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Introduction. The purpose of this work was to assess the feasibility of acquisition time
reduction in MPI-SPECT imaging using deep leering techniques through two main approaches,
namely reduction of the acquisition time per projection and reduction of the number of angular
projections.

Methods. SPECT imaging was performed using a fixed 90� angle dedicated dual-head
cardiac SPECT camera. This study included a prospective cohort of 363 patients with various
clinical indications (normal, ischemia, and infarct) referred for MPI-SPECT. For each patient,
32 projections for 20 seconds per projection were acquired using a step and shoot protocol from
the right anterior oblique to the left posterior oblique view. SPECT projection data were
reconstructed using the OSEM algorithm (6 iterations, 4 subsets, Butterworth post-recon-
struction filter). For each patient, four different datasets were generated, namely full time
(20 seconds) projections (FT), half-time (10 seconds) acquisition per projection (HT), 32 full
projections (FP), and 16 half projections (HP). The image-to-image transformation via the
residual network was implemented to predict FT from HT and predict FP from HP images in
the projection domain. Qualitative and quantitative evaluations of the proposed framework was
performed using a tenfold cross validation scheme using the root mean square error (RMSE),
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absolute relative error (ARE), structural similarity index, peak signal-to-noise ratio (PSNR)
metrics, and clinical quantitative parameters.

Results. The results demonstrated that the predicted FT had better image quality than the
predicted FP images. Among the generated images, predicted FT images resulted in the lowest
error metrics (RMSE = 6.8 ± 2.7, ARE = 3.1 ± 1.1%) and highest similarity index and signal-
to-noise ratio (SSIM = 0.97 ± 1.1, PSNR = 36.0 ± 1.4). The highest error metrics (RMSE =
32.8 ± 12.8, ARE = 16.2 ± 4.9%) and the lowest similarity and signal-to-noise ratio (SSIM =
0.93 ± 2.6, PSNR = 31.7 ± 2.9) were observed for HT images. The RMSE decreased signifi-
cantly (P value < .05) for predicted FT (8.0 ± 3.6) relative to predicted FP (6.8 ± 2.7).

Conclusion. Reducing the acquisition time per projection significantly increased the error
metrics. The deep neural network effectively recovers image quality and reduces bias in
quantification metrics. Further research should be undertaken to explore the impact of time
reduction in gated MPI-SPECT. (J Nucl Cardiol 2021;28:2761–79.)

Key Words: SPECT Æ myocardial perfusion imaging Æ deep learning Æ short acquisition

Abbreviations
SPECT Single-photon emission computed

tomography

MPI Myocardial perfusion imaging

CAD Coronary artery disease

CNN Convolutional neural network

ResNet Residual network

FT-FP Full time and full projection, reference

images

HP Half projection

HT Half time

FP-

Prediction

Full projection prediction

FT-

Prediction

Full time prediction

INTRODUCTION

Myocardial perfusion imaging (MPI) using single-

photon emission computed tomography (SPECT) plays

a pivotal role in prediction, diagnosis and prognosis of

coronary artery disease (CAD).1 There is a pressing

demand to shortening the acquisition time of MPI-

SPECT to enhance patient’s comfort, reduce examina-

tion costs through higher patient throughput, and reduce

the likelihood of patient motion.2,3 However, reducing

the acquisition time amplifies noise, thus hampering

clinical interpretation of SPECT images. Recent

advances in hardware (novel cameras and collimators)

and software (reconstruction algorithms incorporating

noise regularization and resolution recovery) facilitate

the possibility of reducing scanning time and/or injected

activity without degrading image quality.3-5

Recent efforts focused on investigating the potential

of new acquisition and reconstruction protocols involv-

ing the use of low-energy high-resolution collimators,

multifocal collimators, such as IQ SPECT,6 and dedi-

cated reconstruction algorithms7 on the reduction of

administered activity and acquisition time for MPI

imaging. In this regard, a wide-beam reconstruction

algorithm was proposed for quarter-time (1/4th) MPI-

SPECT imaging,8 though this approach faces major

challenges in ECG-gated imaging and overweight

patients.

Recent developments in machine/deep learning

have successfully introduced a paradigm shift in medical

image analysis techniques. A number of studies have

assessed the relevance of machine/deep learning in

various areas of medical image analysis including

disease classification,9,10 image denoising,11 resolution

recovery,12 image reconstruction,13 segmentation,14,15

and PET attenuation correction.16,17

Ma et al.18 used a convolutional neural network

(CNN) in the diagnosis of different thyroid diseases

(Graves’ disease, Hashimoto disease, and subacute

thyroiditis) using SPECT images. They demonstrated

that their proposed method is efficient for SPECT

imaging-based classification of thyroid diseases. Betan-

cur et al.19 performed a study for automatic obstructive

disease prediction from MPI-SPECT images using a

deep CNN, reporting improved prediction of per-patient

and per-vessel coronary artery disease. A more recent

multi-centric study showed that a deep CNN improves

obstructive coronary artery disease prediction from

upright-supine MPI-SPECT compared with current

quantitative techniques.20 Another study performed by

Wang et al.21 reported on the feasibility of deep

learning-based (using a V-net architecture) automatic

segmentation and quantification of the left ventricle

from gated MPI-SPECT images.

Dietze et al.22 used a deep CNN to enhance fast

filtered backprojection reconstructed SPECT images to

achieve a quality comparable to Monte Carlo-based

reconstructions. They reported that CNN enabled gen-

eration of SPECT images with a quality similar to that

See related editorial, pp. 2780–2783
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obtained with Monte Carlo-based reconstruction within

seconds. Ramon et al.23 reported on a feasibility study

for denoising low-dose MPI-SPECT imaging using 3D

convolutional auto-encoders to produce standard full

dose images from 1/8th and 1/16th dose images. They

reported improvements in image quality comparable to

conventional noise reduction methods. More recently,

the same group used a 3D deep residual CNN to

generate standard full dose images from � dose MPI-

SPECT images.24 The proposed approach led to effec-

tive noise reduction in the myocardium, outperforming

conventional post-processing methods, such as spa-

tiotemporal non-local means filtering.

There are fundamental differences between fast

(half-projection) and low-dose (half-time) scans

although the final impact on total acquisition time is

the same. Half-projection acquisition only reduces

patient scanning time and reduces the number of

projection samples without impacting the injected

activity and hence the radiation dose to the patient.

Conversely, a half-time scan mimics both a low-dose

scan (due to the reduced number of counts) and fast

acquisition with standard injected activity (due to

reduced scan time). In this work, we set out to

investigate both options with the aim to optimize

cardiac SPECT protocols.

The purpose of this work is to explore the possi-

bility of time reduction in cardiac MPI-SPECT imaging

using two main approaches, namely (i) reducing the

scanning time per projection (half time) and (ii) reduc-

ing the number of acquired projections during image

acquisition.

MATERIALS AND METHODS

Image Acquisition

MPI-SPECT imaging was performed on fixed 90� angle

dual-head ProSPECT dedicated cardiac SPECT camera.25 The

ProSPECT detector is composed of Thallium-activated

Sodium Iodide (NaI(Tl)) crystal having a size of

40 9 25 cm2 and 9.5 mm thickness. A square array of PMTs

(24 pcs, 76 9 76 mm) was optically coupled to a 20-mm thick

fused-quartz light-guide using a silicon-based curing com-

pound as optical glue. Intrinsic and extrinsic spatial resolutions

with low-energy high-resolution collimator (LEHR, 35 mm

thickness) at 10 cm from the surface of the detector was

3.7 mm and 7.5 mm, respectively. The energy resolution and

sensitivity were 9.5% and 5.19 cpm/kBq, respectively.25

This prospective study included a cohort of 363 patients

with different clinical indications (normal, ischemia, and

infarct) referred for MPI-SPECT imaging. Gated MPI-SPECT

stress imaging was preformed 45-60 min after intravenous

administration of 555-925 MBq of 99mTc-sestamibi. List-mode

electrocardiogram (ECG)-gated MPI-SPECT data were

acquired using 16 frames per cardiac cycle and 30% accep-

tance window for R–R interval length using forward–backward

gating method. A step and shoot acquisition protocol consist-

ing of 32 projections with 20 seconds per projection from the

right anterior oblique (RAO) to the left posterior oblique

(LPO) view was used.

Data Processing

Half time (HT) For each patient, two set of projec-

tions were generated from the full acquisition list mode data,

the whole acquisition (20 seconds per projection) was consid-

ered as full time (FT) projection data while the first 10 seconds

of the list mode data were used to create half time (HT)

projections.

Half projection (HP) Half projection (HP, 16

projections) data set were obtained by excluding even projec-

tions from full time acquisition (32 projections, 20 seconds)

projections.

Deep Learning Algorithm

Network architecture The image-to-image trans-

formation was performed using a deep residual neural network

(ResNet)26 for FT and FP projection prediction. ResNet is

composed of 20 convolutional layers where a convolution

kernel with 3 9 3 voxels is used with zero dilatation for the

first seven layers (low-level features extraction), the next seven

layers with a dilated convolution kernel by a factor of two

(medium-level features extraction) and the last six layer with a

dilation by a factor four (high level feature extraction). Every

two convolutional layers linked with residual connection and

leaky rectified linear unit (LReLU) was used for activation

function. The residual network (ResNet) 26 implemented in

Python libraries of Niftynet pipeline,27 built upon TensorFlow

(version 1.12.1)28 was utilized to predict FT and FP projections

from HT and HP projections, respectively.

To avoid a large number of trainable parameters, a kernel

of 3 9 3 was chosen for all convolutions. Many architectures

down-sample the intermediate feature maps to capture large

image contexts at the cost of reduced spatial resolution. Thus,

up-sampling convolutional layers are employed to partially

recover the lost resolution, which also adds to the computa-

tional burden/cost of the model. The advantages of dilated

convolutions are that features are extracted from high resolu-

tion inputs while any receptive field (in terms of size) can be

chosen. Instead of a down-sampling/up-sampling pipeline, the

ResNet architecture adopts dilated convolution with factors of

2 and 4 for seven intermediate and six last layers to ensure

effective feature extraction (Figure 1a). It should be noted that

the dilated convolutions contain the same number of free

(trainable) parameters compared to conventional kernels. The

key feature of ResNet, in addition to dilated convolution

kernels, is residual connections which bypass the parameter-

ized layers. This is performed through combining (by addition)

the input and output of a block to render a smooth information

propagation and enhance the training speed/quality. The

ResNet architecture benefits from 9 residual blocks
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(Figure 1a), which results in a large number of receptive fields

(which improves the process of feature extraction).

Implementation details The training for FT pre-

diction was performed using 11616 (363 9 32) pairs of HT

and FT projections as input/output, respectively. To this end,

the ResNet model with a 2D spatial window equal to 64 9 64

voxels and batch size of 30 were used. The training for FP

prediction was performed using 5445 (363 9 15) projection

pairs. Two projections (left and right neighbors of the target

projection) were used as input to the network to predict the

intermediate projection. The same setting was used for the

training of the two networks (FT and FP predictions) as

follows: learning rate = 0.001, sample per volume = 1, opti-

mizer = Adam, loss function = L2norm and decay = 0.0001.

The implementation of network input and target in FT and FP

predictions are presented in Figure 1b.

The optimization of the network was carried out based on

the L2 loss function. Though the L1 norm or mean absolute

error (MAE) are frequently used in the literature, the L2 loss

function exhibited overall better performance for this task. It

should be noted that the L2 loss function led to somewhat

blurred output compared to L1 and MAE loss functions.

However, quantitative parameters demonstrated overall supe-

rior performance of the L2 loss function.

Considering a batch size of 30, the training of the network

for either FP or FT prediction took about 10 h using a 2080TI

GPU, Intel(R) Xeon 2.30 GHz 7i CUP and 64.0 GB RAM.

After 10 epochs, the training loss reached its plateau. In the

inference phase, the prediction of FP and FT projections took

few milliseconds per subject.

Image Reconstruction

The SPECT projection data were reconstructed using

OSEM algorithm. The numbers of iterations and subsets were

set to 6 and 4, respectively. SPECT reconstruction was

repeated five times for each patient to generate FT-FP, HP,

HT, predicted FT and predicted FP SPECT images. All images

were reconstructed into a 64 9 64 matrix with a voxel size of

6.4 9 6.4 9 6.4 mm. The Butterworth post-reconstruction

filter with order = 10 and cut-off = 0.37 was applied to

smooth the images.

Qualitative and Quantitative Evaluation

Qualitative and quantitative evaluation of the proposed

framework was performed using a tenfold cross validation

scheme on 363 subjects. Quantitative evaluation of the

predicted images was performed in both image and projection

domains. In the projection domain, three datasets (HT,

predicted FT, predicted FP) were evaluated against the

reference projections obtained from the FT/FP scans. In the

image domain, four SPECT images (HT, HP, predicted FT,

predicted FP) were compared to reference FT/FP images

reconstructed from the full acquisition. The quality of SPECT

images was assessed using the following metrics considering

SPECT images derived from the full time (20 seconds) and full

projection (32 projections) acquisition as reference.

Voxelwise mean error (ME), mean absolute error (MAE),

relative error (RE%) and absolute relative error (ARE%) were

calculated between reference FT/FP and predicted SPECT

images in the projection and image domains.

ME ¼ 1

vxl

Xvxl

v¼1

SPECTPredicted vð Þ � SPECTFT�FP vð Þ; ð1Þ

MAE ¼ 1

vxl

Xvxl

v¼1

SPECTpredicted vð Þ � SPECTFT�FP vð Þ
�� ��; ð2Þ

RE %ð Þ ¼ 1

vxl

Xvxl

v¼1

SPECTpredicted

� �
v
� SPECTFT�FPð Þv

SPECTFT�FPð Þv
� 100%;

ð3Þ

ARE %ð Þ ¼ 1

vxl

Xvxl

v¼1

SPECTpredicted

� �
v
� SPECTFT�FPð Þv

SPECTFT�FPð Þv

�����

�����
� 100%: ð4Þ

Here, SPECTpredicted stands for SPECT images generated from

HT and HP acquisitions, whereas SPECTFT-FP stands for the

reference FT-FP SPECT images. vxl and v denote the total

number of voxels and voxel index, respectively.

Moreover, the root mean square error (RMSE), structural

similarity index (SSIM) and peak signal-to-noise ratio (PSNR)

were calculated to assess the quality of the predicted SPECT

images

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

vxl

Xvxl

v¼1

SPECTpredicted ið Þ � SPECTFT�FP ið Þ
� �2

;

vuut

ð5Þ

PSNR dBð Þ ¼ 10 log10
Peak2

MSE

� �
; ð6Þ

SSIM ¼
2AveFT�FPAvepredicted þ C1

� �
2dref;predicted þ C2

� �

Ave2FT�FP þ Ave2predicted þ C1

� 	
d2ref þ d2predicted þ C2

� 	 :

ð7Þ

In Eq. (6), Peak denotes the maximum intensity of either

SPECTFT-FP or SPECTpredicted, whereas MSE indicates the

mean squared error. In Eq. (7), AveFT-FP and Avepredicted stand

for the mean value of SPECTFT-FP and SPECTpredicted, respec-

tively. dFT-FP and dpredicted denote the variances and dFT-
FP,predicted the covariances of SPECTFT-FP and SPECTpredicted

images, respectively. The constants (C1= 0.01 and C2= 0.02)

were set to avoid division by very small values.

Paired-sample t-test was used for statistical analysis to

compare the image-derived metrics between the generated data

sets in the projection and image domains. The significance
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level of P-value was set to .05 for all comparisons and

calculated metrics. Moreover, the voxelwise joint histograms

with Pearson correlation were computed to explore the

correlation between the generated SPECT images with respect

to reference FT-FP images (only in the reconstruction domain).

Quantitative Clinical Evaluation

For clinical evaluation, quantitative parameters were

calculated using the non-grated stress SPECT images for HT,

HP, predicted FT, predicted FP, and reference FP/FT images

using Cedars-Sinai software. These quantitative parameters

include Defect, Extent, Summed Stress Percent (SS%),

Summed Stress Score (SSS), Total Perfusion Deficit

(TPD%), Volume, Wall, Shape Eccentricity and Shape Index.

Descriptive statistics of quantitative stress perfusion along with

Pearson correlation analysis with respect to reference images

were reported.

Further evaluation was performed using Bland–Altman

analysis where tbe mean bias, standard deviation, lower and

upper bound with 95% confidence interval (CI) as well as

repeatability coefficient (RC = 1:96
ffiffiffiffiffiffiffiffi
2r2w

p
, rw is variance)

were reported for clinical quantitative parameters.

RESULTS

Projection Domain Analysis

Table 1 summarizes the results of statistical anal-

ysis of image quality metrics (mean ± SD), including

ME, MAE, voxelwise RE (%), voxelwise ARE (%),

SSIM, PSNR, RMSE. The voxelwise RMSEs were

68.4 ± 3.8, 16.4 ± 3.2 and 11.7 ± 2.9 for HT, predicted

FP and predicted FT, respectively. The HT projections

presented the highest RE (-23.1 ± 4.6%) with respect to

the FT projections, whereas the predicted FT and

predicted FP projections resulted in RE of 0.4 ± 4.1

and - 2.9 ± 4.8 with respect to FT/FP projections,

respectively. The HT projections, predicted FT and

predicted FP projections led to SSIM of 0.92 ± 1.4,

0.96 ± 1.2 and 0.94 ± 1.5 and PSNR of 31.9 ± 1.6,

35.6 ± 1.8 and 34.9 ± 1.9, respectively. Overall, the

predicted FT projections provided better image quality

compared to predicted FP (P-value\ .05).

Image Domain Analysis

Figure 2 depicts a representative clinical example

comparing FT/FP, HT, HP, predicted FT and predicted

FP images as well as relative difference maps with

respect to reference FT/FP images. The predicted FT

and predicted FP images provide good image quality.

However, the HT and HP images showed high bias maps

with respect to the reference FT/FP images. The

predicted FT method provided overly better image

quality compared to the predicted FP methods. The line

profiles drawn through the myocardium between refer-

ence FT/FP images and the predicted FT, predicted FP,

HP and HT images are shown in Figure 2. The profiles

drawn through the FT/FP and predicted FT images are in

very good agreement in low and high-count areas of the

myocardium. Figures 3 and 4 show representative

reconstructed SPECT images from the predicted FP

and predicted FT projections as well as FT/FP images.

Table 2 summarizes the results of statistical anal-

ysis of image quality metrics (mean ± SD), including

ME, MAE, voxelwise RE, voxelwise ARE, SSIM,

PSNR, and RMSE between the different SPECT images.

The voxelwise RMSE in reconstructed SPECT images

was 16.2 ± 4.9, 4.8 ± 1.7, 3.6 ± 1.3 and 3.1 ± 1.1 for

HT, HP, predicted FP and predicted FT, respectively.

The HP images showed the lowest RE (0.1 ± 1.3%)

compared to HT images (-16.2 ± 4.9%) (P-value\
.001). The predicted FT and predicted FP images

resulted in MAE of 4.8 ± 1.8 and 5.6 ± 2.3 (P-value\
0.05) and RE of - 0.2 ± 0.7% and - 0.1 ± 1.0% with

respect to the FT/FP images. The HT, HP, predicted FP,

and predicted FT led to SSIM of 0.93 ± 1.3, 0.96 ± 1.2,

0.97 ± 1.1 and 0.98 ± 1.1 and PSNR of 32.2 ± 1.5,

35.7 ± 1.5, 36.8 ± 1.5 and 36.0 ± 1.4, respectively. The

reconstructed images from predicted FT provided better

image quality compared to the predicted FP methods (P-
value\ .05).

Figure 5 shows box plots of MAE, RMSE and ARE

(%) comparing various prediction methods. The lowest

error was achieved by predicted FT images. The MAE,

RMSE, ARE (%) for all patients are presented in

Supplemental Figures 1-3. The voxelwise joint his-

togram analysis of SPECT images (Figure 6) revealed

high correlations between FT/FP and predicted FT and

predicted FP images (R2 = 0.983 and 0.987 for predicted

FT and predicted FP, respectively).

Clinical Quantitative Evaluation

Tables 3 and 4 summarize the results of the

statistical analysis as well as Pearson correlation coef-

ficients (R2) for the clinical MPI-SPECT studies.

Considering the TPD (%) index, SPECT images recon-

structed from the predicted FP (18.52 ± 6.00) and

predicted FT (18.40 ± 6.00) exhibited close agreement

with the reference FT-FP images (TPD = 18.84 ±

6.08%). Likewise, HP and HT images exhibited TPD

(%) indices of 17.02 ± 4.98% and 16.49 ± 4.74%,

respectively. Table 4 confirms the trend observed in

Table 3 wherein Pearson correlation coefficients (R2) of

0.999, 0.996, 0.930 and 0.837 were observed for

predicted FT, predicted FP, HP, and HT with respect

to FT-FP images. Moreover, the box plots of TPD (%),
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SS (%) and SSS shown in Figure 7 provide detailed

information about the distribution of these indices. The

box plots in Supplemental Figures 4 and 5 compare the

defect, wall, extent, ECC, SI and volume calculated

from the different SPECT images. Descriptive statistics

of Bland–Altman analysis were presented in Table 5.

The mean differences (95%CI) of TPD were 0.43 [0.34,

0.53], 0.31 [0.14, 0.49], 1.81 [1.04, 2.58] and 2.35 [1.25,

3.45] for PFT, PFP, HP, and HT, respectively. The

repeatability coefficients (95% CI) were 0.54 [0.38,

0.71] and 1.03 [0.73, 1.33] for PFT and PFP and

increased to 4.58 [3.25, 5.90] and 6.57 [4.68, 8.46] for

HP and HT, respectively.

Figure 1. (A) Layout of the ResNet network architecture and details of the layers, (B) input and
output of different scanning time reduction strategies. Red color layer: layer with dilation 1, green
color layer: layer with dilation 2, blue color layer: layer with dilation 4. Conv, convolutional
Kernel; LReLu, leaky rectified linear unit; SoftMax, Softmax function; Residual, residual
connection; FP-Prediction, full projection prediction; FT-Prediction, full time prediction.

Table 1. Quantitative analysis of the predicted images in the projection domain relative to FT and FP
scans

Method
ME

(counts)
MAE

(counts) RE (%) ARE (%) SSIM PSNR
RMSE

(counts)

HT - 37.6 ± 5.6 37.7 ± 5.1 - 23.1 ± 4.6 23.3 ± 4.5 0.92 ± 1.4 31.9 ± 1.6 68.4 ± 3.8

Predicted

FT

- 0.3 ± 3.6 6.3 ± 2.4 0.4 ± 4.1 9.2 ± 3.0 0.96 ± 1.2 35.6 ± 1.8 11.7 ± 2.9

Predicted

FP

- 0.4 ± 3.8 12.2 ± 2.8 - 2.9 ± 4.8 11.8 ± 3.7 0.94 ± 1.5 34.9 ± 1.9 16.4 ± 3.2

P-value* \ .05 \ .002 \ .01 \ .02 \ .05 \ .05 \ .02

*P-value between predicted FT projections and predicted FP projections
FT-FP, full time and full projection (reference images); HP, half projection; HT, half time; FP-Prediction, full projection prediction; FT-
Prediction, full time prediction; ME, Mean Error; MAE, mean absolute error; RE%, relative error; ARE%, absolute relative error; SSIM,
structural similarity index; PSNR, peak signal-to-noise ratio; RMSE, root mean square error
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DISCUSSION

This study was set out with the aim of assessing the

potential of half time MPI-SPECT imaging through two

main approaches, namely reducing the number of

projections and reducing the acquisition time per pro-

jection. The results demonstrated that HP reconstructed

images produced better image quality compared to the

HT reconstructed images. Moreover, the predicted FT

images had better image quality than the predicted FP

images. Among the generated images, the predicted FT

images resulted in the lowest error metrics (RMSE =

6.8 ± 2.7, ARE = 3.1 ± 1.1%) and highest similarity

index (SSIM = 0.97 ± 1.1, PSNR = 36.0 ± 1.4). The

highest error metrics (RMSE = 32.8 ± 12.8, ARE =

16.2 ± 4.9%) and the lowest similarity (SSIM = 0.93

± 2.6, PSNR = 31.7 ± 2.9) were observed in HT

Figure 2. Representative MPI-SPECT clinical study showing FT-FP, predicted FT, predicted FP,
HP and HT short-axis images, along with relative difference maps with respect to reference FT-FP
images. Horizontal line profiles drawn through the myocardium are also shown. FT-FP, Full time
full projection (reference images); HP, half projection; HT, half time; FP-Prediction, full projection
prediction; FT-Prediction, full time prediction.
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images. The RMSE decreased significantly for predicted

FT images (8.0 ± 3.6) relative to predicted FP images

(6.8 ± 2.7) (P-value\ .05).

Although the ProSPECT scanner used in this work,

designed and built by our group, is not yet commercially

available in many countries, its technical performance

exhibited comparable performance in terms of sensitiv-

ity, spatial and energy resolution to other commercially

available SPECT cameras.25 Moreover, this study was

conducted to investigate the potential of a novel deep

learning-based low-dose/fast cardiac SPECT imaging,

which is applicable on any SPECT camera offering

sufficient flexibility for data acquisition. Hence, similar

outcomes are expected when applying this approach on

other commercial SPECT cameras.

A number of strategies were proposed for dose

(half-dose or less than half-dose) and/or time (half-time

or less than half- time) reduction in MPI-SPECT

imaging.29 Modern technologies, such as Cadmium-zinc

telluride detectors30 and IQ SPECT6 were proposed for

dose and time reduction, yet these specialized devices

are not widely available and are still limited to few sites.

Lecchi et al.31 investigated the possibility of acquisition

time reduction to 50% and 25% of the standard time on a

general-purpose SPECT camera (BrightView, Philips

Healthcare) using latest generation iterative reconstruc-

tion algorithms with resolution recovery (AstonishTM

algorithm, Philips Healthcare). They reported significant

(P-value\ .01) detrimental influence on cardiac quan-

tification in overweight patients when using 50% and

25% of standard acquisition time, though the approach is

applicable in normal-weighted patients. In our study,

decreasing the acquisition time to 50% of the standard

time had a noticeable effect on quantitative parameters

(RE = - 25.5 ± 9.1%). Application of the deep learning

approach to produce predicted FT images decreased

significantly (P-value\ .001) the quantification errors

(RE = - 0.2 ± 1.1%) compared to the FP/FT images

used as reference. This study confirmed that decreasing

the acquisition time significantly affected the derived

Figure 3. Representative MPI-SPECT clinical study showing FT-FP and predicted FP and
predicted FT images. FT-FP, full time and full projection (reference images); FP-Prediction, full
projection prediction; FT-Prediction, full time prediction.
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quantitative metrics, which can be recovered by the deep

learning techniques.

The clinical evaluation revealed that the predicted

FP and FT SPECT images reflect clinically relevant

information in the reference FP/FT SPECT images with

high accuracy. For instance, the predicted FT and FP

images resulted in TPD% of 18.40% and 18.52%,

respectively, compared to the reference FP/FT (TPD =

18.84%). Due to the increased noise levels in the

projections and its adverse impact on the SPECT

reconstruction, HT SPECT images exhibited noticeable

loss of relevant information leading to TPD = 16.49%.

In this regard, HP SPECT images showed closer

similarity to the reference FT/FP SPECT images as

noise levels in the projection space remained unchanged.

The degradation of image quality in HP SPECT images

was due to the reduced number of angular samples

which impacted the outcome of image reconstruction

from the limited number of projections.

Caobelli et al.32 reported on the feasibility of 1/8th

time MPI-SPECT imaging using the IQ SPECT camera.

The results were statistically comparable to 1/4th time

protocol using the IQ SPECT system. Regarding the

application of the deep neural networks in low-dose

SPECT imaging, Ramon et al.23 applied a 3D convo-

lutional neural network based on stacked convolutional

auto-encoders for denoising low-dose (1/8th and 1/16th

of clinical standard dose) MPI-SPECT images. They

reported correlation coefficients of 0.96 (1/16th dose),

0.97 (predicted full dose from 1/16th), 0.97 (1/8th dose)

and 0.98 (predicted full dose form 1/8th), with respect to

full dose OSEM reconstructed images. The authors

reported improved correlation coefficients between the

predicted full dose from 1/8th dose with respect to 1/

16th dose images (P-value\ .01). In our work, the

correlation coefficient between HT images (0.650) was

significantly improved (0.987) by FT prediction using

the deep learning approach (P-value\ .01). The corre-

lation between HP and FP images improved from 0.970

to 0.983 using FP prediction technique. These results

confirm the high correlation between predicted images

and FT/FP images.

Song et al.24 reported on a low-dose (25% dose)

denoising approach for cardiac-gated SPECT images

using a 3D convolutional residual network. The authors

compared their proposed predicted images with standard

Figure 4. Representative MPI-SPECT clinical study showing FT-FP, HT and HP images. FT-FP,
full time and full projection (Reference images); HP, half projection; HT, half time.
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dose and Gaussian post-filtering showing a reduction of

the normalized MSE (NMSE) by 6.13% and 11.05%,

respectively. They concluded that their proposed CNN

method can yield marked improvements in denoising

and resolution of SPECT images. In our proposed

approach, the predicted FT images reduced the RMSE

by 79.27% relative to HT images whereas the predicted

FP reduced the RMSE by 25.23% compared to HP

images. Kortelainen et al.33 reported that image acqui-

sition time of MPI-SPECT imaging can be reduced to

half of standard imaging without significantly affecting

the left ventricle volume, yet with significant deleterious

effect on phase analysis. In our study, the HT images

produced the highest RMSE, which was efficiently

reduced by the deep learning approach.

Asao et al.34 increased the number of projections

using interpolation. They reported 2.07 ± 1.24% NMSE

when using half projections, which significantly

decreased to 1.85 ± 1.06% using the interpolation

method. Sparse-view CT sinogram synthesis,35 PET

sinogram repair to mitigate detector block detectors,36

partial-ring image restoration37 or sinogram gap filling38

were previously addressed using deep neural networks.

In the present study, we aimed to reduce the number of

projections by exploiting the sparse view concept taking

advantage of the fact that iterative reconstruction

reduces the sparse view effect. HP images resulted in

a RMSE of 10.7 ± 4.5 with respect to FT/FP images

using OSEM reconstruction algorithm. This was reduced

to 8.0 ± 3.6 using the FP prediction technique (P-
value\ .05). The predicted FT and predicted FP images

didn’t show significant differences for most quantitative

evaluation metrics. Yet, both methods provided more

accurate quantification with respect to HT and HP

images.

In this work, we included patients with various

demographics, such as age, gender, and weight, and

different clinical indications (normal, ischemia, and

Table 2. Quantitative analysis of the predicted images in the image domain relative to FT and FP
images

Methods
ME

(counts)
MAE

(counts) RE (%) ARE (%) SSIM PSNR
RMSE

(counts)

Predicted

FP1
- 0.3 ± 1.6 5.6 ± 2.3 - 0.1 ± 1.0 3.6 ± 1.3 0.98 ± 1.1 36.8 ± 1.5 8.0 ± 3.6

HT2 - 25.5 ± 9.1 25.5 ± 9.1 - 16.2 ± 4.9 16.2 ± 4.9 0.93 ± 1.3 32.2 ± 1.5 32.8 ± 12.8

Predicted

FT3
- 0.2 ± 1.1 4.8 ± 1.8 - 0.2 ± 0.7 3.1 ± 1.1 0.97 ± 1.1 36.0 ± 1.4 6.8 ± 2.7

HP4 0.1 ± 2.0 7.4 ± 2.8 0.1 ± 1.3 4.8 ± 1.7 0.96 ± 1.2 35.7 ± 1.5 10.7 ± 4.5

P-value (1 to

2)

.05 \ .05 .07 \ .05 \ .05 \ .05 \ .05

P-value (1 to

3)

.09 \ .05 .08 .05 .06 .06 \ .05

P-value (1 to

4)

\ .01 \ .01 \ .001 \ .01 \ .02 \ .02 \ .002

P-value (2 to

4)

\ .001 \ .001 \ .001 \ .001 \ .001 \ .001 \ .001

P-value (2 to

3)

.07 \ .05 .08 .05 .08 .09 \ .05

P-value (3 to

4)

\ .005 \ .005 \ .001 \ .005 \ .005 \ .005 \ .001

The P-values were calculated between the methods indicated by their numbers (from 1 to 4)
FT-FP, full time and full projection (Reference images); HP, half projection; HT, half time; FP-Prediction, full projection prediction; FT-
Prediction, full time prediction; ME, mean error; MAE, mean absolute error; RE%, ARE%, absolute relative error; SSIM, structural
similarity index; PSNR, peak signal-to-noise ratio; RMSE, root mean square error

2770 Shiri et al Journal of Nuclear Cardiology�
Half-time SPECT imaging using deep learning November/December 2021



Figure 5. Box plots comparing various quantitative imaging metrics, including (A) MAE, (B)
RMSE, and (C) ARE (%) for the various MPI-SPECT images. MAE, Mean absolute error; RMSE,
root mean square error; ARE (%), absolute relative error.
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Figure 6. Voxelwise joint correlation histogram analysis of: (A) HT, (B) HP, (C) predicted FP and
(D) predicted FT images vs FT-FP images. FT-FP, full time and full projection (reference images);
HP, half projection; HT, half time; FP-Prediction, full projection prediction; FT-Prediction, full
time prediction.
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Table 3. Descriptive statistic of quantitative stress perfusion MPI of different image using Cedars-Sinai
software

Parameters images Minimum Maximum Mean Std. deviation

Defect FT-FP 4 31 20.78 7.54

PFT 3 30 20.10 7.35

PFP 4 30 20.06 7.24

HP 6 26 17.49 5.84

HT 0 25 16.54 5.75

Extent FT-FP 4 41 25.47 9.16

PFT 3 40 24.63 9.04

PFP 4 40 24.32 8.78

HP 6 33 21.33 7.27

HT 0 33 20.65 7.30

Summed stress percent (SS %) FT-FP 4 37 20.87 7.48

PFT 4 37 20.40 7.08

PFP 4 36 20.56 6.91

HP 3 30 17.81 7.19

HT 3 30 17.60 6.15

Summed stress score (SSS) FT-FP 3 27 15.36 5.50

PFT 3 27 15.04 5.25

PFP 3 26 15.16 5.14

HP 2 23 13.18 5.08

HT 2 24 13.12 4.49

Total perfusion deficit (TPD %) FT-FP 4 29 18.84 6.08

PFT 4 29 18.40 6.00

PFP 4 28 18.52 6.00

HP 5 26 17.02 4.98

HT 2 25 16.49 4.74

Volume FT-FP 12 35 22.15 6.11

PFT 12 35 22.09 6.05

PFP 12 35 21.94 6.00

HP 12 36 22.26 6.14

HT 11 36 21.47 5.82

Wall FT-FP 62 104 83.81 12.53

PFT 62 104 83.77 12.30

PFP 62 103 83.43 12.27

HP 63 102 82.79 11.83

HT 60 109 81.92 11.96

Shape eccentricity FT-FP 0.64 0.97 0.81 0.09

PFT 0.64 0.97 0.81 0.09

PFP 0.63 0.97 0.81 0.09

HP 0.66 0.93 0.79 0.07

HT 0.63 0.99 0.77 0.08

Shape index FT-FP 0.48 0.92 0.72 0.11

PFT 0.48 0.92 0.72 0.11

PFP 0.48 0.91 0.72 0.11

HP 0.47 0.84 0.69 0.08

HT 0.39 0.84 0.70 0.10

FT-FP, full time and full projection (reference images); HP, half projection; HT, half time; FP-Prediction, full projection prediction; FT-
Prediction, full time prediction
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infarct) resulting in a heterogeneous clinical cohort. One

of the more significant findings of this study is the

potential of acquisition time reduction in MPI-SPECT

imaging using deep learning methods, which can be

easily implemented on any SPECT camera and data

acquisition protocol. The generalizability of these results

is subject to certain limitations. Among the limitations

of this study is that image processing and analysis was

performed on non-gated static images and such, further

research should focus on gated MPI-SPECT images.

Being limited to non-gated MPI-SPECT, this study lacks

typical cardiac quantitative SPECT analysis, such as

quantitative gated SPECT (QGS) analysis. Future stud-

ies need to be carried out to validate the proposed

methodology for the extraction of MPI-SPECT cardiac

quantification metrics and features. Notwithstanding

these limitations, the study suggests the feasibility of

acquisition time reduction using a deep residual neural

network, which can easily be extended to gated MPI-

SPECT imaging.

CONCLUSION

We assessed the feasibility of acquisition time

reduction in MPI-SPECT imaging using deep learning

through two main approaches, reduction of acquisition

time per projection and reduction of the number of

angular projections. It was concluded that reducing the

acquisition time per projection deteriorates image qual-

ity and increases quantification errors that are efficiently

recovered using the deep neural network algorithm.

Further reduction in acquisition time might be possible

through the use of more advanced neural networks.

Table 4. Pearson correlation (R2) of different quantitative parameters with respect to reference images
(FT-FP)

Pearson correlation coefficient (R2)

Parameters PFT PFP HP HT

Defect 0.998 0.998 0.927 0.882

Extent 0.999 0.998 0.943 0.852

Summed stress percent (SS %) 0.993 0.991 0.641 0.681

Summed stress score (SSS) 0.994 0.992 0.678 0.72

Total perfusion deficit (TPD %) 0.999 0.996 0.93 0.837

Volume 1 0.999 0.975 0.796

Wall 0.999 0.999 0.94 0.673

Shape eccentricity 1.0 1.0 0.937 0.849

Shape index 0.999 0.999 0.879 0.660

HP, half projection; HT, half time; FP-Prediction, full projection prediction; FT-Prediction, full time prediction
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Figure 7. Clinical quantitative parameters including total perfusion deficit (TPD%), Summed
stress percent (SS%) and Summed stress score (SSS) in different images. FT-FP, full time and full
projection (reference images); HP, half projection; HT, half- time; FP-Prediction, full projection
prediction; FT-Prediction, full time prediction.
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