relevant and would be tested later, rendering the other one irrelevant. 

It was found that while the blood oxygen level dependent (BOLD) brain signal obtained 

from the visual cortex increased during grating presentation, it returned almost to 

baseline levels during the delay period, as if playing no role during WM maintenance. 

Even so, the pattern of activity across voxels in the visual cortex coded for the relevant 

orientation grating throughout the delay, but not for the irrelevant item. This provides 

evidence that relevant, low level visual information in WM seem to be maintained in the 

same part of the brain that is also responsible for its processing, which is referred to as 

the sensory recruitment hypothesis (Serences, Ester, Vogel, & Awh, 2009). Findings such 

as these have led to a revision of neurophysiological network of WM maintenance, and 

it has been proposed the visual cortex is integral in the maintenance of visual information 

(Gayet, Paffen, & Van der Stigchel, 2018; Scimeca, Kiyonaga, & D’Esposito, 2018). 

While WM research is largely dominated by the visual domain, it has more recently 

been found that persistent neural activity in the auditory cortex reflects the maintenance 

of specific tones in WM (Huang, Matysiak, Heil, König, & Brosch, 2016; Kumar et al., 

2016; Uluç, Schmidt, Wu, & Blankenburg, 2018). Additionally, some limited evidence 

for persistent stimulus-selective activity for vibration in the secondary somatosensory 

cortex has also been found (Hernández et al., 2010), providing evidence for the sensory 

recruitment hypothesis from non-visual modalities (Christophel et al., 2017; Serences, 

2016). 

It makes intuitive sense for the brain to recruit the same areas during WM that are 

also optimized to process the fine details of the sensory information during perception, 

enabling the retention of detailed sensory information that do not afford an easy 

semantic transformation (Ester, Sprague, & Serences, 2015). This negates the need to 

make a copy of the initial perceptual response in another equally sensitive brain area, by 

exploiting already existing structures for multiple purposes.  

However, the sensory-recruitment of WM hypothesis does not go unchallenged. It 

has been argued that WM maintenance should be extremely vulnerable to external 

distraction if the very area that processes externally presented information, also 
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maintains internally held information (Xu, 2017), and it is therefore necessary to make a 

copy of the information elsewhere. Indeed, it has been found that the presentation of a 

irrelevant visual distractor during the maintenance period of visual information disrupts 

and abolishes the visual WM related signal in the visual cortex, while the visual WM 

related signal remained robust in the superior intraparietal sulcus (Bettencourt & Xu, 

2016), suggesting that the visual cortex is not necessary for maintenance. However, it 

has been suggested, that this can be regarded as flexible change in coding schemes, from 

an exact visual representation to a higher level of abstraction (Scimeca et al., 2018). 

Furthermore, visual distractors passively viewed during the maintenance period of visual 

information impact behavioural precision (Kiyonaga & Egner, 2016), and distractors that 

match WM content easily capture attention (Soto, Hodsoll, Rotshtein, & Humphreys, 

2008), which indeed suggests an overlap and cost between stimulus maintenance and 

stimulus processing within the same neural network. 

Not so persistent delay activity 

As explained above, the classic model of WM that has dominated the literature for 

several decades, posits that persistent neural activity keeps information “online” in WM 

until it is no longer needed. This is not surprising, given that the PFC, as well as the 

sensory cortices and the parietal cortex have been shown to seemingly exhibit persistent 

WM related activity (Curtis & D’Esposito, 2003; Ester et al., 2015; Goldman-Rakic, 

1995; Harrison & Tong, 2009; Wimmer, Nykamp, Constantinidis, & Compte, 2014). 

Recently, this has been called into question however (Lundqvist, Herman, & Miller, 

2018) and it has been proposed that WM can be maintained in an “activity-silent” neural 

network (Stokes, 2015). But how can this hypothesis be reconciled with the 

overwhelming evidence of persistent delay activity? Three design-related arguments may 

be brought forward. 

First, individual neurons that exhibit persistent delay activity reported and 

highlighted in many classic studies (e.g. Bauer & Fuster, 1976; Fuster, 1973), only make 

up a small proportion of the neurons that are modulated by WM operations, most of 

which only spike sporadically (Shafi et al., 2007). 

Second, as discussed above, a lot of the evidence for persistent activity comes from 

studies that employed the memory-guided saccade task (Funahashi, Bruce, & Goldman-

Rakic, 1989), which cannot dissociate between motor preparation and WM maintenance. 

Even to this day, it is still used to falsely assert that WM maintenance is mediated through 

persistent neural activity (Inagaki, Fontolan, Romani, & Svoboda, 2019; Wimmer et al., 

2014), which may be so for motor preparation, but not necessarily WM maintenance. 

Third, persistent delay activity can be an artefact of trial averaging (Stokes & Spaak, 

2016). In cognitive neuroscience, subjects usually complete many trials of the same task 

and the recorded brain activity is averaged over trials. This is often necessary in order to 

isolate consistent task related signals from the noisy data. However, this assumes that 

the neural signal in question is time-locked to a specific event across all trials, which does 

not necessarily need to be the case. Thus, if a specific neural event occurs at a slightly 

1 
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different time-point in each trial, averaging over trials will create the illusion of a 

sustained signal. This is exactly what Lundqvist and colleagues (Lundqvist et al., 2016) 

found. The averaged neural delay activity recorded from the PFC while monkeys 

performed WM tasks suggested sustained, content-specific activity in a broad range in 

the gamma-frequency, replicating previous findings of sustained gamma-power during 

WM maintenance (e.g. Howard et al., 2003). However, individual trials exhibited narrow, 

short-lived bursts of gamma-activity that carried information about WM content, 

interleaved by baseline-level activity states, providing counter-evidence to the sustained 

activity of WM account (Bastos, Loonis, Kornblith, Lundqvist, & Miller, 2018; 

Lundqvist, Herman, Warden, Brincat, & Miller, 2018)  

Delay activity: Nothing but attention? 

There is another, even more fundamental issue with the interpretation of persistent delay 

activity as reflecting WM maintenance. Most studies discussed thus far have employed 

simple experimental paradigms to measure WM related neural activity, where subjects 

usually maintained a single piece of information over short period of time before it is 

tested. However, WM is more than a simple single-item storage and it is now clear that 

attentional processes play a major role in WM, which cannot be dissociated when only a 

single item is maintained in WM. Two now classic behavioural experiments have found 

that attention can be used to focus on an individual item in WM (Griffin & Nobre, 2003; 

Landman, Spekreijse, & Lamme, 2003). More specifically, participants performed a now 

widely used retro-cue WM task, where the locations of multiple items need to be 

maintained over a short period of time. During the maintenance period, the retro-cue 

indicates with above chance probability which of the multiple items held in WM is most 

likely to be tested at the end of the trial. It was found that valid retro-cues (i.e. the cued 

item was tested) lead to an increase in performance, suggesting some sort of attentional 

enhancement or reformatting (Myers, Stokes, & Nobre, 2017) of the cued item during 

maintenance that cannot be explained by differential processing during item 

presentation. These results have sparked an enormous interest in the interplay between 

attention and WM (Gazzaley & Nobre, 2012; Souza & Oberauer, 2016) and has led to 

WM models that propose multiple states in WM (e.g. Oberauer & Hein, 2012), where 

information can be maintained in an “attended” and “unattended” WM state. Since these 

states cannot be dissociated when only a single item is memorized, and which is likely in 

the “attended” state, it begs the question what the neural representation of WM items 

that are not in the focus of attention is.  

Single item experiments have been a popular choice in the quest to find the neural 

correlate of WM maintenance for a reason; their simple nature increases the chances of 

finding WM related neural traces. More complex paradigms are clearly needed to 

dissociate the neural signature of memoranda and attention, however. This is indeed 

what Watanabe and Funahashi (Watanabe & Funahashi, 2014) did. They recorded neural 

activity from the PFC from monkeys that completed a dual task that added an attentional 

task to the classic memory-guided saccade task (Goldman-Rakic, 1995). Each trial began 
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with the cueing of a random location (attention cue), and monkeys were instructed to 

release a lever when the colour changed, but not look at it. After the onset of the 

attention cue, but before its colour change, another random location was cued for a short 

time (memory cue) and the monkeys had memorize its location after it disappeared until 

the end of the trial when it was reported with a saccade. Crucially, during the overlap of 

the two tasks, monkeys had to maintain the location, while at the same time pay close 

attention to the cued location in order to be ready for its colour change. Neural activity 

in PFC exhibited clear location discrimination of the memory cue during and shortly 

after its presentation. However, it decreased to almost baselines levels during the 

retention and attention period. Interestingly, the memory-specific signal in PFC 

“reawakened” immediately after the completion of the attention task (i.e. after lever 

release), and presumably when monkeys could fully focus on maintaining the memorized 

location. Thus, even though the location was stored in memory, its code in PFC activity 

was almost non-existent as long as attention was preoccupied with another task, 

suggesting that PFC activity mainly reflects attended WM content. 

But what about other brain areas? Lewis-Peacock and colleagues (Lewis-Peacock 

et al., 2011) used BOLD activity from the whole brain, obtained while human 

participants completed visual WM tasks, to decode the categorical memory items, 

without having an explicit hypothesis about the location of the neural representation of 

WM content. Participants had to memorize two memory items, both of which were 

tested. During the delay, retro-cues guided the internal focus of attention towards one 

item by indicating which of the two would be tested by the upcoming probe. Only the 

item that was in the focus of attention exhibited a corresponding neural trace, while the 

unattended item did not, as if forgotten. However, once a retro-cue redirected attention 

to the previously unattended item, its neural trace was reactivated. These findings were 

later replicated using electroencephalography (LaRocque, Lewis-Peacock, Drysdale, 

Oberauer, & Postle, 2012). Similarly, a sophisticated analyses technique that can 

reconstruct the remembered location from BOLD activity in visual areas (including IPS), 

found that the neural representation of two locations in WM degraded gradually over 

time (Sprague, Ester, & Serences, 2016). However, once one of the two items could be 

dropped, the neural reconstruction of the remaining location in memory recovered, 

presumably because attentional resources could be focused on one item, instead of two.  

Synaptic model of WM 

It is intuitively appealing to assume that the neural mechanism of maintaining a specific 

item in WM is stable, item-specific neural activity, as if to keep a freeze-frame snapshot 

of past stimulation “online” until it is no longer needed. However, even without 

considering the recently emerging evidence that this may not be so, some issues with this 

theory are evident. If a minuscule interruption of the item-specific activity would mean 

an inevitable loss of it from WM, WM maintenance would be expected to be extremely 

prone to distractors. Additionally, computational models that are based on persistent 

activity have difficulty with the maintenance of more than one item, in particular when 

1 
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there is overlap in their neural representations (Edin et al., 2009). Finally, persistent 

neural activity is metabolically expensive. 

As discussed above, WM-related activity is heavily modulated by attention and 

essentially non-existent for unattended WM content (Larocque, Lewis-Peacock, & 

Postle, 2014), and even when it is attended, WM maintenance is accompanied only by 

sparse, short-lived activity bursts (Lundqvist, Herman, & Miller, 2018). Due to these 

observations it has been proposed that WM maintenance can occur within an “activity-

silent” network (Miller et al., 2018; Stokes, 2015), which could be accomplished via 

transient changes in connectivity in the WM network (Mongillo, Barak, & Tsodyks, 

2008). In the synaptic model of WM, relevant information that is encoded in WM leave 

behind an “impression” in the wiring pattern of the WM network. A biologically viable 

mechanism for this are calcium kinetics that afford short-term synaptic plasticity (STSP; 

Zucker & Regehr, 2002), that could last for approximately ~ 1 second (Catterall, Leal, & 

Nanou, 2013; Mongillo et al., 2008), rendering continuous neural activity unnecessary 

for maintenance. Item-specific activity-bursts strengthen or reinstate this connectivity 

periodically before it dissipates (Lundqvist et al., 2016). The behavioural relevance of 

individual items in WM dictates how often the corresponding item-specific connections 

are refreshed (Larocque et al., 2014), so that currently irrelevant and thus unattended 

items are maintained in an almost exclusively activity-silent state, while currently relevant 

information are maintained in an active neural state (Fig. 1.1). 

Figure 1Figure 1Figure 1Figure 1.1.1.1.1....    Synaptic model of WM highlighting the interplay between synaptic- and 

activity-states as a function of behavioural relevance. Item-specific neural activity 

triggers item-specific connectivity. While the attended and imminently relevant item 

(in blue) is maintained in an active state that periodically strengthens the item-

specific connectivity, the unattended item exhibits no item-specific activity during 

maintenance (red). 
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The presence of STSP in the brain has been well established (e.g. Hempel, 

Hartman, Wang, Turrigiano, & Nelson, 2000; Sugase-Miyamoto, Liu, Wiener, Optican, 

& Richmond, 2008; Zanos, Rembado, Chen, & Fetz, 2018), and numerous 

(computational) models of WM have been proposed that depend on STSP (Barak & 

Tsodyks, 2014; Barak, Tsodyks, & Romo, 2010; Buonomano & Maass, 2009; Lundqvist, 

Herman, & Lansner, 2011; Manohar, Zokaei, Fallon, Vogels, & Husain, 2017; Miller et 

al., 2018; Stokes, 2015). Providing a direct link between STSP and WM is difficult, 

however. In order to show that two neurons are connected, the demonstration of 

correlated sinking activity between those neurons is necessary, which only an extremely 

small proportion of recorded neurons demonstrate (Fujisawa, Amarasingham, Harrison, 

& Buzsáki, 2008), making it unfeasible to establish WM-related connectivity changes in 

the non-human primate model, where only a limited number of neurons can be recorded 

simultaneously. However, researchers were able to demonstrate short-term plasticity in 

rat PFC during a WM maze task (Fujisawa et al., 2008). 

WM maintenance as a state-dependent neural response 

The synaptic model proposes not only that any neural activation pattern elicited either 

internally or externally leaves behind a transient neural trace of said pattern, but that it is 

also modulated by the current state of the network (Buonomano & Maass, 2009; 

Mongillo et al., 2008; Sugase-Miyamoto et al., 2008). That is, each activity state leaves 

behind a neural trace that in turn modifies the activity pattern of subsequent neural 

activity occurring in the same neural network within a short time-span, leading to a 

unique impulse response that is an interaction between the input and the current state 

of the neural system. Indeed, it has been found that the evoked neural activity in cat 

visual cortex not only codes the currently presented visual stimulus, but also the stimulus 

presented a few hundred milliseconds earlier (Nikolic, Haeusler, Singer,, & Maass, 2007). 

It has also been found that the presentation of a neutral stimulus presented during the 

delay of a WM task resulted in a neural response in the PFC that reflected the content 

of WM (Stokes et al., 2013).  

It has been suggested that this property is not just an inevitable side-effect of fast 

synaptic modulation, but could also serve an efficient read-out mechanism of the WM 

network in response to external stimulation. Indeed, it was found that while the neural 

response to the target stimulus in a WM task at first reflected the physical properties of 

the stimulus, it quickly evolved into a context-depended neural signal reflecting the 

behaviourally relevant dimension (Stokes et al., 2013). Additionally, it has been found 

that the WM state can act like a matched filter, filtering external stimulation in such a 

way that it automatically leads to a behaviourally relevant output signal (Myers et al., 

2015). 

To sum up, research has thus far mainly relied on measurable, item-specific neural 

activity to find the neural correlate of WM. As argued, this will likely not draw the 

complete picture, however, as WM maintenance should not only be understood as the 

literal maintenance of sensory information through neural activity, but also as the 

1 
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reconfiguration of the WM network to best reflect future behavioural demands as a state-

dependent neural response (Myers et al., 2017; Stokes, 2015). This thesis explicitly tests 

and exploits this state-dependent neural response during WM maintenance to reveal 

potentially hidden WM states.  

Thesis overview 

This thesis employs MVPA on electrophysiological data obtained through EEG to 

investigate item-specific neural responses during perception and maintenance. However, 

by the time the PhD that culminated in this thesis began, this method was mainly used 

in fMRI research but rarely considered for MEG or EEG, which have notoriously bad 

spatial resolution. Chapter 2 highlights research (Cichy, Ramirez, & Pantazis, 2015) that 

provides evidence that the MEG signal is nevertheless spatially specific enough to 

uncover fine-grained neural differences elicited by the cortical columns that respond to 

tilted lines in the visual cortex. The chapter employs simple modelling to further 

demonstrates that the same may hold true for EEG, thus highlighting the feasibility of 

employing MVPA on EEG data, which is exploited in all subsequent chapters. 

Chapter 3 explicitly tests the proposed network-specific neural response to external 

stimulation. During the delay period of a simple, single item WM task, the same high 

contrast “impulse” stimulus was presented in every trial, and of interest was if its evoked 

neural response measured with EEG contained information about the previously 

presented and memorized randomly orientated grating. Using MVPA it was found that 

this was indeed the case, providing simple proof of principle for a powerful and relatively 

simple approach to infer possibly hidden neural states through external perturbation. 

Chapter 4 uses the “impulse” approach introduced in the previous chapter to further 

explore the hidden WM state across multiple experiments. Using a retro-cue paradigm 

that dissociates stimulus-driven from WM-related neural effects (Harrison & Tong, 

2009), it is tested whether the impulse response actually reflects WM content and is not 

simply a reactivation of stimulus-history. It is furthermore tested if the WM-related 

impulse is dependent on WM-related delay activity, or if it is also reflects unattended, 

but nevertheless memorized WM content, using a attentional priority paradigm (Lewis-

Peacock et al., 2011).  

The previous two chapters established that a visual impulse stimulus present during 

the delay period of a visual WM task results in a neural response that reflects WM 

content. Chapter 5 tests on the one hand if the same holds true for the auditory 

counterpart, i.e. testing the hypothesis that an auditory impulse stimulus presented 

during the delay of an auditory WM reflects auditory WM content. It furthermore tests 

if auditory and visual WM content is maintained in a sensory-specific neural network. 

This done not by looking for confirmatory WM-specific delay activity in sensory areas 

(Kumar et al., 2016; Scimeca et al., 2018; Xu, 2017), but rather by assessing if sensory 

specific and sensory non-specific bottom-up neural responses are WM-specific. 

One of the mysteries of WM is its limitation (Cowan, 2010). The quality of even a 

single remembered item gradually decays over time, which can be measured in free-recall 
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paradigms (Rademaker, Park, Sack, & Tong, 2018). Modelling work suggests that this is 

due to random drift along the continuous item dimension in the neural population code 

(Schneegans & Bays, 2018) but neurophysiological evidence is limited (Wimmer et al., 

2014). Chapter 6 employs the impulse approach to enhance the neural representation of 

orientations at different times during the delay period of a free-recall WM task. It is 

explicitly tested if reports that are clockwise or counter-clockwise relative to the correct 

orientation are accompanied by a corresponding shift in the neural representation. 

Finally, Chapter 7 summarizes and discusses the research results presented in this 

thesis.
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This chapter was previously published as: 

Stokes, M. G., Wolff, M. J., & Spaak, E. (2015). Decoding rich spatial 

information with high temporal resolution. Trends in cognitive 

sciences, 19(11), 636-638.  
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Abstract 

New research suggests that magnetoencephalography (MEG) contains sufficient spatial 

information for decoding the orientation of visual stimuli. As with multivariate pattern 

analysis in functional magnetic resonance imaging, subtle but consistent differences in 

the distribution of orientation columns generate subject-specific patterns of activity. This 

implies MEG (and electroencephalography: EEG) is ideal for decoding neural states in 

the human brain. 

Keywords: Neural decoding; multivariate pattern analysis; orientation tuning; 

magnetoencephalography; electroencephalography; spatiotemporal information. 

 

2 



 

 
 

 

 



 Decoding with high temporal resolution  

25 
 

A major challenge in cognitive neuroscience is to discriminate brain states with high 

spatial and temporal resolution. These two dimensions of high resolution are often 

considered mutually exclusive for non-invasive human studies. Functional magnetic 

resonance imaging (fMRI) can resolve detailed spatial patterns of activity, but has 

notoriously poor temporal resolution; whereas methods that track electrical activity 

provide rich temporal information, but lack spatial precision. However, a recent paper 

by Cichy et al invites us to re-evaluate this classic dichotomy. Using a combination of 

empirical data and theoretical modelling, they argue that the signals measured with 

magnetoencephalography (MEG) actually contain rich spatial information that can be 

used to differentiate extremely subtle neural states (Cichy et al., 2015). This could be a 

game changer for high-temporal resolution methodologies that have been long 

considered too coarse to resolve fine-scale neural coding. 

Just over a decade ago, fMRI experienced a minor revolution inspired by a relatively 

simple idea: idiosyncratic patterns of activity carry important information. The test case 

was orientation decoding. It turns out that activity patterns in visual cortex can reliably 

predict the orientation of a grating stimulus presented to the subject (e.g. Kamitani & 

Tong, 2005). The general importance of this finding lies in its broader implication. 

Different orientations are not represented in different brain areas, but within narrow 

cortical columns that are distributed throughout the retinotopic landscape of visual 

cortex. Therefore, if it is possible to decode the orientation of a grating stimulus in visual 

cortex, perhaps it is also possible to decode other distributed, and spatially overlapping 

neural states, and in other brain areas. In the extreme, fMRI suddenly appeared to carry 

informational content comparable to the gold standard single unit recordings in non-

human primates (Kriegeskorte, Mur, Ruff, et al., 2008). 

The key insight for the fMRI community was that subtle biases in the distribution 

of neurons tuned to one feature or another could lead to subtle differences in the activity 

of a sampled voxel (schematised in Fig. 2.1 A). Although such biases would be weak, 

they could be pooled together over a number of samples (i.e., voxels) to statistically 

differentiate activity patterns. This approach has come to be known as multivariate 

pattern analysis (Haxby, Connolly, & Guntupalli, 2014), and has changed the way people 

think about fMRI. Decoding overlapping population codes for orientation encouraged 

the field to think more about information coded in a pattern of activity rather than 

differences in mean activity in certain brain areas (Kriegeskorte, Goebel, & Bandettini, 

2006).   

As orientation decoding was the test-ground for fine-scale pattern decoding in 

fMRI, Cichy et al. set out to show that MEG could also be used to decode spatially 

overlapping neural states. Other studies have shown that orientation information can be 

decoded from the visual evoked response in MEG and EEG using multivariate pattern 

analysis (Ramkumar, Jas, Pannasch, Hari, & Parkkonen, 2013; Wolff, Ding, Myers, & 

Stokes, 2015/Chapter 3). However, there are a number of possible confounds that were 

raised in the fMRI literature that could potentially explain orientation decoding based on 

coarse spatial differences (e.g., coarse-scale activity differences due to the over-
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representation of cells tuned to particular orientations; (Freeman, Heeger, & Merriam, 

2013)). Cichy and colleagues systematically address a large number of such possible 

confounds, concluding each time that MEG is able to decode genuine information about 

the orientation of presented stimuli. The authors concede that it is impossible to claim 

that their efforts were exhaustive. Indeed, just like the fMRI debate, it is likely that other 

potential explanations will surface, and would need to be addressed in future studies. 

Notwithstanding this caveat, Cichy et al present an impressive set of experiments all 

seemingly pointing to an important conclusion: MEG can resolve spatially overlapping 

representations.  

As reviewed above, previous fMRI studies argued that orientation decoding is 

driven by subtle differences in sampling small-scale biases in the distribution of tuned 

cells. However, the spatial resolution of MEG is far coarser than fMRI. So what is the 

mechanism that could explain genuine orientation decoding? Cichy et al propose a 

surprisingly simple idea (schematised in Fig. 2.1 B).  
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Figure Figure Figure Figure 2.2.2.2.1111. Condition specific activity patterns in fMRI, EEG, and MEG. (A) (A) (A) (A) Figure 

adapted taken from (Norman, Polyn, Detre, & Haxby, 2006). Simulated orientation 

map in V1 (middle). Even though each voxel samples the activity of many orientation 

columns, the activity patterns across voxels are orientation specific (right). (B) i.(B) i.(B) i.(B) i. Three 

dipoles approximately 2 mm apart result in distinguishable MEG/EEG topographies, 

due to their different orientations.     ii. ii. ii. ii. Thirty dipoles are randomly placed within a 40 

mm3 cube, of which 10 belong to one of three orientation conditions. Each condition 

yields highly similar EEG topographies. However, the relative activity histograms of 9 

sensors over the three orientations are separable.   

 

2 



 Decoding with high temporal resolution  
 

28 
 

It is well-established that electrical activity in aligned cells generates a dipole which 

projects to the scalp surface. EEG measures the resultant electric potential at the scalp 

surface, whereas MEG measures the magnetic field. The spatial distribution of the field 

depends on the location of the dipole, but critically, also on its angle. Cichy and 

colleagues argue that because the surface of the cortex is irregular, even dipoles from 

neighbouring clusters of cells will have different angles, resulting in separable field 

patterns at the scalp surface (see Fig. 2.1 B i). Although these patterns will be 

idiosyncratic to a given subject (depending on subtle differences in cortical folding), 

systematic differences within participants can be differentiated using multivariate 

classification. So exactly like MVPA for fMRI, it should be possible to differentiate 

spatially overlapping brain states by analysing subject-specific patterns (see Fig. 2.1 B ii), 

even though group differences would typically just average out.  

If MEG/EEG can be a source of such rich spatial information, then why are these 

non-invasive methods so often considered to have poor spatial resolution? The classic 

problem limiting spatial resolution in MEG/EEG is source ambiguity. Strictly, it is not 

possible to localise with certainty the source of the field measured at the scalp surface. 

There is no unique solution, but theoretically infinitely many solutions that could 

generate the same pattern of observed activity. To reverse engineer the location of the 

source from the observed scalp distribution runs up against the obstinate inverse 

problem. Although sophisticated methods have been developed to constrain 

probabilistic solutions (e.g. López, Litvak, Espinosa, Friston, & Barnes, 2014), the 

inherent uncertainty results in a relatively coarse estimate of the underlying source. 

However, if the purpose of the analysis is to track differential brain states over time, 

rather than localise activity differences, then the inherent ambiguity hardly matters.  

We predict that multivariate decoding will revolutionise MEG/EEG just as it did 

fMRI. The key insight is that these measures contain rich spatial information, even if the 

source localisation is inherently ambiguous. As the fMRI community has moved from 

localising blobs of condition-specific differences to measuring information coded in 

activity patterns, so the MEG/EEG will embrace MVPA for decoding neural states. 

Moreover, coupled with the exquisite temporal resolution inherent to electromagnetic 

indices of brain activity, MEG/EEG could really become the method of choice for 

exploring the spatiotemporal dynamics of human brain activity. 

  



 Decoding with high temporal resolution  

29 
 

Acknowledgments 

We would like to thank the Biotechnology & Biological Sciences Research Council (to 

M.G.S), and Frederik van Ede for helpful discussion. The dipole simulation was 

performed using the FieldTrip toolbox (http://www.ru.nl/neuroimaging/fieldtrip). 

 

 

 

2 



 

 
 

 

 



 

31 
 

 

 

Revealing hidden states in 

visual working memory 

using 

electroencephalography 
 

 

 

Chapter 3 

This chapter was previously published as: 

Wolff, M. J., Ding, J., Myers, N. E., & Stokes, M. G. (2015). Revealing 

hidden states in visual working memory using 

electroencephalography. Frontiers in Systems Neuroscience, 9, 

123. 

Data and code available at osf.io/g2jen 



 

 
 

 

 

 

 

 



Revealing hidden states in WM 

33 
 

 

 

 

Abstract 

It is often assumed that information in visual working memory (vWM) is maintained via 

persistent activity. However, recent evidence indicates that information in vWM could 

be maintained in an effectively “activity-silent” neural state. Silent vWM is consistent 

with recent cognitive and neural models, but poses an important experimental problem: 

how can we study these silent states using conventional measures of brain activity? We 

propose a novel approach that is analogous to echolocation: using a high-contrast visual 

stimulus, it may be possible to drive brain activity during vWM maintenance and measure 

the vWM-dependent impulse response. We recorded electroencephalography (EEG) 

while participants performed a vWM task in which a randomly oriented grating was 

remembered. Crucially, a high-contrast, task-irrelevant stimulus was shown in the 

maintenance period in half of the trials. The electrophysiological response from 

posterior channels was used to decode the orientations of the gratings. While 

orientations could be decoded during and shortly after stimulus presentation, decoding 

accuracy dropped back close to baseline in the delay. However, the visual evoked 

response from the task-irrelevant stimulus resulted in a clear re-emergence in 

decodability. This result provides important proof-of-concept for a promising and 

relatively simple approach to decode “activity-silent” vWM content using non-invasive 

EEG. 
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Introduction 

Visual Working memory (vWM) is essential for high-level cognition. By keeping task-

relevant information in mind, vWM provides a functional basis for complex behaviors 

based on timeextended goals and contextual contingencies. Some of the most influential 

models of vWM are built on the intuitive notion that maintenance is directly related to 

the persistence of stationary activity states, representing specific content in vWM from 

the moment of encoding until that content is needed for behaviour (Curtis & 

D’Esposito, 2003; Goldman-Rakic, 1995). Persistent activity models have obvious 

appeal - vWM effectively preserves a freeze-frame snapshot of past experience until it is 

no longer required. However, there are gaps in the argument for persistent activity 

models of vWM. 

Accumulating evidence suggests that vWM is not always accompanied by persistent  
delay activity (Sreenivasan, Curtis, & D’Esposito, 2014). For example, a recent study in 

non-human primates showed that content-specific delay activity can be effectively 

abolished during dual task interference, even though vWM-guided behavior is relatively 

spared (Watanabe & Funahashi, 2014). Robust delay activity returned when attention 

was refocused on the vWM- task. Similarly, human studies using non-invasive brain 

imaging suggest that activity patterns during maintenance delays correspond only to 

attended items (Lewis-Peacock et al., 2011). Unattended items do not seem to have a 

corresponding activity state, even though such unattended items are still maintained in 

vWM (Larocque et al., 2014; Olivers, Peters, Houtkamp, & Roelfsema, 2011). As in the 

non-human primate study, the activity state of unattended items becomes apparent once 

attention is directed to them (Lewis-Peacock et al., 2011; Lewis-Peacock & Postle, 2012). 

These results suggest that delay activity is not strictly necessary for maintenance in 

vWM. Dissociating vWM-performance from persistent delay activity implies that some 

form of “activity-silent” neural state contributes to maintenance in vWM (Stokes, 2015). 

For example, a synaptic model of vWM proposes that information is encoded in item-

specific patterns of functional connectivity (Mongillo et al., 2008; Sugase-Miyamoto et 

al., 2008). Essentially, activity patterns during encoding drive content-specific changes in 

short-term synaptic plasticity (Zucker & Regehr, 2002). Although the temporary synaptic 

trace is effectively “activity silent,” this hidden neural state can be read out from the 

network during processing of a memory probe. Mongillo et al. (2008) focused on known 

mechanisms of short-term synaptic plasticity; however, other neurophysiological factors 

could also pattern hidden states for vWM-guided behavior (Buonomano & Maass, 2009). 

The key principle is that activity-dependent changes in the hidden neural state could be 

important for maintaining information in vWM. 

One reason that persistent-activity models of vWM have been so pervasive in the 

past is that it is much easier to find confirmatory evidence with conventional measures, 

such as elevated delay-period firing (Fuster & Alexander, 1971) or pattern decoding 

during the delay period (Harrison & Tong, 2009). Disconfirmatory evidence is essentially 
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a null effect. Therefore, to evaluate the possible contributions of hidden states to vWM 

maintenance, it is necessary to develop measures that are capable of revealing them. 

Previously, it was found that a neutral task-irrelevant stimulus presented during a vWM 

delay period generated vWM-specific patterns of activity in monkey prefrontal cortex 

(Stokes et al., 2013). We suggested that this context-dependent response pattern could 

reflect differences in hidden state. For illustration, consider echolocation (e.g., sonar), 

where a simple impulse (e.g., “ping”) is used to probe hidden contours of unseen 

structure. Analogously, the impulse response to neural perturbation should co-depend 

on the pattern of input activity and the hidden state of the network. If the input pattern 

is held constant, we can attribute differences in the output to underlying changes in 

hidden state. 

In the current study, we develop this idea further using a task-irrelevant visual 

stimulus (or “impulse stimulus”) to drive a vWM-specific impulse response function that 

could be measured non-invasively using EEG. Participants performed a two-alternative 

vWM discrimination task that requires precise maintenance of the orientation of a 

memory item during a delay interval (Bays & Husain, 2008). Critically, on a subset of 

trials we presented a fixed high-contrast impulse stimulus designed to drive neural 

activity in the visual system. We predicted that the evoked response should differentiate 

the memory condition (i.e., the remembered orientation), even in the absence of vWM- 

discriminative delay activity. 

To anticipate the results, multivariate decoding at posterior electrodes accurately 

discriminated the orientation of the memory item during stimulus encoding. Consistent 

with previous evidence for dynamic coding in neural populations (Meyers, Freedman, 

Kreiman, Miller, & Poggio, 2008; Stokes et al., 2013) and scalp-level patterns (Cichy, 

Chen, & Haynes, 2011), the discriminative patterns were dynamic during stimulus 

processing. After the initial dynamic trajectory, discrimination decayed to near-baseline 

levels during the delay period. Importantly, the impulse stimulus reactivated vWM- 

specific activity patterns, consistent with the hypothesis that vWM content could be 

stored in an “activity-silent” neural format. Interestingly, although the impulse response 

pattern differentiated the vWM-stimulus, the discriminative pattern did not match the 

patterns during memory encoding. This experiment provides a novel proof-of-concept 

of a potentially powerful method for inferring hidden neural states. 

 

Methods 

Participants 

Twenty-four healthy adults (12 female, mean age 22.2 years, range 18 – 38 years) were 

included in the experiment and analyses. During recruitment, four additional participants 

were excluded from all analyses due to excessive eye-movements and eye-blinks (more 

than 20 % of trials were contaminated). All participants received a monetary 
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compensation of £10/hour and gave written informed consent. The study was approved 

by the Central University Research Ethics Committee of the University of Oxford.  

Apparatus and Stimuli 

The experimental stimuli were generated and controlled with the freely available 

MATLAB extension Psychophysics Toolbox (Brainard, 1997) and presented at a 100 Hz 

refresh rate and a resolution of 1680 x 1050 on a 17” Samsung SyncMaster 2233. A USB 

keyboard was used for response input. The viewing distance was set at 64 cm. 

A grey background (RGB = [150 150 150]) was maintained throughout the 

experiment.  Memory items were circular sine-wave gratings presented at a 20 % 

contrast. The memory probes were circular, 100 % contrast gratings underlying a square-

form function. The radius and spatial frequency was fixed for both types of stimuli 

(2.88°, and 0.62 cycles per degrees), and the phase was randomized. The memory items’ 

orientations were uniformly distributed, and angle difference between memory item and 

probe within each trial was uniformly distributed across 20 angle differences (±4º, ±5º, 

±7º, ±9º, ±12º, ±15º, ±20º, ±26º, ±34º, ±45º). The impulse item was a high-contrast, 

black-and-white round “bull’s-eye” in the same size and spatial frequency as the memory 

items and probes. All stimuli were presented centrally. Accuracy feedback was given with 

high (880 Hz) and low (220 Hz) tones for correct and incorrect responses, respectively. 

Procedure 

Participants were seated in a comfortable chair and the keyboard was placed either on 

their lap or on a table in front of the participants. The participants’ task was to memorize 

the orientation of the presented low-contrast grating and to press the “m” key with the 

right index finger if the probe was rotated clockwise and the “c” key with the left index 

finger if the probe was rotated counter-clockwise relative to the previously presented 

memory item. They were instructed to respond as quickly and as accurately as possible. 

Each trial began with the presentation of a fixation cross, which stayed on the 

screen until probe presentation. After 1,000 ms the memory item was presented for 200 

ms. In half of the trials (long), the following delay period was 2600 ms, after which the 

probe was presented for 200 ms. In the delay period at either 1,170 (early-impulse) or 

1,230 ms (late-impulse) after the memory item, the impulse stimulus was presented for 

200 ms (Fig. 3.1 A), which the participants were instructed to ignore. The temporal jitter 

was introduced to allow us to test whether any effect on stimulus decoding was 

specifically time-locked to the impulse.  In the other half of trials (short), the response 

probe was presented 1200 ms after memory item (Fig. 3.1 B). This trial length condition 

was included to ensure that participants were paying attention in the delay period of the 

long trials, thus increasing the potential effect of the impulse. After probe offset, the 

screen remained blank until response-input. A feedback tone was then played for 100 

ms and the next trial automatically began after 500 ms. Every 24 trials a performance 

summary screen, with the average accuracy and median reaction of all trials thus far, was 

shown. Participants could use this moment to take short breaks. The trial conditions 

3 



Revealing hidden states in WM 
 

38 
 

were randomized across the entire session and participants completed 1600 trials in total 

(400 early-impulse trials, 400 late-impulse trials, and 800 short trials) over a time period 

of approximately 165 min (including breaks).  

 

 

Figure Figure Figure Figure 3.13.13.13.1. . . . Trial structure. Participants memorized the orientation of a low contrast 

sine-wave grating. ((((AAAA)))) In half of the trials a neutral impulse stimulus was shown after 

the initial delay. The onset of the impulse was jittered by ±30 ms. The force-choice 

discrimination memory probe was presented after a second delay period. ((((BBBB)))) In the 

other half of the trials, determined randomly, the probe was presented instead of the 

impulse after the first delay. 

Behavioural Analysis 

Memory performance was analysed with the freely available MATLAB extension 

MemToolbox (Suchow, Brady, Fougnie, & Alvarez, 2013). The standard mixture model 

of visual working memory (Zhang & Luck, 2008) was fit separately for each participant 

(N = 24) and trial-length condition. The model assumes that the distribution of response 

errors has two distinct causes: (1) Pure guesses, which result in a uniform distribution of 

errors across all angle differences in the forced-choice paradigm. (2) Variability in the 

precision of the remembered item, which, even though the item is memorized, can result 

in errors at particularly small angle differences between memory item and probe. 

Although the main purpose of this analysis was simply to confirm that our participants 

could reliably memorize the low-contrast memory item in this experiment, for 
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completeness we also performed paired-samples t-tests on guess rate and memory 

variability between trial-length conditions. 

EEG Acquisition 

The EEG was recorded using NeuroScan SynAmps RT amplifier and Scan 4.5 software 

(Compumedics NeuroScan, Charlotte, NC) from 61 Ag/AgCl sintered surface 

electrodes (EasyCap, Herrsching, Germany) laid out according the to the extended 

international 10–20 system (Sharbrough et al., 1991) at 1000Hz. The anterior midline 

frontal electrode (AFz) was reserved as the ground. Electrooculography (EOG) was 

recorded from electrodes placed below and above the right eye and from electrodes 

placed to the left of the left eye and to the right of the right eye. Impedances were kept 

below 5 kΩ. Data were filtered online using a 200 Hz low-pass filter and the electrodes 

were referenced to the right mastoid.  

EEG Preprocessing 

Offline, the signal was re-referenced to the average of both mastoids, down-sampled to 

250 Hz with 16-bit precision and band pass filtered (0.1 Hz high-pass and 40 Hz low-

pass) using EEGLAB (Delorme & Makeig, 2004). The data were then epoched from -

200 ms to 1,400 ms relative to the onset of the memory item for the short, no-impulse 

trials, and from -200 ms to 2,800 ms for the long, impulse trials. Both long and short 

epochs were then baseline-corrected using the 200 ms prior to memory item onset. 

Subsequent artefact detection and trial rejection was performed via visual inspection and 

focused exclusively on the EOG channels and the 17 posterior channels of interest 

included in the analyses (P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, 

O1, Oz, O2). Trials containing saccadic eye-movements at any point in time, blinks 

during stimulus presentation, or other non-stereotyped artefacts were rejected from all 

further analyses. Impulse trials were subsequently re-epoched to two shorter epochs, 

time-locked to the memory item (-200 ms to 1,400 ms) or to the impulse stimulus (-200 

ms to 1,400 ms). Finally, the data were smoothed with a Gaussian kernel (SD = 8 ms). 

Multivariate Pattern Analysis  

To determine whether the pattern of the EEG signal across the posterior channels of 

interest contained information about the remembered item, we used the Mahalanobis 

distance (De Maesschalck, Jouan-Rimbaud, & Massart, 2000; Mahalanobis, 1936) to 

perform pair-wise comparisons between sets of trials in which orthogonal orientations 

were presented.  

Trials were divided across four angle bins two times and only orthogonal angle bins 

were compared in the multivariate analysis (0º to 45º versus 90º to 135º; 45º to 90º versus 

135º to 180º; -22.5º to 22.5º versus 67.5º to 112.5º and 22.5º to 67.5º versus 112.5º to 

157.5º). For illustration, see Fig. 3.2 for the event-related potentials of occipital 

electrodes (O1, Oz and O2) for each pairwise comparison between orthogonal angle-

bins.  
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Figure Figure Figure Figure 3.3.3.3.2. 2. 2. 2. Event-related potentials of each angle bin averaged over the occipital 

channels (O1, Oz, and O2). Illustrated are all pairwise orthogonal angle bin 

comparisons that were made in the multivariate analysis of the memory item 

segment ((((AAAA)))) and impulse segment ((((BBBB)))). Light-gray and dark-gray bars represent 

memory item and impulse presentations, respectively. 

We used a leave-one-trial-out cross-validation approach to calculate, on each trial, 

the multivariate dissimilarity (Mahalanobis distance) of that trial to the average of all 

other trials in the same angle bin, relative to the dissimilarity of that trial to the average 

of all trials in the orthogonal angle bin.  Mahalanobis distances of the test trial were 

computed for each time point as follows: 

D1=��Train angle 1 –  Test trial�� ∗ pC� ∗  �Train angle 1 –  Test trial�   

D2=��Train angle 2 –  Test trial�� ∗ pC� ∗  �Train angle 2 –  Test trial�   

where “Train angle 1” and “Train angle 2” are row vectors containing the average signals 

of angle bins 1 and 2 (excluding the test trial) of each channel, and “pC+” is the pseudo 

inverse of the error covariance matrix. The error covariance was estimated by pooling 

over the covariances of each angle condition, estimated from all trials within each 

condition (excluding the test trial) using a shrinkage estimator that is more robust than 

the sample covariance for data sets with many variables and/or few observations 

(Kriegeskorte et al., 2006; Ledoit & Wolf, 2004). The variables “Train angle 1”, “ Train 

angle2” and “pC+” are all part of the training set, on which “Test trial”, a row vector 

containing the signal of each channel of the left-out test-trial, is tested on. This was done 

by computing the    difference between the two Mahalanobis distances between “Test 

trial” and “Train angle 1” (D1) and “Test trial” and “Train angle 2” (D2). The same-

angle bin distance was always subtracted from the orthogonal-angle bin difference (so if 

the “Test trial” was part of angle bin 1 then D1 would be subtracted from D2). If the 

signal indeed contained information about the memory item at that time point, this 
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distance difference should be positive (because the orthogonal-angle bin distance should 

be higher than the same-angle bin distance). See Figure 3.3 for a schematic overview of 

the analysis. This procedure was performed for all trials and all previously defined angle 

bin comparisons, resulting in two equivalent estimates of distance differences per trial. 

Observed distances were then averaged over the two estimates, and across trials, to 

derive a single value for each time point and each participant for subsequent statistical 

testing and plotting.  

 

 

Figure Figure Figure Figure 3.3.3.3.3. 3. 3. 3. A schematic representation of the trial-wise Mahalanobis distance 

analysis. ((((AAAA)))) The signal for two orthogonal angle bins (angle 1 and angle 2) was 

extracted from 17 posterior channels at a specific time point. ((((BBBB)))) A single trial was 

either removed from angle 2 (top; test-triali) or angle 1 (bottom; test-trialj) and the 

mean signal for each angle condition of all other trials made up the training set (train 

angle 1, train angle 2). ((((CCCC)))) The Mahalanobis distances of the left-out test-trial to train 

angle 1 (D1) and train angle 2 (D2) illustrated in two-dimensional space. The pooled 

covariance is computed from the trials underlying train angle 1 and 2 and is 

recomputed for each new test. When the test trial belongs to angle bin 2, D2i is 

subtracted from D1i (top), when it belongs to angle bin 2, D1j is subtracted from D2j 

(bottom). This procedure is repeated for each trial and time-point and the resulting 

distance differences are averaged across all trials. 

Cross-temporal Analysis  

To explore the dynamics of information processing, and to test if the informative signal 

cross-generalizes to other time points (King & Dehaene, 2014), we computed a cross-

temporal extension of the Mahalanobis analysis described above. The difference 

between condition-specific distances was computed as described above. However, 
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instead of training and testing only on the same equivalent time points, train/test sliding 

windows were decoupled: The training data consisting of “Train angle 1,” “Train angle 

2” and the corresponding pseudo inverse of the covariance matrix (as described above) 

at train time Y was used to compute the distances to the test-trial at test time X (e.g. 

Stokes et al., 2013). After computing the distance differences for all possible train-test 

time combinations and averaging across all test trials, the results were combined into a 

cross-temporal matrix in which differences along the diagonal correspond directly to the 

time-resolved analyses already discussed, but off- diagonal coordinates reflect the extent 

to which the underlying discriminative neural patterns cross-generalize between train- 

test time points. This cross-temporal analysis was carried out within each trial epoch 

separately (memory-item and impulse), as well as across epochs, where the train data was 

taken from the impulse epoch and tested on all trials within the memory item epoch and 

vice versa, resulting in four cross-temporal discrimination matrices. 

Univariate Analysis  

To explore to what extent the differences in the EEG signal between memory items is 

driven by amplitude rather than pattern differences, we performed the univariate 

equivalent to the multivariate analysis described above. Instead of calculating the 

difference between the same- and orthogonal-angle bin Mahalanobis distances, the 

difference between the absolute same- and orthogonal-angle bin voltage differences 

averaged across all 17 posterior channels was computed. 

Significance Testing 

Statistics of one-dimensional EEG-analyses were inferred non-parametrically (Maris & 

Oostenveld, 2007) with sign-permutation tests. For each time-point, the decoding value 

of each participant was randomly multiplied by 1 or -1. The resulting distribution was 

used to calculate the p-value of the null-hypothesis that the mean discrimination-value 

was equal to 0. Cluster-based permutation tests were then used to correct for multiple 

comparisons across time using 10,000 permutations, with a cluster-forming threshold of 

p < 0.01. The significance threshold was set at p < 0.05 and all tests were two-sided. 

Significance tests were carried out separately for the memory item (0 – 1,400 ms) and 

the impulse (0 – 800 ms). The sample size of all tests was 24. 

Data Sharing 

In accordance with the principles of open evaluation in science (Walther & van den 

Bosch, 2012), all data and fully annotated analysis scripts from this study are publicly 

available at  

http://datasharedrive.blogspot.co.uk/2015/05/revealing-hidden-states-in-

working.html.  

We also hope these data and analyses will provide a valuable resource for future re-

use by other researchers. In line with the OECD Principles and Guidelines for Access 
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to Research Data from Public Funding (Pilat & Fukasaku, 2007), we have made every 

effort to provide all necessary task/condition information within a self-contained format 

to maximise the re-use potential of our data. We also provide fully annotated analysis 

scripts that were used in this paper.  

 

Results 

Behavioural Results 

Visual working memory performance (Fig. 3.4A) was modelled separately for short and 

long trials, each consisting of 800 trials. The difference in guess rates for short (M = 

0.074, SD = 0.048) and long trials (M = 0.073, SD = 0.047) was not statistically different 

(t(23) = 0.182, p = 0.858). On the other hand, the standard deviation of remembered 

items (sd) was significantly different between trial length conditions (t(23) = 2.458, p = 

0.022): sd was lower for short trials (M = 4.272, SD = 1.318) than for long trials (M = 

4.927, SD = 1.292; Fig. 3.4B). Whether this decrease in precision in long trials is due to 

the increase in trial duration (Zhang & Luck, 2009) or the possible interference effect of 

the impulse stimulus (Magnussen, Greenlee, Asplund, & Dyrnes, 1991) cannot be 

concluded, as the present study was not designed to address this issue.  

The very low guess rates in both conditions provided evidence that the participants 

had little difficulty to reliably memorize the low contrast angle stimuli. Because most 

errors were attributed to noise in mnemonic precision rather than absolute forgetting, 

we included both incorrect and correct trials in all EEG analyses.   

 

 

Figure Figure Figure Figure 3.3.3.3.4. 4. 4. 4. Behavioral performance and model parameters. ((((AAAA)))) Mean proportion of 

clockwise responses as a function of angle difference between memory item and 

probe plotted separately for short (grey) and long (black) trials. Error bars are 

standard deviations. ((((BBBB)))) Guess rates and memory variability (sd) for short and long 

trials estimated by the standard mixture model of working memory. Long trials result 

in significantly higher sd than short trials. Error bars are normalized standard errors.    
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Memory Item Discrimination during and after Item Presentation 

The averaged trial-wise difference in Mahalanobis distances between across- and within-

angle conditions enabled us to decode the memory items from the EEG signal of the 

posterior channels as a function of time. A statistically significant cluster emerged 68 ms 

after memory item onset, and lasted until the end of this epoch (1,400 ms, cluster p < 

0.001; Fig. 3.5A, cyan). Because the impulse analysis was only based on 50% of trials, we 

also analysed the memory encoding effect only on corresponding long trials (Fig. 3.5A, 

blue), enabling a power-matched comparison between the memory item- and impulse-

epoch. This revealed several significant decoding clusters: 76 to 632 ms (p < 0.001), 668 

to 720 ms (p = 0.023), 756 to 788 ms (p = 0.047), 876 to 936 ms (p = 0.016), and 964 ms 

to 1,000 ms (p = 0.036). 

Memory Item Discrimination during and after Impulse Presentation 

The same analysis as above was performed on the subsequent epoch for long trials, time-

locked to the impulse onset. Significant temporal clusters of above-chance 

discrimination were detected at 140 to 408 ms (p < 0.001) and 424 to 508 ms (p = 0.005 

after impulse onset (Fig. 3.5B, blue, bottom).  

Decoding Accuracy Increases Significantly after Impulse Presentation 

Since the decoding accuracy does not seem to drop completely to chance levels in the 

initial delay period, we also tested whether the presentation of the impulse results in a 

significant increase in discriminability. To this end, we subtracted the mean 

discriminability between -100 ms and 0 ms prior to impulse onset from the 

discrimination values after impulse onset. Two significant clusters were identified: 188 

to 232 ms (p = 0.012) and 364 to 404 ms (p = 0.016). These results confirm that 

discrimination accuracy increased significantly after impulse presentation (Fig. 3.5B, 

blue, top). 
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Figure Figure Figure Figure 3.3.3.3.5. 5. 5. 5. Multivariate discrimination of the memory item across time. ((((AAAA)))) Memory 

item epoch. The discrimination for both trial types (in cyan), and exclusively for the 

long trials used in the impulse response analysis (in blue). Significant positive clusters 

are marked with bars in the corresponding colors. ((((BBBB)))) Impulse epoch. The 

discrimination of memory item is shown for long trials (in blue), with positive clusters 

are marked in the corresponding significance bar along the bottom. Significant 

increases in discrimination compared to the mean discrimination 100 ms prior to 

impulse onset are indicated with dark-blue bars at the top. Light-gray and dark-gray 

bars represent memory item and impulse presentation, respectively. Error bars are 

standard deviations from the permuted null-distributions.     

The Memory Item and Impulse Show Dynamic coding 

The cross-temporal analysis of the memory item epoch using both long and short trials 

showed a dynamic coding pattern. Discrimination was greatest when trained and tested 

on the same time-points, as opposed to different time-points (Fig. 3.6A, lower left). The 

impulse response, though weaker than the memory item response, suggested a dynamic 

coding pattern as well (Fig. 3.6A, upper right).  

Memory Item and Impulse Coding Do Not Cross-generalize 

We saw no evidence for cross- generalization between the neural patterns evoked by the 

memory stimulus and the impulse response, either when the training set was taken from 

the impulse epoch and tested on the memory item epoch (Fig. 3.6A, top left), or the 

other way around (Fig. 3.6A, bottom right).  
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Figure Figure Figure Figure 3.3.3.3.6.6.6.6. Dynamics of memory item discrimination. Mean discrimination matrices 

derived from training and testing on all time-point combinations. Light-gray and dark-

gray bars represent memory item and impulse presentation, respectively. 

Discrimination accuracy is time-locked to impulse onset 

The increased discrimination accuracy shortly after the impulse could in principle be 

explained by a probe expectancy effect. Because the memory probe is presented on half 

the trials at this point, participants might prepare to respond to the probe. This could 

result in a more “active” maintenance of the memory item (e.g. K. Watanabe & 

Funahashi, 2007), which in turn could improve decoding accuracy. Although we do not 

find any evidence for a progressive ramp-up in discriminability at this time, this does not 

rule out a very precise form of temporal expectation.  

To address this potential issue directly, we had introduced a very subtle temporal 

variability in the presentation of the impulse stimulus. Our reasoning was as follows: If 

discriminability is tightly time-locked to the variable onset of the impulse, rather than to 

the expected onset of the probe relative to the memory item, we can sensibly attribute 

the observed boost in discriminability to the presentation of the impulse stimulus.  
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We therefore plotted the cross-temporal matrices of the discrimination of the early 

and late impulse onset trials separately (Fig. 3.7A) time-locked to memory item onset, 

where the training data of both matrices was based on all impulse trials time-locked to 

impulse onset. As is apparent from the figure, the highest discrimination effect is not 

along the diagonal (where the test and train times correspond to the mean impulse onset 

and the actual impulse onset of all trials, respectively). Rather, for the early impulse trials, 

discrimination is highest when the training time is shifted by +30 ms, while a -30 ms 

shift is best for the late impulse trials. We then plotted and analysed the discriminations 

of the early and late impulse trials based on these shifted training times (Fig. 3.7B). Three 

positive significant clusters were found both in the early-onset condition (1,544 to 1,664 

ms, p = 0.003; 1,704 to 1,776 ms, p = 0.007; 1,792 to 1,828 ms, p = 0.028) and in the 

late-onset condition (1,568 to 1,744 ms, p < 0.001; 1,784 to 1,836 ms, p = 0.012; 1,860 

to 1,908 ms, p = 0.016). As is apparent from both the figure and the significant clusters, 

the time course of the late impulse onset trials is clearly later than the early onset trials.     

To more directly test for the expected 60 ms latency shift in discrimination accuracy 

corresponding to the onset difference of the two impulse stimuli, we computed the 

Pearson’s correlation between discrimination values of the time window from 1,370 to 

2,170 ms of the early impulse onset condition with different time windows of the same 

length of the decoding values of the late impulse onset condition. Correlation 

coefficients were computed between the same time windows (0 ms difference) as well as 

for each 4 ms step up to a difference of 120 ms, resulting in 31 correlation values for 

each participant in total (Fig. 3.7C). The mean correlation clearly peaked at a 60 ms 

difference and a cluster-corrected permutation test on the Fisher transformed correlation 

values showed that only the correlation coefficients between a time-difference of 32 to 

100 ms were significantly positive across subjects (p < 0.001). These results provide clear 

evidence that the decoding time-course was time-locked to the onset of the impulse. 
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Figure Figure Figure Figure 3.3.3.3.7.7.7.7.    Effect of late impulse onset. (A)(A)(A)(A) Mean discrimination matrices derived 

from training on all impulse trials, time-locked to impulse onset and testing 

separately on early (left, red) and late (right, green) impulse onset trials.. The black 

dotted lines illustrate the multivariate discrimination when tested on the average 

impulse onset relative to memory item (1,400 ms) but trained relative to the actual 

impulse onset (0 ms). Discrimination for early onset trials is highest when the training 

time is shifted by +30 ms (left, red line) and highest for late onset trials when shifted 

by -30 ms (right, green line). (B)(B)(B)(B) A one dimensional plot of the early (red) and late 

(green) onset discriminations trained at +30 ms and -30 ms relative to impulse onset, 

respectively. Significant positive clusters of each onset condition are indicated by bars 

in a darker shade of the corresponding colors. Error bars are standard deviations of 

the permuted null distributions. (C) (C) (C) (C) Mean correlations (Fisher’s z) between the 

decoding time-course for the early and late impulse onset trials as a function of 

different temporal shifts. Mean correlation peaks at 60 ms. The blue bar illustrates 

the significant positive cluster of correlations. Error bars are standard deviations of 

the permuted null distributions.   
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Memory Item Discrimination is Not Simply Driven by Mean Amplitude 

Difference 

The univariate analysis that was based on the averaged signal of all posterior electrodes 

showed significant memory item discrimination only shortly after memory item onset, 

where a single short significant cluster was present (140 to 168 ms, p = 0.022). No 

significant discrimination could be made within the impulse epoch (Fig. 3.8).  

 

 

Figure Figure Figure Figure 3.3.3.3.8. 8. 8. 8. Univariate discrimination of the memory item. The cyan and blue lines 

show the univariate discrimination of the memory item of the ((((AAAA)))) memory item and 

((((BBBB) ) ) ) impulse epoch, respectively. The cyan bar indicates the significantly positive 

discrimination cluster of the memory item epoch. Light-gray and dark-gray bars 

represent memory item and impulse presentation, respectively. Error bars are 

standard deviations of the permuted null-distributions.  

Discussion 

We report the results of a novel method to recover visual working memory states that 

are otherwise hidden to EEG using a functional perturbation approach. We presented a 

high-energy visual impulse stimulus during the vWM delay period and measured the 

visual evoked response. Critically, we found that the impulse response carried significant 

information about the contents in vWM. Using multivariate analysis, we could decode 

the orientation of the previous memory item from the impulse-driven visual response. 

This provides important proof-of-principle evidence for the feasibility of exploring 

hidden neural states with non-invasive EEG, with important implications for working 

memory (Stokes, 2015).  

We used Mahalanobis distances to compute the multivariate dissimilarity between 

the evoked response during maintenance of specific orientations. The Mahalanobis 

distance is superior to Euclidean distance (Stokes et al., 2013) because it accounts for the 

covariance structure of the noise between features (Kriegeskorte et al., 2006). In the 

3 



Revealing hidden states in WM 
 

50 
 

current study, features were EEG sensors, which are known to be highly correlated. 

Analysis of the evoked response to the memory stimulus clearly validated this 

multivariate method as a powerful approach for decoding task-relevant parametric 

dimensions. Robust orientation discrimination was observed in the EEG activity as early 

as 68 ms after the presentation of the memory stimulus. Decoding peaked at around 160 

ms, before decaying into the memory delay period. Despite returning almost to baseline 

prior to the onset of the impulse stimulus, we observed a robust ‘reactivation’ in 

decodability of the memory item that peaked at 200 ms and 360 ms after the impulse 

stimulus.  

The impulse onset was temporally jittered by ±30 ms. The rationale for introducing 

this variability was to control for the possibility that reactivation could be explained by 

temporal expectation. On half the trials, the response probe was presented instead of 

the impulse stimulus. This was to ensure that participants were attending throughout the 

delay period. However, previous studies have shown that temporal expectation can also 

result in a ramp-up of item-specific delay activity (Barak et al., 2010; Takeda & 

Funahashi, 2004; Y. Watanabe, Takeda, & Funahashi, 2009). Ramp-up activity could 

reflect a build-up of temporal expectation (Nobre, Correa, & Coull, 2007), which could 

trigger attention-related pre-activation of the task-relevant template, as previously 

observed in monkey PFC (Rainer, Rao, & Miller, 1999) and the human visual system 

(Stokes, Thompson, Cusack, & Duncan, 2009). Jittering the impulse onset time allowed 

us to differentiate the relative contribution of temporal expectation and of the impulse 

response. This subtle temporal offset allowed us to test whether reactivation was indeed 

time-locked to the impulse stimulus, or whether decodability was better explained by the 

temporal structure of the task.  

Visual inspection of the decodability time-course locked to the impulse probe 

already suggests that temporal expectation is not a plausible account. It would be 

surprising if template-reactivation could be so precise over an interval as long as 1.2 s. 

Moreover, plotting the impulse response for the different impulse onset times relative 

to the onset of the memory stimulus provides an estimate of the time-locking to the 

stimulus onset (Fig. 3.7B). As expected, the decodability profiles appear offset by 

approximately 60 ms. Finally, a correlation analysis of the decodability time-courses 

between impulse onsets confirmed that the correlation peaked at an offset of 60 ms. 

Overall, this pattern of results is consistent with the prediction that a neutral stimulus 

presented during the delay period drives activity in the memory network, resulting in a 

patterned response that systematically reflects the representational characteristics of the 

information in working memory (i.e., orientation).  

Previous studies have argued that early visual cortex is important for vWM 

(Pasternak & Greenlee, 2005). For example, Harrison and Tong conducted an fMRI 

study using a very similar paradigm as the current design (Harrison & Tong, 2009). Using 

multivariate analyses, they found significant decoding during the delay period despite an 

absence of above-baseline activity levels. This suggests that subtle activity patterns in 

fMRI could also reflect hidden states (patterned spontaneous activity). Computational 
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modelling provides evidence that spontaneous spiking activity should be patterned by 

the hidden state (Sugase-Miyamoto et al., 2008). Moreover, we previously found 

evidence for significant pattern separation in monkey PFC, despite activity levels that 

were no greater than the pre-trial baseline (Stokes et al., 2013). Increasing the overall 

level of activity increased the pattern separation in that study. Future research could 

explore the relationship between spontaneous activity patterns measured with fMRI, 

single unit recording, and EEG. 

It is also possible that the activity observed by Harrison and Tong (2009) actually 

reflected attentional preparation (Stokes et al., 2009) or imagery-related activity (Albers, 

Kok, Toni, Dijkerman, & de Lange, 2013; Stokes, Saraiva, Rohenkohl, & Nobre, 2011). 

Indeed, it is almost impossible to separate potential non-working memory contributions 

in their design (Stokes, 2011). In the current study, we clearly dissociate impulse-driven 

decoding from temporal expectation. Moreover, visual imagery is unlikely to be triggered 

so rapidly by the impulse stimulus. It would be important for future research to explore 

the relationship between discriminating stimulus-driven and non-driven activity as a 

function of attention and imagery to further pinpoint the relative contribution of 

different neural states to these separable, but interrelated cognitive functions.  

We also observed evidence for dynamic coding of the memory stimulus. Cross-

temporal analyses clearly revealed superior discrimination along the diagonal axis, 

reflecting within-time generalisation, relative to off-diagonal coordinates representing 

cross-temporal generalisation. This is the hallmark pattern for dynamic coding, 

indicating that the discriminative patterns vary over time (King & Dehaene 2014). 

Previously, Cichy and colleagues observed a similar pattern in MEG data during 

perceptual categorisation (Cichy et al., 2011), consistent with similar results from 

intracranial recordings in monkey visual (IT; Meyers et al., 2008), parietal (Crowe, 

Averbeck, & Chafee, 2010) and prefrontal cortices (Meyers et al., 2008; Stokes et al., 

2013). There was also some evidence for a dynamic coding pattern in the impulse 

response, suggesting that the impulse response might be best conceptualised as a 

memory-specific trajectory, although future research would need to clarify this 

interpretation. 

Interestingly, we found no evidence for cross-generalisation between the neural 

patterns evoked by the memory stimulus and the impulse response. Again, this could be 

interpreted as an extension of dynamic coding. The same task parameters are represented 

in both epochs (i.e., memory orientation), but using independent coding schemes. 

Epoch-independent coding schemes could be optimal for structured high-level 

representations (Sigala, Kusunoki, Nimmo-Smith, Gaffan, & Duncan, 2008). However, 

this result could also reflect a fundamental difference in patterns of activity that modulate 

hidden states, and the patterns of activity that are emitted from a particular impulse 

stimulus. Indeed, the current results are consistent with the hypothesis that the impulse 

response should be an interaction between the input pattern and the current hidden state, 

rather than a simple ‘reactivation’. Readout of the hidden state from the EEG response 

only requires a systematic relationship between the impulse response and the hidden 
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state. By contrast, downstream cortical areas that read out the hidden state to generate a 

response might need to learn how to decode a time- and context-varying hidden state to 

access a memorized orientation. Recent theoretical models have shown that 

unsupervised read-out of dynamically changing states is in principle possible (Sussillo, 

2014; Sussillo & Abbott, 2009).  

Although this proof-of-principle experiment does not provide the definitive test 

for ‘activity-silent’ working memory, the results are nonetheless consistent with a 

number of key predictions. First, memory-discriminative information effectively returns 

to baseline after initial encoding. Although this is essentially a null effect, the decay 

function is consistent with studies decoupling persistent content-specific delay activity 

and memory-guided behaviour (Sreenivasan et al., 2014). Secondly, impulse-driven 

reactivation is consistent with a context-dependent response of a memory-configured 

hidden state (Mongillo et al., 2008; Sugase-Miyamoto et al., 2008). Finally, the dynamic 

trajectory during memory encoding is also consistent with a more general dynamic 

coding framework for working memory (Stokes, 2015).  

Irrespective of any particular theoretical framework, the current experiment also 

provides an important demonstration of combining a functional perturbation approach 

with multivariate decoding to reveal otherwise hidden neural states. Activity states that 

we usually measure with non-invasive recordings only provide an incomplete picture of 

the diversity of neural states underlying cognition. This might be especially true for more 

tonic cognitive states, such as working memory, attention, or task set. Activity-silent 

representations pose an obvious problem for contemporary neuroscience, which is 

dominated by measurement and analysis of activity states. The ultimate success of future 

research will depend on new approaches to existing measurement techniques to probe 

diverse neural states, including ‘activity-silent’ states. We believe that this paper provides 

an important proof-of-principle toward an accessible non-invasive approach. Non-

invasive brain stimulation could be used in combination with EEG to probe hidden 

states (Bortoletto, Veniero, Thut, & Miniussi, 2015).The advantage of transcranial 

magnetic stimulation is that the response profile of distinct brain networks can be 

targeted specifically (Rosanova et al., 2009), but with the major disadvantage that the 

stimulation artefact effectively precludes analysis of the initial local response to the 

perturbation. While this is less problematic for measuring context-dependent changes in 

effective connectivity between distant brain areas (Taylor, Nobre, & Rushworth, 2007), 

this limitation could easily obscure the kind of effect studied here. 

In conclusion, we provide useful proof-of-principle demonstration of the utility of 

combining a functional perturbation approach with EEG to reveal otherwise silent 

neural states. Although these results are consistent with a dynamic coding framework 

that suggests visual working memory could be encoded in an ‘activity-silent’ state, the 

main purpose of the experiment was to develop a powerful tool for exploring cognitive 

states that cannot otherwise be differentiated with EEG. Future experiments will be able 

to exploit this novel approach in more complex experimental designs to tease apart the 

key coding principles underlying visual working memory. 
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Abstract 

Recent theoretical models propose that working memory is mediated by rapid transitions 

in ‘activity-silent’ neural states (for example, short-term synaptic plasticity). According 

to the dynamic coding framework, such hidden state transitions flexibly configure 

memory networks for memory-guided behaviour and dissolve them equally fast to allow 

forgetting. We developed a perturbation approach to measure mnemonic hidden states 

in an electroencephalogram. By ‘pinging’ the brain during maintenance, we show that 

memory-item-specific information is decodable from the impulse response, even in the 

absence of attention and lingering delay activity. Moreover, hidden memories are 

remarkably flexible: an instruction cue that directs people to forget one item is sufficient 

to wipe the corresponding trace from the hidden state. In contrast, temporarily 

unattended items remain robustly coded in the hidden state, decoupling attentional focus 

from cue-directed forgetting. Finally, the strength of hidden-state coding predicts the 

accuracy of working-memory-guided behaviour, including memory precision. 
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Introduction 

Working memory (WM) is a core cognitive function critical for flexible, intelligent 

behaviour(Alan Baddeley, 2003). Until recently, it was widely assumed that information 

is maintained in WM by maintaining specific activity states that represent the specific 

memoranda (Curtis & D’Esposito, 2003; Goldman-Rakic, 1995). However, 

accumulating evidence increasingly shows that successful maintenance in WM is not 

strictly dependent on an unbroken chain of corresponding delay activity (Stokes, 2015), 

and that item-specific activity states could reflect other cognitive processes. For example, 

in monkey studies persistent activity ramps up with expectation of the probe (Barak et 

al., 2010; Miller, Erickson, & Desimone, 1996; Watanabe & Funahashi, 2007, 2014). 

Similarly, in the human it has been shown that unattended WM content is not reflected 

in the neural signal, even when it is still clearly maintained (LaRocque et al., 2012; Lewis-

Peacock et al., 2011; Sprague et al., 2016). Evidence for WM in the absence of persistent 

delay activity suggests that WM can be maintained in ‘activity silent’ neural states (Stokes, 

2015).  

Recent theories acknowledge that brain activity is highly dynamic, even when the 

contents of working memory remain stable (Sreenivasan et al., 2014). Multiple 

neurophysiological mechanisms could underlie such dynamics (Barak & Tsodyks, 2014; 

Buonomano & Maass, 2009; J. D. Murray et al., 2017). According to a dynamic coding 

model of WM (Stokes, 2015), behaviourally relevant sensory input drives a memory item-

specific neural response, which triggers an item-specific change in the functional state of 

the system. Depending on the precise neural mechanism, this functional state could be 

activity-silent (e.g., short-term synaptic plasticity (Barak & Tsodyks, 2014; Fujisawa et al., 

2008; Hempel et al., 2000; Lundqvist et al., 2016; Mongillo et al., 2008)), and maintained 

throughout the memory delay to serve as the neural context for subsequent processing. 

Items in WM would be read-out via the context-dependent response to a probe stimulus 

during recall (Buonomano & Maass, 2009; Sugase-Miyamoto et al., 2008). Crucially, this 

model predicts that dynamic hidden states are constructed when new information is 

encoded, and dissolved as soon as it is forgotten. This model also predicts that dynamic 

hidden states should determine the quality of a representation maintained in WM. 

To probe hidden neural states, we developed a functional perturbation approach 

to ‘ping the brain’. Analogous to the idea of active sonar (or echolocation), the response 

to a well-characterised impulse stimulus can be used to infer the current state of the 

system (Buonomano & Maass, 2009; Stokes, 2015). We recently validated this general 

approach using non-invasive electroencephalography (EEG) in a proof of principle 

study (Wolff et al., 2015/Chapter 3). The presentation of a high contrast, neutral visual 

stimulus evoked neural activity that clearly discriminated the previously presented visual 

stimulus. Here, we exploit this approach to track the functional dynamics of hidden 

states for WM.  

Across two experiments, we show that the content of WM can be decoded from 

the impulse response during the maintenance interval, while forgotten information 
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leaves effectively no trace. In Experiment 2, we also demonstrate robust hidden-state 

representation for unattended content in WM, providing a plausible mechanism for 

maintenance that is independent of the activity associated with the focus of attention. 

Finally, we also find evidence that the quality of working memory varies with the 

decodability of these hidden states. 

Methods 

Participants 

Thirty healthy adults (13 female, mean age 24.9 years, range 18-38 years) were included 

in the analyses of Experiment 1, 19 (10 female, mean age 24.7 years, range 18-39 years) 

in Experiment 2, and 20 in Experiment 3 (13 female, mean age 21, range 18-29 years). 

During data collection and preprocessing, 4 additional participants of Experiment 1, 1 

additional participant of Experiment 2, and 6 additional participants of Experiment 3 

were excluded from all analyses due to either low average performance on the memory 

task (below 60% accuracy) or excessive eye-movements (more than 30% of trials 

contaminated). No statistical methods were used to pre-determine sample sizes but our 

sample sizes are similar to those reported in previous publications (Wolff et al., 

2015/Chapter 3; Zhang & Luck, 2008).  All participants of Experiment 1 and 2 received 

monetary compensation of £10/h, and participation in Experiment 3 contributed to 

course credits. All participants gave written informed consent. Experiments 1 and 2 were 

approved by the Central University Research Ethics Committee of the University of 

Oxford and Experiment 3 was approved by the Departmental Ethical Committee of the 

University of Groningen. 

Apparatus and Stimuli 

The experimental stimuli were generated and controlled by Psychtoolbox (Brainard, 

1997), a freely available MATLAB extension. The stimuli were presented on a 23” screen 

running at 100 Hz and a resolution of 1920 by 1080 in Experiment 1, on a 22” screen at 

a resolution of 1680 by 1050 in Experiment 2, and on a 19” CRT screen running at 100 

Hz and a resolution of 1280 by 1024 in Experiment 3. Viewing distance was set at 64 

cm in Experiment 1, 67.5 cm in Experiment 2 and approximately 60 cm (not controlled) 

in Experiment 3, to ensure that the visual angles of stimuli were the same across 

experiments even though the screen parameters were different. A standard keyboard was 

used for response input by the participants. 

All reported stimuli were the same in all experiments, unless explicitly mentioned 

otherwise. A grey background (RGB = 128, 128, 128; 20.5 cd/m2; 28.6 cd/m2 in 

Experiment 3) was maintained throughout the experiments. A black fixation dot with a 

white outline (0.242°) was presented in the centre of the screen throughout all trials. 

Memory items and memory were sine-wave gratings presented at 20% contrast, with a 

diameter of 6.69° and spatial frequency of 0.65 cycles per degree. The phase was 
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randomized within and across trials. The memory items were presented at 6.69° 

eccentricity and for each trial the orientations were randomly selected without 

replacement from a uniform distribution of orientations. The impulse stimulus was 3 

adjacent ‘bullseyes’ in Experiment 1. Each ‘bullseye’ was of the same size and spatial 

frequency as the memory items. To reduce strain on the eyes, and to minimise forward 

masking in Experiment 3, the impulse stimulus in Experiments 2 and 3 consisted of 3 

adjacent white circles. In Experiment 1 and 2 the probes had the same contrast and 

spatial frequency as the memory items, and was presented in the centre of the screen. In 

Experiment 3 the probe screen included a high contrast black and white square-wave 

grating in the centre and two white lateralized circles on the outside (the same location 

and size as the preceding lateral impulse circles). The angle differences between a 

memory item and the corresponding memory probe were uniformly distributed across 

7 angle differences in Experiment 1 (±3°, ±7°, ±12°, ±18°, ±25°, ±33°, ±42°), 6 angle 

differences in Experiment 2 (±5°, ±10°, ±16° ±24°, ±26°, ±32°, ±40°) and a single 

angle difference (±16°) in Experiment 3.  

Procedure 

Experiment 1 

Participants completed a retro-cue visual working memory task. Each trial began with 

the onset of a fixation dot at the centre of the screen. After 1000 ms, the memory item 

array was shown for 250 ms, consisting of two randomly oriented low-contrast gratings 

left and right of fixation. After a delay of 800 ms an arrow was shown for 200 ms in the 

centre of the screen, pointing either to the left or to the right, and thus cueing which of 

the two previously presented items would be tested. The number of left and right cued 

trials was equal and the order was randomized for each participant. The impulse stimulus 

was presented for 100 ms, 900 ms after the offset of the retro-cue. After another delay 

of 400 ms, the memory probe was shown for 250 ms. Participants were instructed to 

indicate if the orientation of the probe relative to the orientation of the memory item 

was rotated clockwise by pressing the “m” key with the right index finger, or counter-

clockwise by pressing the “c” key with the left index finger. A high or low frequency 

feedback tone was played after response, indicating if the answer was correct or 

incorrect, respectively. The next trial started within 400 to 700 ms (determined 

randomly). Participants completed 1344 trials in total, which lasted approximately 3 

hours (including breaks). Trial conditions were randomized across the whole session. 

See Figure 4.1A for a trial schematic. 

Experiment 2 

Participants completed a visual working memory task where two items were serially 

tested. The experiment began by instructing the participant which of the two memory 

items would be tested early, and which one would be tested late. This rule never changed 

within a session. Each trial began with the onset of a fixation dot at the centre of the 

screen. After 1000 ms, the memory item array was shown for 250 ms, consisting of two 

randomly oriented low-contrast gratings left and right from fixation. After a delay of 950 
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ms, the first impulse was presented for 100 ms. After a delay of 500 ms, the first memory 

probe was presented for 250 ms, probing the first item. The response input was the same 

as in Experiment 1. After a fixed delay of 1750 ms after the offset of the first probe, the 

second impulse was shown for 100 ms. Following a delay of 400 ms, the second memory 

probe was presented for 250 ms, probing the late-tested item. After the second response, 

two feedback tones were played, one for each response, separately indicating whether 

the first and second answers were correct. Participants completed two sessions of the 

task on two separate days, separated by approximately 1-2 weeks. The testing order of 

the memory items was fixed within each sessions, and switched between sessions (i.e. 

left item tested first in one session, right item tested first in the other session). The order 

of the testing rule between sessions, (whether the left item would be tested first in the 

first or in the second session) was counterbalanced across participants (odd numbered 

left first, even numbered right first). Each session consisted of 864 trials, and lasted 

approximately 3 hours including breaks. See Figure 4.4A for a trial schematic. 

Experiment 3  

The task was almost the same as Experiment 1, including the same timings of the 

memory items, cue, probe and overall trial duration. The one key difference was the 

timing of the impulse stimulus. While the delay between cue offset and probe onset was 

held constant at 1,400 ms across all trials (the same as in Experiment 1), the SOA 

between impulse and probe onset was 0, 50, 100, 250 or 500 ms (determined pseudo 

randomly across the session). No impulse was shown in the 0 ms SOA condition. The 

impulse remained on the screen until the probe stimulus was presented. This was to 

ensure the least possible interference of the impulse on probe processing (i.e., rapid onset 

and offset of the white circles immediately before probe presentation could deteriorate 

probe visibility), as well as keeping the different SOA conditions as similar as possible 

(longer SOA would include an additional offset). Participants completed 280 trials 

(approximately 30 minutes). See Fig. 4.8A for a trial schematic. 

Data collection and analyses were not performed blind to the conditions of the 

experiments. 

Due to the within-subject design in all three experiments, randomization of 

conditions between subjects was not applicable. 

EEG Acquisition 

The EEG signal was acquired from 61 Ag/AgCl sintered electrodes (EasyCap, 

Herrsching, Germany) laid out according to the extended international 10-20 system. 

Data was recorded at 1000 Hz using NeuroScan SynAmps RT amplifier and Scan 4.5 

software in Experiment 1 and Curry 7 software in Experiment 2 (Compumedics 

NeuroScan, Charlotte, NC). The anterior midline frontal electrodes (AFz) served as the 

ground. Bipolar electrooculography (EOG) was recorded from electrodes placed above 

and below the right eye, and from electrodes placed to the left of the left eye and to the 
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right of the right eye. The impedances of all electrodes were kept below 5 kΩ. Online, 

the EEG was referenced to the right mastoid and filtered using a 200 Hz low-pass filter. 

EEG pre-processing 

Offline, the data was re-referenced to the average of both mastoids, down-sampled to 

500 Hz and band-pass filtered (0.1 Hz high-pass and 40 Hz low-pass) using EEGLAB 

(Delorme & Makeig, 2004). The data was then epoched to the onset of the memory 

items and the impulses. In Experiment 1, the memory item epoch was from -200 ms to 

1050 ms, relative to onset, and in Experiment 2 from -200 ms to 1200 ms. The impulse 

epochs were from -200 ms to 500 ms relative to onset in both experiments. Additionally, 

for the purpose of artefact rejection, which included the rejection of trials containing 

saccadic eye-movement prior to the time of interest (see below), the cue segment in 

Experiment 1 was also epoched (-200 ms to 1100 ms). 

Subsequent artefact detection and trial rejection focused exclusively on the 17 

posterior channels that were included in the analyses (P7, P5, P3, P1, Pz, P4, P6, P8, 

PO7, PO3, POz, PO4, PO8, O1, Oz, O2) and the EOGs. Each trial of each epoch was 

individually visually inspected for blinks, saccades and non-stereotyped artefacts. Trials  
from individual epochs were rejected from analyses involving that epoch if it contained 

any of the above-mentioned artefacts. Furthermore, impulse-epoch trials were also 

excluded from corresponding analyses if the EOG signal suggested that saccades 

occurred during any of the previous epochs of that trial. In Experiment 1 this exclusion 

procedure was applied to the cue-epoch as well. In Experiment 2, late impulse trials were 

also excluded if no response was registered for the preceding probe. For the decoding 

analyses, each epoch was baselined using the average signal from -200 ms to 0 ms before 

stimulus onset. The multivariate data were also demeaned at each time-point by 

subtracting the average voltage for all posterior channels included in the analyses. 

Time-frequency decomposition and lateralization analysis 

In order to explore alpha power (8-12 Hz) lateralization (Schneider, Mertes, & Wascher, 

2016; Worden, Foxe, Wang, & Simpson, 2000), the spectral power from 6 to 16 Hz (in 

steps of 0.5 Hz) of the EEG signal was computed using Hanning tapers with time-

windows of 5 cycles per frequency (in steps of 10 ms) using the MATLAB toolbox 

FieldTrip (Oostenveld et al., 2010). We included the whole experimental trial, ranging 

from 1000 ms before memory item onset until 1500 ms after (second) probe onset (-

1000 to 4150 ms relative to memory items in Experiment 1, and -1000 to 5800 ms relative 

to memory items in Experiment 2). The power was log transformed, and lateralization 

was computed by subtracting the average power of the ipsilateral posterior electrodes 

from the average power of the contralateral posterior electrodes in relation to the cued 

memory item in Experiment 1 and to the early-tested item in Experiment 2 (P7, P5, P3, 

P1, PO7, PO3, O1 versus P8, P5, P6, P4, P2, PO8, PO4, O2). 

Significant clusters of lateralization were determined using a cluster-corrected  non-

parametric sign-permutation test (Maris & Oostenveld, 2007).  In both experiments, the 
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whole trial was included in this analysis (-100 to 3150 ms relative to memory items onset 

in Experiment 1, and -100 to 4800 ms in Experiment 2).  

Orientation decoding 

To test whether the activity pattern of the posterior EEG channels of interest contained 

orientation-specific activity, we used the Mahalanobis distance (De Maesschalck et al., 

2000) to compute the trial-wise distances between the full range of possible orientations, 

and quantify to what extent the computed distances adhere to the parametric circular 

space of the orientations (Sprague et al., 2016). This approach is an extension of the 

pairwise distance approach we used before (Wolff et al., 2015/Chapter 3) and is 

conceptually similar to the population tuning curve model (Saproo & Serences, 2010). 

The left and right presented items were decoded separately and independently 

within each participant and experimental session. All 17 posterior channels (see above) 

were used for all decoding analyses. The procedure followed a leave-one-trial-out cross-

validation approach to compute the trial-wise decodability of the orientation of interest. 

The activity pattern of a single test-trial at a particular time-point was compared to the 

pattern of all other trials at the same time-point. These were averaged into 12 orientation 

bins relative to the orientation of the test-trial, each containing trials with orientations 

within a range of 30° and centred around -75°, -60°, -45°, -30°, -15°, 0°, 15°, 30°, 45°, 

60°, 75°, and 90°. The Mahalanobis distances between the test-trial and each orientation 

bin was computed using the covariance estimated from all trials excluding the test-trial 

using a shrinkage estimator (Ledoit & Wolf, 2004). To simplify visualization and 

interpretation, the 12 resulting distances were mean centred and the sign was reversed, 

resulting in a visual representation of a tuning curve. Higher values correspond to greater 

relative similarity between the test-trial and the averaged train-trials within a particular 

orientation bin, and lower values correspond to greater dissimilarity.   

Next, the vector means of the tuning curves were computed (Sprague et al., 2016). 

First, the cosine of the centre of each orientation bin (θ) was rescaled to the range -180 

to 180. It was then multiplied with the corresponding sign-reversed distances (d(θ)) 

before the mean of the resulting 12 values was taken, which made up the decoding 

accuracy (da). 

Equation 1:  �� = ������ (�� cos (2 ��� 

A high value reflects evidence for orientation tuning: the difference between the 

test-trial and train-trials with a similar orientation is smaller than between the test-trial 

and train-trials with different orientations. This procedure was repeated for all trials and 

all time-points. See Supplementary Information for the custom Matlab function used to 

decode orientations using Mahalanobis distance. 

 The decoding values were averaged over all trials, and smoothed over time with a 

Gaussian smoothing kernel (SD = 16 ms) for visualization and time-resolved 

significance testing.  
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Cluster-corrected sign-permutation significance tests were carried out within the 

memory items epoch (0 to 1050 ms in Experiment 1, 0 to 1200 ms in Experiment 2) and 

impulse epochs separately (0 to 500 ms in both experiments), in order to explore the 

significant decoding time-course. Additionally, to assess the overall decodability within 

an epoch, the decoding values were averaged over time (from 100 ms after stimulus 

onset until the end of the epoch) and then submitted to a two-sided permutation test. 

Relationship between behaviour and decoding 

The trial-wise average decoding scores after memory items presentation (100 to 1050 ms 

in Experiment 1, and 100 to 1200 ms in Experiment 2) and impulse presentation (100 

ms to 500 ms) was median split. Non-response trials (to the early probe in Experiment 

2) were excluded from this analysis. The average behavioural accuracies of high and low 

decoding trials were statistically compared using a two-sided permutation test. 

Behavioural modelling 

To further explore the relationship between WM task performance and trial-wise 

decoding, we modelled the behavioural performance as a function the difference in 

degrees between the orientation of the memory item and the probe using the following 

model that was fit to each participant separately (Murray, Nobre, & Stokes, 2011). 

Equation 2:  =  ! +
(#$%&�

%
 × �()*( 

$+

√%
 (- − /�� 

where erfc is the complementary Gaussian error function, λ is the asymptote, β is the 

slope and α is the threshold/bias parameter. The modelling fitting was performed using 

the Palamedes Matlab toolbox (Prins & Kingdom, 2009). The asymptote represents the 

guess rate, where a higher value reflects a higher probability that no information about 

the probed item is maintained in WM, resulting in a higher probability for mistakes even 

when the angular difference between the probe and the memory item is large. The slope 

is interpreted as the memory precision, where a high precision reflects a relatively high 

proportion of correct responses at small degree rotations between the probe and 

memory item. The asymptote and slope parameters were both unconstrained across the 

high and low decoding conditions. A single bias parameter was used, which was included 

(instead of fixing it at 0) because cumulative-likelihood tests (Claessens & Wagemans, 

2008) showed better model fits for all cases (Experiment 1: n = 30, χ2(30) = 135.978, p 

< 0.001; Experiment 2, n = 19, early accuracy: χ2(19) = 215.351, p < 0.001; late accuracy:  

χ2(19) = 33.69, p =0.02). 

The unconstrained model parameters (slope and asymptote) were subsequently 

compared between high and low decoding trials. Since the behavioural modelling was 

carried out as a direct follow up to the average accuracy effects observed in both 

experiments (two-sided tests), we had clear expectations about the directionality of the 

effects. For the positive relationship between decoding and accuracy observed for the 

cued item in Experiment 1 and both tests in Experiment 2, we expected that decoding 

should have a negative relationship with guess-rate (i.e., lower guess-rate for high 
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decoding) and/or a positive relationship with precision (higher precision for higher 

decoding), and vice versa for the negative accuracy effect of the uncued item in 

Experiment 1. Therefore, all tests of model parameter comparisons between high and 

low decoding trials were one-sided. 

Cross-temporal decoding 

We also explored the cross-temporal dynamics of stimulus processing and maintenance 

as a function of item priority in Experiment 2, and cross-generalization between impulse 

and memory presentation epochs in both experiments. The decoding approach was the 

same as described above, except classifiers trained at each time point were tested at every 

other time point, resulting in 2-dimensional cross-temporal decoding matrices (King & 

Dehaene, 2014). 

If the decoding patterns are stationary, it should not matter whether train/test is 

performed using the same time points. In contrast, decoding often appears dynamic: 

training and testing on the same time-points results in higher decoding scores than 

training and testing on different time-points (i.e., minimal cross-temporal generalization). 

We tested for this hallmark feature of dynamic coding using a non-parametric test used 

previously (Myers et al., 2015). The decodability at each cross-temporal time-point tx,y 

was compared to the pair of decodabilities at the corresponding within time-points (tx,x 

and ty,y) with two separate permutation tests. A significant difference in both was taken 

as evidence for dynamic coding. Time-points of significant dynamic coding were 

corrected for multiple comparisons using a two-dimensional cluster-based permutation 

test. 

Significance testing 

To determine statistical significance, we used the non-parametric sign-permutation test 

(Maris & Oostenveld, 2007) (with one exception, see ANOVA below), which does not 

make assumptions about the underlying distribution. Since the null hypotheses of all 

tests corresponded to no effect (i.e. no difference in power lateralization, no difference 

in decodability, etc.), the sign of the data of each participant was randomly flipped with 

a probability of 50% 50,000 times. The resulting distribution was used to derive at the p-

value of the null-hypothesis that the mean effect was equal to 0. All tests were two-sided, 

unless otherwise stated. 

For time-series and frequency data, the above procedure was repeated for each 

time-point and frequency (when applicable). To correct for multiple comparisons over 

time and/or frequencies, a cluster-based permutation test was subsequently used using 

50,000 permutations (5,000 for cross-temporal decoding, due to computer memory 

limitations), with a cluster-forming threshold and cluster significance threshold of p < 

0.05. Tests concerning the average of specific time-windows (which includes decoding-

behaviour relationships) were performed to test unique and independent hypotheses, 

therefore no correction applied. The sample size for all tests in Experiment 1 was n = 

30, n = 19 in Experiment 2, and n = 20 in Experiment 3. 
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The 95 % confidence intervals of the error-bars were determined by bootstrapping 

from the corresponding data 50,000 times.  

The boxplots used in our figures follow the standard conventions. The middle line 

represents the median, the box the first and third quartile, and the whiskers all data within 

1.5 * interquartile range of the lower and upper quartile. Where appropriate, data points 

outside this range are displayed individually (small crosses). 

A repeated measures ANOVA was used to analyse the behavioural data of 

Experiment 3. The normality and equal variances assumptions were tested with the 

Shapiro-Wilk test of normality and Mauchly’s test of sphericity, respectively. Neither test 

provided evidence for assumption violations of the data. 

Data availability 

The data that support the finding of this study are publically available at 

http://datasharedrive.blogspot.co.uk/2017/03/dynamic-hidden-states-

underlying.html. All necessary task/condition information has been provided within a 

self-contained format, as specified in the OECD Principles and Guidelines for Access 

to Research Data from Public Funding (Pilat & Fukasaku, 2007). 

Code availability 

All complete custom Matlab routines used to generate the figures of this paper are 

available at http://datasharedrive.blogspot.co.uk/2017/03/dynamic-hidden-states-

underlying.html 

 

Results 

Experiment 1 

In Experiment 1, 30 human participants performed a visual WM task while EEG was 

recorded. At the beginning of each trial (see Fig. 4.1A), two memory items were 

presented, but a retrospective cue (retro-cue) presented during the delay instructed 

participants which item would actually be probed (Griffin & Nobre, 2003; Landman et 

al., 2003). The other item could be simply forgotten. The retro-cue in this design is 

essential to differentiate WM from basic stimulation history (Harrison & Tong, 2009). 

During a subsequent memory delay, we then presented a high contrast “impulse” 

stimulus. Memory performance for the cued item was tested after the impulse by a 

centrally presented memory probe (Fig. 4.1B). Time-frequency decomposition of 

lateralised activity in posterior sensors (Fig. 4.1C) shows significant lateralization in the 

alpha range (8-12 Hz) after the presentation of the cue (permutation test, n = 30, p < 

0.001, corrected, cluster-forming threshold p < 0.05). This pattern is consistent with a 
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shift in spatial attention (Worden et al., 2000) according to the retro-cue, which confirms 

that the cue manipulation was effective. 

 

 

Figure Figure Figure Figure 4.4.4.4.1. 1. 1. 1. Experiment 1 task structure, behavioural performance and attention-

related alpha band activity.    (A)(A)(A)(A)    Trial schematic. Two memory items were presented 

(randomly oriented grating stimuli), and participants were instructed to memorize 

both orientations. A retro-cue then indicated which item would actually be tested at 

the end of the current trial (100% valid). The impulse stimulus (high contrast, task-

irrelevant visual input) was then presented during the subsequent delay while 

participants should have only the cued item in WM. At the end of the trial, a forced-

choice probe was presented at the centre of the screen. Participants indicated 

whether the probe was rotated clockwise or anti-clockwise relative to the orientation 

of the cued item. (B) (B) (B) (B) Boxplots show WM accuracy as a function of the absolute 

angular difference (in degrees) between the memory item and the probe. Data points 

outside of the 1.5 * interquartile range are shown separately (small crosses). (C)(C)(C)(C)    

Time-frequency representation of the difference between the contra- and ipsilateral 

posterior electrodes relative to the cued hemifield. The highlighted cluster in the 

alpha frequency band (8-12 Hz) indicates significant contralateral desynchronization 

(permutation test, n = 30, cluster-forming threshold p < 0.05, corrected significance 

level p < 0.05). The coloured bars under the x-axis represent the timings of the 

corresponding stimuli illustrated on top. 

Decoding parametric memory items 

To decode the memory items used in this experiment, we developed a parametric variant 

of distance-based discrimination (see Methods, Fig. 4.2A-D). As shown in Fig. 4.2A, this 

capitalises on the parametric structure of the stimulus space (Saproo & Serences, 2010), 
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whilst maintaining the statistical advantages of the Mahalanobis distance metric used in 

previous EEG/MEG decoding studies (Myers et al., 2015; Wolff et al., 2015/Chapter 

3). To summarise briefly here: for a given trial, we compare the activity pattern across 

electrodes to the corresponding activity pattern observed in the remaining trials, 

averaged by orientation-difference to the test trial (at a bin width of 30 degrees). This 

procedure is repeated for all trials and all time-points. If the pattern of activity contains 

information about item orientation, we expect greater pattern dissimilarity (i.e., 

Mahalanobis distance) at larger angular differences. Fig. 4.2B shows distance as a 

function of reference angle and time after the presentation of the left and right item 

separately (upper/lower respectively). Distance values were then converted into a 

decoding accuracy score (Fig. 4.2C) and averaged across both items at each time-point 

(Fig. 4.2D). Item orientation could be decoded from 56 ms until 1026 ms after onset 

(permutation test, n = 30, p < 0.001 (corrected), cluster-forming threshold p < 0.05). 

This is consistent with previous empirical evidence that EEG is sufficiently sensitive to 

detect subtle differences in scalp-level activity patterns associated with different stimulus 

orientation (Wolff et al., 2015/Chapter 3). The current decoding results further validate 

the utility of multivariate pattern analysis for two simultaneously presented orientation 

gratings. 

 

 

 

 

 

4 



Dynamic hidden states underlying WM 
 

70 
 

Figure Figure Figure Figure 4.4.4.4.2. 2. 2. 2. Orientation decoding in EEG and pinging hidden states of WM.    AAAA----DDDD. . . . 

Decoding procedure. (A) (A) (A) (A) The dissimilarity in the neural pattern between a single trial 

and all other trials is computed as a function of orientation difference (binned: 30 

degrees). (B)(B)(B)(B)    Average distance to template of all trials for each time-point during and 

after memory item presentation, plotted separately for the left and the right memory 

item (upper/lower respectively). Distances are mean centred and sign reversed (high 

= small distance/high similarity) for visualization.    (C)(C)(C)(C)    A cosine is convolved with the 

data. (D)(D)(D)(D) The vector mean of the convolved tuning curves (i.e., decoding accuracy) 

over time, averaged over left and right items. The black bar indicates significant 

decoding (permutation test, n = 30, cluster-forming threshold p < 0.05, corrected 

significance level p < 0.05). Error shading is the 95 % C.I. of the mean. (E)(E)(E)(E)    Pinging 

hidden states. Analogy to active sonar: differences in hidden state are inferred from 

differences in the measured response to a well-characterised impulse. (F)(F)(F)(F)    Decoding 

results in the impulse epoch. The blue bar indicates significant decoding of the cued 

item. The purple bar indicates significant difference in decodability between the cued 

and uncued item (permutation test, n = 30, cluster-forming threshold p < 0.05, 

corrected significance level p < 0.05). Error shading is the 95 % C.I. of the mean. The 

boxplots and superimposed circles with error-bars (mean and 95 % C.I. of the mean) 

represent average decoding from 100 to 500 ms after impulse onset. Data points 

outside of the 1.5 * interquartile range are shown separately (small crosses). 

Significant average decoding and significant difference in average decodability 

between the cued and uncued item are marked by asterisks (permutation test, n = 

30, p < 0.05). 
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Pinging hidden states 

According to the dynamic coding framework, we hypothesised that the input/output 

mapping of neural circuits maintaining information in WM should systematically reflect 

the memory content (Stokes, 2015). We tested this using an impulse stimulus to ‘ping’ 

potentially hidden neural states (Fig. 4.2E). As predicted, the impulse-specific response 

clearly differentiated the content of WM (Fig. 4.2F), even though the driving input 

(‘ping’) was held constant on each trial. The decodability of the cued item showed a 

significant cluster from 148 to 398 ms after impulse stimulus onset (permutation test, n 

= 30, p = 0.002, corrected, cluster-forming threshold p < 0.05). Average decodability 

from 100 to 500 ms was also significant (p = 0.004). Cued item decoding was also higher 

than task-irrelevant (uncued) item decoding (cluster: 216 to 386 ms, p = 0.009, corrected; 

average: p = 0.028). Indeed, the uncued item showed no evidence for decoding (no 

corrected clusters; average: p = 0.687), suggesting that content can be rapidly purged 

from WM when instructed, leaving effectively no trace in the neural state.  

To test whether the impulse response reflects a literal ‘reactivation’ of item-specific 

activity observed during encoding, we also examined whether a classifier trained on the 

activity elicited by the memory stimuli during encoding could be used to decode the 

memory item during the impulse epoch (and vice versa). However, we found no 

evidence for significant cross-generalization between discriminative activity patterns 

during encoding and discriminative activity driven by the impulse (corrected clusters, p 

> 0.347). We propose that the impulse stimulus simply acts as a functional ping to 

recover hidden states, rather than a literal ‘reactivation’ of a latent representation (Wolff 

et al., 2015/Chapter 3). 

Trial-wise variability in decoding the impulse response also predicted variability in 

WM performance. Higher decoding trials of the cued item were accompanied by higher 

performance than low decoding trials (permutation test, n = 30, p = 0.043; Fig. 4.3A, 

left). There was also a complementary cost for decoding the uncued item (i.e., a high 

decoding score for the uncued item led to a decrease in accuracy on the cued item; p = 

0.002; Fig. 4.3B, left), suggesting that participants might have failed to discard the uncued 

item (or simply did not use the cue properly) on some trials, contributing to error in 

performance. Finally, the difference between the accuracy effect of the cued and the 

uncued item was also significant (permutation test, n = 30, p < 0.001).  

In principle, the relationship between trial-wise decoding and WM performance 

may rest on an increase in guess-rate (i.e., due to forgetting or failure to encode), or a 

reduction in precision, or both (Bays & Husain, 2008; Zhang & Luck, 2008). To separate 

these possible contributions, we modelled the behavioural profile over degrees of 

angular rotation between the memory item and the probe stimulus (Methods; Murray, 

Nobre, & Stokes, 2011; Prins & Kingdom, 2009). We found that the link to behaviour 

is most likely driven by a decrease in precision (the slope parameter of the model) for 

weakly encoded hidden states of WM (permutation test, n = 30, p = 0.023, one-tailed; 

Fig. 4.3A, right), while no evidence for an effect in guess rate (the asymptote parameter) 

was found (p = 0.867, one-tailed). Modelling the observed uncued item accuracy effect 
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was inconclusive (Fig. 4.3B, right), with no evidence for either a precision or guess rate 

effect (p = 0.443 and p = 0.184 respectively, one-tailed). Finally, we found no evidence 

that trial-wise item decoding during the initial presentation of the memory stimuli relates 

to memory performance, further suggesting that the relationship between accuracy and 

decoding triggered by the impulse is not due to a failure to encode the memory item (p 

> 0.3). 

Figure Figure Figure Figure 4.4.4.4.3. 3. 3. 3. Relationship between 

item-specific impulse decoding 

and WM accuracy.    (A)(A)(A)(A)    Difference 

in overall WM task performance 

between high and low cued item 

decoding trials (left). Proportion 

clockwise response for high and 

low decoding trials as a function 

of the angular difference between 

the memory item and the probe 

(right). Inset shows the difference 

in the slope parameter (a 

measure of memory precision) 

between high and low decoding 

trials. Data points outside of the 

1.5 * interquartile range are 

shown separately in the boxplots 

(small crosses). Superimposed 

circles and error-bars are the 

mean and 95% C. I. of the mean. 

(B)(B)(B)(B) The same convention as in a. 

but for the decoding of the 

uncued item. Significant differences in accuracy/precision between high and low 

decoding trials are highlighted by asterisks (permutation test, n = 30, p < 0.05).  

Experiment 2 

Recently, it has been proposed that information in WM can be represented in 

qualitatively different states (Larocque et al., 2014; Olivers et al., 2011; Souza & 

Oberauer, 2016), with attended items encoded in activity states measurable with standard 

recordings of delay activity, whereas activity-silent states could underlie the 

representation of currently unattended information in WM. In Experiment 2 (n = 19) 

we test whether unattended but nevertheless remembered information in WM can still 

be decoded from the impulse response. Again, two memory items were presented at the 

start of the trial, however both were ultimately relevant as they would both be probed. 
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Priority was manipulated by blocking the order in which items would be probed (Fig. 

4.4A), and instructing participants accordingly. Because there was no other clue as to 

which item was being probed first or second, non-random responses already indicate 

that participants used this blocked information (Fig. 4.4B). This was further supported 

by lateralised changes in alpha power (Fig. 4.4C). During and shortly after the initial 

presentation of the memory stimuli, there was a relative decrease in power at sensors 

contralateral to the initially prioritised item, consistent with selective allocation of 

attention (permutation test, n = 19, p = 0.023, corrected, cluster-forming threshold p < 

0.05). Moreover, this pattern reversed after the response to the first item (p = 0.009, 

corrected), consistent with the assumption that participants then shift the originally de-

prioritised item into the focus of attention in WM in preparation for the second probe 

(Ede, Niklaus, & Nobre, 2016). 

 

Figure Figure Figure Figure 4.4.4.4.4. 4. 4. 4. Experiment 2 task structure, behavioural performance and attention-

related alpha band activity.    (A)(A)(A)(A)    Trial schematic. Two memory items were presented. 

Participants were instructed to maintain both items and were told at the start of each 

block in which order the items would be tested. The first impulse was presented 

within the first memory delay (maintain both items, but attend the prioritised item), 

after which the prioritised item was probed. The second impulse was presented 

during the subsequent memory delay (maintain and attend only the now-prioritised 

item), after which the remaining item was probed. (B)(B)(B)(B)    Boxplots show the    accuracy of 

the early and late tested item as a function of the absolute angular difference (in 

degrees) between the memory item and the probe. Data points outside of the 1.5 * 

interquartile range are shown separately in the boxplots (small crosses). (C)(C)(C)(C)    Time-

frequency representation of the difference between the contra- and ipsilateral 

posterior electrodes relative to the presentation side of the early tested memory 

items. Highlighted areas indicate significant difference (permutation test, n = 19, 

cluster-forming threshold p < 0.05, corrected significance level p < 0.05). 
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Decoding during stimulus presentation 

We first analysed decoding during the initial processing of the memory stimuli. The 

results are plotted separately as a function of test-time (early or late in the trial) as this 

could be meaningfully classified from the beginning of the trial (Fig. 4.5A). As expected, 

decoding the prioritised item (cluster: 74 to 1,200 ms, p < 0.001, corrected, cluster-

forming threshold p < 0.05; average: p < 0.001), relative to the de-prioritised item 

(cluster: 82 to 542 ms, corrected, p < 0.001, corrected; average: p < 0.001) was more 

robust (average: p = 0.013). While decoding of the unattended item drops to chance 

relatively quickly after item presentation, the attended item shows significant decoding 

until the end of the epoch, replicating previous evidence showing that maintenance of 

only attended WM items is represented in the recorded brain activity patterns (LaRocque 

et al., 2012; Lewis-Peacock et al., 2011; Sprague et al., 2016). 

The difference between attended and unattended item-maintenance in WM was 

even more apparent when comparing their cross-temporal decoding matrices. Minimal 

cross-temporal generalization during and shortly after memory item presentation 

suggested highly dynamic item encoding: orientation discriminative patterns change over 

time. This was supported by significant dynamic coding clusters during item encoding 

for both the early and late tested item, where off-diagonal time-points show significantly 

lower decodability than both corresponding on-diagonal time-points (permutation test, 

n = 19, cluster-defining threshold p < 0.05, corrected significance level p < 0.05; see 

Methods; Fig. 4.5B, left and middle). However, the attended item clearly showed a more 

time-invariant decoding pattern at the end of the epoch than the unattended item, 

apparent by both significantly higher decodability on same time-point as well as cross 

time-point decoding (n = 19, p = 0.023, corrected, cluster-forming threshold p < 0.05; 

Fig. 4.5B right). This further suggests that while the attended item also has a 

corresponding WM maintenance signature in stable activity patterns, the unattended 

item does not.  
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Figure Figure Figure Figure 4.4.4.4.5. 5. 5. 5. Priority-dependent encoding and maintenance in WM. (A)(A)(A)(A)    Decodability of 

the item that is tested early (blue) and the item that is tested late (red) during 

memory item presentation. Blue and red bars indicate significant decoding clusters 

for the early- and late-tested item, respectively (permutation test, n = 19, cluster-

defining threshold p < 0.05, corrected significance level p < 0.05). Error shading is 

95% C.I. of the mean. Boxplots and superimposed circles with error bars (mean and 

95 % C.I. of the mean) represent average decodability from 100 ms after stimulus 

onset until the end of the epoch. Significant average decoding and average difference 

between the decodability of the early and late item are marked by an asterisk  

(permutation test, n = 19, p < 0.05). (B)(B)(B)(B)    Cross-temporal decoding matrices of the early 

(left) and late-tested (middle) item derived from training and testing on all time-point 

combinations, and the difference between the decoding of the early and late tested 

item (right). The grey outline indicates time-points of significantly lower decoding 

relative to both equivalent time-points along the diagonal, which is taken as evidence 

for dynamic coding (permutation test, n = 19, cluster-defining threshold p < 0.05, 

corrected significance level p < 0.05). The black outline (right) indicates significantly 

higher decodability of the early compared to the late tested item (permutation test, 

n = 19, cluster-defining threshold p < 0.05, corrected significance level p < 0.05). 

Decoding of the impulse responses 

Critically, we found that both the attended (clusters: 80 to 308 ms, p = 0.004, and 332 

ms to 434 ms, p = 0.031, corrected; average: p < 0.001) and unattended items (cluster: 

172 to 306 ms, p = 0.011, corrected; average: p = 0.045) were decodable in the first 

impulse response (Fig. 4.6A). This contrasts with the clear cueing differences observed 

in Experiment 1, and suggests multiple items can be encoded in hidden states and 

revealed by the impulse, even if only one item is in the focus of attention. It is worth 

noting, however, that the decodability of the attended item was significantly higher than 

that of the unattended item (average: p = 0.031), consistent with the behavioural 

evidence for relatively better memory for the initially prioritised item. 

We found no evidence for a relationship between trial-wise differences in alpha 

lateralization and WM item decodability of the impulse response for either the attended 

or unattended item (Suppl. fig. 4.1). This further suggests that the item-specific impulse 

response does not even vary with trial-wise differences in the focus of attention. 
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We also found that the remaining relevant and initially unattended item could also 

be decoded in the second impulse response (cluster: 196 to 326 ms, p = 0.016, corrected; 

average: p = 0.012), while decoding the initially prioritised item failed to reach 

significance in this epoch (clusters: p > 0.109, corrected; average: p = 0.112; Fig 6B). The 

now-deprioritised item was presumably cleared from the hidden state because it was no 

longer relevant, similar to forgetting observed after the retro-cue from Experiment 1.  

 

 

Figure Figure Figure Figure 4.4.4.4.6.6.6.6. 

Attended and 

unattended WM 

items in early and 

late epochs. (A)(A)(A)(A) 

Item decoding of 

the early (blue) 

and late tested 

item (red) during 

the first impulse 

epoch. Coloured 

bars on top indicate significant decoding clusters of the corresponding items 

(permutation test, n = 19, cluster-defining threshold p < 0.05, corrected significance 

level p < 0.05). Error shading is 95% C.I. of the mean. Boxplots and superimposed 

circles with error bars (mean and 95% C.I. of the mean) represent average 

decodability from 100 ms after stimulus onset until the end of the epoch. Significant 

average decoding and average difference between the decodability of the early and 

late item are marked by an asterisk (permutation test, n = 19, p < 0.05).  (B)(B)(B)(B) Item 

decoding during the second impulse epoch, same conventions as AAAA. 

Again, we also tested for cross-generalization between the decodable patterns of 

the memory items epoch (Fig. 4.5A) and the impulse-epochs (Fig. 4.6A, B). However, 

like in Experiment 1, we found no evidence that the impulse literally ‘reactivates’ activity 

patterns associated with initial encoding for either item (all corrected clusters: p > 0.32). 

There was also a positive relationship between trial-wise decoding of the attended 

items at the first and at the second impulse with WM performance (early: p = 0.038, Fig. 

4.7A; late: p = 0.04; Fig. 4.7B), replicating and extending the findings of Experiment 1. 

As in Experiment 1, we modelled the behavioural profile to test if the positive 

relationship between decoding and task performance is due to an increase in precision 

and/or a decrease in guess-rate.  While the modelling results were inconclusive for the 

early-tested item (precision: p = 0.399, one-tailed; guess-rate: p = 0.329, one-tailed; Fig. 

4.7A), there was evidence for an effect in precision of working memory for the late item 
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(precision: p = 0.006, one-tailed; guess-rate: p = 0.942, one-tailed; Fig. 4.7A), replicating 

the precision effect of Experiment 1. Note that there was again no relationship between 

accuracy and item decoding during the encoding phase (p > 0.8). 

 

Figure Figure Figure Figure 4.74.74.74.7. . . . Relationship between 

decoding of relevant item at 

corresponding and WM accuracy. 

(A)(A)(A)(A) Boxplot and superimposed 

circles and error-bars represent 

the difference in overall WM task 

performance between high and 

low early-tested item decoding 

trials during the first impulse 

(left). Proportion of clockwise 

responses for high and low 

decoding trials as a function of 

the angular difference between 

the memory item and the probe 

(right). Inset shows the boxplot 

and error-bar of the difference in 

the slope parameter (a measure 

of memory precision) between 

high and low decoding trials. (B)(B)(B)(B) 

The same convention as in AAAA but 

for the decoding of the late-

tested item during the late 

impulse. Significant differences in 

accuracy/precision between high and low decoding trials are highlighted by asterisks 

(permutation test, n = 19, p < 0.05, two-sided and one-sided for accuracy and 

precision tests, respectively).  

Experiment 3 

We developed the impulse perturbation approach to reveal otherwise hidden neural 

states, without necessarily transforming the mnemonic representation (Stokes, 2015; 

Wolff et al., 2015/Chapter 3). This contrasts with other studies using retro-cues 

(Larocque et al., 2014; Lewis-Peacock et al., 2011; Sprague et al., 2016) or TMS (Rose et 

al., 2016) to ‘reactivate’ a latent item in working memory. However, to test whether our 

impulse stimulus actually did result in a behaviourally relevant transformation of the 

memory item (i.e., from a functionally latent to active state), we conducted an additional 

behavioural experiment (n = 20). Adapting the design of Experiment 1, we now varied 
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the presentation of the stimulus-onset asynchrony (SOA) between impulse and probe 

onset in Experiment 3 (SOA from 0 to 500ms; Fig. 4.8A). If the increase in impulse-

specific decodability observed in both EEG experiments reflects a functional 

“reactivation” of an otherwise latent memory item, there should be a corresponding 

benefit to behaviour. 

A repeated measures ANOVA provided no evidence for an effect of SOA (F(4, 

76) = 1.184, p = 0.325). Uncorrected paired comparisons between the no-impulse 

condition (SOA 0 ms) and all other SOAs provided no evidence for an impulse-specific 

effect on accuracy for any SOA either (permutation test, n = 20, all p > 0.12; Fig. 4.8B). 

This suggests that our impulse stimulus is effective for ‘pinging’ activity silent neural 

states, without resulting in any behaviourally relevant transformation of the mnemonic 

representation. 

 

Figure Figure Figure Figure 4.84.84.84.8.... Task schematic and results of behavioural experiment. (A)(A)(A)(A)    Two memory 

items were presented, and participants were instructed to memorize both. A retro-

cue indicated which item would be tested at the end of the current trial. The impulse 

stimulus was presented at varying delays (or not at all) and stayed on screen until the 

probe was presented. Participants indicated whether the probe was rotated 

clockwise or anti-clockwise relative to the orientation of the cued item. (B)(B)(B)(B)    

Behavioural performance as a function of impulse-probe SOA. None of the 

uncorrected paired comparisons between the no-impulse condition (SOA 0 ms) and 

the other SOA conditions reached significance (permutation test, n = 20). Circles and 

error bars superimposed on the boxplots represent mean and 95% C.I. of the mean. 

Data points outside the 1.5 * interquartile range are marked as crosses in the 

boxplots. 

Discussion 

Recent theoretical models of WM predict a key role for activity-silent neural states in 

maintaining item-specific information (Lundqvist et al., 2016; Mongillo et al., 2008; 

Stokes, 2015). This raises a particular challenge for contemporary neuroscience that is 
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dominated by measurement and analysis of neural activation states. Here, we address 

this challenge using a perturbation approach to reveal hidden neural states that code the 

contents of WM. We show that the response to an impulse stimulus faithfully reflects 

item-specific information in WM. We further demonstrate that the impulse response 

reflects both attended and unattended items in WM, yet recently forgotten information 

leaves no detectable trace in the hidden state. Behavioural modelling further suggests 

that the hidden-state coding determines the quality of information in WM. 

Previous evidence from non-human primates showed that a neutral visual stimulus 

presented during the WM delay period can elicit distinct patterns of neural activity that 

depend on recent visual input (Stokes et al., 2013). Although the previous work could 

not deconfound previous sensory stimulation and WM proper, the observed effect 

helped motivate a dynamic coding model for WM (Stokes, 2015). According to this 

framework, distinct memoranda are associated with distinct changes in neural response 

profile, which would be readable to downstream systems from the state-dependent 

response to a retrieval probe (Mongillo et al., 2008; Stokes et al., 2013). Crucially, WM 

depends on the maintenance of the item-specific neural response profile, rather than an 

explicit representation of an item in a persistent activity state. We now provide direct 

evidence for a WM-dependent impulse response decoupled from previous stimulation 

history, and further demonstrate that this WM state is highly flexible and coupled to 

behavioural performance. The hidden state for a specific item can be rapidly cleared if it 

is no longer relevant to the task, providing a striking neural correlate of directed 

forgetting in WM.  

Recent retro-cuing evidence suggests that prioritising one WM item relative to 

other task-relevant items improves neural decoding of the cued item, whereas decoding 

of unattended items drops to chance levels even though the unattended information is 

still ultimately task relevant and retrievable at the end of the trial (Lewis-Peacock et al., 

2011). Item-specific delay activity therefore seems to reflect the focus of attention, rather 

than WM per se (Larocque et al., 2014). The impulse response reported here clearly 

differs from the typical profile observed for decoding delay activity patterns. In 

Experiment 2, both attended and unattended items could be decoded from the impulse 

response of the hidden state as long as they are both still ultimately required for task 

performance. This suggests that if the information is successfully maintained in WM, 

there is a corresponding trace in the hidden state, irrespective of attentional priority. 

These results highlight the flexibility of WM, independently of switching attention 

between specific items in WM. Activity states appear to track the focus of attention 

(Larocque et al., 2014; Lewis-Peacock et al., 2011; Sprague et al., 2016), whereas hidden 

states, as revealed by the impulse response, more closely track the actual contents of 

WM.  

Exactly how the proposed hidden state can be used for WM-guided behaviour 

remains an important open question. Computationally, supervised learning could 

determine the mapping between the memory-dependent probe response and the correct 

behavioural response (Mante et al., 2013), however such a learning strategy seems 
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implausible for real-world behaviour. Trial and error learning of arbitrary patterns does 

not seem a realistic model for WM, at least for humans. Instead, the inherent dynamics 

could establish a history-dependent match filter (Sugase-Miyamoto et al., 2008), which 

would be capable of transforming probe input to a common decision signal (i.e., 

match/no-match, or in our case clockwise/counter-clockwise). In Myers et al. (Myers et 

al., 2015), such a mechanism was shown to generate two distinct decision-related signals 

in an orientation detection task: a signed (i.e., directional) and unsigned difference signal, 

even though the signed difference was actually irrelevant to behaviour in that task. A 

similar process could underpin WM encoding in hidden states. The hidden state could 

establish a flexible, task dependent circuit for WM-dependent decision-making 

(Martínez-García, Rolls, Deco, & Romo, 2011). When the probe stimulus is presented, 

the hidden state transforms the input to decision-relevant output: e.g., direction of 

angular rotation. However, because the impulse stimulus used in these experiments does 

not contain decision-relevant features, the impulse response reflects an input-output 

transformation of the arbitrary input.  

It may be noted that although the response to an arbitrary input is sufficient to 

‘read-out’ the hidden state, it is unlikely to constitute an explicit ‘reactivation’ of the 

memory representation. In contrast, retro-cueing can convert an unattended item to a 

prioritised state in preparation for the recall (Griffin & Nobre, 2003). Similarly, a recent 

transcranial magnetic stimulation study suggests that stimulation of the visual cortex can 

also render an item active from its latent state (Rose et al., 2016). We find no evidence 

that our impulse stimulus reactivates the same pattern associated with stimulus 

processing. Moreover, a further behavioural experiment designed to test the possible 

behavioural consequences of our impulse stimulus provides no evidence that it interacts 

with the mnemonic representation. Rather, we argue that the impulse response simply 

‘echoes’ the representational structure of the hidden state, but does not drive an explicit 

transformation of latent memories to a prioritized state. 

It has long been assumed that WM maintenance depends on persistent neural 

activity (Curtis & D’Esposito, 2003). Instead, we propose that activity-silent neural states 

are sufficient to bridge memory delays. Activity-dependent transformations in hidden 

states determine the temporary coding properties of memory networks: i.e., dynamic 

coding (Stokes, 2015; Stokes et al., 2013). WM decisions are made by the state-dependent 

response to subsequent input. However, WM is also classically associated with active 

manipulation of content in short-term memory (Baddeley, 2003). We argue that such 

transformations are activity dependent, but the results of the transformation can be 

maintained in short term memory via latent network states. This alternative account does 

not ignore previous evidence for decodable activity during mnemonic delays, but rather 

attributes such evidence to focused attention (Rose et al., 2016), periodic (Mongillo et 

al., 2008) or stochastic (Lundqvist et al., 2016) updating, and/or response preparation 

(Barak et al., 2010). Interestingly, our current results also show that cue-directed 

forgetting can rapidly wipe the mnemonic representation from the hidden state. Rapid 

construction and dissolution of hidden states places important constraints on the basic 

mechanisms of hidden-state coding. 



Dynamic hidden states underlying WM 

81 
 

Although the present study addressed a specific model of WM, it is worth noting 

that the general impulse response approach for inferring otherwise silent neural states 

could also be particularly fruitful for exploring other tonic cognitive states, such as task 

set, attention and expectation. It is becoming increasingly apparent that we need to look 

beyond simple measures of neural activity, and consider a richer diversity of neural states 

that underpin context-dependent behaviour. Here we focus on perturbation to 

illuminate hidden states, but future work will also profit from more direct measures of 

functionally relevant hidden states (e.g., synaptic efficacy, membrane potentials, extra-

cellular transmitter concentrations). This will require more sophisticated measurements 

in awake behaving animals, coupled with non-invasive approaches like described here 

for human studies. 
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Abstract 

It is unclear to what extent sensory processing areas are involved in the maintenance of 

sensory information in working memory (WM). Previous studies have thus far relied on 

finding neural activity in the corresponding sensory cortices, neglecting potential activity-

silent mechanisms such as connectivity-dependent encoding. It has recently been found 

that visual stimulation during visual WM maintenance reveals WM-dependent changes 

through a bottom-up neural response. Here, we test whether this impulse response is 

uniquely visual and sensory-specific. Human participants (both sexes) completed visual 

and auditory WM tasks while electroencephalography was recorded. During the 

maintenance period, the WM network was perturbed serially with fixed and task-neutral 

auditory and visual stimuli. We show that a neutral auditory impulse-stimulus presented 

during the maintenance of a pure tone resulted in a WM-dependent neural response, 

providing evidence for the auditory counterpart to the visual WM findings reported 

previously. Interestingly, visual stimulation also resulted in an auditory WM-dependent 

impulse response, implicating the visual cortex in the maintenance of auditory 

information, either directly, or indirectly as a pathway to the neural auditory WM 

representations elsewhere. In contrast, during visual WM maintenance only the impulse 

response to visual stimulation was content-specific, suggesting that visual information is 

maintained in a sensory-specific neural network, separated from auditory processing 

areas.  
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Introduction 

Working memory (WM) is necessary to maintain information without sensory input, 

which is vital to adaptive behaviour. In spite of its important role, it is not yet fully clear 

how WM content is represented in the brain, or whether sensory information is 

maintained within a sensory-specific neural network. Previous research has relied on 

testing whether sensory cortices exhibit content-specific neural activity during 

maintenance. While this has indeed been shown for visual memories in occipital areas 

(e.g., Harrison & Tong, 2009) and, more recently, for auditory memories in the auditory 

cortex (Huang et al., 2016; Kumar et al., 2016; Uluç et al., 2018), WM-specific activity in 

the sensory cortex is not always present (Bettencourt & Xu, 2016), fuelling an ongoing 

debate over whether sensory cortices are necessary for WM maintenance (Scimeca et al., 

2018; Xu, 2017). However, the neural WM network may not be solely based on 

measurable neural activity, and it has been proposed that information in WM may be 

maintained in an “activity-silent” network (Stokes, 2015) – for example, through changes 

in short-term connectivity (Mongillo et al., 2008). Potentially silent WM states should 

also be taken into account to better investigate the sensory-specificity account of WM.  

Silent network theories predict that its neural “impulse” response to external 

stimulation can be used to infer its  current state (Buonomano & Maass, 2009; Stokes, 

2015). This has been shown in visual WM experiments, in which the evoked neural 

response from a fixed, neutral and task-irrelevant visual stimulus presented during the 

maintenance period of a visual WM task contained information about the contents of 

visual WM (Wolff et al., 2015/Chapter 3; Wolff, Jochim, Akyürek, & Stokes, 

2017/Chapter 4). This not only suggests that otherwise hidden processes can be 

illuminated, but also implicates the involvement of the visual cortex in the maintenance 

of visual information, even when no ongoing activity can be detected. It has been 

suggested that this WM-dependent response profile might be not merely a by-product 

of connectivity-dependent WM, but a fundamental mechanism that affords efficient and 

automatic readout of WM content through external stimulation (Myers et al., 2015).  

It remains an open question, however, whether information from other modalities 

in WM is similarly organized. If auditory WM depends on content-specific connectivity 

changes that include the sensory cortex, we would expect a network-specific neural 

response to external auditory stimulation. Furthermore, it may be hypothesized that 

sensory information need not necessarily be maintained in a network that is detached 

from other sensory processing areas. Direct connectivity (Eckert et al., 2008) and 

interplay (Iurilli et al., 2012; Martuzzi et al., 2007) between the auditory and visual 

cortices, or areas where information from different modalities converges, such as the 

parietal and pre-frontal cortices (Driver & Spence, 1998; Stokes et al., 2013), raise the 

possibility that WM could exploit these connections even during maintenance of 

unimodal information. Content-specific impulse responses might be observed not only 

during sensory-specific but also sensory non-specific stimulation.  
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In the present study, we tested whether WM-dependent impulse responses can be 

observed in visual and auditory WM, and whether that response is sensory specific. We 

measured electroencephalography (EEG) while participants performed visual and 

auditory WM tasks. We show that the evoked neural response of an auditory impulse 

stimulus reflects relevant auditory information maintained in WM. Visual perturbation 

also resulted in an auditory WM-dependent neural response, implicating both the 

auditory and visual cortices in auditory WM. By contrast, visual WM content could only 

be decoded after visual, but not auditory perturbation, suggesting that visual information 

is maintained in a sensory-specific visual WM network with no evidence for a WM-

related interplay with the auditory cortex. 

Methods 

Participants 

Thirty healthy adults (12 female, mean age 21 years, range 18-31 years) were included in 

the main analyses of the auditory WM experiment and 28 healthy adults (11 female, mean 

age 21 years, range 19-31 years) of the visual WM experiment. Three additional 

participants in the auditory WM experiment and 8 additional participants in the visual 

WM experiment were excluded during pre-processing due to excessive eye movements 

(more than 30% of impulse epochs contaminated). The exclusion criterion and resulting 

minimum number of trials for the multivariate pattern analysis were similar to our 

previous study (Wolff et al., 2017). Participants received either course credits or 

monetary compensation (8€ an hour) for participation and gave written informed 

consent. Both experiments were approved by the Departmental Ethical Committee of 

the University of Groningen (approval number: 16109-S-NE).  

Apparatus and Stimuli 

Stimuli were controlled by Psychtoolbox, a freely available toolbox for Matlab. Visual 

stimuli were generated with Psychtoolbox and presented on a 17-inch (43.18 cm) CRT 

screen running at 100 Hz refresh rate and a resolution of 1280 by 1024 pixels. Auditory 

stimuli were generated with the freely available software Audacity and were presented 

with stereo Logitech computer speakers. The intensity of all tones was adjusted to 70 dB 

SPL at a fixed distance of 60 cm between speakers and participants in both experiments. 

All tones had 10 ms ramp up and ramp down time. Responses were collected with a 

custom two-button response box, connected via a USB interface. 

The memory items used in the auditory WM experiment were 8 pure tones, ranging 

from 270 Hz to 3055 Hz in steps of half an octave. The probes in the auditory 

experiment were 16 pure tones that were one-third of an octave higher or lower than the 

corresponding auditory memory items.  

The memory items used in the visual WM experiment were 8 sine-wave gratings 

with orientations of 11.25° to 168.75° in steps of 22.5°. The visual probes were 16 sine-
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wave gratings that were rotated 20° clockwise or counter-clockwise relative to the 

corresponding visual memory items. All gratings were presented at 20% contrast, with a 

diameter of 6.5° (at 60 cm distance) and a spatial frequency of 1 cycle per degree. The 

phase of each grating was randomized within and across trials. 

The remaining stimuli were the same in both experiments. The retro-cue was a 

number (“1” or “2”) that subtended 0.7°. The visual impulse stimulus was a white circle 

with a diameter of 12°. The auditory impulse was a complex tone consisting of the 

combination of all pure tones used as memory items in the auditory task. A grey 

background (RGB = 128, 128, 128) and a black fixation dot with a white outline (0.25°) 

were maintained throughout the trials. All visual stimuli were presented in the centre of 

the screen. 

Procedure 

The trial structure was the same in both experiments, as shown in Figure 5.1 (panels A 

and C). In both cases, participants completed a retro-cue WM task. Only the memory 

items and probes differed between experiments. Memory items and probes were pure 

tones in the auditory WM task and sine-wave gratings in the visual WM task. Each trial 

began with the presentation of a fixation dot, which stayed on the screen throughout the 

trial. After 1,000 ms the first memory item was presented for 200 ms. After a 700 ms 

delay the second memory item in the same modality as the first item was presented for 

200 ms. Each memory item was selected randomly without replacement from a uniform 

distribution of 8 different tonal frequencies or grating orientations (see above) for the 

auditory and visual experiment, respectively. After another delay of 700 ms, the retro-

cue was presented for 200 ms, indicating to participants whether the first or second 

memory item would be tested at the end of the trial. After a delay of 1,000 ms the impulse 

stimuli (the visual circle and the complex tone) were presented serially for 100 ms each 

with a delay of 900 ms in-between.  

The order of the impulses was fixed for each participant but counter-balanced 

between participants. Impulse order was fixed within participants for two reasons: First, 

it removed the effect of surprise by making the order of events within trials perfectly 

consistent and predictable (Wessel & Aron, 2017), ensuring minimal intrusion by the 

impulse stimuli during the maintenance period. Second, random impulse order might 

have resulted in qualitatively different neural responses of each impulse, depending on 

when it was presented, due to different trial histories and elapsed maintenance duration 

at the time of impulse onset (Buonomano & Maass, 2009). This would have necessitated 

splitting the neural data by impulse order for the decoding analyses, resulting in reduced 

power.  

The probe stimulus followed 900 ms after the second impulse offset and was 

presented for 200 ms. In the auditory WM experiment the probe was a pure tone and 

the participant’s task was to indicate via button press on the response box whether the 

probe’s frequency was lower (left button) or higher (right button) than the cued memory 

item. In the visual task, the probe was another visual grating, and the participants 
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indicated whether it was rotated counter-clockwise (left button) or clockwise (right 

button) relative to the cued memory item. The direction of the tone or tilt was selected 

randomly without replacement from a uniform distribution. After each response, a 

smiley face was shown for 200 ms, which indicated whether the response was correct or 

incorrect. The next trial began automatically after a randomized, variable delay of 700-

1,000 ms after response input. Each experiment consisted of 768 trials in total and lasted 

approximately 2 hours. 

 

Figure Figure Figure Figure 5.5.5.5.1.1.1.1. Task structure and behavioural performance. (A)(A)(A)(A) Trial schematic of 

auditory task. Two randomly selected pure tones (270 Hz to 3055 Hz) were serially 

presented and a retro-cue indicated which of those tones would be tested at the end 

of the trial. In the subsequent delay, two irrelevant impulse stimuli (a complex tone 

and a white circle) were serially presented. At the end of each trial another pure tone 

was presented (the probe), and participants were instructed to indicate whether the 

frequency of the previously cued tone was higher or lower than the probe’s 

frequency. (B)(B)(B)(B) The boxplot shows auditory task accuracy. Centre line indicates the 

median; box outlines show 25th and 75th percentiles, and whiskers indicate 1.5x the 

interquartile range. The superimposed circle and error bars indicate the mean and its 

95% C.I., respectively. (C)(C)(C)(C) Trial schematic of visual task. The trial structure was the 

same as in the auditory task. Instead of pure tones, memory items were randomly 

orientated gratings. The probe was another orientation grating, and participants 

were instructed to indicate whether the cued item’s orientation was rotated 

clockwise or counter-clockwise relative to the probe’s orientation. (D)(D)(D)(D) Visual task 

performance. 
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EEG acquisition and pre-processing 

The EEG signal was acquired from 62 Ag/AgCls sintered electrodes laid out according 

to the extended international 10-20 system. An analogue-to-digital TMSI Refa 8-64/72 

amplifier and Brainvision recorder software were used to record the data at 1000 Hz 

using an online average reference. An electrode placed just above the sternum was used 

as the ground. Bipolar electrooculography (EOG) was recorded by electrodes placed 

above and below the right eye, and to the left and right of the left and right eye, 

respectively. The impedances of all electrodes were kept below 10 kΩ.  

Offline the data was down-sampled to 500 Hz and bandpass filtered (0.1 Hz high-

pass and 40 Hz low-pass) using EEGLAB (Delorme & Makeig, 2004). The data was 

epoched relative to the onsets of the memory items (-150 ms to 900 ms) and to the 

onsets of the auditory and visual impulse stimuli (-150 to 500 ms). The signal’s variance 

across channels and trials was visually inspected using a visualization tool provided by 

the Matlab extension Fieldtrip (Oostenveld et al., 2010), and especially noisy channels 

were removed and replaced through spherical interpolation. This led to the interpolation 

of 1 channel in 3 participants and 2 channels in 1 participant in the auditory WM task, 

and 1 channel in 5 participants and 5 channels in 1 participant in the visual WM task. 

Noisy epochs were removed from all subsequent electrophysiological analyses. Epochs 

containing any artefacts related to eye movements were identified by visually inspecting 

the EOG signals and also removed from analyses. The following percentage of trials 

were removed for each epoch in the auditory WM experiment: item 1 epoch (M = 

13.39%, SD = 6.08%), item 2 epoch (M = 9.28%, SD = 4.42%), auditory impulse epoch 

(M = 11.53%, SD = 7.03%), visual impulse epoch (M = 9.81%, SD = 5.44%). The 

following percentage of trials were removed for each epoch in the visual WM 

experiment: item 1 epoch (M = 19.81%, SD = 5.91%), item 2 epoch (M = 20.69%, SD 

= 5.88%), auditory impulse epoch (M = 18.51%, SD = 5.73%), visual impulse epoch (M 

= 19.33%, SD = 4.94%).  

Multivariate pattern analysis of neural dynamics 

We wanted to test if the electrophysiological activity evoked by the memory-stimuli and 

impulse-stimuli contained item-specific information. Since event-related potentials are 

highly dynamic, we used an approach that is sensitive to such changing neural activity 

within pre-defined time-windows, by pooling relative voltage fluctuations over space 

(i.e., electrodes) and time. This approach has two key benefits: First, pooling information 

over time (in addition to space) multivariately can boost decoding accuracy 

(Grootswagers, Wardle, & Carlson, 2017; Nemrodov, Niemeier, Patel, & Nestor, 2018). 

Secondly, by removing the mean-activity level within each time-window, the voltage 

fluctuations are normalized. This is similar to taking a neutral pre-stimulus baseline 

common in ERP analysis. Notably, this also removes stable activity traces that do not 

change within the chosen time-window, making this approach ideal to decode transient, 

stimulus-evoked activation patterns, while disregarding more stationary neural processes. 
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The following details of the analyses were the same for each experiment, unless explicitly 

stated. 

For the time-course analysis, we used a sliding window approach that takes into 

account the relative voltage changes within a 100 ms window. The time-points within 

100 ms of each channel and trial were first down-sampled by taking the average every 

10 ms, resulting in 10 voltage values for each channel. Next, the mean activity within 

that time-window of each channel was subtracted from each individual voltage value. All 

10 voltage values per channel were then used as features for the 8-fold cross-validation 

decoding approach. 

We used Mahalanobis distance (De Maesschalck et al., 2000) to take advantage of 

the potentially parametric neural activity underlying the processing and maintenance of 

orientations and tones. The distances between each of the left-out test-trials and the 

averaged, condition-specific patterns of the train-trials (tones and orientations in the 

auditory and visual experiment, respectively), were computed, with the covariance matrix 

estimated from the train-trials using a shrinkage estimator (Ledoit & Wolf, 2004). To 

acquire reliable distance estimates, this process was repeated 50 times, where the data 

was randomly partitioned into 8 folds using stratified sampling each time. The number 

of trials of each condition (orientation/tone frequency) of the 7 train-folds were 

equalized by randomly subsampling the minimum number of condition-specific trials to 

ensure an unbiased training set. The average was then taken of these repetitions. For 

each trial the 8 distances (one of each stimulus condition) were sign-reversed for 

interpretation purposes, so that higher values reflect higher pattern-similarity between 

test and train-trials. For visualization, the sign-reversed distances were furthermore 

mean-centred by subtracting the mean distance of all distances of a given trial and 

ordered as a function of tone difference, in 1 octave steps by averaging over adjacent 

half octave differences, and orientation difference.  

To summarize the expected positive relationship between tone-similarity and 

neural activation similarity (indicative of tone-specific information in the recorded signal) 

into a single value in the auditory WM experiment, the absolute tonal differences were 

linearly regressed against the corresponding pattern similarity values for each trials. The 

obtained beta values of the slopes were then averaged across all trials to represent 

“decoding accuracy”, where high values suggest a strong positive effect of tone similarity 

on neural pattern similarity.  

To summarize the tuning curves in the visual WM experiment, we computed the 

cosine vector means (Wolff et al., 2017/Chapter 4), where high values suggest evidence 

for orientation decoding.  

The approach described above was repeated in steps of 8 ms across time (-52 to 

900 ms relative to item 1 and 2 onset, and -52 to 500 ms relative to auditory and visual 

onset). The decoding values were averaged over trials, and the decoding time-course was 

smoothed with a Gaussian smoothing kernel (s.d. = 16 ms). Within the time-window, 

information was pooled from -100 to 0 ms relative to a specific time-point. By only 

including data-points from before the time-point of interest, it is ensured that decoding 
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onsets can be more easily interpreted, whereas decoding offsets should be interpreted 

with caution (Grootswagers et al., 2017). In addition to the sliding window approach, we 

also pooled information multivariately across the whole time-window of interest 

(Nemrodov et al., 2018). As before, the data was first down-sampled by taking the 

average every 10 ms, and the mean activity from 100 to 400 ms relative to impulse onset 

was subtracted. The resulting 30 values per channel were then provided to the 

multivariate decoding approach in the same way as above, resulting in a single decoding 

value per participant. The time-window of interest was based on previous findings 

showing that the WM-dependent impulse-response is largely confined within that 

window (Wolff et al., 2017/Chapter 4). Additionally, items in the item-presentation 

epochs were also decoded using each channel separately, using the data from 100-400 

ms relative to onset. Decoding topographies were visualized using fieldtrip (Oostenveld 

et al., 2010). 

Cross-epoch generalization analysis 

We also tested if WM-related decoding in the impulse epochs generalized to the memory 

presentation. Instead of using the same epoch (100-400 ms) for training and testing, as 

described above, the classifier was trained on the memory item epoch and tested on the 

impulse epoch that contained significant item decoding (and vice versa). In the auditory 

task, we also tested if the different impulse epochs cross-generalized by training on the 

visual and testing on the auditory impulse (and vice versa). 

Representational similarity analysis 

While the decoding approach outlined above takes into account the potentially 

parametric relationship of pitch/orientation difference, it is not an explicit test for the 

presence of a parametric relationship. Indeed, decodability could theoretically be solely 

driven by high within stimulus-condition pattern similarity, and equally low pattern 

similarities of all between stimulus-condition comparisons. To explicitly test for a 

linear/circular relationship between stimuli, and explore additional stimulus coding 

schemes, we used representational similarity analysis (RSA; Kriegeskorte, Mur, & 

Bandettini, 2008). 

The RSA was based on the mahalanobis distances between all stimulus conditions 

(unique orientations and frequencies) in both experiments using the same time-window 

of interest as in the decoding approach described above (100-400 ms relative to stimulus 

onset). For each participant, the number of trials of each stimulus condition were 

equalized by randomly subsampling the minimum number of trials of a condition before 

taking the average across all same stimulus condition trials and computing all pairwise 

mahalanobis distances. This procedure was repeated 50 times, with random subsamples 

each time, before averaging them all into a single representation dissimilarity matrix 

(RDM). The covariance matrix was computed from all trials using the shrinkage 

estimator (Ledoit & Wolf, 2004). Since each experiment contained 8 unique memory 

items, this resulted in an 8 x 8 RDM for each participant and epoch of interest. 
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For the RSA in the auditory WM experiment we considered two models; a positive 

linear relationship between absolute pitch height difference (i.e., the more dissimilar 

pitch frequency, the more dissimilar the brain activity patterns), and a positive 

relationship of pitch chroma (i.e. higher similarity between brain activity patterns of the 

same pitch chromas). Note that the tone frequencies used in the experiment increased 

in half octave steps. Every other tone had thus the same pitch chroma (i.e. the same note 

in a different octave). The model RDMs are shown for illustration in Figure 5.4A. The 

model RDMs were z-scored to make the corresponding model fits between them more 

comparable, before entering both of them into a multiple regression analysis with the 

data RDM. 

In the visual WM experiment we also considered two models. The first model was 

designed to capture the circular relationship between absolute orientation difference (i.e., 

the more dissimilar the orientation, the more dissimilar the brain activity patterns). The 

second model was designed to capture the specialization of cardinal orientations (i.e., 

horizontal and vertical) that could reflect the “oblique effect”, where orientations close 

to the cardinal axes are discriminated and recalled more accurately than more oblique 

orientations (Appelle, 1972; Pratte, Park, Rademaker, & Tong, 2017). The model 

assumed the extreme case, where orientations are clustered into one of three categories 

depending on their circular distance to vertical, horizontal, or oblique angles. This 

captures the relatively higher dissimilarity and distinctiveness of the cardinal axes 

(vertical and horizontal) compared to the oblique axes (-45 degrees and +45 degrees) 

and reflects neurophysiological findings of an increased number of neurons tuned to the 

cardinal axes (Shen, Tao, Zhang, Smith, & Chino, 2014). The model RDMs are shown 

for illustration in Figure 5.4D. The model RDMs were also z-scored and then both 

included into a multiple regression with the data RDM 

Statistical significance testing 

All statistical tests were the same between experiments. Sample sizes of all analyses were 

n=30 and n=28 in the auditory and visual tasks, respectively. Sample size of the event-

related potential (ERP) analyses as a function of impulse modality and task was n=16, as 

it only included participants who participated in both WM tasks. To determine if the 

decoding values (see above) or model fits of the RSA are higher than 0 or different 

between items, or if the evoked potentials were different between tasks, we used a non-

parametric sign-permutation test (Maris & Oostenveld, 2007). The sign of the decoding 

value, model fit value, or voltage difference of each participant was randomly flipped 

100.000 times with a probability of 50%. The p value was derived from the resulting null 

distribution. The above procedure was repeated for each time-point for time-series 

results. A cluster based permutation test (100.000 permutations) was used to correct for 

multiple comparisons over time using a cluster forming and cluster significance 

threshold of p < 0.05. Complementary Bayes factors to test for decoding evidence for 

the cued and uncued items within each impulse epoch separately were also computed.   
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We were also interested if there were differential effects on the decoding results 

between cueing (cued/uncued) and impulse modality (auditory/visual) during WM 

maintenance. To test this, we computed the Bayes factors of models with and without 

each of these predictors versus the null model that only included subjects as a predictor 

(Bayesian equivalent of repeated measures ANOVA). The freely available software 

package JASP (JASP Team, 2018) was used to compute Bayes factors. 

Code and data availability 

All data and custom Matlab scripts used to generate the results and figures of this 

manuscript will be made available upon peer-reviewed publication. 

Results 

Behavioural results 

Behavioural task performance was M = 82.322%, SD = 8.841% in the auditory WM task 

(Fig. 5.1B), and M = 87.908%, SD = 6.374% in the visual WM task (Fig. 5.1D). Note 

that while task performance seemed to be slightly better in the visual WM task, 

participants performed well above chance in both, suggesting that the relevant sensory 

features were reliably remembered and recalled in both tasks. 

Decoding visual and auditory stimuli 

Auditory WM task 

The neural dynamics of auditory stimulus processing suggest a parametric effect, with  a 

positive relationship between tone and pattern similarity (Fig. 5.2A) for both memory 

items. The neural dynamics showed significant item-specific decoding clusters during, 

and shortly after, corresponding item presentation for item 1 (44 to 708 ms relative to 

item 1 onset, p < 0.001, one-sided, corrected) and item 2 (28 to 572 ms relative to item 

2 onset, p < 0.001, one-sided, corrected; Fig. 5.2B). The topographies of channel-wise 

item-decoding for each item using the neural data from 100-400 ms after item-onset, 

revealed strong decoding for frontal-central and lateral electrodes (Fig. 5.2C), suggesting 

that the tone-specific neural activity is most likely generated by the auditory cortex 

(Chang, Bosnyak, & Trainor, 2016). These results provide evidence that stimulus-evoked 

neural activity fluctuations contain information about presented tones that can be 

decoded from EEG. 

Visual WM task 

Processing of visual orientations also showed a parametric effect (Fig. 5.2D), replicating 

previous findings (Saproo & Serences, 2010). The item-specific decoding time-courses 

of the dynamic activity showed significant decoding clusters during and shortly after item 

presentations (item 1: 84-724 ms, p < 0.001; item 2: 84-636 ms, p < 0.001, one-sided, 

corrected; Fig. 5.2E). As expected, the topographies of channel-wise item-decoding 
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showed strong effects in posterior channels that are associated with the visual cortex 

(Fig. 5.2F). 

 

 

Figure Figure Figure Figure 5.5.5.5.2.2.2.2. Decoding during item encoding. ((((AAAA----CCCC)))) Auditory WM task. ((((DDDD----FFFF)))) Visual WM 

task.    ((((A & DA & DA & DA & D))))    Normalized average pattern similarity (mean-centred, sign-reversed 

mahalanobis distance) of the neural dynamics for each time-point between trials as 

a function of tone similarity in A and orientation similarity in D, separately for item 1 

and item 2, in item 1 and item 2 epochs, respectively. Bars on the horizontal axes 

indicate item presentations. ((((B & EB & EB & EB & E)))) Beta values in B and cosine vector-means in E of 

pattern similarities for item 1 and 2. Upper bars and corresponding shading indicate 

significant values. Error shading indicates 95% C. I. of the mean. ((((C & FC & FC & FC & F)))) Topographies 

of each item of channel-wise decoding (100-400 ms relative to item onset). 

Content-specific impulse responses 

Auditory WM task 

In the auditory impulse epoch, the neural dynamics time-course revealed significant 

cued-item decoding (180-308 ms, p = 0.004, one-sided, corrected), while no clusters were 

present for the uncued item (Fig. 5.3A & B, left). Similarly, the cued item was decodable 

in the visual impulse epoch (204-372 ms, p = 0.009, one-sided, corrected), while the 

uncued item was not (Fig. 5.3A & B, right).  
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The time-of-interest (100-400 ms relative to impulse onset) analysis provided 

similar results. The cued item showed strong decoding in both impulse epochs (auditory 

impulse: Bayes factor = 11462.607, p < 0.001; visual impulse: Bayes factor = 85.843, p 

< 0.001, one-sided), but the uncued item did not (auditory impulse: Bayes factor = 0.968, 

p = 0.075; visual impulse: Bayes factor = 0.204, p = 0.476, one-sided; Fig. 5.3C). A model 

only including the cueing predictor yielded the highest Bayes factor of 8.123 (± 0.996 

%) compared to the null model. A model including impulse modality as a predictor 

resulted in a Bayes factor of 0.848 (± 1.075 %). Including both predictors (impulse 

modality and cueing) in the model resulted in a Bayes factor of 7.553 (± 0.991 %) that 

was slightly lower than only including cueing.   

Taken together, these results provided strong evidence that both impulse stimuli 

elicit neural responses that contain information about the cued item in auditory WM, but 

none about the uncued item. 

Visual WM task 

No significant time clusters were present in the auditory impulse epoch of the visual 

WM experiment for either the cued or the uncued item task (Fig. 5.3D & E, left). The 

decoding time-course of the visual impulse epoch revealed a significant decoding cluster 

of the cued item (108-396 ms, p <0.001, one-sided, corrected) but not for the uncued 

item (Fig. 5.3D & E, right), replicating previous findings (Wolff et al., 2017/Chapter 4).  

The analysis on the time-of-interest interval (100-400 ms) showed the same pattern 

of results; neither the cued, nor uncued item in the auditory impulse epoch showed 

above 0 decoding (cued: Bayes factor = 0.236, p = 0.417; uncued: Bayes factor = 0.119, 

p = 0.787, one-sided). In the visual impulse epoch the cued item showed strong 

decodability (Bayes factor = 1695.823, p < 0.001, one-sided) but the uncued item did not 

(Bayes factor = 0.236, p = 0.421, one-sided; Fig 5.3F). A model including both predictors 

(cueing and impulse modality) as well as their interaction resulted in the highest Bayes 

factor compared to the null model (Bayes factor = 56.284 (± 1.557 %)). Models with 

each predictor alone resulted in notably smaller Bayes factors (cueing: Bayes factor = 

6.26 (± 0.398 %); impulse modality: Bayes factor = 5.877 (± 0.686 %)). The Bayes factor 

of the model including both predictors without interaction (46.728 (± 0.886 %)) was 

only 1.205 times smaller than the model that also included the interaction, highlighting 

that while there was strong evidence in favour of both impulse modality and cueing, 

there was only weak evidence in favour of an interaction. 

Overall, these results provided evidence that while a visual impulse clearly evokes 

a neural response that contains information about the cued visual WM item, replicating 

previous findings (Wolff et al., 2017/Chapter 4), an auditory impulse does not. 
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Figure Figure Figure Figure 5.5.5.5.3.3.3.3. Decoding auditory and visual WM content from the impulse response. ((((AAAA----

CCCC)))) Auditory WM task. (D(D(D(D----F)F)F)F) Visual WM task. (A & D)(A & D)(A & D)(A & D) Normalized average pattern 

similarity (mean-centred, sign-reversed mahalanobis distance) of the neural 

dynamics for each time-point between trials as a function of tone similarity in A and 

orientation similarity in D. Top row: cued item. Bottom row: uncued item. Left 

column: auditory impulse. Right column: visual impulse. (B & E)(B & E)(B & E)(B & E) Decoding accuracy 

time-course: Beta values in B and cosine vector-means in E of pattern similarities for 

cued (blue) and uncued item (black). Upper bars and shading indicate significant 

values of the corresponding item. Error shading indicate 95% C. I. of the mean. (C & (C & (C & (C & 

F)F)F)F) Boxplots show the overall decoding accuracies for the cued (blue) and uncued 

(black) item, using the whole time-window of interest (100-400 ms relative to onset) 

from the auditory (left) and visual (right) impulse epoch. Centre lines indicate the 

median; box outlines show 25th and 75th percentiles, and whiskers indicate 1.5x the 

interquartile range. Extreme values are shown separately (dots). Superimposed 

circles and error bars indicate mean and its 95% C.I., respectively. Asterisks indicate 

significant decoding accuracies (p < 0.05, one-sided). 

Parametric encoding and maintenance of auditory pitch and visual orientation 

As indicated, RSA was performed to explicitly test and explore for specific stimulus 

coding relationships in both experiments (Fig. 5.4A & D). 
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Auditory WM task 

The RDMs of each epoch of interest are shown in Fig. 5,4B. There was strong evidence 

in favour of the pitch height difference model during item encoding (item 1 and item 2 

presentation epochs; Bayes factor > 100.000,  p < 0.001, one-sided) while evidence 

against the pitch chroma model was evident (Bayes factor = 0.177, p = 0.523, one-sided; 

Fig. 5,4B & C, left). Moderate evidence in favour of the pitch height model was also 

evident for the cued item in the auditory impulse epoch (Bayes factor = 4.016, p = 

0.0113, one sided), while there was weak evidence against the pitch chroma model (Bayes 

factor = 0.838, p = 0.079, one sided; Fig. 5,4B & C, middle). The visual impulse epoch 

also suggested a pitch height coding model of the cued auditory item, though the 

evidence was weak (Bayes factor = 1.346, p = 0.049, one sided), and there was again 

evidence against the pitch chroma model of the cued item (Bayes factor = 0.123, p = 

0.736, one-sided; Fig. 5,4B & C, right). 

Overall, these RSA results provide evidence that both the encoding and 

maintenance of pure tones are coded parametrically according to pitch height (Uluç et 

al., 2018), but not pitch chroma. 

Visual WM task 

The RDMs of the averaged encoding epochs (item 1 and item 2) and the visual impulse 

epoch are shown in Fig. 5.4E. There was strong evidence in favour for a circular 

orientation difference code (Bayes factor > 100.000, p < 0.001, one-sided), as well as an 

additional “cardinal specialization” code (Bayes factor > 100.000, p < 0.001, one-sided) 

during item encoding (Fig. 5.4E & F, left). The evoked neural response by the visual 

impulse also provided strong evidence for a circular orientation difference code for the 

maintenance of the cued item (Bayes factor = 362.672, p < 0.001, one-sided). No 

evidence in favour of an additional “cardinal specialization” code during maintenance 

was found, however (Bayes factor = 0.252, p = 0.318, one-sided; Fig. 5.4E & F, right). 

These results provide evidence that orientations are encoded and maintained in a 

parametric orientation selective code (e.g. Ringach, Shapley, & Hawken, 2002; Saproo & 

Serences, 2010). We additionally considered the “cardinal specialization” coding model, 

which captures the expected increased neural distinctiveness of horizontal and vertical 

orientations compared to tilted orientations, based on the superior visual discrimination 

of cardinal orientations (Appelle, 1972) as well as previous neurophysiological reports of 

cardinal specialization (Li, Peterson, & Freeman, 2003; Shen et al., 2014). Evidence for 

this model was only found during orientation encoding, but not maintenance. 

 

 

 

5 



Unimodal and bimodal access to WM 

100 
 

Figure Figure Figure Figure 5.5.5.5.4444.... Stimulus coding relationship during encoding and maintenance. (AAAA----CCCC))))    

Auditory WM task. ((((DDDD----FFFF))))    Visual WM task. ((((A & DA & DA & DA & D))))    Model RDMs of pitch (AAAA) and 

orientation (DDDD). ((((B & EB & EB & EB & E)))) Data RDMs. ((((C & FC & FC & FC & F))))    Model fits of model RDMs on data RDMs. 

Centre lines indicate the median; box outlines show 25th and 75th percentiles, and 

whiskers indicate 1.5x the interquartile range. Extreme values are shown separately 

(dots). Superimposed circles and error bars indicate mean its 95% C.I, respectively. 

Asterisks indicate significant model fits (p < 0.05, one-sided). 

No WM-specific cross-generalization between impulse and WM-item 

presentation 

It has been shown previously that the visual WM-dependent impulse-response does not 

cross-generalize with visual item processing (Wolff et al., 2015/Chapter 3). Here we 

tested if this is also the case for auditory WM, and additionally explored the cross-

generalizability between impulses.  

Auditory WM task 

The representation of the cued item did neither cross-generalise between item 

presentation and either of the impulse epochs (auditory impulse: Bayes factor = 0.225, 

p = 0.58; visual impulse: Bayes factor = 0.356, p = 0.26, two-sided), nor between impulse 

epochs (Bayes factor = 0.267, p = 0.417, two-sided; Fig. 5.5A). 
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Visual WM task 

Replicating previous reports (Wolff et al., 2015/Chapter 3, 2017/Chapter 4), the visual 

impulse response of the cued visual item did not cross-generalize with item processing 

during item presentation (Bayes factor = 0.491, p = 0.168; Fig. 5.5B).  

 

 

Figure Figure Figure Figure 5.5.5.5.5555.... Cross-generalization between epochs. (A)(A)(A)(A) Cross-generalization of the 

cued item between the memory item epoch and impulse epochs in the auditory WM 

task. (B)(B)(B)(B) Cross-generalization between visual impulse and memory item in the visual 

WM task. Centre lines indicate the median; box outlines show 25th and 75th 

percentiles, and whiskers indicate 1.5x the interquartile range. Extreme values are 

shown separately (dots). Superimposed circles and error bars indicate mean its 95% 

C.I, respectively.  

Evoked response magnitudes of impulse stimuli are comparable between tasks  
Since the impulse stimuli were always the same across trials, presented at the same 

relative time within each trial, and were completely task irrelevant, we believe that the 

WM-specific impulse responses reported here and in previous work rely on low-level 

interactions of the impulse stimuli with the WM network, which do not depend on 

higher order cognitive processing of the impulse.   

Nevertheless, it could be argued that the impulse stimuli are differentially processed 

even at an early stage between the WM tasks. Since the auditory impulse was the only 

auditory stimulus in the visual WM task, it may have been more easily filtered out and 

ignored compared to the other impulse stimuli. Indeed, it is possible that the neural 

response to the auditory impulse stimulus was just too “weak” to result in measurable, 

5 



Unimodal and bimodal access to WM 

102 
 

WM-specific neural response in the visual WM task. However, given the uniqueness of 

the auditory impulse in the visual WM task, the opposite could be argued as well.  

To test for potential differences of attentional filtering of impulse stimuli between 

tasks, we examined the event-related potentials (ERPs) to the impulse stimuli in both 

tasks. If there is indeed a difference in early processing, this should be visible in 

associated early evoked responses within 250 ms of stimulus presentation (Boutros, 

Korzyukov, Jansen, Feingold, & Bell, 2004; Luck, Woodman, & Vogel, 2000). Due to 

large individual differences in ERPs, only participants who participated in both tasks (n 

= 16) are included in this analysis. 

Auditory ERPs 

The average auditory ERP (Fz, FCz, Cz) evoked from the auditory impulse stimulus 

within each task is shown in fig. 5.6A. The P50, N100, and P200 components, all of 

which have been shown to be reduced when irrelevant auditory stimuli are filtered out 

(sensory gating; e.g., Boutros et al., 2004; Cromwell, Mears, Wan, & Boutros, 2008; 

Kisley, Noecker, & Guinther, 2004), can clearly be identified in both tasks. One time-

cluster of the difference between tasks was significant within the time-window of interest 

(148 to 184 ms, p = 0.048, two-sided, corrected). Visual inspection of the ERPs suggests 

that while there is no difference in P50 and N100 amplitude between tasks, P200 

amplitude is larger in the visual than in the auditory task. Note that this difference goes 

in the opposite direction as would be expected if the auditory impulse stimulus was 

somehow more easily filtered out and ignored in the visual than in the auditory task.  

Visual ERPs 

The visual impulse ERP recorded from occipital electrodes (O1, Oz, O2) is shown in 

fig. 5.6B. Early components of interest (C1, P1, N1), which have been shown to be 

modulated by attentional processes (e.g. Di Russo, Martínez, & Hillyard, 2003; Luck et 

al., 2000; Rauss, Pourtois, Vuilleumier, & Schwartz, 2009), have been marked. Visual 

inspection suggests that there are no discernible differences in these visual components 

between tasks. Indeed, no significant time-clusters were found (p > 0.19, two-sided, 

corrected), suggesting that the visual impulse stimulus was processed similarly between 

tasks. 
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Figure 5.6.Figure 5.6.Figure 5.6.Figure 5.6. Evoked responses to impulse stimuli as a function of task for participants 

who participated in both tasks (n=16).    (A)(A)(A)(A) Average voltages (electrodes Fz, FCz, Cz) 

evoked by auditory impulse in the auditory task (red) and visual task (orange). 

Difference voltage (auditory task minus visual task) is plotted in black. Individual ERP 

components of interest are labelled. Error shadings are 95% C. I. of the mean. The 

significant time-cluster of difference is indicated by the black bar (p < 0.05, corrected, 

two-sided). (B)(B)(B)(B) Average voltages (electrodes O1, Oz, O2) evoked by the visual 

impulse. Same convention as in A. 

Discussion 

It has previously been shown that the bottom-up neural response to a visual impulse 

presented during the delay of a visual WM task contains information about relevant 

visual WM content (Wolff et al., 2015/Chapter 3, 2017/Chapter 4), which is consistent 

with a key prediction of WM theories that assume information is maintained in activity-

silent brain states (Stokes, 2015). We used this approach to investigate whether sensory 

information is maintained within sensory-specific neural networks, shielded from other 

sensory processing areas. We show that the neural impulse response to sensory-specific 

stimulation is WM content-specific not only in visual WM, but also in auditory WM, 

demonstrating the feasibility and generalisability of the approach in the auditory domain. 

Furthermore, for auditory WM, a content-specific response was obtained not only 

during auditory, but also during visual stimulation, suggesting a sensory modality-

unspecific path to access the auditory WM network. In contrast, only visual, but not 

auditory, stimulation evoked a neural response containing relevant visual WM content. 

This pattern of impulse responsivity supports the idea that visual pathways may be more 

dominant in WM maintenance. 

Recent studies have shown that delay activity in the auditory cortex reflects the 

content of auditory WM (Huang et al., 2016; Kumar et al., 2016; Uluç et al., 2018). Thus, 

similar to visual WM maintenance, which has been found to result in content-specific 

delay-activity in the visual cortex (Harrison & Tong, 2009), auditory WM content is also 

maintained in a network that recruits the same brain area responsible for sensory 
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processing. However, numerous visual WM studies have shown that content-specific 

delay activity may in fact reflect the focus of attention (Lewis-Peacock et al., 2011; 

Sprague et al., 2016; K. Watanabe & Funahashi, 2014). The memoranda themselves may 

instead be represented within connectivity patterns that generate a distinct neural 

response profile to internal or external neural stimulation (Lundqvist et al., 2016; Rose 

et al., 2016; Wolff et al., 2017/Chapter 4). While previous research has focused on visual 

WM, we now provide evidence for a neural impulse response that reflects parametric 

auditory WM content, suggesting a similar neural mechanism for auditory WM.  

The neural response to a visual impulse stimulus also contained information about 

the behaviourally relevant pitch. It has been shown that visual stimulation can result in 

neural activity in the auditory cortex (Martuzzi et al., 2007; Morrill & Hasenstaub, 2018). 

Thus, direct connectivity between visual and auditory areas (Eckert et al., 2008) might 

be such that visual stimulation activates auditory WM representations in auditory cortex, 

providing an alternate access pathway. Alternatively, visual cortex itself might retain 

auditory information. It has previously been shown that natural sounds can be decoded 

from the activity in the visual cortex, during both processing and imagination (Vetter, 

Smith, & Muckli, 2014). Even though pure tones were used in the present study, it is 

nevertheless possible that they have been visualised, for example by imagining the pitch 

as a location in space. Tones may have also resulted in semantic representations, by 

categorising them into arbitrary sets of low, medium, and high tones. The decodable 

signal from the impulse-response might thus not necessarily originate from the sensory-

processing areas, but rather from higher brain regions such as the prefrontal cortex 

(Stokes et al., 2013). Future studies that employ imaging tools with high spatial resolution 

might be able to arbitrate the neural origin of the cross-modal impulse response in WM. 

While the neural impulse response to visual stimulus contained information about 

the relevant visual WM item, replicating previous results (Wolff et al., 2017/Chapter 4), 

the neural response to external auditory stimulation did not. This suggests that, in 

contrast to auditory information, visual information is maintained in a sensory-specific 

neural network with no evidence of content-specific connectivity with the auditory 

system, possibly reflecting the visual dominance of the human brain (Posner, Nissen, & 

Klein, 1976). Indeed, while it has been found that auditory stimulation results in neural 

activity in the visual cortex, it is notably weaker than the other way around (Martuzzi et 

al., 2007), which corresponds with our asymmetric findings of sensory specific and 

sensory non-specific impulse responses of visual and auditory WM between visual and 

auditory cortices.  

It could be argued that the asymmetric findings reported here are the result of the 

asymmetry between the visual and auditory experiments; whereas the auditory impulse 

was the only non-visual stimulus in the visual task, the auditory task contained several 

non-auditory stimuli (cue, fixation cross, visual impulse). The auditory impulse may have 

thus been more easily ignored and filtered out in the visual task, causing a neural response 

that is too “weak” to interact with the neural WM network. However, we found no 

evidence for this alternative explanation. None of the early auditory ERPs, which have 
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been shown to be reduced by attentional filtering (e.g. Boutros et al., 2004; Kisley et al., 

2004), were smaller in amplitude in the visual task compared to the auditory task. Indeed, 

the auditory P200 was larger in the visual task, the opposite direction as would be 

expected if the auditory impulse was more easily ignored in the visual task. Given the 

predictability and irrelevance of the impulse stimuli in both tasks (regardless of modality), 

we believe that the results reported here and in our previous research (Wolff et al., 

2015/Chapter 3, 2017/Chapter 4) depend on low-level interactions of the bottom-up 

neural responses with the WM network, as proposed previously (Buonomano & Maass, 

2009; Mongillo et al., 2008).  

We found that both the processing and maintenance (as revealed by the impulse 

stimuli) of pure tones was coded parametrically according to the height of the pitch, 

similar to previous reports of parametric auditory WM (Spitzer & Blankenburg, 2012; 

Uluç et al., 2018). On the other hand, a neural code for pitch chroma, the cyclical 

similarity of the same notes across different octaves, was not found during either 

perception or maintenance. It has previously been found that complex tones (similar to 

musical instruments) may be more likely to result in a neural representation of pitch 

chroma than pure tones (as were used in this study) during perception (Briley, Breakey, 

& Krumbholz, 2013). 

Visual orientations were clearly coded parametrically during encoding and 

maintenance, replicating previous findings (e.g. Saproo & Serences, 2010). Interestingly, 

we also found evidence for a neural coding scheme that reflects the specialization of 

orientations close to the cardinal axes (horizontal and vertical) compared to the oblique 

orientations during the encoding of orientations. This coding scheme is related to the 

previously reported “oblique effect” (higher discrimination and report accuracy of 

cardinal compared to oblique orientations; Appelle, 1972), and neural evidence for 

specialized neural structures in cat and macaque visual cortices for cardinal orientations 

(Li et al., 2003; Shen et al., 2014). The visual impulse response did not reveal such a 

coding scheme during maintenance, however, which could reflect a genuinely different 

coding scheme, but could also be due to the generally weaker orientation code during 

maintenance 

It has previously been reported that the WM-related neural pattern evoked by the 

impulse response does not cross-generalize with the neural activity evoked by the 

memory stimulus itself (Wolff et al., 2015/Chapter 3), suggesting that the neural 

activation patterns are qualitatively different. In the present study, we also found no 

cross-generalization between item processing and the impulse response, neither in the 

visual nor in the auditory WM task. The neural representation of WM content may thus 

not be an exact copy of stimulation history, literally reflecting the activity pattern during 

information processing and encoding, but rather a reconfigured code that is optimized 

for future behavioural demands (Myers, Stokes, & Nobre, 2017). Similarly, no 

generalizability was found between auditory and visual impulse responses in the auditory 

task. This could suggest that distinct neural networks are perturbed by the different 

impulse modalities, or, as alluded to above, that it reflects the unique interaction between 
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impulses and the perturbed neural network. Future research should employ neural 

imaging tools with high spatial resolution to investigate the neural populations involved 

in the WM-dependent impulse-response. 

The present results provide a novel approach to the ongoing debate on the extent 

to which sensory processing areas are essential for the maintenance of information in 

WM (Gayet et al., 2018; Scimeca et al., 2018; Xu, 2018). This is usually investigated by 

looking for the presence of WM-specific delay activity in the visual cortex in visual WM 

tasks (Bettencourt & Xu, 2016; Harrison & Tong, 2009), where null-results are 

interpreted as evidence against the involvement of specific brain regions, which is 

inherently problematic (Ester, Rademaker, & Sprague, 2016), and by which non-active 

WM states are not considered. In the present study, we found that sensory-specific 

stimulation, and both sensory specific and non-specific stimulation, resulted in WM-

specific neural responses during the maintenance of visual and auditory information, 

respectively. Sensory cortices were thus linked to WM maintenance not by relying on 

ambient delay-activity, but rather by perturbing the underlying, connectivity-dependent, 

representational WM network via a bottom-up neural response. 
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Abstract 

Working memory (WM) is important to maintain information over short time periods 

to provide some stability in a constantly changing environment. However, brain activity 

is inherently dynamic, raising an important challenge for maintaining stable mental states.  

To investigate the relationship between WM stability and neural dynamics, we used 

electroencephalography to measure the neural response to impulse stimuli during a WM 

delay. Multivariate pattern analysis revealed a clear difference in neural states between 

time-specific impulse responses, the coding scheme for memorized orientations was 

remarkably stable. This suggests that a stable subcomponent in WM that enables stable 

maintenance within a dynamic system. A stable coding scheme simplifies readout for 

WM-guided behaviour, whereas the low-dimensional dynamic component could provide 

additional temporal information. Despite this elegant coding scheme, WM is clearly not 

perfect – memory performance still degrades over time. Indeed, we find that even within 

the stable coding scheme, specific memories drift during maintenance. When averaged 

across trials, such drift contributes to the width of the error distribution, providing an 

alternative explanation for decreasing precision over time.  
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Introduction 

Neural activity is highly dynamic, yet often we need to hold information in mind in a 

stable state to guide ongoing behaviour. Working memory is a core cognitive function 

that provides a stable platform for guiding behaviour according to time extended goals; 

however, it remains unclear how such stable cognitive states emerge from a dynamic 

neural system. 

At one extreme, WM could effectively pause the inherent dynamics by falling into 

a stable attractor (e.g., Compte, Brunel, Goldman-Rakic, & Wang, 2000; Wang, 2001). 

This solution has been well-studied, and provides a simple readout of memory content 

irrespective of time (i.e., memory delay). However, more dynamic models have also been 

suggested. For example, in a recent hybrid model, stable attractor dynamic coexist with 

a low-dimensional, time varying component (Bouchacourt & Buschman, 2019; J. D. 

Murray et al., 2017); see Fig. 6.1A for model schematics). This permits some dynamic 

activity, whilst also maintaining a fixed coding relationship of WM content over time 

(Spaak, Watanabe, Funahashi, & Stokes, 2017). As in the original stable attractor model, 

the coding scheme is stable over time, permitting easy and unambiguous WM read out 

by downstream systems, regardless of maintenance duration (Cueva et al., 2019). Finally, 

it is also possible to maintain stable information in a richer dynamical system (e.g., Barak, 

Sussillo, Romo, Tsodyks, & Abbott, 2013). Although the relationship between activity 

pattern and memory content changes over time, the representational geometry could 

remain relatively constant (Spaak et al., 2017). Such dynamics emerge naturally in a 

recurrent network, and provide rich information about the previous input, and elapsed 

time (Romo, Brody, Hernández, & Lemus, 1999), but necessarily entail a more complex 

readout strategy (time-specific decoders or a high-dimensional classifier that finds a high-

dimensional hyperplane that separates memory condition for all time points - 

(Druckmann & Chklovskii, 2012)).     

Although all models seek to account for stable WM representation, it is also 

important to note that maintenance in WM is far from perfect. In particular, WM 

performance decreases over time. (Rademaker et al., 2018), which could be ascribed to 

two different mechanisms (Fig. 6.1B). On the one hand, the neural representation could 

simply degrade over time, either due to an overall decrease in WM specific neural activity, 

or through a general broadening of the neural representation (Barrouillet & Camos, 

2001). In this framework, the distribution of recall error reflects sampling from a broad 

underlying distribution. On the other hand, the neural representation of WM content 

might gradually drift along the feature dimension as a result of the accumulating effect 

of random shifts due to noise (Kinchla & Smyzer, 1967). Even if the underlying neural 

representation remains sharp, variance in the mean over trials results in a relative broad 

distribution of errors over trials.  
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Figure Figure Figure Figure 6.6.6.6.1.1.1.1.    Model predictions. (A) (A) (A) (A) The relationship between the neural coding 

scheme of orientations (colours) in WM over time. Left: A stable coding scheme 

within a stable neural population. Middle: A stable coding scheme within a dynamic 

neural population. Right: A dynamically changing coding scheme. (B) (B) (B) (B) The fidelity of 

the population code in WM over time. Top: The code decays and becomes less 

specific over time, leading to random errors during read-out. Bottom: The code drifts 

along the feature dimension, leading to a still sharp, but shifted code during read-

out. 

Computational modelling based on behavioural recall errors from WM tasks with 

varying set-sizes and maintenance periods predict a drift for colours and orientations 

maintained in WM (Panichello, DePasquale, Pillow, & Buschman, in press; Schneegans 

& Bays, 2018). At the neural level, evidence for drift has been found in the neural 

population code in monkey prefrontal cortex during a spatial WM task (Wimmer et al., 

2014), where trial-wise shifts in the neural tuning profile predicted if recall error was 

clockwise or counter-clockwise relative to the correct location. Recently, a human fMRI 

study has found that delay activity reflected the probe stimulus more when participants 

erroneously concluded that it matched the memory item  (Lim, Ward, Vickery, & 

Johnson, 2019), which is consistent with the drift account. 

Tracking these neural dynamics of non-spatial neural representations, which are 

not related to spatial attention or motor planning, is not trivial in humans. Previously we 

found that the presentation of a simple impulse stimulus (task-relevant visual input) 

presented during the maintenance period of visual information in WM results in a neural 

response that reflects non-spatial WM content (Wolff et al., 2015, 2017). Here we extend 

this approach to track WM dynamics. In the current study we developed a paradigm to 

test the stability (and/or dynamics) of WM neural states and the consequence for readout 

by “pinging” the neural representation of orientations at specific time-points during 

maintenance. 

We found that the coding scheme remained stable during the maintenance period, 

even-though maintenance time was coded in an additional low-dimensional axis. We 

furthermore found that the neural representation of orientations drifts in WM. This was 
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reflected in a shift of the reconstructed orientation towards the end of the maintenance 

period that predicted behaviour. 

Methods 

Participants 

Twenty-six healthy adults (17 female, mean age 25.8 years, range 20-42 years) were 

included in all analyses. Four additional participants were excluded during preprocessing 

due to excessive eye-movements (more than 30% of trials contaminated). Participants 

received monetary compensation (£10 an hour) for participation and gave written 

informed consent. The experiment was approved by the Central University Research 

Ethics Committee of the University of Oxford. 

Apparatus and stimuli 

The experimental stimuli were generated and controlled by Psychtoolbox (Kleiner, 

2010), a freely available Matlab extension. Visual stimuli were presented on a 23-inch 

(58.42 cm) screen running at 100 Hz and a resolution of 1,920 by 1,080. Viewing distance 

was set at 64 cm. A Microsoft Xbox 360 controller was used for response input by the 

participants. 

A grey background (RGB = 128, 128, 128; 20.5 cd/m2) was maintained throughout 

the experiment. A black fixation dot with a white outline (0.242°) was presented in the 

centre of the screen throughout all trials. Memory items and the probe were sine-wave 

gratings presented at 20% contrast, with a diameter of 8.51° and spatial frequency of 

0.65 cycles per degree, with randomised phase within and across trials. Memory items 

were presented at 6.08° eccentricity. The rotation of memory items and probe were 

randomized individually for each trial. The impulse stimulus was a single white circle, 

with a diameter of 20.67°, presented at the centre of the screen. The retro-cue was two 

arrowheads pointing right (>>) or left (<<), and was 1.58° wide. A coloured circle (3.4°) 

was used for feedback. Its colour depended dynamically on the precision of recall, 

ranging from red (more than 90 degrees error) to green (0 degrees error). A pure tone 

also provided feedback on recall accuracy after each response, ranging from 200 Hz 

(more than 90 degrees error) to 1,100 Hz (0 degrees error). 

Procedure 

Participants participated in a free-recall, retro-cue visual WM task. Each trial began with 

the fixation dot. After 1,000 ms the memory array was presented for 200 ms. After a 400 

ms delay, the retro-cue was presented for 100 ms, indicating which of the previously two 

items would be tested, rendering the other item irrelevant. The first impulse stimulus 

was presented for 100 ms, 900 ms after the offset of the retro-cue. After a delay of 700 

ms, the second impulse stimulus was presented for 100 ms. After another delay of 700 

ms the probe was presented. Participants used the left joystick on the controller with the 

6 



Drifting WM codes  

116 
 

left thumb to rotate the orientation of the probe until it best reflected the memorized 

orientation, and confirmed their answer by pressing the “x” button on the controller 

with the right thumb. Note that one complete rotation of the joystick corresponded to 

0.58 of a rotation of the probe. In conjunction with the fact that the probe was randomly 

orientated on each trial, it was impossible for participants to plan the rotation beforehand 

or memorize the direction of the joystick instead of the orientation of the memory item. 

Accuracy feedback was given immediately after the response where both the coloured 

circle and tone were presented simultaneously. Each participant completed 1,100 trials 

in total, over a course of approximately 135 minutes, including breaks. See Figure 6.2A 

for a trial schematic. 

 

 

Figure 6.2.Figure 6.2.Figure 6.2.Figure 6.2. Trial schematic and behavioural results (A) Two randomly orientated 

grating stimuli were presented laterally. A retro-cue then indicated which of those 

two would be tested at the end of the trial. Two impulses (white circles) were serially 

presented in the subsequent delay period. At the end of the trial a randomly oriented 

probe grating was presented in the centre of the screen, and participants were 

instructed to rotate this probe until it reflected the cued orientation. (B) Report 

errors of all trials across all subjects.     

EEG acquisition 

EEG was acquired with 61 Ag/AgCl sintered electrodes (EasyCap, Herrsching, 

Germany) laid out according to the extended international 10–20 system and recorded 

at 1,000 Hz using Curry 7 software (Compumedics NeuroScan, Charlotte, NC). The 

anterior midline frontal electrodes (AFz) was used as the ground. Bipolar 

electrooculography (EOG) was recorded from electrodes placed above and below the 

right eye and the temples. The impedances were kept below 5 kΩ. The EEG was 

referenced to the right mastoid during acquisition. 

EEG preprocessing 

Offline, the EEG signal was re-referenced to the average of both mastoids, down-

sampled to 500 Hz, and bandpass filtered (0.1 Hz high-pass and 40 Hz low-pass) using 
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EEGLAB (Delorme & Makeig, 2004). The continuous data was epoched relative to the 

memory array onset (-500 ms to 3,600 ms) before independent component analysis 

(Hyvarinen, 1999) was applied. Components related to eye-blinks were subsequently 

removed. The data was then epoched relative to memory array onset and the two impulse 

onsets (0 ms to 400 ms), and trials were individually inspected. Trials with saccadic eye 

movements, visually identified from the electrooculography, and trials with non-

archetypical artefacts, visually identified from the EEG, in the memory array epoch and 

in either impulse epoch were removed from all subsequent analyses. Furthermore, trials 

where the report error was 3 circular standard deviations from the participant’s mean 

response error were also excluded from EEG analyses to remove trials that likely 

represent complete guesses (Fritsche, Mostert, & de Lange, 2017). This lead to the 

removal of M = 2.3% (SD = 1.2%) trials due to inaccurate report trials, in addition to 

the M = 3.52 % (SD = 4.21%) and M = 5% (SD = 5.2%) of trials removed due to eye-

movements and non-archetypical EEG artefacts from the memory array and impulse 

epochs, respectively. 

While MVPA on electrophysiological data is usually performed on each time-point 

separately, taking advantage of the highly dynamic waveform of evoked responses in 

EEG by pooling information multivariately over electrodes as well as time can improve 

decoding accuracy, at the expense of temporal resolution (Grootswagers et al., 2017; 

Nemrodov et al., 2018). Since the previously reported WM-dependent impulse response 

reflects the interaction of the WM state at the time of stimulation and does not reflect 

continuous delay activity, we treat the impulse responses as discrete events in the current 

study. Thus, the whole time window of interest relative to impulse onsets (100 to 400 

ms) from the 17 posterior channels was included in the analysis. The time window was 

based on previous, time-resolved findings, which showed that the WM-dependent neural 

response from a 100 ms impulse (as used in the current study) is largely confined to this 

window (Wolff et al., 2017). In the current study, instead of decoding at each time-point 

separately, information was pooled across the whole time-window. The mean activity 

level within each time window of each channel was first removed, thus normalizing the 

voltage fluctuations and isolating the dynamic, impulse-evoked neural signal from more 

stable brain states. The time-window was then down-sampled by taking the average every 

10 ms, thus resulting in 50 values per channel, each of which was treated as a separate 

dimension in the subsequent multivariate analysis (850 in total). This data format was 

used on all subsequent MVPA analyses, unless explicitly mentioned otherwise. The same 

approach over the same time window of interest was used in our previous study (Wolff, 

Kandemir, Stokes, & Akyurek, 2019). 

Orientation reconstruction 

We computed the mahalanobis distances as a function of orientation difference to 

reconstruct grating orientations (Wolff et al., 2017). The following procedure was 

performed separately for items that were presented on the left and right side. Since the 

grating orientations were determined randomly on a trial-by-trial basis and the resulting 
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orientation distribution across trials was unbalanced, we used a k-fold procedure with 

subsampling to ensure unbiased decoding. Trials were first assigned the closest of 16 

orientations (variable, see below) which were then randomly split into 8 folds using 

stratified sampling. Using cross-validation, the train trials in 7 folds were used to 

compute the covariance matrix using a shrinkage estimator (Ledoit & Wolf, 2004). The 

number of trials of each orientation bin were equalized by randomly subsampling the 

minimum number of trials in any bin. The subsampled trials of each angle bin were then 

averaged. To pool information across similar orientations, the average bins were 

convolved with a half cosine basis set raised to the 15th power (Brouwer & Heeger, 2009; 

Myers et al., 2015; Serences & Saproo, 2012). The mahalanobis distances between each 

trial of the left-out test fold and the averaged and basis-weighted angle bins were 

computed and mean-centred across the 16 distances to normalize. This was repeated for 

all test and train fold combinations. To get reliable estimates, the above procedure was 

repeated 100 times (random folds and subsamples each time), separately for eight 

orientation spaces (0° to 168.75°, 1.40625° to 170.1563°, 2.8125° to 171.5625°, 4.2188° 

to 172.9688°, 5.625° to 174.375°, 7.0313° to 175.7813°, 8.4375° to 177.1875°, 9.8438° 

to 178.5938°, each in steps of 11.25°). For each trial we thus obtained 800 samples for 

each of the 16 mahalanobis distances. The distances were averaged across the samples 

of each trial and ordered as a function of orientation difference. The resulting “tuning 

curve” was summarized into a single value (i.e., “decoding accuracy”) by computing the 

cosine vector mean of the tuning curve (Wolff et al., 2017), where a positive value 

suggests a higher pattern similarity between similar orientations than between dissimilar 

orientations. The approach was the same for the reanalysis of (Wolff et al., 2015). 

We also repeated the above analysis iteratively for a subset of electrodes in a 

searchlight analysis across all 61 electrodes. In each iteration, the “current” as well as the 

closest two neighbouring electrodes were included in the analysis (similar as in Ede, 

Chekroud, Stokes, & Nobre, 2019) The freely available MATLAB extension fieldtrip 

(Oostenveld et al., 2010) was used to visualise the decoding topographies. Note that the 

topographies were flipped, such that the left represents the ipsilateral and the right the 

contralateral side relative to stimulus presentation side. 

Orientation code generalization 

To test cross-generalization between impulses, instead of training and testing within the 

same time-window, the train folds were taken from impulse 1, and the test fold from 

impulse 2, and vice versa. The analysis was otherwise exactly as described above. 

To test cross-generalization between presented locations, the classifier was similarly 

trained on trials where the item was presented on the left, and tested on the right, and 

vice versa. Since left and right trials were independent trial sets, cross-validation does 

not apply. However, to ensure a balanced training set, the number of trials of each 

orientation bin were nevertheless equalized by subsampling (as described above), and 

this approach was repeated 100 times. 
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The cross-generalization of the orientation code between impulse onsets in (Wolff et al., 

2015) was tested with the same analyses as the location cross-generalization described in 

the paragraph above: The classifier was trained on the early onset condition, and tested 

on the late-onset condition, and vice versa, while making sure that the training set is 

balanced through random subsampling.  

Impulse/time and location decoding 

To decode the difference of the evoked neural responses between impulses, we used a 

leave-one-out approach. The mahalanobis distances between the signals from a single 

trial from both impulse epochs and the average signal of all other trials of each impulse 

epoch were computed. The covariance matrix was computed by concatenating the trials 

of each impulse (excluding the left-out trial). The average difference of same impulse 

distances were subsequently subtracted from different impulse distances, such that a 

positive distance difference indicates more similarity between same than different 

impulses. To convert the distance difference into trial wise decoding accuracy, positive 

distance difference were simply converted into “hits” (1) and negative into “misses” (0). 

The percentage of correctly classified impulses were subsequently compared to chance 

performance (50%). 

The presentation side and impulse onset (in Wolff et al., 2015) was decoded using 

8-fold cross-validation, where the distance difference between different and same 

location/onset was computed for each trial, which were then converted to “hits” and 

“misses”. 

Visualization of the spatial, temporal, and orientation code 

To explore and visualize the relationship between the location or impulse/time code and 

the orientation code in state space (see Fig. 6.1A for different predictions), we used 

classical multidimensional scaling (MDS) of the mahalanobis distances between the 

average signal of trials belonging to one of four orientation bins (0° to 45°, 45° to 90°, 

90° to 135°, 135° to 180°) and location (left/time) or time (impulse 1/impulse2). 

For the visualization of the code across impulse/time, distances were computed 

separately for left and right trials, before taking the average. Within each orientation bin, 

the data of half of the trials were taken from impulse 1, and the data of the other half 

from impulse 2 (determined randomly). The number of trials within each orientation of 

each impulse were equalized through random subsampling before averaging. The 

mahalanobis distances between both orientation and impulses were then computed 

using the covariance matrix estimated from all trials of both impulses. This was repeated 

50 times (for each side), randomly subsampling and splitting trials between impulses each 

time and then taking the average across all iterations.  

For the visualization of the code across space, the data of each trial were first 

averaged across impulses. The number of trials of orientation bins (same as above) of 

each location were equalized through random subsampling. The mahalanobis distances 
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of the average of each bin within each location condition were computed using 

covariance estimated from all left and right trials. This was repeated 50 times, before 

taking the average across all iterations. 

For the code across impulse onset/time visualization of the data from Wolff et al. 

(2015), the same procedure as in the paragraph above was used, but instead of visualizing 

the stimulus code between locations, it was visualized between impulse onsets (-30 ms, 

+30 ms).  

Relationship between behaviour and the neural representation of the WM item 

We were interested if imprecise reports that are too clockwise (cw) or counter-clockwise 

(ccw) relative to the actual orientation are accompanied by a corresponding shift of the 

neural representation in WM (see Fig. 6.1B for model schematics). We used two 

approaches to test for such a shift (Fig. 6.5A & 6.6A). 

First, the trial-wise pattern similarities as a function of orientation differences (as 

obtained from the orientation-reconstruction approach described above) were averaged 

separately for all cw and ccw responses (Fig. 6.5A). Note that cw and ccw responses 

were defined relative to the median response error within each orientation bin. This 

ensures a balanced proportion of all orientations in cw and ccw trials, which is necessary 

to obtain meaningful orientation reconstructions. It furthermore removes the report bias 

away from cardinal angles in the current experiment (Suppl. fig. 6.1), similar to previous 

reports of orientation response biases (Pratte et al., 2017), and thus isolates random from 

systematic report errors.  

We used another approach that exaggerates the potential difference between cw 

and ccw trials and thus might be more sensitive to detect a shift. The data was first 

divided into cw and ccw trials using the same within orientation bin approach as 

described above. The classifier was then trained on cw trials, and tested on ccw trials, 

and vice versa (Fig. 6.6A). The orientation bins in the training set were balanced through 

random subsampling, and the procedure was repeated 50 times. Given an actual shift in 

the neural representation, the shift magnitude of the resulting orientation reconstruction 

of this method should be doubled, since both the testing data and the training data (the 

reference point) are shifted, but in opposite directions. 

To improve orientation reconstruction from the impulse epochs, the classifier was 

trained on the averaged trials of both impulses, but tested separately on each impulse 

epoch individually. While training on both impulses improved orientation 

reconstruction, in particular for the second approach where only half of the trials are 

used for training, the shifts in orientation representations as a function of cw/ccw 

reports are qualitatively the same when training and testing within each impulse epoch 

separately (Fig. 6.5, 6.6, & Suppl. fig. 6.3). 
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Statistical significance testing 

To test for statistical significance of decoding accuracies, the sign of the data of each 

participant was randomly flipped with a probability of 50% 100.000 times, and the 

resulting null-distribution was used to calculate the p value of the null hypothesis (no 

difference, chance decoding). Note that tests of within condition decoding (within 

presentation location, impulse/onset) were one-sided, since only positive decoding is 

plausible in those cases, whereas tests of cross-generalization between conditions were 

two-sided, since negative decoding is theoretically plausible in those cases. Comparisons 

of decodability between conditions/items were also two-sided. 

The possible shift in representation towards the response was quantified and tested 

for statistical significance at the group level. The circular mean of the shifted average 

tuning curve (summarized such that a positive shift reflects a shift towards the response) 

was tested against 0. The tuning curve of each subject was flipped left to right with 0.5 

probability, such that a subject’s positively shifted tuning curve would then be negatively 

shifted, before computing the circular mean of the resulting tuning curve averaged over 

all subjects 100.000 times. The resulting null distribution was used to obtain the p-value 

by calculating the proportion of permuted tuning curves with circular means more 

positive than the actual group-level circular mean. The test obtained p-value was one-

sided, since we expected the shift of the neural representation of the orientation to be 

towards the response.  

Code and data availability 

All data and custom Matlab scripts used to generate the results and figures of this 

manuscript will be made available upon peer-reviewed publication. 

Results 

Item and WM content-specific evoked responses during encoding and 

maintenance 

The neural response elicited by the memory array contained parametric information 

about the presented orientations (p < 0.001, one-sided; Fig. 6.3, left).  

The first impulse response contained statistically significant information about the 

cued item (p = 0.008, one sided), but not the uncued item, which failed to reach the 

statistical significance threshold (p = 0.057, one-sided). The difference between cued and 

uncued item decoding was not significant (p = 0.694, two-sided; Fig. 6.3, middle). 

The decodability of the cued item was also significant at the second impulse 

response (p < 0.001, one-sided), while it was not of the uncued item (p = 0.919, one-

sided). Notably, the decodability of the cued item was significantly higher than that of 

the uncued item (p = 0.002, two-sided; Fig. 6.3, right). 
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Overall, these results reflect previous findings (Wolff et al., 2017) in that the 

impulse response reflects relevant information in WM, and that no longer relevant 

information leave no detectable trace in the WM network. 

The decoding topographies highlight that most of the decodable signal came from 

posterior electrodes during both encoding and maintenance, and is therefore likely 

generated by the visual cortex. Notably, while contralateral electrodes showed 

unsurprisingly higher item decoding during encoding, this was not the case during 

maintenance in either impulse response (Fig. 6.3 bottom row). 

 

 

Figure Figure Figure Figure 6.36.36.36.3....    Decoding results. Top row: Normalized average pattern similarity (mean-

centred, sign-reversed mahalanobis distance) of the evoked neural responses (100 

to 400 ms relative to stimulus onset) as a function of orientation similarity, and 

decoding accuracy (cosine vector means of pattern similarities). Error shadings and 

error bars are 95 % C.I. of the mean. Centre lines of boxplots indicate the median; 

box outlines show 25th and 75th percentiles, and whiskers indicate 1.5x the 

interquartile range. Extreme values are shown separately (dots). Asterisks indicate 

significant decoding accuracies (p < 0.05, one-sided) or differences (p < 0.05, two-

sided). Bottom row: Decoding topographies of the searchlight analysis. 

Stable WM coding scheme in time 

The relationship between orientations and impulses/time is visualized in state-space 

through MDS (Fig. 6.4A). While the first dimension clearly differentiates between 

impulses, the second and third dimensions code the circular geometry of orientations in 

both impulses, suggesting that while the impulse responses are different between 

impulses, the orientation coding schemes revealed by the impulse are the same. This is 
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corroborated by significant decoding accuracy of the impulse (p < 0.001, one-sided; Fig. 

6.4B) on the one hand, but also significant cross-generalization of the orientation code 

between impulses (p < 0.001, two-sided), which was not significantly different from 

same-impulse orientation decoding (p =  0.581, two-sided; Fig. 6.4C). 

 

 

Figure 6.4. Figure 6.4. Figure 6.4. Figure 6.4. Cross-generalization of coding scheme between impulses. (A) (A) (A) (A) 

Visualization of orientation and impulse code in state-space. The first dimension 

discriminates between impulses. The second and third dimensions code the 

orientation space in both impulses. (B) (B) (B) (B) Trial-wise accuracy (%) of impulse decoding. 

(C) (C) (C) (C) Orientation decoding within each impulse (blue) and orientation code cross-

generalization between impulses (green). Error shadings and error bars are 95 % C.I. 

of the mean. Centre lines of boxplots indicate the median; box outlines show 25th 

and 75th percentiles, and whiskers indicate 1.5x the interquartile range. Extreme 

values are shown separately (dots). Asterisks indicate significant decoding accuracies 

or cross-generalization (p < 0.05). 

It is not possible to conclude whether the difference between impulses is due to a 

neural network that changes during the maintenance period over time, due to different 

stimulation histories at the time of perturbation (i.e., the first impulse always preceded 
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the second impulse), or due to different WM operations at each impulse event (e.g. item 

selection at impulse 1, response preparation at impulse 2).  

To rule out that the difference in impulse response reported above is not only due 

to difference in stimulation history and changing WM operations, but also due to 

temporal coding in the WM network, we reanalysed previously published data where a 

single impulse stimulus was presented either 1,170 or 1,230 ms after the presentation of 

a single memory item (Wolff et al., 2015). The findings largely replicate the results 

reported above: State-space visualization of impulse-onset and orientations shows the 

same circular geometry of the orientations at each impulse onset, while also highlighting 

a separation of impulse onsets in state-space (Suppl. fig. 6.2A). Decoding impulse-onset 

was significantly than from chance (p = 0.005, one-sided; Suppl. fig. 6.2B). Cross-

generalization of the orientation code between impulse-onsets was significant (p < 0.001, 

two-sided), and did not significantly differ from decoding the memorized orientation 

within the same impulse-onset (p = 0.244, two-sided; Suppl. fig. 6.2C). 

Overall, the results of the current study, as well as the reanalyses of (Wolff et al., 

2015) provide evidence for a low-dimensional change over time, that can be revealed by 

perturbing the WM network at different time-points (as predicted in (Buonomano & 

Maass, 2009)), while at the same time providing evidence for a temporally stable coding 

scheme of WM content (Bouchacourt & Buschman, 2019; J. D. Murray et al., 2017). 

Specific WM coding scheme in space 

As a counterpart to the stable coding scheme in time reported above, we explicitly tested 

if the coding scheme is location specific (i.e., dependent on the previous presentation 

location of the cued orientation). State-space visualization of cued item location and 

orientations shows a clear separation between locations and no overlap in orientation 

coding between locations (Fig. 6.5A). The cued location was significantly decodable 

from the impulse responses (p < 0.001, one-sided; Fig. 6.5B). Cross-generalization of the 

orientation coding scheme between cued item locations was not significant (p = 0.403, 

two-sided), and significantly lower than same side orientation decoding (p = 0.009, two-

sided; Fig. 6.5C). These results reflect previous reports of spatially specific WM codes, 

even when location is no longer relevant (Pratte & Tong, 2014). 
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Figure 6.5.  Figure 6.5.  Figure 6.5.  Figure 6.5.  No    cross-generalization of coding scheme between cued item locations 

during impulse responses (A) (A) (A) (A) Visualization of orientation and item location code in 

state-space. The first dimension discriminates between item locations. The first and 

second dimensions code the orientation space, separately for WM items previously 

presented on the left or right side. (B) (B) (B) (B) Trial-wise accuracy (%) of item location 

decoding. (C) (C) (C) (C) Orientation decoding within each item location (blue) and orientation 

code cross-generalizing between different item locations (green). Error shadings and 

error bars are 95 % C.I. of the mean. Centre lines of boxplots indicate the median; 

box outlines show 25th and 75th percentiles, and whiskers indicate 1.5x the 

interquartile range. Extreme values are shown separately (dots). Asterisks indicate 

significant decoding accuracies and differences (p < 0.05). 

Drifting WM code 

The first approach to test for a possible shift of the neural representation towards the 

response averaged the trial-wise orientation tuning curves obtained from the cross-

validated orientation reconstruction on all trials (see Methods and Fig. 6.6A).  

No significant shift towards the response was evident during encoding/memory 

array presentation (p = 0.117, one-sided; Fig. 6.6B & C, left). No evidence for such a 

shift was found at impulse 1/early maintenance either (p = 0.07, one-sided; Fig. 6.6B & 

C, middle). However, the orientation tuning curve was significantly shifted towards the 

response at impulse 2/late maintenance (p < 0.001, one-sided; Fig. 6.6B & C, right).   
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Figure 6.6. Figure 6.6. Figure 6.6. Figure 6.6. Response-dependent averaging of trial-wise tuning curves demonstrates 

drift. Schematic and results.    (A) (A) (A) (A) Testing for shift towards response by    averaging trial-

wise tuning curves by ccw/cw responses. (B)(B)(B)(B) Results of schematised approach in A. 

Orientation tuning curves averaged by response such that a right-ward shift reflects 

a shift towards the response (purple) at each event. Purple vertical lines show circular 

means of the tuning curves. Insets show orientation tuning curves for ccw (blue) and 

cw (green) responses separately. Error shadings are 95 % C. I. of the mean. (C) (C) (C) (C) Group-

level shifts towards the response (circular mean) of each response-dependent tuning 

curve. Error-bars are 95 % C. I. of the mean. 

The second approach to test for a possible shift of the neural representation 

towards the response may be more sensitive since it trains the orientation classifier only 

on ccw trials, and tests it on cw trials, and vice versa (see Methods and Fig. 6.7A), thus 

exaggerating any response related shift by a factor of two. 

This approach yielded similar results as the previous approach, though the shift 

magnitudes are indeed larger. Neither the memory array presentation/encoding, nor 

impulse 1/early maintenance showed a significant shift towards the response (p = 0.121, 

p = 0.104, respectively, one-sided; Fig. 6.7, left & middle), while impulse 2/late 

maintenance did (p < 0.001, one-sided; Fig. 6.7, right). 
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Figure 6.7. Figure 6.7. Figure 6.7. Figure 6.7. Response-dependent training and testing demonstrates drift. Schematic 

and results.    (A) (A) (A) (A) Testing for shift towards response by    first splitting the neuroimaging 

data into cw and ccw data sets, and training on cw trials and testing on ccw trials, and 

vice versa. Given an actual shift, the shift of the resulting orientation reconstruction 

will be doubled, since training and testing data are shifted in opposite directions. (B)(B)(B)(B) 

Results of schematised approach in A. Average orientation tuning curves such that a 

right-ward shift reflects a shift towards the response (purple) at each event. Purple 

vertical lines show circular means of the tuning curves. Insets show orientation tuning 

curves for ccw (blue) and cw (green) responses separately. Error shadings are 95 % 

C. I. of the mean. (C) (C) (C) (C) Group-level shifts towards the response (circular mean) of each 

response-dependent tuning curve. Error-bars are 95 % C. I. of the mean. 

Note the reported results of shifts during impulse presentations were obtained by 

training the classifier on both impulses, but testing it on each impulse separately. This 

was done to improve power (as explained in Methods). This improved orientation 

reconstruction particularly for the latter shift-analysis where the classifier is trained on 

only half the trials (cw trials only or ccw trials only). However, the same analyses based 

on training (and testing) within each impulse epoch separately yielded qualitatively 

similar results (no significant shifts at impulse 1 in either approach, significant shifts at 

impulse 2 in both approaches; Suppl. fig. 6.3). 

Discussion 

In the present study, we investigated the neural dynamics of WM maintenance by 

probing both the coding scheme of WM content, as well as the code itself at specific 

time-points during the maintenance period. The neural impulses to external visual 

stimulation enabled us to show that the coding scheme of orientations in WM remained 
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stable during maintenance, while the orientation code itself drifted and predicted 

behaviour. 

The significant cross-generalization of the orientation-coding scheme between 

impulses presented at different time-points (Fig. 6.4) is consistent with previous reports 

of stable WM maintenance (Murray et al., 2017; Spaak et al., 2017), providing evidence 

for a time-invariant coding scheme for orientations maintained in WM. However, non-

stable schemes have also been reported. It has been found that attentional (de-) 

prioritization of WM content changes its format (van Loon, Olmos-Solis, Fahrenfort, & 

Olivers, 2018), and that coding schemes morph after the presentation of interfering 

distractors (Parthasarathy et al., 2017). It seems that the maintenance of simple features 

is relatively stable (Murray et al., 2017; Spaak et al., 2017), as was the case in the present 

study, whereas complex objects and more demanding WM tasks are more likely to elicit 

dynamically changing coding schemes (Meyers, 2018; Stokes et al., 2013). Given the fact 

that the first impulse always preceded the second in the present study, our results suggest 

that neither time, nor the passive viewing of irrelevant stimuli change the coding scheme 

of an orientation maintained in WM.  

While there was no cost of cross-generalizing the orientation code between 

impulses, there was nevertheless a clear difference in the neural pattern between them 

(Fig. 6.4), suggesting that a separate, dynamic neural pattern codes the passage of time 

that is orthogonal to the stable WM content-code (Murray et al., 2017). However, the 

large neural difference between impulses (~95% decoding accuracy) in the present study 

can not only be attributed to the passage of time, but also to changes to the network by 

the first impulse, which preceded the second impulse in every trial. Additionally, the 

possibly still ongoing dropping of the irrelevant orientation at impulse 1 presentation 

and response preparation at impulse 2 towards the end of the maintenance period were 

likely contributors to this difference. We therefore reanalysed the data of a previously 

published study where the impulse onset was randomly jittered by +-30 ms at 1,000 ms 

after the offset of a single memory item (Wolff et al., 2015). The significant decodability 

of impulse onset shows that the WM network changes during the maintenance even 

within 60 ms, resulting in distinct neural impulse responses at different time-points 

providing evidence for a neural time-code (Suppl. fig. 6.2).  

The stable WM-content coding scheme could be achieved by low-level activity 

states that self-sustain a stable code through recurrent connections, a key feature of 

attractor models of WM (Chaudhuri & Fiete, 2016; Compte et al., 2000), while dynamic 

activity patterns are coded in an orthogonal subspace that represents time (Cueva et al., 

2019; Murray et al., 2017; Tiganj, Cromer, Roy, Miller, & Howard, 2018). Though we did 

not explicitly consider persistent delay activity, the dynamic impulse responses analysed 

in the present study could reflect non-linear interactions with low-level, persistent 

activity states that are otherwise difficult to measure with EEG. Alternatively, silent WM 

states that do not depend on persistent activity to maintain WM content (Mongillo et al., 

2008; Stokes, 2015), which could be revealed by the impulse responses (Wolff et al., 

2017), might be also be a plausible mechanism. Here, the activity state during encoding 
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leaves behind a neural trace in the WM network through short-term synaptic plasticity 

resulting in a stable code for maintenance, whereas the time-dimension could be 

represented in its gradual fading (Buonomano & Maass, 2009; Nikolić, Häusler, Singer, 

& Maass, 2009; Nikolić et al., 2007; Zucker & Regehr, 2002). 

We also found evidence that the orientation code itself drifts along the orientation 

dimension, predicting recall errors (Fig. 6.6, Fig. 6.7, Suppl. fig. 6.3). While there was no 

shift in the neural orientation representation at either encoding or early maintenance, the 

second impulse towards the end of the maintenance period revealed a code that was 

shifted towards the direction of response error. This pattern of results is consistent with 

the drift account of WM, where the encoding of information into WM might be perfect, 

but neural noise leads to an accumulation of error during maintenance, resulting in a still 

sharp, but shifted (i.e., slightly wrong) neural representation of the maintained 

information (Compte et al., 2000; Schneegans & Bays, 2018). While previous 

neurophysiological recordings from monkey PFC found evidence for drift for spatial 

information (Wimmer et al., 2014), by using lateralized orientations in the present study, 

we could demonstrate a shifting representation that more faithfully represents actual, 

non-spatial WM content that is unrelated to sustained spatial attention or motor 

preparation.   

Bump attractors have been proposed as an ideal neural mechanism for the 

maintenance of continuous representations (i.e. space, orientation, colour), where a 

specific feature is represented by the persistent activity “bump” of the neural population 

at the feature’s location along the network’s continuous feature space. Neural noise 

randomly shifts this bump along the feature dimension, while inhibitory and excitatory 

connections maintain the same overall level of activity and shape of the neural network 

(Amari, 1977; Brody, Romo, & Kepecs, 2003). Random walk along the feature 

dimension is thus a fundamental property of bump attractors, and has been found to 

explain neurophysiological findings (Wimmer et al., 2014).  

The drift and resulting error do not necessarily have to be random, however. 

Modelling of report errors in a free recall colour WM task suggests that an increase of 

report errors over time may be due to separable attractor dynamics, with a systematic 

drift towards stable colour representations, resulting in a clustering of reports around 

specific colour values, in addition to random drift elicited by neural noise (Panichello et 

al., in press). The report bias of oblique orientations seen in the present study could be 

explained by a similar drift towards specific orientations, which would predict an increase 

of report bias for longer retention periods. However, clear behavioural evidence for such 

an increase in systemic report errors of orientations is lacking (Rademaker et al., 2018). 

In the present study we isolated random from systematic errors, both as a 

methodological necessity, but also to be able to conclude that any observed shift is due 

to random errors. Thus, while a systematic drift towards specific orientations might be 

possible, the shift in representation reported here is unrelated to it.  

Serial dependence, the systematic attraction of remembered features towards 

previously presented feature values (Fischer & Whitney, 2014), may be another non-
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random contributor to drift in WM. It seems to be a robust phenomenon (Kiyonaga, 

Scimeca, Bliss, & Whitney, 2017), and was also present in the present study (not shown). 

While we did not explicitly control for it in our analyses, we did not find evidence that 

the observed shift at the second impulse was driven by serial dependence (not shown). 

However, given the previous report of increase of serial dependence magnitude for 

longer WM maintenance periods (Bliss, Sun, & D’Esposito, 2017), it is nevertheless 

plausible that current WM representations may drift towards previous perception, but 

that its magnitude is too small to be detectable with EEG. 

How can a drifting WM code be reconciled by “silent” WM accounts (Miller et al., 

2018; Stokes, 2015), where the WM-content specific code is maintained in transient 

connectivity changes in the WM network that decay over time and are periodically 

refreshed by short bursts of activity? While it is not theoretically impossible that the 

state-dependent neural impulse response of such a decaying synaptic WM network 

results in a shifted WM-code (as observed in the present study), a more intuitive 

prediction of a decaying WM network would be a broader WM code, that does not 

predict the direction of report error (Barrouillet & Camos, 2001). Conversely, while the 

temporary connectivity changes of the memorized WM item may indeed slowly dissolve 

and become coarser, periodic activity bursts (Lundqvist et al., 2016) may keep this to a 

minimum, by periodically reinstating a sharp representation. However, since this 

refreshing depends on the read-out of a coarse representation, the resulting 

representation may be slightly wrong and thus shifted. This interplay between decaying 

silent WM-states that are readout and refreshed by active WM-states thus also predicts 

a drifting WM code, without depending on an unbroken chain of persistent neural 

activity. 
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The short-term maintenance and manipulation of information to guide behaviour 

without its perceptual counterpart in the environment is a fundamental ability of the 

(human) brain. Finding its neural correlate has been a major challenge in cognitive 

neuroscience ever since the first WM modulated neurons have been recorded in monkey 

PFC almost 50 years ago (Fuster & Alexander, 1971). Until now, the common approach 

to research the neural correlate of WM has been to look for neural activity that spans 

the maintenance period in WM tasks that in some way reflects WM task conditions or 

WM content. The assumption has been that persistent neural activity enables the short-

term maintenance of information, given numerous confirmatory observations, but also 

due to an implicit necessity of neuroimaging: measurable neural activity is required for 

research that employs neuroimaging. Finding no neural activity of WM is essentially a 

null result and difficult to interpret.  

More recently however, the idea that WM might not be solely reliant on an 

unbroken chain of neural activity has gained traction. Numerous studies have reported 

that unprioritized WM content elicits no or little measurable neural activity (Larocque et 

al., 2014; Lewis-Peacock et al., 2011; Watanabe & Funahashi, 2014), suggesting WM 

delay activity reflects the focus of attention within WM, but not the content per se. 

Furthermore, it has been suggested that persistent WM delay activity is an artefact of 

trial averaging and that maintenance is actually mediated by short-lived activity bursts 

interleaved by activity-silent periods (Lundqvist et al., 2016), which are bridged via short-

term connectivity-changes (Mongillo et al., 2008; Stokes, 2015). 

For this thesis, it was hypothesized that the neural response to external stimulation 

is an interaction between the input and the current state of the network, analogous to 

echolocation where the echo reflects the stimulation as well as the hidden structures. 

This thesis explicitly tested this hypothesis and exploited its functionality to study WM 

states. Across several experiments it is shown that instead of relying on measurable WM 

delay activity, the state-dependent impulse response to external stimulation can be used 

to infer (hidden) WM states by taking advantage of the spatially rich EEG signal. 

Chapter-wise summary of main findings 

Chapter 2 highlights the implication of a study demonstrating that MEG actually 

contains rich spatial information origination from orientation columns in V1 (Cichy et 

al., 2015). This implies that MEG is a powerful neuroimaging tools for multivariate-

pattern analysis, an analysis that takes advantage of systematic activity patterns, and until 

relatively recently almost exclusively used in fMRI research. While the spatial ambiguity 

of MEG remains, the signals are nevertheless spatially rich in that even neural activity 

patterns originating from small brain areas result in unique activity patterns across the 

scalp. It has been shown that the same may apply to EEG, which is in an almost equally 

powerful neuroimaging tool for multivariate analyses as MEG (Cichy & Pantazis, 2017). 

All following experimental chapters take advantage of the rich EEG signal, and 7 
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demonstrate that even objects within the same category (i.e. orientations) can be decoded 

with high temporal resolution. 

Chapter 3 not only demonstrates for the first time that EEG is sensitive enough to 

decode randomly orientated visual gratings but is also the first proof of principle of the 

impulse approach. Using time-point-by-time-point decoding analysis of the EEG signal 

from posterior channels, it is shown that the recorded EEG signal distinguishes between 

visually presented, randomly orientated gratings. Furthermore, the presentation of a 

neutral “impulse” stimulus about 1 second later evokes a neural signal that also 

distinguishes between orientations, providing evidence for the hypothesis that that the 

neural impulse response reflects that current state of the network, in this case the imprint 

of the previously presented grating. 

It must be noted that these outcomes could not establish if the orientation-specific 

impulse response is indeed a reflection of WM maintenance, or a neural afterimage of 

stimulation history. Indeed, the original proposition suggests that any neural activity 

leaves behind a synaptic trace in the connectivity pattern (Buonomano & Maass, 2009) 

and makes no WM-specific predictions. This was based on findings in cat visual cortex 

where the presentation of visual information resulted in a neural activity that reflected 

both current and previous visual stimulation (Nikolic, Haeusler, Singer, & Maass, 2007). 

Since the cats used in that study were anaesthetised during neural recording, one can 

hardly speak of a WM-dependent neural response.  

Chapter 4 further explores and extends the findings of chapter 3, and shows with 

a retro-cue design that the impulse response is in fact specific to WM content, and does 

not reflect stimulation history in general. This suggests that irrelevant information can 

be removed from the WM state, leaving no detectable trace in the impulse response. In 

an additional experiment, chapter 4 also shows that the impulse response reflects both 

attended and unattended WM content, providing evidence that the WM states codes all 

relevant information, dissociating it from attentional processes, and thus showing that 

the WM-dependent impulse is not dependent on measurable delay activity mediated by 

attention. In both experiments trial-wise decodability of the relevant WM item from the 

impulse response predicted the quality of behavioural recall.  

Chapter 5 shows that the impulse approach, demonstrated in the previous chapters 

using visual stimuli, is also applicable in the auditory domain. Specifically, a neutral 

auditory stimulus presented during the delay period of an auditory WM tasks resulted in 

an auditory WM-dependent neural response. This indirectly implicates the auditory 

cortex in the maintenance of auditory tones in the same way the previously observed 

visual impulse response implicates the visual cortex, and providing evidence for the 

involvement of sensory processing areas in the maintenance of information in WM 

(Christophel et al., 2017; Kumar et al., 2016; Serences, 2016). It is furthermore shown 

that the cross-modal (i.e., auditory) impulse response during visual WM maintenance is 

content-unspecific, suggesting that the visual WM network is separated from auditory 

processing areas and that a bottom-up auditory response does not perturb it. However, 

the neural impulse response to visual stimulation during auditory WM maintenance is 
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content-specific, suggesting some involvement of the visual cortex during auditory 

maintenance, either directly (through visualization), or indirectly (through content-

specific connectivity with the auditory WM network).   

Chapter 6 uses the impulse approach as a tool to investigate the relationship 

between the neural representation of WM content and WM recall. More specifically, it 

provides neural imaging evidence to the proposal that the neural representations of 

continuous WM items (for example orientations or locations) randomly drift along the 

item representation over time (Schneegans & Bays, 2018). The impulse response 

revealed a shift of the neural representation of an orientation maintained in WM towards 

the end of the trial that predicted small behavioural variations during recall. Additionally 

it was found that the neural representation of orientations in WM remained stable across 

the delay period, as evidenced by robust cross-generalization between impulses 

presented at different time-points during the maintenance period, even though the 

neural responses to the impulses were highly different. This suggests that the coding 

scheme remains stable, despite time-varying neural dynamics (Murray et al., 2017).  

Neural impulse-response is WM-dependent 

The experimental chapters of this thesis (chapters 3 to 6) provide evidence that the 

neural impulse response to irrelevant, external sensory stimuli contains information 

about WM content. Chapter 3 provides evidence that this effect is time-locked to the 

onset of the impulse stimulus, and thus cannot be explained by the temporal expectation 

of the impulse, which could have resulted in a pre-activation of the WM item (Nobre et 

al., 2007; Stokes et al., 2009). In other words, the reported results suggest that it is indeed 

the neural response to exogenous stimulation, and not an endogenous reactivation of 

the WM network. Chapter 4 furthermore shows that this WM-dependent impulse 

response is not reliant on measurable WM-related delay activity, by demonstrating that 

even unattended WM content, previously shown not to be measurable with conventional 

neuroimaging techniques (LaRocque et al., 2012; Lewis-Peacock et al., 2011; Lewis-

Peacock & Postle, 2012), is contained in the impulse response. This thesis thus provides 

evidence for a key prediction made by the connectivity-dependent WM account 

(Mongillo et al., 2008), namely that information in WM can be maintained in a hidden, 

activity-silent neural state (Stokes, 2015) that may be mediated by short-term synaptic 

plasticity (Zucker & Regehr, 2002), and which can be read out from the state-dependent 

impulse-response (Buonomano & Maass, 2009). By presenting a fixed, task-irrelevant 

impulse stimulus in the delay periods of WM tasks, this thesis confirms that the resulting 

neural impulse-response contains information about the current state of the WM 

network (Fig. 7.1).  

7 



General Discussion 
 

138 
 

Figure 7.1. Figure 7.1. Figure 7.1. Figure 7.1. The neural response to 

external stimulation to the silent WM-

network is an interaction between the 

input properties and the current state 

of the network. 

 

 

Within the activity-silent WM framework, item-specific delay activity only reflects 

the focus of attention towards specific information in WM, and not WM content per se. 

To maintain multiple items in WM, activity states need to periodically refresh the 

transient connectivity patterns of each item in the WM network (Bahramisharif, Jensen, 

Jacobs, & Lisman, 2018; Lundqvist et al., 2016). Only a single item may be maintained 

in a measurable, active neural state at any one time and unattended information could be 

maintained in an activity-silent state that does not elicit neural delay activity (Chapter 4). 

The neural impulse response during WM maintenance may thus provide a more 

complete picture of the current state of the WM network, than measuring endogenous 

delay activity alone. 

It has been found that retro-cues can refocus attention to a previously unattended 

item in WM, transforming it from a silent to an active state (Lewis-Peacock & Postle, 

2012; Sprague et al., 2016). Similarly, it was found that the neural representation of  

unattended WM content can seemingly be transformed to an active neural state through 

a targeted TMS pulse with a corresponding behavioural effect (Rose et al., 2016; Zokaei, 

Manohar, Husain, & Feredoes, 2014). In contrast to those findings, no evidence of either 

a beneficial or a detrimental effect on behaviour was currently found, nor did the impulse 

result in a clear internal attentional shift towards the unattended item (Chapter 4). A 

recent WM model that incorporates rapid plasticity demonstrated that while strong 

network stimulation disrupts attention-related neural activity, which affects WM recall, 

weak stimulation does not, though it nevertheless results in a WM-dependent impulse 

response (Manohar, Zokaei, Fallon, Vogels, & Husain, 2019). The passively viewed 

sensory impulse stimuli used in this thesis might not have been strong enough to disrupt 

or change the WM network and should thus not be interpreted as an actual 

transformation of WM states, but rather as the automatic neural “echo”, reflecting both 

input and neural structure (Buonomano & Maass, 2009; Sugase-Miyamoto et al., 2008).  

Orientations (Chapters 3-6) and the frequencies of pure tones (Chapter 5) were 

decodable during both perception and from the impulse responses during maintenance. 

And while both encoding and maintenance of orientations and tonal frequencies seem 

to be parametric (Chapter 4-6), providing evidence for a continuous population code 

(Ester, Serences, & Awh, 2009; Hubel & Wiesel, 1962; Uluç et al., 2018), no evidence 

for an overlap of the population code during perception and maintenance (as revealed 

by the impulse response) was found (Chapters 3-5). Information encoding and 
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maintenance are thus seemingly accomplished by qualitatively different coding schemes, 

suggesting that information maintenance is not a literal preservation of stimulation 

history, but rather a reformatted code that best reflects the current task demands and 

affords easy readout during recall (Myers et al., 2017). Stimulus encoding is highly 

dynamic itself (Chapter 3 & Chapter 4) (Cichy, Pantazis, & Oliva, 2014), possibly 

reflecting the rapid reformatting of the stimulus into a mnemonic code. However, the 

nature of the impulse stimulus might itself (and likely does) influence the neural impulse 

response, resulting in a non-linear interaction between the network and the impulse 

properties (Fig. 7.1.). The impulse response is thus not a linear increase of activity across 

the network, making comparisons between neural responses elicited by different stimuli 

difficult to compare. Indeed, while not explicitly tested in this thesis, it is likely that the 

impulse approach would not have worked if impulse stimuli had varied randomly across 

trials. 

Stable WM coding scheme in a dynamic WM network 

A fundamental property of the neural dynamics in a neural network with short-term 

synaptic plasticity is hysteresis. This implies that each neural activity state leaves behind 

a neural trace in the connectivity patterns that in turn influences the activity patterns of 

subsequent activity states (Buonomano & Maass, 2009; Stokes, 2015), resulting in highly 

dynamic activation patterns that change over time. In Chapter 6 it was found that while 

the WM coding scheme remained stable over time, the time-specific impulse responses 

were nevertheless highly different, suggesting that a dynamic sub-component in the 

network changed over time, while maintaining a stable coding scheme. Indeed, these 

low-dimensional dynamics were even detectible in a reanalysis of Chapter 3 (presented 

in Chapter 6) at an extremely short time-scale. That is, the WM network changed within 

a time-span of 60 ms during the delay period, resulting in distinctly different impulse 

responses. Thus, it seems that the proposed network dynamics, mediated by the interplay 

of short-term synaptic plasticity and neural activity, do not necessarily affect the WM 

coding scheme. A stable coding scheme simplifies readout by downstream systems, 

rendering a time-specific decoder nonessential (Druckmann & Chklovskii, 2012). The 

time-changing dynamics seem occur in an independent subspace of the WM network 

(Murray et al., 2017). While they could simply be an inevitable consequence of the 

reciprocity between synaptic changes and neural activity, they could also be an efficient 

way to code the passage of time (Buonomano & Maass, 2009). 

While stable WM coding schemes have also been reported elsewhere  (Murray et 

al., 2017; Spaak et al., 2017), WM-specific delay activity has also been found to be highly 

dynamic (Meyers et al., 2008; Stokes et al., 2013). It has been proposed that more 

complex WM tasks may be more likely to result in dynamic coding schemes (Meyers, 

2018), possibly due to a longer and multifaceted neural transformation from a stimulus 

code to a more abstract WM code (Myers et al., 2017), whereas the maintenance of 

simple sensory features (like orientations used in this thesis) can be maintained in a stable 
7 
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coding scheme, as observed in Chapter 6. Future studies should systematically test the 

relationship between neural dynamics and item and task complexity. 

Multiple WM states 

The remarkable retro-cue effect in WM, first reported 16 years ago (Griffin & Nobre, 

2003), highlights that WM content is not simply a fixed copy of the encoding stage, but 

that the internal focus of attention can selectively enhance, protect, transform, and 

retrieve individual pieces of information in WM, resulting in a seemingly “privileged” 

state for attended information in WM (Makovski & Pertzov, 2015; Souza & Oberauer, 

2016; Souza, Rerko, & Oberauer, 2016). The neural signature of orienting attention 

towards specific information in WM has been found to be very similar to attentional 

orienting in external space, as both are accompanied by alpha power modulations that 

track the locations of attended internal WM representations and external stimuli (Foster, 

Sutterer, Serences, Vogel, & Awh, 2015; Samaha, Sprague, & Postle, 2016). In Chapter 

3 the retro-cue resulted in a marked reduction in alpha power contralateral to the 

previously presented location of the cued item, providing evidence for an internal 

orienting and selection of the cued item in WM. While the alpha lateralization was 

maintained until the end of the trial, it peaked at roughly 500 ms after cue presentation, 

consistent with other reports of transient alpha lateralization after cue presentation 

(Wallis, Stokes, Cousijn, Woolrich, & Nobre, 2015), and behavioural studies suggesting 

that the selecting and transforming a WM item into a privileged attended state takes 

about 400 ms (Souza, Rerko, & Oberauer, 2014). Since the retro-cue in Chapter 3 was 

100% valid, participants had no reason to maintain the uncued item, and could therefore 

drop it. Indeed, the subsequent impulse response did not contain any information about 

the uncued item. Considering the short time span between cue and impulse (1 sec), the 

cue may not only have directed attention towards the cued item, but also resulted in an 

active forgetting and removal of the uncued item from the hidden state (Oberauer & 

Lin, 2017).  

It has been suggested that alpha lateralization does not necessarily reflect the 

continuous focus of attention in WM, but rather the transient selection and 

transformation of an item to an attended state (Souza & Oberauer, 2016), whereas item-

related neural activity does reflect the attended but not unattended WM item (Larocque 

et al., 2014). In the second experiment in Chapter 3, the attentional selection and 

switching was indeed accompanied by corresponding transient alpha power lateralization 

modulations, providing neurophysiological evidence that a previously unattended item 

can be reprioritized in anticipation of the upcoming test probe (Ede et al., 2016), and 

highlighting the flexibility of moving WM items in and out of distinct WM states 

depending on context (Zokaei, Ning, Manohar, Feredoes, & Husain, 2014). Notably, 

these alpha modulations were relatively short-lived, whereas the item-specific delay 

activity of the early attended item was stable across the delay, thus dissociating attentional 

selection from active maintenance. Additionally, the impulse response provided evidence 

that unattended information is nevertheless still present in the hidden state. 
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As mentioned before, item-specific delay activity may only be present for attended 

WM content (Larocque et al., 2014; van Loon et al., 2018; K. Watanabe & Funahashi, 

2014). This activity may not only enable the a heightened readiness to recall the attended 

item in anticipation of the test probe, reflected in the ramp up of item-specific activity 

towards the end of the maintenance delay (K. Watanabe & Funahashi, 2007), but also a 

fundamental reconfiguration of the WM network to meet changing task demands, and a 

transformation of the neural representation of WM content into a neural code that can 

be most efficiently read out and compared to task-specific probes (Myers et al., 2017). A 

recent study found that a biologically sensible recurrent neural network with short-term 

synaptic plasticity can maintain items in WM with little to no neural activity, but only 

when no task related item manipulation is required, which in turn increases WM delay 

activity as a function of required manipulation (Masse, Yang, Song, Wang, & Freedman, 

2019). Unattended information may thus more faithfully represent the sensory 

stimulation history left behind in the neural network, whereas attended information is 

transformed into a qualitatively different neural state. Indeed, a reanalysis of experiment 

2 in Chapter 4 found no evidence that the neural code of an unattended item cross-

generalised with the neural code once it had been attended again (Suppl. fig. 7.1B), 

suggesting that the attended item was transformed into a fundamentally different neural 

code. Note that the temporal separation of the impulses perturbing the item when it is 

unattended and attended in Chapter 4 does make any firm conclusions about the 

attentional modulation of the WM code problematic, as time itself may result in a 

dynamically changing WM code (Meyers, 2018). However, evidence against this 

interpretation comes from Chapter 6, where the coding scheme was found to be stable 

over time when no attentional modulation was required.  

It has recently been reported that attended (currently relevant) and unattended 

(relevant later) information may not necessarily be coded in different, but opposite 

schemes, resulting in negative cross-generalization between their neural representations 

(van Loon et al., 2018). This suggests that the same neural networks are used to store 

currently and prospectively relevant items, and that the difference arise from opposing 

neural patterns.  No negative cross-generalization was evident in the reanalysis of 

Chapter 4 (Suppl. fig. 7.1B). This discrepancy could be attributed to different task-

evoked neural responses (search array versus irrelevant impulse stimulus) and 

measurements (BOLD versus EEG). More research is needed to establish differences 

between the neural representations of attended and unattended information. 

The involvement of sensory processing areas in WM 

maintenance 

The impulse approach applied in this thesis assumes that the bottom-up neural response 

elicited by an irrelevant and predictable sensory stimulus will somehow interact with the 

very neural network that contains the WM content, which seems to be the case as 

reported in this thesis. Is this evidence that sensory processing areas are involved in WM 
7 
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maintenance? According to the sensorimotor-recruitment account, the very brain 

regions involved in the perception of sensory information are also involved in their 

short-term maintenance (Postle, 2016; Scimeca et al., 2018; Serences, 2016), and while 

the evidence of  WM specific delay activity in corresponding sensory cortices is abundant 

for different sensory modalities (Gottlieb, Vaadia, & Abeles, 1989; Harrison & Tong, 

2009; Kumar et al., 2016; Zhou & Fuster, 1996) it is nevertheless unclear if, in the case 

of visual WM, the visual cortex is actually necessary for visual maintenance (Xu, 2018). 

Indeed, it has been shown that the presence of distractor stimuli can remove the visual 

code from early visual cortex while maintaining it in IPS (Bettencourt & Xu, 2016). These 

results can  be interpreted as evidence for changing maintenance strategies (visual or not 

visual when distractors could interfere with the visual code (Pearson & Keogh, 2019). 

WM-related research with non-human primates is heavily dominated by single unit 

recordings from the PFC, with abundant evidence of WM-related activity in that area 

(Sreenivasan et al., 2014). However, these discrepancies also highlight the general 

problem of solely relying on measurable activity to test for the involvement of specific 

cortical areas in WM, as the absence of WM-related activity is essentially a null result. 

The impulse approach my help to address this issue. 

While attention may result in measurable WM-dependent neural patterns in some 

brain regions, silent WM-dependent connectivity changes may present in others. This 

thesis provides evidence that the bottom up neural signal interacts with the WM network 

of both visual (Chapters 3-6) and auditory (Chapter 5) information. A searchlight analysis 

in Chapter 6 (and reanalysis of Chapter 4, see Suppl. fig. 7.1A) highlights that posterior 

areas contribute most to the decoding of visual WM content, suggesting that the WM 

network the visual impulse interacts with is indeed in the visual cortex. Note that the 

decoding topography is less clear and seemingly more distributed for unattended WM 

content (Suppl. fig. 7.1A), which could reflect that unattended visual information is 

maintained in a distinct format in parietal cortex and not in the visual cortex 

(Christophel, Iamshchinina, Yan, Allefeld, & Haynes, 2018). However, the limited spatial 

resolution of EEG and the inverse problem that is associated with localising EEG signals 

(Grech et al., 2008) make any firm conclusion about the involved brain regions 

problematic. Nevertheless, it is still relatively safe to assert that the decoding topography 

shows no evidence of decoding in frontal electrodes, making any involvement of the 

PFC in the impulse response effects reported in this thesis unlikely. This is at odds with 

the one other report of a WM-dependent neural impulse response (Stokes et al., 2013). 

Here, monkeys performed a delay paired-associate recognition task while activity from 

PFC was recorded after learning arbitrary associations between specific visual stimuli. 

Each trial began with the cue stimulus that was associated with a specific target stimulus 

and the monkeys were required to look at the target stimulus, which was presented after 

a random number of non-targets. It was found that the presentation of neutral non-

targets not only resulted in a marked, but short-lived overall increase in neural activity in 

PFC, but also in an accompanying transient increase in decoding accuracy of the cue. 

This is similar to the results in this thesis in that the neural response to a neutral, 

uninformative visual stimulus contained information about an item held in WM.  
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So why was no involvement of PFC evident in this thesis? There are several 

possible reasons for this discrepancy. First, decoding from frontal regions seems 

generally more difficult with non-invasive neuroimaging in humans, suggested by the 

abundance of fMRI research finding visual WM codes in visual and parietal cortices but 

rarely in PFC (Serences, 2016), which can be attributed to the heterogeneity of PFC 

neurons (Fusi et al., 2016; Manohar et al., 2019). Secondly, the nature of the task in 

Stokes et al. (2013) required monkeys to encode the neutral non-target stimulus and 

actively compare it to the internally held target stimulus to be able to decide whether to 

respond. It is therefore possible that the increase in cue decoding was driven by 

endogenous neural activity, and not an exogenously driven impulse-response. In 

contrast, the impulse stimuli in this thesis were always the same, irrelevant, and 

predictable (with the exception of Chapter 3), and thus did not need to be fully 

processed. A bottom-up neural response may thus not be enough to interact with the 

higher order WM network in PFC, and may only do so with low-level WM codes in 

sensory cortex. 

Chapter 5 furthermore provides evidence that visual information may be 

maintained in a sensory-specific network, since an auditory bottom-up neural response 

did not contain information about the currently maintained visual WM content. The 

neural response to auditory stimulation thus does not seem to reach the representation 

of visual WM content. This suggests that visual information is maintained in a closed 

system, and while auditory stimulation has been found to excite neurons in the visual 

cortex (Martuzzi et al., 2007), it might not be enough to result in a measurable, WM-

specific response. In contrast, both visual and auditory stimulation was found to result 

in neural responses that contained information about auditory WM content, providing 

evidence for cross-sensory involvement in the auditory WM network. On the one hand, 

this could mean direct involvement of the visual cortex in auditory maintenance; on the 

other hand, the visual cortex may provide an access path to the neural representation of 

auditory representations elsewhere. 

In sum, the fact that the bottom-up neural response contains information about 

current WM information, implicates the sensory processing areas in WM maintenance. 

However, it is unclear if they are directly involved, or merely provide access paths to the 

WM representation elsewhere, resulting in state-dependent responses. Targeted neural 

stimulation, in conjunction with high-resolution neuroimaging are needed to further 

chart the brain areas involved in connectivity-dependent WM maintenance. 

Evidence for “silent” WM? 

This thesis highlights that WM delay activity may not be the only neural mechanism 

underlying WM maintenance, and provides evidence for the effectiveness of a relatively 

simple approach to reveal otherwise hidden WM states, by measuring the WM-

dependent neural impulse response. These findings are in line with previous predictions 

of connectivity-dependent, activity-silent WM (Buonomano & Maass, 2009; Mongillo et 
7 
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al., 2008; Sugase-Miyamoto et al., 2008), and several recent WM models have 

implemented transient connectivity-changes as a prominent feature (Manohar et al., 

2019; Masse et al., 2019; Miller et al., 2018; Stokes, 2015). Nevertheless, the impulse-

approach is by no means direct evidence for “silent” WM maintenance. Reports of no 

evidence for WM-related delay activity, both in this thesis (Chapter 4) and in other 

studies (Lewis-Peacock & Postle, 2012; Lundqvist et al., 2016; Rose et al., 2016; Sprague 

et al., 2016) are essentially null results. Non-invasive recording techniques might not be 

sensitive enough to detect subtle neural activity states, whereas invasive recordings are 

limited by the number of neurons and brain areas that can be sampled simultaneously. 

Alternative possibilities for the here reported impulse-response need to be appreciated. 

Note that these are not necessarily mutually exclusive. 

1. Distinct WM states, which are maintained through low-level, reverberating 

persistent neural activity, could also elicit a state-dependent neural response 

given a non-linear interaction with the impulse stimulus. For example, the phase 

and power of neural oscillations have been found to affect stimulus evoked 

neural responses (Iemi et al., 2019). 

2. The impulse stimulus could result in a decrease in neural background noise 

(Churchland et al., 2010), exposing the WM-specific delay activity, making it 

easier to measure. 

3. The impulse stimulus could phase-reset WM-dependent neural oscillations 

(Hanslmayr et al., 2007; Roux & Uhlhaas, 2014; Sauseng et al., 2007) and thus 

realign oscillations that are difficult to measure to a specific time-point that is 

more easily detectible in the averaged EEG signal. 

Given these possibilities, as well as the dominance of attractor models based on 

persistent delay in WM, a contentious debate about whether or not WM maintenance 

depends on persistent neural activity has unfolded (Constantinidis et al., 2018; 

Lundqvist, Herman, & Miller, 2018). In fact, a recent fMRI study tested a very large 

number of participants (n=87) to explicitly test whether or not unattended visual WM 

content can be decoded from the BOLD delay activity (Christophel et al., 2018). 

Interestingly, and in contrast to previously reported null findings, both the attended and 

the unattended item could be robustly decoded from both the frontal eye-fields and IPS, 

while only the attended item could be decoded from the visual cortex, providing 

convincing evidence that unattended visual information are not necessarily completely 

silent, but simply more difficult to detect due to abstract, non-visual codes in non-visual 

areas. Note however, that connectivity-dependent WM does not assert WM maintenance 

to be completely silent, as periodic activity states are necessary to reinstate the decaying 

short-term synaptic changes, which may only last for ~2s (Mongillo et al., 2008; Zucker 

& Regehr, 2002). Given the long delay period and analysis window (6s) in Christophel 

et al. (2018) the unattended item may have had to be refreshed several times, resulting 

in measurable activity in their high-powered experimental design.  
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However, it is clear that it is near impossible to find convincing evidence for or 

against “silent” WM with neuroimaging that rely on neural activity. Measures of short-

term connectivity changes need to be employed to provide direct evidence for 

connectivity-dependent WM (Fujisawa et al., 2008). The impulse-approach is 

nonetheless a useful tool to explore non-spatial and non-categorical WM states that are 

otherwise difficult to measure, in particular in EEG.  
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Appendix 
 

Supplemental fSupplemental fSupplemental fSupplemental figure igure igure igure 4.14.14.14.1.... Testing the relationship between alpha-lateralization and 

item decoding after the first impulse in Experiment 2. Both attended and unattended 

memory items were decodable after the first impulse in Experiment 2; however, it 

remains possible that participants sometimes attended to the less-relevant item, 

contributing to decoding on some trials. To consider this possibility, we test whether 

the impulse-specific WM item decoding after impulse 1 presentation covaries with 

trial-wise fluctuations in spatial attention. Spatial attention was indexed by alpha-

power lateralization relative to the location of the early-tested item of each time-

point (left, also see Figure 4C and corresponding results), and trial-wise item 

decodability was estimated 100-500ms after impulse 1 onset (middle panel). The 

correlation time-course (right), where each time-point represents the mean 

correlation of the averaged item decoding (100 – 500 ms after impulse 1) with the 

alpha-lateralization of that time-point, shows no evidence for a relationship between 

item decoding and alpha-lateralization for any time-point (permutation test, n = 19, 

early-tested item: all p > 0.058; late-tested item: all p > 0.148, uncorrected). 

Therefore, we find no evidence that the impulse-response varies with the focus of 

attention, even on a trial-wise basis. Error shadings are 95% C.I. of the mean. Circles 

and error bars superimposed on the boxplots represent mean and 95% C.I. of the 

mean. 
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Supplemental fSupplemental fSupplemental fSupplemental figure igure igure igure 6.1. 6.1. 6.1. 6.1. Report-bias of orientations. Participants showed a bias, 

exaggerating the tilt of oblique orientations, manifesting itself as a repulsion form the 

cardinal axes (0 and 90 degrees; left), similar to previous reports (Pratte et al., 2017). 

To ensure an    unbiased estimate of a possible shift in our analysis, and to isolate 

random from systematic errors, the report bias was removed by subtracting the 

median error within 11.25 degree orientation bins (middle). By removing orientation-

specific error, the resulting error distribution is narrower (right). Clockwise and 

counter-clockwise reports were defined as positive and negative reports relative to 

this “adjusted”, unbiased, report error.    

    



 

169 
 

Supplemental fSupplemental fSupplemental fSupplemental figure igure igure igure 6.2. 6.2. 6.2. 6.2. Cross-generalization of coding scheme between impulse 

onsets in reanalyses of Wolff et al. (2015). (A) (A) (A) (A) Visualization of orientation and 

impulse-onset code in state-space. The third dimension discriminates between 

impulse-onsets. The first and second dimensions code the orientation space in both 

impulses. (B) (B) (B) (B) Trial-wise accuracy (%) of impulse-onset decoding. (C) (C) (C) (C) Orientation 

decoding within each impulse-onset (blue) and orientation code cross-generalizing 

between impulse-onsets (green). Error shadings and error bars are 95 % C.I. of the 

mean. Centre lines of boxplots indicate the median; box outlines show 25th and 75th 

percentiles, and whiskers indicate 1.5x the interquartile range. Extreme values are 

shown separately (dots). Asterisks indicate significant decoding accuracies or cross-

generalization (p < 0.05). 

  



 

170 
 

Supplemental fSupplemental fSupplemental fSupplemental figure igure igure igure 6.3. 6.3. 6.3. 6.3. Within impulse training and testing to estimate drift. (A) (A) (A) (A) 

Response-dependent averaging of trial-wise tuning curves (Fig. 6.6A). Shift towards 

response: Impulse 1: p = 0.492; Impulse 2: p = 0.022, one-sided. (B) (B) (B) (B) Response-

dependent training and testing (Fig. 6.7A). Shift towards response: Impulse 1: p = 

0.545; Impulse 2: p = 0.009, one-sided. Same convention as Fig. 6.6B-C and Fig. 6.7B-

C.  
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Supplemental figure 7.1Supplemental figure 7.1Supplemental figure 7.1Supplemental figure 7.1. . . . Reanalyses of Chapter 3. (A)(A)(A)(A) Searchlight analysis of decoding 

topography using each channel, and its 2 closest neighbours, separately (as in 

Chapter 6). (B) (B) (B) (B) Decoding of tested-late item in experiment 2 in Chapter 3 when it is 

unattended at impulse 1, attended at impulse 2, and the cross-generalization 

between impulse 1 and impulse 2 (training on 1, testing on 2 , and vice versa). Time-

window was taken from 100 to 400 ms relative to impulse onset, using the dynamic 

decoding approach used in Chapters 5 and 6. 
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Nederlandse samenvatting 

translated from English by  

Jasper Hajonides van der Meulen 

Het onthouden en transformeren van informatie zonder perceptuele input, om voor te 

bereiden op toekomstige acties, is een fundamentele eigenschap van het (menselijke) 

brein. Sinds 1971, toen Fuster & Alexander (1971) de eerste werkgeheugen (WG) cellen 

beschreven, is er een voordurende discussie over de neurale basis van werkgeheugen en 

hoe informatie precies opgeslagen wordt. In de gebruikelijke onderzoeksopzetten wordt 

gekeken hoe de WG condities of WG inhoud gerepresenteerd worden in de 

geheugenperiode. Het is de consensus geweest dat onafgebroken neurale activiteit de 

informatie ‘online’ houdt. Dit werd geconcludeerd aan de hand van een hoeveelheid 

studies die dit suggereert maar ook gezien het feit dat meetbare neurale activiteit 

noodzakelijk is voor hersenscan onderzoek; het vinden van geen neurale activiteit tijdens 

WG is praktisch gezien een nul resultaat en is lastig te interpreteren.   

Recentelijk is echter het idee dat WG niet afhankelijk is van een onaangebroken 

golf van neurale activiteit steeds meer populair geworden. Studies hebben aangetoond 

dat als aandacht niet naar de WG objecten gericht wordt er weinig tot geen neurale 

activiteit te meten is (Larocque et al., 2014; Lewis-Peacock et al., 2011; Watanabe & 

Funahashi, 2014) wat suggereert dat WG alleen het actief herhalen van informatie 

reflecteert. Verder is er gesuggereerd dat schijnbaar onafgebroken WG activiteit tijdens 

een geheugen periode een artefact is van het middelen over verschillende repetities en 

dat WG in werkelijkheid wordt gemoduleerd door korte vlagen van activiteit afgewisseld 

door activiteits-loze perioden (Lundqvist et al., 2016), die overbrugt worden door 

tijdelijke veranderingen in de connectiviteit tussen neuronen (Mongillo et al., 2008; 

Stokes, 2015). 

In deze doctorale scriptie wordt het gebruikelijke beeld van onafgebroken neurale 

activiteit tijdens de geheugenperiode getest. De hypothese is dat de neurale reactie een 

interactie is op externe stimulatie en de huidige staat van het netwerk. Dit is te vergelijken 

met een sonarsysteem waar de echo de stimulatie van verborgen structuren teweeg 

brengt. In deze scriptie testen we deze hypothese en gebruiken we de methode om WG 

te onderzoeken. In verschillende studies wordt aangetoond dat de neurale ‘impuls’ 

reactie op een externe ‘ping’ gebruikt kan worden om verborgen WG herinneringen.  

Hoofdstuk 2 demonstreert dat magnetoencephalografie (MEG) rijke spatiele informatie 

bevat, wat de oriëntatie kolommen in de vroege visuele cortex betreft (Cichy et al., 2015). 

Dit impliceert dat MEG een belangrijke speler kan zijn  op het gebied van multivariate 

methoden die gebruik maken van het gehele spatiele patroon van activatie om ‘uit te 

lezen’ welke informatie op dat moment wordt waargenomen, verwerkt, of onthouden 

wordt in het brein. Dit laat zien dat zelfs informatie uit dezelfde kleine brein regio tot 
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een heel ander neuraal patroon kan leiden wanneer we activiteit meten over de gehele 

schedel. Hetzelfde geldt voor EEG, een bijna net zo robuuste multivariate techniek als 

MEG (Cichy & Pantazis, 2017).  

In hoofdstuk 3 wordt niet alleen aangetoond dat EEG daadwerkelijk sensitief is 

wanneer het komt tot het uitlezen van oriëntaties van zogenoemde Gabor patches maar 

het principe van een neurale ‘ping’ wordt voor het eerst beschreven. Door middel van 

tijdpunt-bij-tijdpunt analyses van het EEG signaal kan onderscheid gemaakt worden 

tussen verschillende oriëntaties van gepresenteerde Gabor gratings. Verder onthult de 

presentatie van  een neurale ‘impuls’ stimulus tijdens de geheugenperiode een neuraal 

signaal dat onderscheid maakt tussen de verschillende oriëntaties. Dit is bewijs voor de 

hypothese dat de neurale impuls de huidige staat van het WG netwerk representeert, in 

dit geval het nabeeld van de voorheen gepresenteerde oriëntatie.  

Hoofdstuk 4 is een uitbreiding op hoofdstuk 3 en laat in een retro-cue design zien 

dat de impuls daadwerkelijk geheugeninhoud laat zien. Dit suggereert dat irrelevante 

informatie verwijderd kan worden van werkgeheugen en geen herleidbaar spoor achter 

laten, wat de impuls betreft. In een tweede experiment laat hoofdstuk 4 zien dat zowel 

items in geheugen waar aandacht wel of niet op gericht wordt uitgelezen kunnen worden 

na een impuls. Dit levert bewijs voor de hypothese dat WG staat alle relevante informatie 

bevat, afhankelijk van aandacht. In beide experimenten van dit hoofdstuk voorspelde de 

trial-bij-trial uitleesbaarheid van WG inhoud na de impuls de precisie van de geheugen 

taak.  

Hoofdstuk 5 laat zien dat de impuls techniek ook toepasbaar is in het auditieve 

domein. Als een neutrale auditieve stimulus gepresenteerd wordt tijdens de geheugen 

periode resulteert dat in een neurale respons die de toon in geheugen reflecteert. Dit 

spiegelt de resultaten in het visuele domein en indirect impliceert dit dat de sensorische 

cortex betrokken zijn in het onthouden van informatie in WG (Christophel et al., 2017; 

Kumar et al., 2016; Serences, 2016). Verder wordt aangetoond dat een cross-modale 

(bijv. auditief) impuls tijdens visuele WG perioden niet inhoud specifiek is. Dit 

suggereert dat het visuele WG netwerk los staat van de brein regios die de auditieve 

informatie verwerken en dat bottom-up auditieve reacties het niet verstoren. Vice-versa 

is dit echter niet het geval; visuele gebieden zijn wel betrokken bij het herinneren van 

auditieve informatie. Dit kan direct zijn, door visualisatie, of indirect, door inhoud-

specifieke connectiviteit in het auditieve WG netwerk.  

Hoofdstuk 6 gebruikt de impuls aanpak om de relatie tussen neurale WG 

representatie en gedragsmatige variabele te onderzoeken. Dit levert neurofysiologisch 

bewijs voor de hypothese dat neurale representaties of continue WG concepten (bijv. 

oriëntaties of locaties) willekeurig variëren over tijd, wat resulteert in inaccurate 

gedragsmatige data. De impuls respons kon deze verschuiving van de neurale 

representatie van een oriëntatie in WG tegen het einde van de trial en de bijkomstige 

gedragsmatige reacties voorspellen. Verder werd gevonden dat het brein informatie 

contant representeert, zelfs wanneer de neurale reacties op de impulsen erg variëren over 



 

175 
 

de geheugenperiode. Dit suggereert dat de coding schemes stabiel zijn, ongeacht neurale 

dynamica die varieert over tijd (Murray et al., 2017).  

Kortom, deze thesis laat de bruikbaarheid zien van een relatief simple ‘ping’ 

aanpank om voorheen verborgen neurale WG staten te onderzoeken. 
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