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Abstract

One of the questions that arises frequently when caring for an individual with a mal-

formation syndrome, is whether some form of tumor surveillance is indicated. In

some syndromes there is a highly variable increased risk to develop tumors, while in

others this is not the case. The risks can be hard to predict and difficult to explain to

affected individuals and their families, and often also to caregivers. The queries arise

especially if syndrome causing mutations are also known to occur in tumors. It needs

insight in the mechanisms to understand and explain differences of tumor occur-

rence, and to offer optimal care to individuals with syndromes. Here we provide a

short overview of the major mechanisms of the control for tumor occurrences in mal-

formation syndromes.

K E YWORD S

cancer, CNVs, epigenetics, genetic compensation, mosaicism, tumor predisposition syndrome

1 | INTRODUCTION

Typically an explanation of general genetic principles to lay persons

starts like: genes code for proteins. These proteins may have different

functions during different stages of life. Prenatally, a protein can influ-

ence cell differentiation and the basic embryonic patterning, while

postnatally the same protein can affect cell growth and other func-

tions (Ponder, 2001). A pathogenic variant in the gene coding for a

protein may thus lead to birth defects, either isolated or in a combina-

tion, for example, a (malformation) syndrome, but may also cause dis-

turbed control of cell growth, which may lead to (benign or malignant)

tumor growth (Table 1). This basic concept of pleiotropy forms the

background for lay persons to understand mechanisms explaining

tumor development if a malformation or malformation syndrome is

present.

A malformation syndrome and a tumor can co-occur in the same

person. In some syndromes virtually all affected individuals will

develop a tumor (e.g., basal cell carcinoma in Gorlin syndrome

[#109400]). Such syndromes, with a high expressivity for tumors, are

often indicated as tumor predisposition syndromes (TPS).1 In other

syndromes the associated tumors occur not in all affected individuals,

but still more frequently than in the general population (e.g., Wilms

tumor in Beckwith-Wiedemann syndrome [#130650]). Such syn-

dromes are often indicated as TPSs with reduced expressivity of the

tumors. In still other syndromes, tumor occurrence is not known to be

increased, notwithstanding the fact that somatic variants in the causa-

tive gene are frequently found in tumor DNA (e.g., Cornelia de Lange

syndrome [#122470] caused by germline NPBL variants, and acute

myeloid leukemia in which somatic NIPBL variants are present)

(Gorlin, 2004; Maas et al., 2016; Mazzola et al., 2019). The reasons

why in malformation syndromes tumors occur in such a highly variable

frequency is often unclear. Even though TPSs individually are infre-

quent disorders, as a group they form a significant cause of cancer in

children (Merks, Caron, & Hennekam, 2005; Zhang et al., 2015). They

offer insight into underlying mechanisms, they allow for better predic-

tion of tumor risks, and may have major consequences for surveillance

and care for individuals with these syndromes.

Here we provide a short review of the various genetic mecha-

nisms in germline and somatic tissue that may affect risks to develop

a tumor: differences in type and site of the variant within the gene,

difference in bi-allelic (homozygous or compound heterozygous) and

mono-allelic (heterozygous) occurrence of variants, difference in

timing of the occurrence of variants, differences in roles of variants

(cause or consequence), genetic compensation, epigenetic influences,
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as well as combinations of several of these mechanisms. Various

genetic mechanisms are summarized schematically in Figure 1. A com-

plete description of all mechanisms is not well possible in a single arti-

cle; therefore, we refer interested readers to publications dedicated to

the various mechanisms.

2 | METHODOLOGY

The pathogenesis of general tumor development has been reported in

such a vast number of publications that a systematic overview of the

total literature is impossible. Even a systematic overview of most sin-

gle mechanisms will have to deal with many thousands publications.

Therefore, the present manuscript is not the result of a systematic

review. Instead, it has been built on an idiosyncratic review that we

started �10 years ago. This review has gradually been expanded, in

part due to emerging additional mechanisms reported in literature or

based on remarks from colleagues when discussing the topic. The pre-

sent manuscript is based on this review, to which some recent per-

spectives have been added.

3 | RESULTS

3.1 | Syndromes and tumors can have DNA-
variants differing in type and/or site within a gene

For some genes the type and location of variants have been demon-

strated to differ between the syndromic germline cases and the

somatic tumor cases. An example of this phenomenon is the develop-

mental gene FAT4. If the germline variants are found in the cadherin

repeat domain, this may lead to reduced activity of FAT4, causing a

syndrome characterized by intellectual disability, unusual face and, in

a subgroup, lymphatic dysplasia [#616006] (Alders et al., 2014; Zhang

et al., 2016). In cancer cells somatic variants can be found in the

cadherin domain but also in all other domains of FAT4, causing a dis-

turbed tumor suppressor function and contributing to several types of

tumors such as melanoma, pancreatic cancer and gastric cancer

(Zhang et al., 2016). The FAT4 germline variants found in the syn-

drome and those found in the tumors differ in type and site

(Table S1). We searched for other genes without overlap between

variants causing the syndrome and (somatic) variants detected in

tumors, but have been unable to find any. This may indicate that a

complete lack of overlap is an uncommon mechanism.

Variants differing in type and site within a gene can alter func-

tions of a protein in different ways: sometimes functions involved in

tumor development, sometimes completely different functions, and

thus leading to phenotypic heterogeneity. PTEN may serve as an

example: pathogenic variants in PTEN have been shown to work

through changes in conformation of PTEN and subsequent changes in

communication with other protein's inter- and intracellular pathways.

Typically, some variants disturb predominantly networks involved in

cancer development while other variants disturb predominantly

networks involved in autism spectrum disorders (Smith, Thacker,

Seyfi, Cheng, & Eng, 2019). In addition, a single gene frequently pro-

duces slightly different variations of proteins (isoforms) due to alter-

native splicing. The functional effect of pathogenic variants in

different isoforms may differ, and therefore even per tissue

(Sonawane et al., 2017; Vitting-Seerup & Sandelin, 2017). Another

example of differences depending on the type of variants, are mis-

sense mutations in RET. These result in general in a mutant RET-

protein with a loss of function, and are associated with Hirschsprung

disease [#142623]. But localized RET missense mutations of specifi-

cally cysteine, cause a gain of function and are associated with the

development of various forms of cancer such as medullary thyroid

cancer and the TPS Multiple Endocrine Neoplasia type 2 [#171400;

#171300] (Edery et al., 1994; Mulligan et al., 1993).

Differences in site and nature of variants cannot be the only

mechanisms, as for other genes, germline variants causing syndromes

and somatic variants found in tumors are identical. For example, one

of the somatic variants in BCOR causing AML is c.2488_2489delAG

(Ng et al., 2018). This same variant can also cause oculo-facio-cardio-

dental (OFCD) syndrome [#300166], if present in the germline (Horn

et al., 2005). Still, AML or other types of cancer have not been

reported in OFCD cases harboring this germline variant, although thus

far the numbers are still small and follow-up is limited.

3.2 | Bi-allelic and mono-allelic variants

Typically, the phenotype resulting from homozygosity/compound het-

erozygosity or heterozygosity for a variant will differ. Bi-allelic vari-

ants of the tumor suppressor gene BRCA2 cause Fanconi anemia

[#605724], which gives an increased risk developmental anomalies

and childhood malignancies such as AML, Wilms tumor, neuroblas-

toma and brain tumors (Myers et al., 2012). Heterozygous germline

variants in the same BRCA2 confer an increased risk of breast, ovarian

and prostate cancer [#612555] but do not lead to an increased chance

of congenital anomalies (Kwiatkowski et al., 2020; Levy-Lahad &

Friedman, 2007). If in a tissue a heterozygous BRCA2 variant carrier a

second hit occurs (usually through LOH), this results in loss of func-

tion and the development of cancer (two-hit hypothesis) (Warren,

Lord, Masabanda, Griffin, & Ashworth, 2003). Parks and co-workers

have demonstrated that based on the two-hit hypothesis, rare

germline variants with somatic variants are likely causative for a larger

share of cancer occurrence than initially anticipated (Park, Supek, &

Lehner, 2018).

3.3 | Syndromes and tumors can differ due to
timing of variants

A variant can be present in a gene at the time of fertilization (germline

mutation) or can occur later on in a tissue (either prenatally or postna-

tally), that is, a somatic mutation leading to mosaicism. In some genes

this timing of the occurrence of a variant can determine the presence

POSTEMA ET AL. 5



F IGURE 1 General principles (b) Site/nature of variants. (c) Biallelic (Homozygous or compound heterozygous) vs mono-allelic (heterozygous)

variants. (d) Timing. (e) Driver or passenger. (f)Genetic compensation [Color figure can be viewed at wileyonlinelibrary.com]
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or absence of a syndrome, but the increased tumor risk is always pre-

sent. For instance, PTCH1 plays an important role during embryogene-

sis in the craniofacial development (Metzis et al., 2013). Germline

variants in PTCH1 cause Gorlin syndrome with craniofacial and skele-

tal abnormalities, and in which the risk to develop basal cell carcinoma

(BCC) is over 90% (Evans & Farndon, 1993). PTCH1 is a human tumor

suppressor gene that encodes for sonic hedgehog ligands and works

as a negative regulator of the sonic hedgehog signaling pathway

(Agren, Kogerman, Kleman, Wessling, & Toftgard, 2004). It represses

downstream signaling of the co-receptor smoothened (SMOH) and

this way prevents cells from uncontrolled proliferation. PTCH1 is also

frequently mutated somatically in isolated, nonsyndromic BCCs and

F IGURE 1 (Continued)
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several other tumor types (Gielen et al., 2018). Pathogenic PTCH1 var-

iants causing Gorlin syndrome and those causing isolated BCCs can

be identical (Table S2) (Boutet et al., 2003; Lindstrom, Shimokawa,

Toftgard, & Zaphiropoulos, 2006). As numbers are still relatively small,

it cannot be excluded that over time some variants will be found to be

more frequent in the syndrome than in the tumor, or vice versa.

3.4 | Variants can be a cause but also be a
consequence in tumors

In malformation syndromes, pathogenic germline (or early somatic)

variants in genes are (almost) invariably the cause of the syndrome,

but (somatic) variants detected in tumors may either be the cause

(driver) or the consequence (passenger) of tumorigenesis. Driver

genes are genes that contain variants that eventually confer a selec-

tive growth advantage to the cell in which it occurs (Stratton, Camp-

bell, & Futreal, 2009; Vogelstein et al., 2013). Passenger variants are

circumstantial variants. They have no effect on the initial neoplastic

process, but they may still be important and determine further charac-

teristics of tumors such as the chance to metastasize or reactions to

therapeutic agents (Vogelstein et al., 2013).

In common solid tumors such as breast cancer and colon cancer,

somatic variants are detected in an average of 33 to 66 genes

(Vogelstein et al., 2013). Classic epidemiologic studies have suggested

that solid tumors typically require five to eight alterations in driver

genes to develop into cancer (Vogelstein et al., 2013). Variants in

driver genes may lead to failure of chromosome repair mechanisms,

for instance due to changes in chromatin domains (Lupianez,

Spielmann, & Mundlos, 2016), chromosome territories (Folle, 2008),

and other changes of the spatial configuration of the genome

(Umlauf & Mourad, 2019). As a result variants start to occur at ran-

dom during tumor evolution, resulting in passenger variants in most

tumors (Merid, Goranskaya, & Alexeyenko, 2014). Indeed, tumors with

mismatch repair defects can harbor up to thousands of variants

(Vogelstein et al., 2013).

Nicolaides-Baraitser syndrome [#601358] is caused by germline

variants in SMARCA2, and is characterized by marked intellectual dis-

ability, seizures, specific facial characteristics and limb abnormalities,

but without known increased risk to develop tumors (Sousa &

Hennekam, 2014). Still, SMARCA2 variants are frequently detected in

tumors such as cancers in colon, liver and lung (Table S3) (Helming,

Wang, & Roberts, 2014). SMARCA2 regulates transcription activation

and repression of a series of genes by altering the chromatin structure

around these genes, and is thought to act as a tumor suppressor

(Guerrero-Martinez & Reyes, 2018). However, SMARCA2 has not

been indicated as a driver to develop cancer (Forbes et al., 2017).

Characterizing the functioning of an altered gene can even be

more complicated. In DNA repair disorders the variants and CNVs can

arise both as consequence of the impaired DNA repair, and subse-

quently can act as driver, or as consequence (passenger) in tumors

(Torgovnick & Schumacher, 2015; Walsh et al., 2017). Furthermore,

for some genes driver variants may cause that gene to function as a

driver of tumorigenesis, but other variants in the same gene may

cause this gene to act as a tumor suppressor gene (Dogruluk

et al., 2015; Yu et al., 2017). So the distinction of variants in genes

acting as driver or passenger is not absolute: the same gene can con-

tain variants acting as driver or as passenger. PIK3CA can contain

well-known driver variants such as the c.3140A > G variant [p.

His1047Arg] leading to gain-of-function and thus increased PI3K

activity, but passenger variants can occur as well, depending on site

and nature of the variant (Dogruluk et al., 2015; Hart et al., 2015).

Mosaic variants in PIK3CA cause the PIK3CA overgrowth syn-

drome [no OMIM] (Keppler-Noreuil et al., 2015). Overgrowth syn-

dromes have by definition a disturbed regulation of growth in height,

weight and/or skull circumference, and typically have also an

increased tumor risk, the prototype being Beckwith-Wiedemann syn-

drome [#602631] (Maas et al., 2016). But activating PIK3CAmutations

typically require additional genetic variants to induce tumors,

explaining at least in part the absence of an increased tumor risk in

individuals with PIK3CA related overgrowth syndromes (Postema,

Hopman, Deardorff, Merks, & Hennekam, 2017). Non-syndromic

PIK3CA-associated tumors occur in ectodermal and endodermal epi-

thelia like endometrium and breast, while the overgrowth occurs in

tissues derived from the mesoderm and neuroectoderm, which may

indicate that in addition a positive or negative (or both) tissue specific

selection may be acting (Madsen, Vanhaesebroeck, & Semple, 2018).

The mechanism(s) through which this acts remains unsure, both for

PIK3CA-associated tumors as for limitation in tissue of tumor devel-

opment in general. The molecular relatedness of somatic overgrowth

and tumor development containing PIK3CA mutations is further illus-

trated by the fact that they both react on PIK3CA inhibitor treatment

(Venot et al., 2018).

3.5 | Genetic compensation occurs in germline
variants

Pathogenic variants in genes can be compensated for in function and

this can lead to an alteration in the consequences of the variant. It has

been suggested to work through series of transcription factors that

form a network that maintains the expression of the group of tran-

scription factors, aiming at a stable function of genes in the network.

This transcriptional adaptation indicates that a pathogenic variant in

one gene may alter the regulation and expression of other, related

genes, leading to functional compensation: genetic compensation (El-

Brolosy & Stainier, 2017). The exact mechanisms underlying genetic

compensation remain poorly understood (El-Brolosy & Stainier, 2017).

Long noncoding RNAs (lncRNAs) are known as one of the regulators

of gene expression (Salehi, Taheri, Azarpira, Zare, & Behzad-

Behbahani, 2017). LncRNAs can function in different ways, typically

by chromatin modification, genomic imprinting, chromosomal dosage

compensation and alternative splicing (Salehi et al., 2017). The mecha-

nism of genetic compensation clarifies why certain germline variants

can have no phenotypic consequences, whereas, at the same time,

postfertilization inhibition of transcription of the same gene by a
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morpholino can cause phenotype alterations (Rossi et al., 2015).

Genetic compensation of variants by transcriptional adaptation has

only been described in the germline (Niwa, 2018), and it remains

unknown whether it can also occur later in development, that is, in

somatic cells. Reports on therapeutic interventions have shown

genetic compensation in somatic cells: RUNX1 inhibition can effec-

tively suppress leukemia cells, but cells may retain proliferation activ-

ity due to upregulation of RUNX2 and RUNX3, compensating the

combined level of RUNX family expression (Kamikubo, 2018).

The opposite is also possible: a mutated gene acts in a pathway

and causes a syndrome. Due to an additional variant in another gene

acting in the same pathway the individual with a tumor develops a

more aggressive form of the tumor. An individual with a malformation

syndrome due to the mutated gene who has the additional variant in

the other gene as well, has an increased chance to develop a tumor.

An example is formed by RABL3 variants which act in the RAS/MAPK

pathway (Nissim et al., 2019). A mutated RABL3 protein may acceler-

ate prenylation of KRAS and may thus influence cell proliferation in

individuals with hereditary pancreatic cancer. In an animal model,

mutated RABL3 caused growth disturbances and skeletal abnormali-

ties similar to those observed in humans with a RASopathy (such as

Noonan syndrome [#163950] and Costello syndrome [#218040]).

Possibly this mechanism explains the variability of tumor occurrences

in RASopathies (Rauen et al., 2018).

3.6 | Epigenetic influences

Epigenetics refers to “hereditary differences in activity and expression

of genes that occur without altering the DNA sequence” (Berger,

Kouzarides, Shiekhattar, & Shilatifard, 2009; Waddington, 1942). The

major mechanisms involved are DNA methylation, noncoding RNAs

and histone modifications and nucleosome positioning

(Esteller, 2008), and a vast number of genes is involved in these mech-

anisms. Variations in these genes have been found to cause malforma-

tion syndromes such as the cohesinopathies (Zakari, Yuen, &

Gerton, 2015), imprinting disorders (Eggermann et al., 2015; Wilkins &

Ubeda, 2011), and those caused by histone modifications (Martire &

Banaszynski, 2020). Some of these disorders are known to be associ-

ated with an increased chance to develop a tumor, such as Roberts

syndrome [#268300] (Mannini, Menga, & Musio, 2010), and

Beckwith-Wiedemann syndrome (Maas et al., 2016), but in most there

is no known increased risk for tumors, or there is a good other expla-

nation for a tumor, like the marked and relentless reflux and increased

chance to develop esophagus carcinoma in Cornelia de Lange syn-

drome (Kline et al., 2018). Still, variants in the same genes as those

that cause the malformation syndromes, can be found frequently in

various tumors, such as osteosarcoma, myeloid dysplasias, and breast

cancer (Bao-Caamano, Rodriguez-Casanova, & Diaz-Lagares, 2020;

De Azevedo et al., 2020; Rinke, Chase, Cross, Hochhaus, &

Ernst, 2020). Due to one or more of the above mentioned mecha-

nisms, and likely additional, yet unknown mechanisms, epigenetic

influences may demonstrate tissue specific differences (Cusanovich

et al., 2018), which in part may explain the lack of tumor development

in syndromes. The use of epigenetics in biomarker studies and thera-

pies falls outside the scope of the present manuscript (Bates, 2020).

4 | DISCUSSION

In this article we reviewed in short a number of genetic mechanisms

which play a role in the etiology of tumors in malformation syndromes.

We illustrate that the empiric variation in co-occurrence of tumors in

malformation syndromes cannot be explained by a single mechanism:

several mechanisms play a role, which may even co-occur in the same

individual. Many of these mechanisms are still insufficiently under-

stood, their frequencies of occurrence are usually unknown, whereas

hitherto undescribed mechanisms may proof to play a role as well.

Cellular interference may serve as an example of such additional

mechanism: if in a person there are two cell lines with a different

genetic make-up, typically by mosaicism, the cells may have different

adhesion properties which may cause sorting abnormalities and dis-

turbed intercellular connections. Well known examples are the X-

linked disorders frontonasal dysplasia and PCDH19-related epilepsy,

in which male mosaics and females mosaic due to random X-

inactivation are affected, and nonmosaic males (with the mutated

gene in all cells) are normal (Gecz & Thomas, 2020; Twigg et al., 2013).

It is assumed that only mosaicism for genes with cell surface proper-

ties and for which there is a functional redundancy in the nonmosaic

hemizygous male can lead to this mechanism. Cellular interference has

not been reported in tumors, but it is well possible there are genes

involved in tumor development with such properties. Another mecha-

nism that needs further studies are mitochondrial mutations of which

it was suggested that these do not act as driver mutations but normal

mitochondrial activity is needed for maintenance of tumor cells

(Ju et al., 2014). How mitochondrial activity influences tumor growth

and whether it has also an influence in tumor development is

unknown (Lawless, Greaves, Reeve, Turnbull, & Vincent, 2020).

Whether the influence of copy number variations (CNVs; gains

and losses of DNA sequence >1 kb) offers an explanation for the dif-

ference in tumor development in individuals with a syndrome is not

yet clear. On one hand CNVs occur in otherwise healthy individuals in

a relatively high percentage (Redon et al., 2006). On the other hand

CNVs can be the explanation of malformations and malformation syn-

dromes (Martin, Kirkpatrick, & Ledbetter, 2015). Some CNVs are

known to be associated with an altered frequency of a particular

tumor type (both increase and decrease), such as Down syndrome

[#190685] (Antonarakis et al., 2020), but in many other CNVs this is

at the present not known, probably mainly due to lack of sufficient

follow-up data. Still, we may expect that increased risks will exist in a

number of CNVs due to the number of genes involved in the deletions

and duplications. CNVs may also influence both the development and

progression of tumors in Mendelian disorders: an excess of CNVs was

reported in families with Li-Fraumeni syndrome [#151623], caused by

TP53 variants, and the families with the highest number of CNVs had

the highest frequency of tumors (Shlien et al., 2008). The authors
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suggested that the CNVs can also act as the “genetic foundation on

which larger somatic chromosome duplications and deletions develop

in tumors” (Shlien et al., 2008). CNVs may also develop as part of a

syndrome in DNA repair disorders, and this can have an influence on

tumor development and progression as well. A CNV may also cause

an altered positioning of chromosome segments. This has attracted

much attention recently by the description of topologically associating

domains (TADs) (Campbell, 2019; Valton & Dekker, 2016). The influ-

ence of CNVs, either in the germline or in the tumor tissues, in tumor

progression and reaction to treatments falls outside the scope of the

present manuscript.

Further investigating these mechanisms should be instrumental to

understand variation in phenotype in syndromes. This implies thor-

ough long-term follow-up studies in patients with malformation syn-

dromes. Initial description of individuals with newly recognized

entities often deals with younger patients, who may not yet show an

increase in tumors at that age and in whom this become evident only

later on. An example is Primrose syndrome [#259050] in whom the

increased frequency of testis tumors only became evident when a suf-

ficient number of adult males were known (Melis et al., 2020). Follow-

up data on a sufficiently large number of individuals with a syndrome

may also lead to the opposite: the initial report of an increased fre-

quency of tumors in patients with Rubinstein-Taybi syndrome

[#180849] (Miller & Rubinstein, 1995) was found to be incorrect for

patients with the syndrome below 40 years of age when a sufficiently

large number of patients was re-evaluated (Boot et al., 2018), likely

due to publication bias in the early days of description of this syn-

drome. Furthermore, careful assessment for the presence of mal-

formations in (young) cancer patients is essential, as well as studying

whether there is a difference in tumor risk in those with inherited and

de novo variants in the same gene. We favor studies in individuals

who do not develop tumors notwithstanding their known genetic pre-

disposition. Studying these latter “superheroes of disease resistance”

(Chen et al., 2016) may add fundamental insight not only into patho-

geneses but also regarding prevention and (targeted) therapy (Liu

et al., 2015).
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ENDNOTE
1 The term TPS is ambiguous as a tumor not only indicates a benign or

malignant neoplasia but also tissue masses and swellings that arise by

other mechanisms such as inflammation or trauma. The term neoplasia

predisposition syndrome would be the correct term. However, the term

TPS is commonly use in international literature and for that reason we

use it here as well.
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