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Utilizing Artificial Intelligence to Determine Bone Mineral
Density Via Chest Computed Tomography

Rock H. Savage, BS,* Marly van Assen, PhD,*† Simon S. Martin, MD,*‡
Pooyan Sahbaee, PhD,*§ Lewis P. Griffith, BS,* Dante Giovagnoli, BS,*

Jonathan I. Sperl, PhD,∥ Christian Hopfgartner, MSc,∥
Rainer Kärgel, MSc,∥ and U. Joseph Schoepf, MD*

Purpose: The purpose of this study was to validate the accuracy of
an artificial intelligence (AI) prototype application in determining
bone mineral density (BMD) from chest computed tomography
(CT), as compared with dual-energy x-ray absorptiometry (DEXA).

Materials and Methods: In this Institutional Review Board–approved
study, we analyzed the data of 65 patients (57 female, mean age:
67.4 y) who underwent both DEXA and chest CT (mean time
between scans: 1.31 y). From the DEXA studies, T-scores for L1-L4
(lumbar vertebrae 1 to 4) were recorded. Patients were then divided on
the basis of their T-scores into normal control, osteopenic, or osteo-
porotic groups. An AI algorithm based on wavelet features,
AdaBoost, and local geometry constraints independently localized
thoracic vertebrae from chest CT studies and automatically computed
average Hounsfield Unit (HU) values with kVp-dependent spectral
correction. The Pearson correlation evaluated the correlation between
the T-scores and HU values. Mann-Whitney U test was implemented
to compare the HU values of normal control versus osteoporotic
patients.

Results: Overall, the DEXA-determined T-scores and AI-derived HU
values showed a moderate correlation (r=0.55; P<0.001). This
65-patient population was divided into 3 subgroups on the basis of
their T-scores. The mean T-scores for the 3 subgroups (normal control,
osteopenic, osteoporotic) were 0.77±1.50, −1.51±0.04, and
−3.26±0.59, respectively. The mean DEXA-determined L1-L4 BMD
measures were 1.13±0.16, 0.88±0.06, and 0.68±0.06 g/cm2, respec-
tively. The mean AI-derived attenuation values were 145±42.5,
136±31.82, and 103±16.28HU, respectively. Using these AI-derived
HU values, a significant difference was found between the normal
control patients and osteoporotic group (P=0.045).

Conclusion: Our results show that this AI prototype can successfully
determine BMD in moderate correlation with DEXA. Combined
with other AI algorithms directed at evaluating cardiac and lung
diseases, this prototype may contribute to future comprehensive
preventative care based on a single chest CT.

Key Words: artificial intelligence, bone mineral density, chest com-
puted tomography

(J Thorac Imaging 2020;35:S35–S39)

B one mineral density (BMD) is an important marker of
health, especially in the aged population.1 In the United

States, an estimated 44 million adults suffer from low BMD,
while ∼10 million of those are currently living with
osteoporosis.2 Osteoporosis can be defined as a disease of low
BMD and altered bone microstructure that leads to bone
fragility.3 It is well known that reduced BMD may be a sign of
osteoporosis that leaves one at higher risk of fracture resulting in
continued health complications and thus further medical cost
and resource use.4,5 Weaver et al6 found that adults suffering a
fracture concurrent with a diagnosis of osteoporosis have
refracture rates up to 25% greater compared with adults with
normal BMD. The costs associated with the increased rates of
initial and subsequent fractures in osteoporotic patients were
quantified in a 2012 study by Budhia et al,7 which found that a
person suffering from an osteoporotic fracture may incur
medical costs, in the year following the fracture, of up to
$68,000 for a vertebral fracture and $71,000 for a hip fracture.

For over 30 years, BMD has been measured by means of
dual-energy x-ray absorptiometry (DEXA).8 DEXA, however,
has a diagnostic ability limited to BMD only.9,10 Computed
tomography (CT) studies of the chest, on the other hand, form
the basis for a variety of applications in preventative care, such
as lung cancer screening, detection of coronary artery disease,
chronic obstructive pulmonary disease, aortic aneurysms, and
others; many of these disorders are likely amenable to artificial
intelligence (AI) evaluation.10–21 Here, we introduce an AI
prototype that aims to identify BMD from noncontrast chest
CT studies as an additional component of preventative care.
The use of CT for bone density screening has recently been
considered an overlooked opportunity in the realm of patient
care.11,12 Furthermore, the ability to comprehensively evaluate
for multiple conditions based on a single chest CT by using AI
may enhance workflows, reduce health care costs, and facilitate
the guidance of patient management.

The aim of this study, thus, was to validate the accuracy
of a novel AI-based radiology companion application in
determining BMD from chest CT, as compared with DEXA.

MATERIALS AND METHODS

Study Population
This retrospective, single-center study was approved by

the University Hospital’s Institutional Review Board, and
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the need for informed consent was waived. Various insti-
tutional databases were accessed to identify patients who
received both DEXA and chest CT studies within a 3-year
period to ensure no significant change in BMD between
scans.13 Other inclusion criteria included imaging studies of
diagnostic quality, as determined by the Likert scale, and a
minimum patient age of 30 years.14 As maximal BMD does
not occur until approximately 30 years of age, T-scores are
not applicable to patients younger than that threshold.15,16

Imaging Protocols
The BMDmeasurements determined by DEXA images

were produced by the Hologic Discovery A DXA System
(S/N81442) with software version 13.5.3.1. The Discovery
model utilizes a linear x-ray fan-beam with switched-pulse
dual energy (100 /140 kVp) and a multielement detector
array. The scan time was 10 seconds with an exposure of
0.04 mGy for both lumbar spine and proximal femur scans.

Noncontrast chest CT studies were acquired during
breath-hold at mid-inspiration using either single-source CT
(SOMATOM Emotion, Siemens Healthineers, Forchheim,
Germany) or second or third-generation dual-source CT
(SOMATOM Definition Flash, SOMATOM Force, Sie-
mens). Anatomic tube current modulation (CARE Dose
4D, Siemens) was applied per default on all systems. Single-
source CT studies used the following parameters: collima-
tion, 16×0.6 mm; tube voltage, 120 kV; tube current, 80 mA.
For the second and third-generation dual-source CT scan-
ners, the following parameters were used: collimation,
128×0.6 mm; tube voltage, 120 kV; tube current, 75 mA,
and collimation, 192×0.6 mm; tube voltage, 120 kV; tube
current, 80 mA, respectively. The average CT dose index
was 0.49± 0.21 mGy, and the mean dose length product was
315.7 ± 216.4 mGy·cm, resulting in a mean effective dose of
4.74 ± 3.25 mSv.

Image Analysis
Two experienced observers, in consensus, rated image

quality of the chest CT studies on a 5-point Likert scale.
Only images with a rating of 4 or 5, by both observers, were
included.

Once the DEXA scan had generated a measure of
BMD, these values were then plotted as T-scores and
Z-scores. The T-score is a comparison of the patient’s BMD
with that of a sex-matched, young, and healthy individual.
The Z-score is a comparison of the patient’s BMD with that
of a sex and age-matched individual. These scores denote
the difference between the measured densities and reference
values in terms of SDs, which are then used to categorize
patients into a normal, osteopenic, or osteoporotic level of
BMD. A T-score below −2.5 indicates osteoporosis;
between −2.5 and −1.0, osteopenia; and above −1.0, normal
BMD. A Z-score below −2.0 indicates low bone mass,
whereas above -2.0 indicates normal bone mass.16

An AI algorithm based on wavelet features, AdaBoost,
and local geometry constraints independently localized
thoracic vertebrae within the chest CT studies using pre-
viously validated techniques.17 Adjacent to the center of
each vertebral body, a vector approximately orthogonal to
the top and bottom planes of the vertebrae was computed.
In a subsequent step, regions of interest around each center
were defined as cylinders with a height equaling 6mm and
radii equaling 4mm for T1 to T3 and 6 mm for T4 to T12.
In addition, the cylinder axes were all parallel to the normal

vectors. Figure 1 illustrates the location of the individual
cylinders.

For all voxels within a regions of interest, the corresponding
HU were corrected by a kVp-dependent and filter-dependent
correction factor obtained from independent phantom measure-
ments. The correction factors varied between 0.52 and 1.20. The
mean of the corrected HU values was subsequently reported.

Statistical Analysis
Statistical analysis used MedCalc (MedCalc Software bvba,

version 16.8, Ostend, Belgium). All data were evaluated
for normality using the Kolmogorov-Smirnov test. Parametric
variables throughout the study were expressed as a mean± SD,
and nonparametric variables were expressed as a median with
interquartile ranges (IQR). The Pearson correlation evaluated
the correlation between the DEXA-determined T-scores and
AI-derived attenuation values. The Mann-Whitney U test was
implemented in order to compare the attenuation values of
normal control patients versus the osteoporotic patients. Osteo-
penic patients were not included in the aforementioned analysis,
as osteopenia is defined as a decrease in bone mass but is not the
pathologic disease state of decreased bone mass; that designation
is reserved for osteoporosis. A P-value <0.05 was considered to
be statistically significant.

RESULTS
The inclusion criterion of a maximum of 3 years

between DEXA and CT scans distilled the initial search
database to 66 patients. One patient, below 20 years of age,
was excluded from further analysis. In addition, all imaging
studies received a score of 4 or 5 on the Likert scale and
could therefore be included in the study.

The final study population consisted of 65 patients (mean
age at DEXA, 66.4±10.6 y; range, 36 to 99 y; mean age at CT,
67.0±10.8 y; range, 38 to 100 y) including 57 female individuals
(mean age at DEXA, 67.4±9.7 y; range, 44 to 99 y; mean age
at CT, 68.0±9.8 y; range, 43 to 100 y) and 8 male individuals
(mean age at DEXA, 59.3±13.7 y; range, 36 to 79 y; mean age
at CT, 59.5±14.2 y; range, 38 to 80 y). The mean time between

FIGURE 1. An illustration of the regions of interest placement
(cylinders of height=6mm and radius=4mm (T1-T3) and 6mm
(T4-T12), all located at the centers of the vertebral bodies. In this
2D sagittal view, the cylinders appear as yellow rectangles.
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CT and DEXA studies was 1.31±0.82 years. The mean body
mass index of the study cohort was 28.7±6.8 kg/m2 (range, 16.5
to 52 kg/m2) (Table 1).

On the basis of their DEXA-determined L1-L4 T-scores,
patients were first divided into normal control, osteopenic, or
osteoporotic groups. These subpopulations included 38 (31
female individuals and 7 male individuals with a mean L1-L4
T-score= 0.77±1.50), 24 (22 female individuals and 2 male
individuals with a mean L1-L4 T-score=−1.51±0.04), and 3
(3 female individuals with mean L1-L4 T-score=−3.26±
0.59) patients, respectively (Table 2).

The mean L1-L4 BMD for the normal control group was
1.13±0.16 g/cm2, the mean L1-L4 BMD for the osteopenic
group was 0.88±0.06 g/cm2, and the mean L1-L4 BMD for the
osteoporotic group was 0.68±0.06 g/cm2. The mean AI-derived
attenuation values at T1-T12 for the normal control, osteopenic,
and osteoporotic groups were as follows: 145±42.5, 136±31.82,
and 103±16.28HU, respectively (Table 2). These mean AI-
derived attenuation values were plotted against the BMD
measures determined by DEXA and are visualized in Figure 2
and show a moderate, positive correlation (r=0.55, P<0.001).

Further intergroup analysis of the data is provided in
Figure 3 which provides a comparison of the mean AI-derived
HU values for each of the subgroups. The resulting data
determined a significant statistical difference (P-value= 0.045)
between normal control patients and the osteoporotic group
by utilizing the Mann-Whitney U test.

Two representative cases of the AI’s display output are
shown in Figures 4 and 5. Figure 4 is a case example of a
patient with normal BMD, whereas Figure 5 is a case example
of a patient with osteoporosis.

DISCUSSION
In this study, we evaluated an AI-based prototype

algorithm designed to quantify BMD from noncontrast
chest CTs compared with the traditional DEXA scan. Our
results indicate that this AI-based prototype may be able to
successfully determine BMD in a variety of patients
regardless of age, sex, body mass index, or bone health
status. The correlation of r= 0.55 between the DEXA-
determined T-scores and AI-derived attenuation values
indicates promising efficacy of this prototype in determining
BMD from chest CT studies (Fig. 2). In addition, the results
shown in Figure 3 may demonstrate the ability of the AI to
differentiate between diseased and nondiseased states. When
comparing the AI-derived HU values between subgroups, a
significant difference was found (P= 0.045), which suggests
that this prototype may be efficacious in determining active
disease states, or bone health status, using noncontrast chest
CT studies. However, further work will be required in order
to achieve this future goal of disease classification.

One of the first uses of predictive modeling toward bone
health analysis can be found in the 1999 study by Gregory
et al.18 In their work, they used Fourier transforms to create a
spectral fingerprint to analyze an image’s principal compo-
nents, chiefly trabecular bone, which were then classified via
neural network. The authors claim an accuracy of ∼80% in
classifying histologic sections as normal, osteoarthritic, or
osteoporotic by using this technique. This early focus on bone
health with the assistance of computer modeling set the stage
for the eventual expansion of such techniques into the clinical

TABLE 1. Basic Demographic Information of the Patients Included in This Study

Patient Demographics

Demographic Markers All Patients, n= 65 Normal Control, n= 38 Osteopenic, n= 24 Osteoporotic, n= 3

Age (y)
At DEXA 66.4± 10.6 66.6± 11.8 65.0± 8.7 72.0± 6.2
At chest CT 67.0± 10.8 67.3± 12.0 65.5± 8.8 72.7± 6.1

Sex, n (%)
Female individuals 57 (88) 31 (82) 22 (92) 3 (100)
Male individuals 8 (12) 7 (18) 2 (8)

Race, n (%)
White 48 (74) 31 (82) 15 (63) 2 (67)
Black 16 (25) 7 (18) 8 (33) 1 (33)
Other 1 (1) 1 (4)

BMI (kg/m2) 28.7± 6.8 29.8± 7.4 26.2± 4.8 23.4± 4.9

BMI indicates body mass index; CT, computed tomography; DEXA, dual-energy X-ray absorptiometry.

TABLE 2. Comparison Between Subpopulations of DEXA-Determined
Mean BMD, T-scores, and AI-derived Attenuation Values

Scan Measures

Normal
Control,
n= 38

Osteopenic,
n= 24

Osteoporotic,
n= 3

DEXA
BMD (g/cm2) 1.13±0.16 0.88± 0.06 0.68± 0.06
T-scores 0.77±1.50 −1.51± 0.04 −3.26± 0.59

Chest CT
Attenuation (HU) 145±42.5 136± 31.8 103± 16.2

AI indicates artificial intelligence; CT, computed tomography; DEXA,
dual-energy X-ray absorptiometry.

FIGURE 2. Scatter plot comparing the AI-derived HU values and
DEXA-determined T-scores for each individual in the study pop-
ulation. r=0.55, P<0.001.

J Thorac Imaging � Volume 35, Supp. 1, May 2020 Chest CT for Bone Density with AI

Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved. www.thoracicimaging.com | S37

Copyright r 2020 Wolters Kluwer Health, Inc. All rights reserved.



setting. Consequently, while the methods used in Gregory
and colleagues were based on histologic sections, our present
study transfers this paradigm into the realm of preventative
identification of pathology, in patients at risk, by harnessing
AI to provide a measure of bone density without the need for
additional scans or procedures.

Outside of imaging, the use of AI in the context of bone
health has been explored by Chiu et al19 who implemented
an artificial neural network attuned to 7 predictive demo-
graphic and lifestyle variables to predict osteoporosis with a
sensitivity of 78.3% and a specificity of 73.3%. Their findings
contributed to the work of several others, all of which help
to demonstrate the efficacy of AI in predicting osteoporotic
disease.20–23 Nevertheless, the computational algorithms in

these studies required the careful collection of potentially
erroneous self-reported data. The prototype algorithm in the
present study is not attuned to qualitative data of medical
records but rather to quantitative imaging with a higher
degree of reproducibility and objectivity.

In the following years, several AI-based approaches
have been described for the diagnosis of osteoporotic disease
involving anatomic locations that differ from the site of
original diagnostic determination. In the study by Kavitha
et al,24 a radial basis function kernel (RBF kernel)-based
support vector machine measured mandibular cortical
width via dental panoramic radiographs in order to identify
low BMD in postmenopausal women. The use of support
vector machine in the context of bone density quantification
had been previously found to be efficacious in a prior study
by Lee et al.25 Although the work by Kavitha and col-
leagues does support that novel algorithms can be used to
determine BMD using imaging from a location other than
that of the initial site of diagnosis, their study was limited to
women above the age of 50 and so may not be able to be
extrapolated to the population at large. The present study
aims to be more inclusive with a broader patient population
that is more indicative of the general population requiring
measures of BMD.

Although lumbar vertebrae and proximal femur scans
are the most typically used sites for determining BMD via
DEXA, prior studies have shown that thoracic vertebrae
provide reliable bone density measures, as compared with
lumbar vertebrae. The study by Wong et al26 found a cor-
relation of r= 0.86 in thoracic bone density versus lumbar
bone density, and the study by Lenchik et al27 found a
correlation of r= 0.87. Utilizing thoracic vertebrae for BMD
determination is crucial in the application of the AI proto-
type implemented in this study, and the aforementioned
works prove the reliability of this method.

FIGURE 3. Box-and-whisker plot representing the AI-derived HU
values for each subgroup within the study population. T-scores for
normal, osteopenic, and osteoporotic groups are >−1.0, −1.0 to
−2.5, and <2.5, respectively.

FIGURE 4. The AI’s output display of thoracic vertebrae in the sag-
ittal section of a patient with normal BMD. The cyan numbers
indicate attenuation values in HU, measured within the cyan-colored
regions of interest, within their corresponding vertebral body. Note
that the dark blue numbers and their corresponding vertical
measurement lines relate to height measurements performed by
another AI algorithm outside the scope of this work.

FIGURE 5. The AI’s output display of thoracic vertebrae in the
sagittal section of a patient with osteoporosis. The cyan numbers
indicate attenuation values in HU, measured within the cyan-colored
regions of interest, within their corresponding vertebral bodies. Note
that the dark blue numbers and their corresponding vertical meas-
urement lines relate to height measurements performed by another
AI algorithm outside the scope of this work.
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The limitations of this study are in large part due to the
pathophysiology and epidemiology of osteoporosis. A max-
imum of 3 years between DEXA and chest CT studies was set
to ensure there would be no significant change in BMD during
the time between the 2 image acquisitions.13 Because of this
narrow window of time, a sample size of only 65 patients
was able to be procured. Larger patient populations should
confirm our findings going forward. Similarly, due to
the pathophysiology of osteoporotic disease, a significant
proportion of the study participants were female individuals.
Table 1 shows that 88% of the study participants overall and
92% and 100% of the osteopenic and osteoporotic patients,
respectively, were women. With the increasing importance of
osteoporosis in an aging general population, more data on AI
performance in men would be desirable. Furthermore, only 3
patients included in this study had a diagnosis of osteoporosis.
Following works should attempt to include more osteoporotic
patients in order to corroborate the accuracy of the prototype
in differentiating between diseased and nondiseased states. In
addition, these future works could consider a dichotomic
analysis that would include osteopenic patients in either the
diseased, or nondiseased states, as this was not carried out in
the present study. Conversely, the Kruskal-Wallis test could
be utilized to determine differences between individual groups
for disease classification. Our convenience sample included
patients who had undergone regular radiation dose diagnostic
noncontrast CT of the chest. Further studies should focus on
AI performance in low radiation-dose CT studies, as they are
used, for example, for lung cancer screening purposes.

The prevalence and cost associated with osteoporotic
disease is significant, particularly in developed nations, and
there have long been measures by which to determine
BMD.2,4,5,8 However, the current gold standard of DEXA is
limited in its diagnostic scope to measures of BMD and
therefore unable to contribute to other aspects of health
assessment.9,10 This limited efficacy can be ameliorated by
the implementation of the AI prototype discussed in this
work, which functions on the basis of chest CT. The
implementation of AI in analyzing chest CT studies for
the evaluation of various disease processes including lung
cancer, cardiovascular disease, and chronic obstructive
pulmonary disease has been found efficacious in numerous
works.10–21 Our results indicate that this AI prototype
provides a reliable measure of BMD in moderate correlation
with DEXA. Combined with other AI algorithms directed
at evaluating cardiovascular and lung diseases, among
others, this prototype may aid in future comprehensive
preventative care to the population at large based on a
single, possibly low-dose, chest CT.
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