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1 | INTRODUCTION

Typically an explanation of general genetic principles to lay persons
starts like: genes code for proteins. These proteins may have different
functions during different stages of life. Prenatally, a protein can influ-
ence cell differentiation and the basic embryonic patterning, while
postnatally the same protein can affect cell growth and other func-
tions (Ponder, 2001). A pathogenic variant in the gene coding for a
protein may thus lead to birth defects, either isolated or in a combina-
tion, for example, a (malformation) syndrome, but may also cause dis-
turbed control of cell growth, which may lead to (benign or malignant)
tumor growth (Table 1). This basic concept of pleiotropy forms the
background for lay persons to understand mechanisms explaining
tumor development if a malformation or malformation syndrome is
present.

A malformation syndrome and a tumor can co-occur in the same
person. In some syndromes virtually all affected individuals will
develop a tumor (e.g., basal cell carcinoma in Gorlin syndrome
[#109400]). Such syndromes, with a high expressivity for tumors, are
often indicated as tumor predisposition syndromes (TPS).> In other
syndromes the associated tumors occur not in all affected individuals,

but still more frequently than in the general population (e.g., Wilms

formation syndromes.

Raoul C. Hennekam?

One of the questions that arises frequently when caring for an individual with a mal-
formation syndrome, is whether some form of tumor surveillance is indicated. In
some syndromes there is a highly variable increased risk to develop tumors, while in
others this is not the case. The risks can be hard to predict and difficult to explain to
affected individuals and their families, and often also to caregivers. The queries arise
especially if syndrome causing mutations are also known to occur in tumors. It needs
insight in the mechanisms to understand and explain differences of tumor occur-
rence, and to offer optimal care to individuals with syndromes. Here we provide a

short overview of the major mechanisms of the control for tumor occurrences in mal-

cancer, CNVs, epigenetics, genetic compensation, mosaicism, tumor predisposition syndrome

tumor in Beckwith-Wiedemann syndrome [#130650]). Such syn-
dromes are often indicated as TPSs with reduced expressivity of the
tumors. In still other syndromes, tumor occurrence is not known to be
increased, notwithstanding the fact that somatic variants in the causa-
tive gene are frequently found in tumor DNA (e.g., Cornelia de Lange
syndrome [#122470] caused by germline NPBL variants, and acute
myeloid leukemia in which somatic NIPBL variants are present)
(Gorlin, 2004; Maas et al., 2016; Mazzola et al., 2019). The reasons
why in malformation syndromes tumors occur in such a highly variable
frequency is often unclear. Even though TPSs individually are infre-
quent disorders, as a group they form a significant cause of cancer in
children (Merks, Caron, & Hennekam, 2005; Zhang et al., 2015). They
offer insight into underlying mechanisms, they allow for better predic-
tion of tumor risks, and may have major consequences for surveillance
and care for individuals with these syndromes.

Here we provide a short review of the various genetic mecha-
nisms in germline and somatic tissue that may affect risks to develop
a tumor: differences in type and site of the variant within the gene,
difference in bi-allelic (homozygous or compound heterozygous) and
mono-allelic (heterozygous) occurrence of variants, difference in
timing of the occurrence of variants, differences in roles of variants

(cause or consequence), genetic compensation, epigenetic influences,

Am J Med Genet. 2020;1-12.
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as well as combinations of several of these mechanisms. Various
genetic mechanisms are summarized schematically in Figure 1. A com-
plete description of all mechanisms is not well possible in a single arti-
cle; therefore, we refer interested readers to publications dedicated to

the various mechanisms.

2 | METHODOLOGY

The pathogenesis of general tumor development has been reported in
such a vast number of publications that a systematic overview of the
total literature is impossible. Even a systematic overview of most sin-
gle mechanisms will have to deal with many thousands publications.
Therefore, the present manuscript is not the result of a systematic
review. Instead, it has been built on an idiosyncratic review that we
started ~10 years ago. This review has gradually been expanded, in
part due to emerging additional mechanisms reported in literature or
based on remarks from colleagues when discussing the topic. The pre-
sent manuscript is based on this review, to which some recent per-

spectives have been added.

3 | RESULTS
3.1 | Syndromes and tumors can have DNA-
variants differing in type and/or site within a gene

For some genes the type and location of variants have been demon-
strated to differ between the syndromic germline cases and the
somatic tumor cases. An example of this phenomenon is the develop-
mental gene FAT4. If the germline variants are found in the cadherin
repeat domain, this may lead to reduced activity of FAT4, causing a
syndrome characterized by intellectual disability, unusual face and, in
a subgroup, lymphatic dysplasia [#616006] (Alders et al., 2014; Zhang
et al., 2016). In cancer cells somatic variants can be found in the
cadherin domain but also in all other domains of FAT4, causing a dis-
turbed tumor suppressor function and contributing to several types of
tumors such as melanoma, pancreatic cancer and gastric cancer
(Zhang et al., 2016). The FAT4 germline variants found in the syn-
drome and those found in the tumors differ in type and site
(Table S1). We searched for other genes without overlap between
variants causing the syndrome and (somatic) variants detected in
tumors, but have been unable to find any. This may indicate that a
complete lack of overlap is an uncommon mechanism.

Variants differing in type and site within a gene can alter func-
tions of a protein in different ways: sometimes functions involved in
tumor development, sometimes completely different functions, and
thus leading to phenotypic heterogeneity. PTEN may serve as an
example: pathogenic variants in PTEN have been shown to work
through changes in conformation of PTEN and subsequent changes in
communication with other protein's inter- and intracellular pathways.
Typically, some variants disturb predominantly networks involved in

cancer development while other variants disturb predominantly

medical genetics I WILEY-L_*

networks involved in autism spectrum disorders (Smith, Thacker,
Seyfi, Cheng, & Eng, 2019). In addition, a single gene frequently pro-
duces slightly different variations of proteins (isoforms) due to alter-
native splicing. The functional effect of pathogenic variants in
different isoforms may differ, and therefore even per tissue
(Sonawane et al., 2017; Vitting-Seerup & Sandelin, 2017). Another
example of differences depending on the type of variants, are mis-
sense mutations in RET. These result in general in a mutant RET-
protein with a loss of function, and are associated with Hirschsprung
disease [#142623]. But localized RET missense mutations of specifi-
cally cysteine, cause a gain of function and are associated with the
development of various forms of cancer such as medullary thyroid
cancer and the TPS Multiple Endocrine Neoplasia type 2 [#171400;
#171300] (Edery et al., 1994; Mulligan et al., 1993).

Differences in site and nature of variants cannot be the only
mechanisms, as for other genes, germline variants causing syndromes
and somatic variants found in tumors are identical. For example, one
of the somatic variants in BCOR causing AML is c.2488_2489delAG
(Ng et al., 2018). This same variant can also cause oculo-facio-cardio-
dental (OFCD) syndrome [#300166], if present in the germline (Horn
et al., 2005). Still, AML or other types of cancer have not been
reported in OFCD cases harboring this germline variant, although thus

far the numbers are still small and follow-up is limited.

3.2 | Bi-allelic and mono-allelic variants

Typically, the phenotype resulting from homozygosity/compound het-
erozygosity or heterozygosity for a variant will differ. Bi-allelic vari-
ants of the tumor suppressor gene BRCA2 cause Fanconi anemia
[#605724], which gives an increased risk developmental anomalies
and childhood malignancies such as AML, Wilms tumor, neuroblas-
toma and brain tumors (Myers et al., 2012). Heterozygous germline
variants in the same BRCA2 confer an increased risk of breast, ovarian
and prostate cancer [#612555] but do not lead to an increased chance
of congenital anomalies (Kwiatkowski et al., 2020; Levy-Lahad &
Friedman, 2007). If in a tissue a heterozygous BRCA2 variant carrier a
second hit occurs (usually through LOH), this results in loss of func-
tion and the development of cancer (two-hit hypothesis) (Warren,
Lord, Masabanda, Griffin, & Ashworth, 2003). Parks and co-workers
have demonstrated that based on the two-hit hypothesis, rare
germline variants with somatic variants are likely causative for a larger
share of cancer occurrence than initially anticipated (Park, Supek, &
Lehner, 2018).

3.3 | Syndromes and tumors can differ due to
timing of variants

A variant can be present in a gene at the time of fertilization (germline
mutation) or can occur later on in a tissue (either prenatally or postna-
tally), that is, a somatic mutation leading to mosaicism. In some genes

this timing of the occurrence of a variant can determine the presence
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or absence of a syndrome, but the increased tumor risk is always pre-
sent. For instance, PTCH1 plays an important role during embryogene-
sis in the craniofacial development (Metzis et al., 2013). Germline
variants in PTCH1 cause Gorlin syndrome with craniofacial and skele-
tal abnormalities, and in which the risk to develop basal cell carcinoma
(BCC) is over 90% (Evans & Farndon, 1993). PTCH1 is a human tumor

suppressor gene that encodes for sonic hedgehog ligands and works
as a negative regulator of the sonic hedgehog signaling pathway
(Agren, Kogerman, Kleman, Wessling, & Toftgard, 2004). It represses
downstream signaling of the co-receptor smoothened (SMOH) and
this way prevents cells from uncontrolled proliferation. PTCH1 is also

frequently mutated somatically in isolated, nonsyndromic BCCs and
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several other tumor types (Gielen et al., 2018). Pathogenic PTCH1 var-
iants causing Gorlin syndrome and those causing isolated BCCs can
be identical (Table S2) (Boutet et al., 2003; Lindstrom, Shimokawa,
Toftgard, & Zaphiropoulos, 2006). As numbers are still relatively small,
it cannot be excluded that over time some variants will be found to be

more frequent in the syndrome than in the tumor, or vice versa.

3.4 | Variants can be a cause but also be a
consequence in tumors

In malformation syndromes, pathogenic germline (or early somatic)
variants in genes are (almost) invariably the cause of the syndrome,
but (somatic) variants detected in tumors may either be the cause
(driver) or the consequence (passenger) of tumorigenesis. Driver
genes are genes that contain variants that eventually confer a selec-
tive growth advantage to the cell in which it occurs (Stratton, Camp-
bell, & Futreal, 2009; Vogelstein et al., 2013). Passenger variants are
circumstantial variants. They have no effect on the initial neoplastic
process, but they may still be important and determine further charac-
teristics of tumors such as the chance to metastasize or reactions to
therapeutic agents (Vogelstein et al., 2013).

In common solid tumors such as breast cancer and colon cancer,
somatic variants are detected in an average of 33 to 66 genes
(Vogelstein et al., 2013). Classic epidemiologic studies have suggested
that solid tumors typically require five to eight alterations in driver
genes to develop into cancer (Vogelstein et al., 2013). Variants in
driver genes may lead to failure of chromosome repair mechanisms,
for instance due to changes in chromatin domains (Lupianez,
Spielmann, & Mundlos, 2016), chromosome territories (Folle, 2008),
and other changes of the spatial configuration of the genome
(Umlauf & Mourad, 2019). As a result variants start to occur at ran-
dom during tumor evolution, resulting in passenger variants in most
tumors (Merid, Goranskaya, & Alexeyenko, 2014). Indeed, tumors with
mismatch repair defects can harbor up to thousands of variants
(Vogelstein et al., 2013).

Nicolaides-Baraitser syndrome [#601358] is caused by germline
variants in SMARCA2, and is characterized by marked intellectual dis-
ability, seizures, specific facial characteristics and limb abnormalities,
but without known increased risk to develop tumors (Sousa &
Hennekam, 2014). Still, SMARCA2 variants are frequently detected in
tumors such as cancers in colon, liver and lung (Table S3) (Helming,
Wang, & Roberts, 2014). SMARCA2 regulates transcription activation
and repression of a series of genes by altering the chromatin structure
around these genes, and is thought to act as a tumor suppressor
(Guerrero-Martinez & Reyes, 2018). However, SMARCA2 has not
been indicated as a driver to develop cancer (Forbes et al., 2017).

Characterizing the functioning of an altered gene can even be
more complicated. In DNA repair disorders the variants and CNVs can
arise both as consequence of the impaired DNA repair, and subse-
quently can act as driver, or as consequence (passenger) in tumors
(Torgovnick & Schumacher, 2015; Walsh et al., 2017). Furthermore,
for some genes driver variants may cause that gene to function as a

driver of tumorigenesis, but other variants in the same gene may
cause this gene to act as a tumor suppressor gene (Dogruluk
et al., 2015; Yu et al,, 2017). So the distinction of variants in genes
acting as driver or passenger is not absolute: the same gene can con-
tain variants acting as driver or as passenger. PIK3CA can contain
well-known driver variants such as the c.3140A > G variant [p.
His1047Arg] leading to gain-of-function and thus increased PI3K
activity, but passenger variants can occur as well, depending on site
and nature of the variant (Dogruluk et al., 2015; Hart et al., 2015).

Mosaic variants in PIK3CA cause the PIK3CA overgrowth syn-
drome [no OMIM] (Keppler-Noreuil et al., 2015). Overgrowth syn-
dromes have by definition a disturbed regulation of growth in height,
weight and/or skull circumference, and typically have also an
increased tumor risk, the prototype being Beckwith-Wiedemann syn-
drome [#602631] (Maas et al., 2016). But activating PIK3CA mutations
typically require additional genetic variants to induce tumors,
explaining at least in part the absence of an increased tumor risk in
individuals with PIK3CA related overgrowth syndromes (Postema,
Hopman, Deardorff, Merks, & Hennekam, 2017). Non-syndromic
PIK3CA-associated tumors occur in ectodermal and endodermal epi-
thelia like endometrium and breast, while the overgrowth occurs in
tissues derived from the mesoderm and neuroectoderm, which may
indicate that in addition a positive or negative (or both) tissue specific
selection may be acting (Madsen, Vanhaesebroeck, & Semple, 2018).
The mechanism(s) through which this acts remains unsure, both for
PIK3CA-associated tumors as for limitation in tissue of tumor devel-
opment in general. The molecular relatedness of somatic overgrowth
and tumor development containing PIK3CA mutations is further illus-
trated by the fact that they both react on PIK3CA inhibitor treatment
(Venot et al., 2018).

35 |
variants

Genetic compensation occurs in germline

Pathogenic variants in genes can be compensated for in function and
this can lead to an alteration in the consequences of the variant. It has
been suggested to work through series of transcription factors that
form a network that maintains the expression of the group of tran-
scription factors, aiming at a stable function of genes in the network.
This transcriptional adaptation indicates that a pathogenic variant in
one gene may alter the regulation and expression of other, related
genes, leading to functional compensation: genetic compensation (El-
Brolosy & Stainier, 2017). The exact mechanisms underlying genetic
compensation remain poorly understood (El-Brolosy & Stainier, 2017).
Long noncoding RNAs (IncRNAs) are known as one of the regulators
of gene expression (Salehi, Taheri, Azarpira, Zare, & Behzad-
Behbahani, 2017). LncRNAs can function in different ways, typically
by chromatin modification, genomic imprinting, chromosomal dosage
compensation and alternative splicing (Salehi et al., 2017). The mecha-
nism of genetic compensation clarifies why certain germline variants
can have no phenotypic consequences, whereas, at the same time,

postfertilization inhibition of transcription of the same gene by a
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morpholino can cause phenotype alterations (Rossi et al., 2015).
Genetic compensation of variants by transcriptional adaptation has
only been described in the germline (Niwa, 2018), and it remains
unknown whether it can also occur later in development, that is, in
somatic cells. Reports on therapeutic interventions have shown
genetic compensation in somatic cells: RUNX1 inhibition can effec-
tively suppress leukemia cells, but cells may retain proliferation activ-
ity due to upregulation of RUNX2 and RUNX3, compensating the
combined level of RUNX family expression (Kamikubo, 2018).

The opposite is also possible: a mutated gene acts in a pathway
and causes a syndrome. Due to an additional variant in another gene
acting in the same pathway the individual with a tumor develops a
more aggressive form of the tumor. An individual with a malformation
syndrome due to the mutated gene who has the additional variant in
the other gene as well, has an increased chance to develop a tumor.
An example is formed by RABL3 variants which act in the RAS/MAPK
pathway (Nissim et al., 2019). A mutated RABL3 protein may acceler-
ate prenylation of KRAS and may thus influence cell proliferation in
individuals with hereditary pancreatic cancer. In an animal model,
mutated RABL3 caused growth disturbances and skeletal abnormali-
ties similar to those observed in humans with a RASopathy (such as
Noonan syndrome [#163950] and Costello syndrome [#218040]).
Possibly this mechanism explains the variability of tumor occurrences
in RASopathies (Rauen et al., 2018).

3.6 | Epigeneticinfluences

Epigenetics refers to “hereditary differences in activity and expression
of genes that occur without altering the DNA sequence” (Berger,
Kouzarides, Shiekhattar, & Shilatifard, 2009; Waddington, 1942). The
major mechanisms involved are DNA methylation, noncoding RNAs
and histone  modifications and nucleosome  positioning
(Esteller, 2008), and a vast number of genes is involved in these mech-
anisms. Variations in these genes have been found to cause malforma-
tion syndromes such as the cohesinopathies (Zakari, Yuen, &
Gerton, 2015), imprinting disorders (Eggermann et al., 2015; Wilkins &
Ubeda, 2011), and those caused by histone modifications (Martire &
Banaszynski, 2020). Some of these disorders are known to be associ-
ated with an increased chance to develop a tumor, such as Roberts
syndrome [#268300] (Mannini, Menga, & Musio, 2010), and
Beckwith-Wiedemann syndrome (Maas et al., 2016), but in most there
is no known increased risk for tumors, or there is a good other expla-
nation for a tumor, like the marked and relentless reflux and increased
chance to develop esophagus carcinoma in Cornelia de Lange syn-
drome (Kline et al., 2018). Still, variants in the same genes as those
that cause the malformation syndromes, can be found frequently in
various tumors, such as osteosarcoma, myeloid dysplasias, and breast
cancer (Bao-Caamano, Rodriguez-Casanova, & Diaz-Lagares, 2020;
De Azevedo et al., 2020; Rinke, Chase, Cross, Hochhaus, &
Ernst, 2020). Due to one or more of the above mentioned mecha-
nisms, and likely additional, yet unknown mechanisms, epigenetic

influences may demonstrate tissue specific differences (Cusanovich
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et al., 2018), which in part may explain the lack of tumor development
in syndromes. The use of epigenetics in biomarker studies and thera-

pies falls outside the scope of the present manuscript (Bates, 2020).

4 | DISCUSSION
In this article we reviewed in short a number of genetic mechanisms
which play a role in the etiology of tumors in malformation syndromes.
We illustrate that the empiric variation in co-occurrence of tumors in
malformation syndromes cannot be explained by a single mechanism:
several mechanisms play a role, which may even co-occur in the same
individual. Many of these mechanisms are still insufficiently under-
stood, their frequencies of occurrence are usually unknown, whereas
hitherto undescribed mechanisms may proof to play a role as well.
Cellular interference may serve as an example of such additional
mechanism: if in a person there are two cell lines with a different
genetic make-up, typically by mosaicism, the cells may have different
adhesion properties which may cause sorting abnormalities and dis-
turbed intercellular connections. Well known examples are the X-
linked disorders frontonasal dysplasia and PCDH19-related epilepsy,
in which male mosaics and females mosaic due to random X-
inactivation are affected, and nonmosaic males (with the mutated
gene in all cells) are normal (Gecz & Thomas, 2020; Twigg et al., 2013).
It is assumed that only mosaicism for genes with cell surface proper-
ties and for which there is a functional redundancy in the nonmosaic
hemizygous male can lead to this mechanism. Cellular interference has
not been reported in tumors, but it is well possible there are genes
involved in tumor development with such properties. Another mecha-
nism that needs further studies are mitochondrial mutations of which
it was suggested that these do not act as driver mutations but normal
mitochondrial activity is needed for maintenance of tumor cells
(Ju et al., 2014). How mitochondrial activity influences tumor growth
and whether it has also an influence in tumor development is
unknown (Lawless, Greaves, Reeve, Turnbull, & Vincent, 2020).
Whether the influence of copy number variations (CNVs; gains
and losses of DNA sequence >1 kb) offers an explanation for the dif-
ference in tumor development in individuals with a syndrome is not
yet clear. On one hand CNVs occur in otherwise healthy individuals in
a relatively high percentage (Redon et al., 2006). On the other hand
CNVs can be the explanation of malformations and malformation syn-
dromes (Martin, Kirkpatrick, & Ledbetter, 2015). Some CNVs are
known to be associated with an altered frequency of a particular
tumor type (both increase and decrease), such as Down syndrome
[#190685] (Antonarakis et al., 2020), but in many other CNVs this is
at the present not known, probably mainly due to lack of sufficient
follow-up data. Still, we may expect that increased risks will exist in a
number of CNVs due to the number of genes involved in the deletions
and duplications. CNVs may also influence both the development and
progression of tumors in Mendelian disorders: an excess of CNVs was
reported in families with Li-Fraumeni syndrome [#151623], caused by
TP53 variants, and the families with the highest number of CNVs had
the highest frequency of tumors (Shlien et al., 2008). The authors
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suggested that the CNVs can also act as the “genetic foundation on
which larger somatic chromosome duplications and deletions develop
in tumors” (Shlien et al., 2008). CNVs may also develop as part of a
syndrome in DNA repair disorders, and this can have an influence on
tumor development and progression as well. A CNV may also cause
an altered positioning of chromosome segments. This has attracted
much attention recently by the description of topologically associating
domains (TADs) (Campbell, 2019; Valton & Dekker, 2016). The influ-
ence of CNVs, either in the germline or in the tumor tissues, in tumor
progression and reaction to treatments falls outside the scope of the
present manuscript.

Further investigating these mechanisms should be instrumental to
understand variation in phenotype in syndromes. This implies thor-
ough long-term follow-up studies in patients with malformation syn-
dromes. Initial description of individuals with newly recognized
entities often deals with younger patients, who may not yet show an
increase in tumors at that age and in whom this become evident only
later on. An example is Primrose syndrome [#259050] in whom the
increased frequency of testis tumors only became evident when a suf-
ficient number of adult males were known (Melis et al., 2020). Follow-
up data on a sufficiently large number of individuals with a syndrome
may also lead to the opposite: the initial report of an increased fre-
quency of tumors in patients with Rubinstein-Taybi syndrome
[#180849] (Miller & Rubinstein, 1995) was found to be incorrect for
patients with the syndrome below 40 years of age when a sufficiently
large number of patients was re-evaluated (Boot et al., 2018), likely
due to publication bias in the early days of description of this syn-
drome. Furthermore, careful assessment for the presence of mal-
formations in (young) cancer patients is essential, as well as studying
whether there is a difference in tumor risk in those with inherited and
de novo variants in the same gene. We favor studies in individuals
who do not develop tumors notwithstanding their known genetic pre-
disposition. Studying these latter “superheroes of disease resistance”
(Chen et al., 2016) may add fundamental insight not only into patho-
geneses but also regarding prevention and (targeted) therapy (Liu
etal, 2015).
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ENDNOTE

1 The term TPS is ambiguous as a tumor not only indicates a benign or
malignant neoplasia but also tissue masses and swellings that arise by
other mechanisms such as inflammation or trauma. The term neoplasia
predisposition syndrome would be the correct term. However, the term
TPS is commonly use in international literature and for that reason we
use it here as well.
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