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One of China's major national targets is to environmentally upgrade its economy. In this paper, we define envi-
ronmental upgrading as lowering the carbon intensity. The disparities among China's regions suggest to examine
China's carbon emission performance at the regional level. For this purpose, we use inter-regional input-output
tables (for 2002, 2007, and 2012) that distinguish processing exports from ordinary exports. The regional emis-
sion intensities (EIs) show environmental downgrading in the period 2002–2007 and upgrading during
2007–2012. To identify the determinants of the evolution of regional EIs, we have employed a multiplicative
structural decomposition analysis. Changes in direct emission coefficients and changes in production technology
are found to be the major determinants. However, next to these standard determinants, we also evaluate the ef-
fects on the changes in regional EIs of changes in inter-regional trade and changes in inter-regional spillovers.
Changing inter-regional trade is found to have increased the EI significantly in western and central regions.
This suggests that more “dirty” production was shifted from coastal to inland regions. Our study yields clear pol-
icy recommendations for achieving China's transformation to a low-carbon economy.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Global warming has become one of the greatest environmental chal-
lenges that humans currently face. There is consensus among the
world's scientists that this is mainly caused by the increase of carbon
emissions emitted by anthropogenic activities (Moser, 2010). As the
largest developing country and the “world's factory”, China became
the world's leading emitter of carbon dioxide (CO2) around 2006. In
2013, its emissions accounted for nearly 30% of the world's total CO2

emissions from fossil fuels combustion (Quéré et al., 2015). As a re-
sponse, China took its responsibility to mitigate CO2 emissions. At the
Paris Climate Change Conference in 2015, China committed itself to (i)
have the peak of carbon emissions around 2030 (or earlier), and (ii)
lower the carbon emission intensity (CO2 emissions per unit of GDP)
of its economy by 60% to 65% from the 2005 level.1 The emission inten-
sity (EI) captures the environmental costs (measured by CO2 emissions
in this paper) for a country to obtain economic gains (measured by
ributions (INDCs). Before that,
nge Conference to reduce CO2
value-added) from production. An increase (decrease) in EI suggests
that the country bears more (less) environmental costs for the same
economic gains. Here, we call the increase (decrease) in EI environmen-
tal downgrading (upgrading).

Two specific aspects have motivated this paper. First, the top-down
policy process. Commitments are in China made by the central govern-
ment whilst local (regional) governments are the direct executive bod-
ies in charge of the emission reductions. At the same time, however,
local governments are pushed by the central government to improve
economic performance, which normally has priority over the emission
reduction target. Both forces influence EI, but in opposite ways. Second,
China is a very large country with striking regional disparities in re-
source endowments, production technology, energy efficiency, indus-
trial structures, and economic development level. As a result, the EIs
and their evolution over time differ across regions. For example, the
EIs of Ningxia and Shanxi, which are located in the Northwestern re-
gions, were 12 and 8 times of that in Beijing, respectively (Wang et al.,
2020). According to our estimation in Section 4, the EI of the Beijing-
Tianjin region decreased by 37% from 2002 to 2012, but the EI of the
Northwest increased by 27% in that period.

These two aspects suggest that China needs to strengthen the re-
gional coordination of EI reduction in order to achieve its national tar-
gets for low-carbon transformation. It is therefore important that the
evaluation of the development of EIs and the quantification of the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eneco.2020.104891&domain=pdf
https://doi.org/10.1016/j.eneco.2020.104891
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3 The data are from China's National Bureau of Statistics. The reasons for this decline are
twofold. On the one hand, a change in trade policy. Triggered by a very biased policy, China
had a large share of processing exports in its total exports around the 2000s. After decades
of rapid trade growth, the policy regarding processing trade changed in themid-2000s. In
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determinants (or drivers) of the changes in EIs take place at the regional
level. Thismay help to check the effectiveness of environmental policies
and to design more effective decarbonizing measures.

In this paper, we examine China's EIs at the regional level. We first
check whether regional environmental upgrading has taken place,
whether EIs differ much across regions, and whether the development
of regional EIs over time is similar across regions. Subsequently, we em-
ploy a multiplicative Structural Decomposition Analysis (SDA) to iden-
tify what has driven the changes in regional EIs over the period
2002–2012 and to quantify how much each driver has contributed. In
the analysis, we will define EI from the demand perspective. That is,
both at the national and the regional level, we consider embodied EI in-
dicators for domestic final demands and for international exports (Su
and Ang, 2017). In particular, when studying the embodied EIs in ex-
ports, we distinguish between processing exports and ordinary
exports.2 This is important because processing exports account for a
large share of China's export and because the production of processing
exports differs largely from the production of ordinary exports (Chen
et al., 2012; Koopman et al., 2012; Dietzenbacher et al., 2012; Su and
Thomson, 2016). We will employ the (IRIOP) tables constructed by
Duan et al. (2014) and Yan et al. (2020) for the years 2002, 2007, and
2012. These are inter-regional input-output (IRIO) tables that split the
Chinese economy into 8 regions, eachwith 2 production types (produc-
tion of processing exports and ordinary production) and 17 industry
groups (see Appendix A for the region and sector classifications).

This paper contributes to the literature in two ways. First, we intro-
duce new drivers in our multiplicative SDA. Standard drivers are
changes in direct emission coefficients (emissions per unit of output),
changes in the intermediate input structure, and changes in the final de-
mands. Next to these standard drivers, we also include changes in inter-
regional trade and changes in inter-regional spillovers as drivers of the
changes in regional EIs.

The motivation to include these new drivers is as follows. Producers
in a region can upgrade the region's emission performance in twodiffer-
entways. First, by reducing their own emissions content and/or increas-
ing the value-added content (both contents per unit of output). Second,
by giving up the production of certain “dirty” products at home. Instead,
the production is transferred to other regions after which the “dirty”
products are imported. This results in inter-regional spillovers of carbon
emissions. This second way follows the idea underlying the pollution
haven hypothesis, albeit at a regional level. Given that China is a vast
country with remarkable regional disparities and given that environ-
mental pressures are exercised at the regional level, pollution havens
are very likely to exist in China. As a response, the Chinese government
released in 2010 a regulation called “Opinions of the State Council on
the Transfer of Industries to the Central and Western Regions”. This
report targets the undesirable emission leakages (where the Central
and Western regions emit for the regions on the East Coast). To the
best of our knowledge, however, no study has considered the effect of
emission leakages on China's regional EI evolution (see the next section
for a review of the literature). We analyze how and to what extent
changes in inter-regional trade and in inter-regional spillovers changed
China's regional EIs.

The second contribution of this paper to the literature is that it com-
bines two research lines that have been separate hitherto. One line of
research deals with China's regional emissions and the other line deals
with China's processing exports. Previous studies on China's regional
emissions have largely neglected the role of processing exports. Vice
versa, most studies on processing exports were only at the national
level. Although the share of processing exports in total exports declined
2 Processing exports follow from the business activity of importing from abroad all, or
part of, the raw and auxiliarymaterials, parts and components, accessories, and packaging
materials, and re-exporting the finished products after processing or assembly by enter-
prises in China. In this paper, the processing exports include both the exports of processing
with imported materials and the exports of processing and assembly.
from 55.3% in 2002 to 33.7% in 2019, it still is very substantial.3 An im-
portant feature of China's processing exports is its uneven distribution
over the regions, with themain concentration in coastal regions. For ex-
ample, in 2012, over half of South Coast exports can be attributed to pro-
cessing exports, while in the Northwest region the share is less than
10%. Over time, the share of processing exports has been decreasing
for most regions, but not for every region. Some previous work (e.g.
Dietzenbacher et al., 2012; Su et al., 2013; Yan et al., 2020) suggests
that production for processing exports is relatively clean. Therefore,
when studying China's export-related emissions it is important to dis-
tinguish between production for processing exports and other produc-
tion. However, to our knowledge, few studies have quantified whether
and to what extent a region's changes in processing exports contribute
to the changes in its EI.

The rest of this paper is organized as follows. After briefly reviewing
the current studies on China's regional emissions in Section 2, we intro-
duce the details of our analytic approach and discuss the data in
Section 3. Section 4 describes the evolution of China's regional emis-
sions and Section 5 presents and analyzes the decomposition results. Fi-
nally, Section 6 offers conclusions and policy implications.
2. Literature review

Carbon emission intensity is a globally adopted indicator by
policymakers and researchers to evaluate emission performance. In re-
sponse to the problem of global warming, a number of countries
(e.g., China, South Korea, and India) have set reduction targets in
terms of EI (UNFCCC, 2015). Several studies have analyzed EIs from a re-
gional, national and global perspective (e.g., Zhang et al., 2014; Su and
Ang, 2015; Ang and Su, 2016; Su and Ang, 2017; Duan and Yan, 2019;
Wang et al., 2020), and decomposition analysis has been widely used
to analyze the determinants of changes in EIs. Two most frequently
used decomposition methods are Index Decomposition Analysis (IDA)
and Structural DecompositionAnalysis (SDA). IDAuses aggregate sector
information and captures direct effectsmainly from a production-based
perspective, and IDA can handle both quantity and intensity indicators
(see, e.g. Ang, 2004 for a review of IDA). Applications of IDA to the de-
composition of changes in EI include Fan et al. (2007) and Chen
(2011). In contrast, SDA (which is typically based on an input-output
model) is able to capture explicitly both production-side and demand-
side effects (Miller and Blair, 2009). SDA studies use either an additive
decomposition (see Su and Ang, 2012 for a survey of SDA studies
using additive decompositions) or a multiplicative decomposition, de-
pending on the purposes. In this paper, we aim at identifying the drivers
of changes in China's regional EI between 2002 and 2012. Because EI is
determined as a ratio, we adopt a multiplicative SDA framework.

Because China is the largest emitter of global carbon emissions, a
growing list of SDA studies analyzes China's emission intensity evolu-
tion. The first strand of literature covers analyses at the national level.
For example, Su andAng (2015) introduced four differentmodels to cal-
culate a country's aggregate EI using the input–output framework.
Using the fourmodels andmultiplicative SDA, they investigated the de-
terminants of the change in China's aggregate EI from 2007 to 2010.
Later, Su andAng (2017) showed that the aggregate EI can be expressed
as a weighted summation of the EIs for final demand categories or for
2006, the Ministry of Commerce selected several commodities for which processing trade
became prohibited or restricted. In 2015, processing exports were prohibited for 1862
commodities, accounting for 14% of all commodities at ten-digit Harmonized System
codes (Announcement No.59 of 2015 of the Ministry of Commerce, PRC). On the other
hand, a change in wage policy. China's reform in 2004 of its minimum-wage policy effec-
tively increased labor costs in China (and cheap labor was one of the major reasons to
carry out processing and assembly activities in China).



Table 1
The inter-regional input-output table distinguishing processing exports (IRIOP table).

Intermediate use Domestic EXP TOT

in 1 ⋯ in n final use

P O ⋯ P O 1 ⋯ n

Region 1 P 0 0 ⋯ 0 0 0 ⋯ 0 e1P y1P

O Z11
OP Z11

OO ⋯ Z1n
OP Z1n

OO f11O ⋯ f1nO e1O y1O

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Region n P 0 0 ⋯ 0 0 0 ⋯ 0 enP ynP

O Zn1
OP Zn1

OO ⋯ Znn
OP Znn

OO fn1O ⋯ fnnO enO ynO

IMP Z1
MP Z1

MO ⋯ Zn
MP Zn

MO f1M ⋯ fnM 0 yM

VA (w1
P)′ (w1

O)′ ⋯ (wn
P)′ (wn

O)′
TOT (y1P)′ (y1O)′ ⋯ (ynP)′ (ynO)′
Emissions (ρ1P)′ (ρ1O)′ ⋯ (ρnP)′ (ρnO)′

Notes: P = production of processing exports; O = ordinary production, containing pro-
duction of non-processing exports and production for domestic use; Domestic final
use = household consumption, government expenditures, gross fixed capital formation,
and changes in inventories; EXP= exports; TOT= gross sector outputs or total imports;
IMP = imports; VA= value added.

4 In this paper, China does not include Taiwan and (because of data unavailability) the
special administrative regions of Hong Kong and Macao.

3K. Tian et al. / Energy Economics 91 (2020) 104891
sectors. They further employed multiplicative SDA to analyze China's
aggregate EI reduction during 2007–2012. More recently, Yan et al.
(2018) applied multiplicative SDA to both the Leontief and the Ghosh
model to investigate China's EI changes during 2002–2012. Su et al.
(2019) combined structural path analysis with SDA to extract the im-
portant paths and driving forces of EI reduction.

The second strand of literature covers analyses of China's EI at the sub-
national (i.e. regional and provincial) level. Thiswasmade possible by the
improvement of China's regional statistics on environmental aspects. For
example, Su and Ang (2016) compared the emission performance across
30 regions in China and employed spatial-SDA to explain the EI differ-
ences between pairs of regions. Whereas a number of studies analyzed
China's emissions at the regional level (e.g., Meng et al., 2013, 2017; Li
et al., 2017), only Wang et al. (2020) focused on regional EI evolution.
They extended the methods of Su and Ang (2017) to a provincial setting
and adoptedmultiplicative SDA to quantify the contribution of the drivers
to the EI changes in the period 2007–2012 for China's 30 provincial units.
Next to the standarddrivers thatwere also included inWanget al. (2020),
this paper also includes other drivers (changes in inter-regional trade and
in inter-regional spillovers). These additional drivers follow from extend-
ing Oosterhaven and Hoen (1998) and Xu and Dietzenbacher (2014) to
an inter-regional framework. Given that China is a vast country with
large regional disparities, carbon leakages between regions are present
(Meng et al., 2017;Wen andWang, 2020). Therefore, it is important to in-
vestigate how changes in inter-regional trade effect and in inter-regional
spillovers contribute to changes in regional EIs.

This paper is also closely related to studies that focus on China's EI
embodied in international trade. This EI embodied in trade is defined
as the ratio of emissions embodied in trade to value-added embodied
in trade. Using global multi-region input-output (GMRIO) tables,
Wang et al. (2017) proposed two SDA models and quantified both the
domestic and trade related effects on global and countries' emission in-
tensities from 2000 to 2009. Also Duan and Yan (2019) conducted an
SDA of the pollution intensity of China's value-added exports.

The aforementioned studies that were undertaken at the regional
level neglected the production of processing exports. Processing trade
has primarily been studied at the national level. Chen et al. (2012),
Koopman et al. (2012), and Su et al. (2013) have differentiated processing
exports from other production in China's national input-output tables.
They consistently concluded that processing exports rely heavily on
imported intermediates.When compared to other production, producing
processing exports generates less domestic activities and therefore less
domestic value added. Failing to distinguish processing exports biases
the intermediate input structure which may seriously affect the out-
comes, e.g. on export-related emission. Examples include Dietzenbacher
et al. (2012) and Su and Thomson (2016), who documented that the
damage of international trade to China's environment would be signifi-
cantly overestimated if processing exports were not distinguished. More
recently, Chen et al. (2019) proposed an adapted GMRIO model which
splits China's national production into production for domestic use, pro-
duction of processing exports, and production of non-processing exports.
Jiang et al. (2016) revisited the global net emission transfers by applying
such an adapted GMRIO table and found that the results obtained with
traditional tables overestimated the net emissions from China to other
countries by 15%. All the results in previous studies suggest that process-
ing exports are relatively cleaner than ordinary exports in the sense that
they have a lower embodied EI. This emphasizes the necessity to separate
processing exports from ordinary exports.

At the regional level, to the best of our knowledge, only a few studies
(Jianget al., 2017; Zhanget al., 2019;Yanet al., 2020) recentlydistinguished
processing exports in China's IRIO table. Jiang et al. (2017) employed an
IRIO table that separates processing exports to study China's regional dis-
parity of energy intensity. However, their data do not cover emissions and
are only for 2007. Also Zhang et al. (2019) took processing exports into ac-
count and focused on investigating the unbalanced distribution of trade-
related economic benefits and environmental costs across different regions
in 2007 and 2012. Yan et al. (2020) used the new IRIOP tables to reestimate
the emissions embodied in regional exports. No study so far has analyzed
(the evolution of) China's regional EIs with IRIOP tables. We aim to fill
this gap by applying SDA to the IRIOP tables.

3. Methodology and data

3.1. An inter-regional input-output table distinguishing processing exports

Our starting point is a unique inter-regional input-output table pro-
posed by Duan et al. (2014), which distinguishes between the input
structures of production of processing exports and ordinary production
(IRIOP table). The general structure of the IRIOP table is outlined in
Table 1. The unique feature of the IRIOP table is that domestic produc-
tion of each region and each industry is divided into two types: produc-
tion for processing exports and ordinary production.

China4 is grouped into n regions with g sectors (or industries) in
each region. In the IRIOP table, two types of production are distin-
guished for each industry: production of processing exports (indicated
by superscript P), and ordinary production (indicated by superscript
O). Ordinary production contains production of non-processing exports
and production for domestic use. Aggregation over the production types
within each region in the IRIOP table yields the ordinary IRIO table. The
g × g matrix ZsrOP (or ZsrOO) denotes the sector-wise intermediate inputs
produced by ordinary production in region s and used in region r for
processing exports (or ordinary production). Note that processing ex-
ports are exclusively used for foreign demand, and therefore the
(row) sales of processing exports (P) are zero in intermediate use and
domestic final use. The value of goods and services shipped from region
s to region r for domestic final use (domestic household consumption,
government expenditures, gross fixed capital formation, and inventory
changes) is given by the g × 1 vector fsrO . The g × 1 vector esP (or esO)
gives the sector-wise processing exports (or non-processing exports)
of region s. The vector ysP (or ysO) represents the domestic gross output
for processing exports (or ordinary production) of region s. The ac-
counting identity (or product market clearing condition) is

yP
1

yO
1
⋮
yP
n

yO
n

0
BBBB@

1
CCCCA ¼

0
ZOP
11

0 ⋯ 0
ZOO
11 ⋯ ZOP

1n

0
ZOO
1n

⋮ ⋮ ⋮ ⋮ ⋮
0
ZOP
n1

0 ⋯ 0
ZOO
n1 ⋯ ZOP

nn

0
ZOO
nn

2
6664

3
7775

u
u
⋮
u
u

0
BBB@

1
CCCAþ

0
∑t f

O
1t

⋮
0

∑t f
O
nt

0
BBB@

1
CCCAþ

eP1
eO1
⋮
ePn
eOn

0
BBBB@

1
CCCCA ð1Þ



5 The calculation of the EI of exports based on the traditional IRIO tables follows the
same methodology, except for the distinction between P and O. More details about the
comparison between IRIOP model and the traditional IRIO model are given in Yan et al.
(2020).

6 EIpes ¼ u0 bλP
s e

P
s þ bλO

s ∑kL
OP
sk e

P
k

� �
=u0 bvPs ePs þ bvO

s ∑kL
OP
sk e

P
k

� �
and

EIoes ¼ u0 bλO
s ∑kL

OO
sk eOk

� �
=u0 bvO

s ∑kL
OO
sk eOk

� �
.
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where u indicates the summation vector of appropriate length
consisting entirely of ones.

Define the domestic input coefficient matrix AOP
sr ¼ ZOP

sr byPr� �−1
(or

AOO
sr ¼ ZOO

sr byOr� �−1
), which denotes the sector-wise intermediate inputs

from ordinary production in region s and used in region r for producing
one unit of output of processing exports (or ordinary production). This
yields

yP
1

yO1
⋮
yP
n

yOn

0
BBBB@

1
CCCCA ¼

0
AOP
11

0 ⋯ 0
AOO
11 ⋯ AOP

1n

0
AOO
1n

⋮ ⋮ ⋮ ⋮ ⋮
0

AOP
n1

0 ⋯ 0
AOO
n1 ⋯ AOP

nn

0
AOO
nn

2
6664

3
7775

yP1
yO1
⋮
yPn
yOn

0
BBBB@

1
CCCCAþ

0
∑t f

O
1t

⋮
0

∑t f
O
nt

0
BBB@

1
CCCAþ

eP1
eO1
⋮
ePn
eOn

0
BBBB@

1
CCCCA:

ð2Þ

In compact form, this system can be rewritten as y=Ay+ f+e and
the solution is given by

y ¼ I−Að Þ−1 f þ eð Þ ¼ L f þ eð Þ ð3Þ

where I is the 2ng×2ng identity matrix, and L ≡ (I− A)−1 is the Leontief
inverse. In its partitioned, this matrix is given by

L ¼

I
LOP11

0 ⋯ 0
LOO11 ⋯ LOP1n

0
LOO1n

⋮ ⋮ ⋮ ⋮ ⋮
0
LOPn1

0 ⋯ I
LOOn1 ⋯ LOPnn

0
LOOnn

2
6664

3
7775:

Define λ′ as the 1 × 2ng row vector of carbon emissions coefficient
representing the sector-wise carbon emissions per unit of output by

production type and region, with λP
s

� �
0 ¼ ρP

s

� �0 byPs� �−1
and

λO
s

� �
0 ¼ ρO

s

� �0 byOs� �−1
. Then carbon emissions generated by domestic

final use and exports via domestic inter-regional and inter-industrial

supply chains are given by ρ ¼ bλL f þ eð Þ, where a hat symbol indicates
a diagonal matrix with the element of a vector on the diagonal. For a
specific region s, its carbon emissions can be decomposed as follows:

cs ¼ ρP
s þ ρO

s ¼ λ̂O

s ∑kL
OO
sk ∑t f

O
kt

� �
þ λ̂P

s e
P
s þ λ̂O

s ∑kL
OP
sk e

P
k þ λ̂O

s ∑kL
OO
sk eOk ð4Þ

where cs is the g×1 vector gives sector-wise emissions generated in the
g industries. This equation reflects the fact that a region's emissions (cs)
depend on its own carbon emissions coefficient, its own and other re-
gions' final demands, and exports (including both processing and non-
processing exports) via domestic supply chains. The first term in eq.
(4) is emissions generated by domestic final demands. The second is
emissions generated in production type P to produce the own process-
ing exports and the third term gives the emissions generated in region
s when producing the inputs of type O necessary for all the processing
exports. The last term is emissions generated by non-processing ex-
ports. The aggregate emissions in region s for domestic final demand
and exports is given by cs = u′ cs.

In the same way as we measured carbon emissions, we can also
measure value-added generated by domestic final demand and exports
in the same way. Let v′be the 1 × 2ng vector of value-added coefficient
representing sector-wise value-added per unit of output, with

vPs
� �0 ¼ wP

s

� �0 byPs� �−1
and vOs

� �0 ¼ wO
s

� �0 byOs� �−1
. Then value-added gen-

erated by domestic final demand and exports is given byw ¼ bvL f þ eð Þ.
Similar to eq. (4), the value-added generated in region s can be
decomposed as follows:
vas ¼ wP
s þwO

s ¼ v̂
O
s ∑kL

OO
sk ∑t f

O
kt

� �
þ v̂

P
s e

P
s þ v̂

O
s ∑kL

OP
sk e

P
k þ v̂

O
s ∑kL

OO
sk eOk :

ð5Þ

Aggregate value-added in region s is given by vas = u′ vas. The
aggregate emission intensity (EI) of production in region s is given by:

EIs ¼ cs=vas ¼ u0cs=u0vas: ð6Þ

The emission intensitymeasures the emissions a region generates in
order to obtain one unit of value-added. The numerator proxies the en-
vironmental costs in region s from its production and the denominator
proxies the economic gains from its production. A larger emission inten-
sity suggests that the region has higher environmental costs for each
unit of economic gain.

In the empirical analysis, we will also analyze the regional EI for
separate final demand categories (domestic consumption, investment,
and international exports). It is possible to measure the EI of region s
for a specific final demand category with a slight adaptation of
Eqs. (4) and (5). For example, for the EI of processing exports one
only keeps the demand for processing exports in Eqs. (4) and (5) in-
stead of accounting for all final demand categories. In particular, we
will compare the regional EIs of all exports (i.e. EIse) using the IRIOP ta-
bles and using the traditional IRIO tables without distinguishing pro-
cessing exports.5 Denote EIs

pe and EIs
oe as the emission intensity of

processing exports and ordinary exports, respectively.6 Then the
weighted summation of EIspe and EIs

oe yields the aggregate emission in-
tensity of exports (EIse). That is,

ωpe
s ∙EIpes þωoe

s ∙EIoes ¼ EIes ð7Þ

whereωs
pe denotes the value added embodied in processing exports as a

share of the value added embodied in all exports (both processing and
ordinary exports) and ωs

oe is the share of the embodied value added
by ordinary exports. Note thatωs

pe+ωs
oe= 1. This idea is similar to that

presented by Su and Ang (2017).

3.2. Multiplicative structural decomposition analysis

It is clear that the value of EIs in Eq. (6) depends on: the emission co-
efficients vector λs, with (λs)′ = ((λs

O)′ (λs
P)′); the value-added coeffi-

cients vector vs, with (vs)′ = ((vsO)′ (vsP)′); the domestic final demands
vector∑tfstO; the two exports vectors ekP and ekO; and the Leontief inverse
L, which in its turn relies on the inputmatrixA. Our SDA is based onArto
andDietzenbacher (2014) andXuandDietzenbacher (2014).We follow
Oosterhaven and Hoen (1998) in splitting the inter-regional domestic
intermediate inputs matrix A. We split A into three parts. (a) A part
that gives the overall production technology (T), reflecting the total in-
termediate inputs that are required per unit of output, (b) a part that
gives the domestic shares (S), reflecting the substitution effect between
domestic and imported intermediate inputs, and (c) a part that gives
the regional shares (Φ), which captures the structure of inter-regional
trade in intermediate inputs. Define the 2ng × 2ng matrices T, S and Φ
as.



7 The national bipartite table is aggregated from the national tripartite table, by taking
production of ordinary exports and other production together. For a full exposition of
the estimation procedure the IRIOP table, see Duan et al. (2014).
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0
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666664
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777775;
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0
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0
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0 ⋯ 0
SOO1 ⋯ SOPn

0
SOOn

2
666664

3
777775; and

Φ ¼

0ΦOP
11

0 ⋯ 0ΦOO
11 ⋯ ΦOP

1n

0ΦOO
1n

⋮ ⋮ ⋮ ⋮ ⋮
0ΦOP
n1

0 ⋯ 0ΦOO
n1 ⋯ ΦOP

nn

0ΦOO
nn

2
6664

3
7775;

with the g × g sub-matrices TrOP = ∑k=1
n Akr

OP + Mr
P and TrOO =

∑k=1
n Akr

OO +Mr
O (r= 1,⋯, n). These technology matrices give the total

amount of inputs per unit of output irrespective of their geographical
source. Here Mr

P and Mr
O are matrices with imported input coefficients,

which are derived as MP
r ¼ ZMP

r byPr� �−1
and MO

r ¼ ZMO
r byOr� �−1

. The
matrices with domestic shares are given by SrOP = (∑k=1

n Akr
OP)//TrOP

and SrOO = (∑k=1
n Akr

OO)//TrOO. They express the shares of all required in-
puts that are sourced domestically. Here // denotes elementwise
division. The matrices with regional shares are given by Φkr

OP = Akr
OP//

(∑k=1
n Akr

OP) and Φkr
OO = Akr

OO//(∑k=1
n Akr

OO). This yields A = T ⊗ Φ ⊗ S,
where the Hadamard product ⊗ indicates cell-by-cell multiplication.

The emission intensity of region s can nowbewritten as a function of
seven matrices and vectors (please refer to Appendix B for the explicit
expression). That is:

EIs ¼ f λs; vs;T;Φ; S; F; eð Þ ð8Þ

To examine to what extent a region's emission intensity is affected
by intra-regional factors and inter-regional spillover effects, we split T,Φ and S into two parts. That is, for region r, within the region (T(r),Φ(r) and S(r)) and outside the region (T(−r), Φ(−r) and S(−r)), where
T(r) includes the columns of T that correspond to region r and all other
columns are zero. We thus have T = T(r) + T(−r). By analogy, the
other matrices and vectors can also be split into two parts depending
on the research purpose.

The idea of an SDA is to consider the change in EI due to the change
in one driver, assuming the other drivers remain unchanged.
Dietzenbacher and Los (2000) explicated that this means that the
drivers need to be independent, in the sense that —technically speak-
ing— it must be possible to change one driver without having to change
another driver. In the present case, this requirement is violated, because
by definition we have u′T + v′ = u′. It is thus not possible to change v
without changing T. The solution that we use is to consider changes in v
and T together. In our tables with results, we denote this combined ef-
fect as T ∗. This indicates the effects of changes in production technology,
combining changes in inputs and values added (Su and Ang, 2017).

It has long been recognized in the literature on SDA that decomposi-
tions are not unique. To overcome this non-uniqueness problem,
Dietzenbacher and Los (1998) have indicated that the average of all de-
compositions can be adequately approximated by the average of the
two so-called polar decomposition forms. De Haan (2001) extended
this result to the average of any two “mirror” decompositions. In this
paper, we use the average of the two polar forms.

The first polar form is derived by starting the decomposition with
changing the first variable first, followed by changing the second vari-
able, changing the third variable, and so forth. The second polar form
is derived exactly the other way around. That is, by changing the last
variable first, followed by changing the one but last variable, etcetera.
The explicit expression of the two polar forms, is given in Appendix B.
The final decomposition is obtained as the geometric average of the
two polar forms.

As mentioned above, another aim of this paper is to analyze how
changes in processing exports affect the EIs embodied in exports.
Thus, we split the exports vector e, and define.

e ¼

eP1
eO1
⋮
ePn
eOn

0
BBBB@

1
CCCCA;b ¼

bTot

bTot

⋮
bTot

bTot

0
BBBB@

1
CCCCA;h ¼

h1
h1
⋮
hn

hn

0
BBB@

1
CCCA; and x ¼

xP
1

xO
1
⋮
xP
n

xO
n

0
BBBB@

1
CCCCA

with bTot=∑k
n(ekP+ ekO), which gives the vector of total exports of each

product, hk=(ekP+ ekO)//bTot, which gives the shares of exports (in total
exports) by region k for each product, and xkP = ekP//(ekP + ekO), which
gives the shares of processing exports (in exports of region k), and
xkO = ekO//(ekP + ekO) = u − xkP, which gives the shares of ordinary
exports. We then have =x ⊗ h ⊗ b. This implies that we can write the
emission intensity embodied in exports in eq. (7) as EIse= f(λs,vs,L,x,h,
b). Subsequently, we employ multiplicative SDA to calculate the contri-
butions of each driver.

3.3. Data

Implementing the decomposition analysis outlined above requires
IRIOP tables and the corresponding CO2 emissions data by region, by in-
dustry and by production type. The IRIOP tables for the years 2002, 2007
and 2012 were compiled by Duan et al. (2014). Their compilation of
IRIOP tables was based on two types of IO tables. The first is the Chinese
IRIO table compiled by China State Information Center (SIC) and theNa-
tional Bureau of Statistics of China (NBS) (Zhang and Qi, 2012). The sec-
ond is the tripartite national IO table compiled by the Chinese Academy
of Sciences (CAS) and the NBS (Chen et al., 2012). The unique table dis-
tinguishes between the production of processing exports, of ordinary
exports and other production (which is largely domestic use).

Assuming proportionality and applying a bi-proportional estimation
procedure (RAS), Duan et al. (2014) nested the IRIO table within the na-
tional bipartite table and constructed the new IRIOP table.7 In the pro-
cess, other provincial statistics were used to ensure the IRIOP table is
balanced and consistent with the official statistics. These statistics in-
clude Chinese provincial economic accounts (for data on, for example,
value added, final consumption, and fixed capital formation at the sec-
toral level), and provincial customs statistics by trade regime (i.e. pro-
cessing trade and ordinary trade) and by commodity (at the 8-digit
level under the Harmonized Commodity Description and Coding Sys-
tem). All data are provided by NBS. Following the regional and sector
classifications used in Chinese IRIO tables, China in the IRIOP table is di-
vided into eight geographical regions: Northeast, Northern Municipali-
ties, North Coast, East Coast, South Coast, Central region, Northwest,
and Southwest. Each region distinguishes 17 industries.

The CO2 emissions data by region, by industry and by production
type is the other necessary dataset for our calculation. They were com-
piled by Yan et al. (2020), who conducted three steps to estimate the
data. First, they estimated the province-industry-level energy use data
by adapting statistics from the China Energy Statistical Yearbooks
(CESY) and the Provincial Statistical Yearbooks (PSY), considering 17
types of fossil fuels. Second, they estimated the CO2 emissions data for
43 industries in each province, following the estimation procedure in
the Intergovernmental Panel on Climate Change guidelines (IPCC,
2006; Peters et al., 2006; and Guan et al., 2012). Third, combining the



0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Northeast Northern
Municipalities

North Coast East Coast South Coast Central
Region

Northwest Southwest

C
O

2
em

is
si

on
/G

D
P

(U
ni

t: 
m

et
ri

c 
to

ns
 p

er
 1

0-
th

ou
sa

nd
)

2002 2007 2012

Fig. 1. Evolution of China's regional CO2 emission intensity. Notes: To calculate regional emission intensity and make the figures in the three years comparable, we use provincial GDP de-
flator to adjust nominal GDP in 2007 and 2012 into that at constant 2002 price (base year: 2002).
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method in Dietzenbacher et al. (2012) and Jiang et al. (2015), they split
the region-industry-specific emissions into the emissions by different
production types (processing production and ordinary production).
The estimation was based on the extent to which each production
type relies on domestic intermediate inputs. This is reasonable since
less domestic intermediate inputs implies less activities and thus less
emissions in the production processes. The production of processing ex-
ports relies heavily on imported inputs and requires primarily domestic
labor for assembly. It is therefore expected to emit less emissions than
ordinary production.

We are aware of one other database that provides disaggregated
IRIO tables of China. For example, provincial level IRIO tables with 30
sectors are already available (Liu et al., 2018). Although spatially more
detailed than the eight regions in Yan et al. (2020), the provincial IRIO
tables donot distinguish processing exports. Failing to separate process-
ing exports biases the intermediate input structure (Chen et al., 2019),
which further biases the decomposition results.

4. China's regional CO2 emission intensity evolution

We start in subsection 4.1with the stylized facts of regional emission
intensities. Subsection 4.2 deals with the EIs for separate final demand
categories (domestic final demands and international exports).

4.1. China's CO2 emission intensity by region

China's total CO2 emissions increased from 3595million metric tons
(Mt) in 2002 to 9092Mt. in 2012, observing a significant growth rate of
153%.8 Fig. 1 gives the EIs across the eight regions.

The first observation is that there are large regional disparities in
the EI levels. The levels of Northern Municipalities (Beijing-Tianjin re-
gion) and two of the coastal regions (South Coast and East Coast) are
8 The CO2 emissions obtained in the present study is the same as those in Yan et al.
(2020). They differ from those in earlier studies. For example, China's estimate of CO2

emissions in 2007 in this paper is 7060 Mt., whilst they are 6386 Mt. in Su and Ang
(2014) and 6081 Mt. in Su and Ang (2017). It should be noted that such differences may
be caused by, for example, using different data sources, different aggregation of industries
and regions. A major difference of estimating emissions in Yan et al. (2020) is that they
adopt new emission factors from Liu et al. (2015) and Shan et al. (2018). These new emis-
sion factors are updated according to the survey on China's fossil fuel quality and the pro-
duction process of cement. The new factors are more accurate than the historical default
values from other reports (such as IPCC).
clearly smaller than those of inland regions. In other words, the pro-
duction in coastal regions is relatively clean (i.e. less emissions for
the same ‘earnings’). Fig. 2 shows that Northern Municipalities had
the smallest EI (1.38 tons CO2 per 10-thousand RMB of value-added
generation) in 2012. It was closely followed by South Coast and East
Coast (1.44 and 1.69 tons per 10-thousand RMB, respectively). In con-
trast, the EI in Northwest was 5.87 tons per 10-thousand RMB. North-
west had a high carbon-intensive industrial structure, with 37% of its
outputs concentrated in high-carbon manufacturing products. North-
ern Municipalities and the two south-eastern coastal regions had a
cleaner industrial structure and were becoming more service-
oriented. In addition did these regions face more rigorous environ-
mental regulations to which they often responded by improving pro-
duction technology. The results for 2002 and 2007 sketch a similar
picture. Thus, the regional pattern of EIs is one of large disparities
that are stable over time.

The second observation is that the EIs at both the national and
the regional level (except Northwest) decreased from 2002 to
2012, indicating that the carbon emission performance upgraded.
That is, China and its sub-regions emitted in 2012 less CO2 to gen-
erate the same value-added than in 2002. However, we also ob-
serve that the carbon emission performance downgraded during
2002–2007 (see Guan et al., 2014 for similar results) but upgraded
more during 2007–2012. This is because we see that most regions
(except Northern Municipalities and Northeast) increased their
EIs in the first period and all regions showed a decrease in the sec-
ond period. The result for the period 2007–2012 is consistent with
that obtained by Su and Ang (2017) and Wang et al. (2020). The ef-
forts to upgrade carbon emission performance were successful dur-
ing this period.

The third observation is that the level of upgrading differs across re-
gions and suggests convergence of the EIs. In general, the environmental
performance improvement in regions with a high EI seems a little
stronger than for the regions with a low EI. For example, the decline
from 2002 to 2012 of the EI in Northeast (from 3.71 to 2.64 tons per
10-thousand RMB) and Central Region (from 3.59 to 2.85 tons per
10-thousandRMB) is larger than that in the coastal regions in the South-
east. Despite this progress in EI reduction, there is still a major gap
between Southeast coastal regions and inland regions (especially the
Northwest). This suggests that there is room for further upgrading in
carbon emission performance.



Table 2
Emission intensities for each final demand category.

2002 2012

Region CSP FCF PEX OEX WEX EX CSP FCF PEX OEX WEX EX

Northeast 3.39 4.42 3.40 3.72 3.65 3.75 2.11 2.81 2.45 2.98 2.87 2.92
North Municipalities 1.92 2.73 2.07 2.14 2.12 3.18 0.69 1.24 0.84 1.07 1.04 1.09
North Coast 2.62 4.70 3.03 3.75 3.61 3.64 2.28 3.97 3.27 3.60 3.54 3.59
East Coast 1.98 2.72 1.42 2.12 1.98 2.03 1.43 2.13 1.25 2.03 1.81 2.03
South Coast 1.44 2.08 1.28 2.02 1.72 1.89 1.37 2.26 1.05 1.82 1.60 1.81
Central Region 2.73 4.91 4.51 5.15 5.06 5.18 2.20 3.77 3.21 3.79 3.67 3.88
Northwest 3.80 5.68 5.40 6.27 6.16 6.22 4.88 7.30 6.19 6.67 6.59 6.94
Southwest 2.54 4.80 4.35 4.78 4.70 4.76 1.94 4.08 4.01 4.11 4.10 4.07
China 2.48 4.02 2.01 2.85 2.60 2.78 2.06 3.49 1.87 2.76 2.55 2.70

Notes: CSP=Consumption (by households and governments), FCF=FixedCapital Formation, PEX=Processing Exports, OEX=Ordinary Exports.WEX=Weighted Export intensity, the
EI values in this column are theweighted sums of the EIs in columnsPEX andOEX, see eq. (7). All results (except EX) are calculatedusing the IRIOP tables. EX=Exports, the EI values in this
column are obtained by using the traditional inter-regional input-output table without distinguishing processing exports. The values are in tons CO2 per 10,000 RMB. The results for year
2007 are also available upon request.

Table 3-a
Decomposition results at national level, changes in EI (%) and contributions to these
changes (as %), 2002–2012.

China EI change λ T ∗ Φ S F e

2002–2012 −9.30 477.1 −311.0 −16.8 −12.4 −26.0 −11.0
2002–2007 17.14 −228.3 276.6 7.3 10.4 24.3 9.6
2007–2012 −22.57 40.9 52.4 −1.9 1.7 5.1 1.8
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4.2. Regional emission intensities for separate final demand categories

The results in Subsection 4.1 were for the EIs at the regional level
(calculated as the emissions in region s as embodied in China's final de-
mands divided by value added in region s as embodied in China's final
demands). The findings in Dietzenbacher et al. (2012), Su and Ang
(2017), andWang et al. (2020) suggest that the EIs may differ substan-
tiallywhen considered for the separate final demand categories. Table 2
presents the results of the regional and national EIs by final demand
category.

The first observation for the EIs is that in almost all cases
FCF >WEX > CSP. Different final demand categories boost the produc-
tion in different industries. Investments primarily trigger the produc-
tion of infrastructure and equipment (e.g., manufacturing of
machinery), which are carbon-intensive industries in China with large
EIs. The relatively large EIs for exports are partly due to the fact that
carbon-intensive manufacturing exports account for a large proportion
of China's exports. From a policy point of view, this finding suggests that
decreasing regional investment- and export-related EIs will help most
to decrease the overall regional EIs.

The second observation is that the EIs of processing exports are
smaller than those of ordinary exports, which holds both at the regional
and the national level. This is consistent with the finding of
Dietzenbacher et al. (2012) at the national level.

The third observation is that for the EIs of exports, it matters
whether the IRIOP tables are used or the standard IRIO tables. Fol-
lowing Su and Ang (2017), the EIs in the columns WEX are the
weighted sums of PEX and OEX, both obtained by using the IRIOP ta-
bles. The results in the columns EX are calculated with the standard
IRIO tables (which do not distinguish processing exports). We find
EX > WEX for all cases, except for Southwest in 2012, and a large
gap for Northern Municipalities. This means that the standard IRIO
model overestimates the emission intensities of the exports because
it assumes that the two types of processing exports have the same
production structure. Because the average production structure re-
sembles the production structure of ordinary exports and because
OEX > PEX, we have EX > WEX (see Yang et al., 2015). Our results
confirm the conclusion that failing to distinguish processing export
biases the intermediate input structure, which further biases
China's EIs of exports.

The fourth observation is that the findings in Subsection 4.1 on
upgrading and downgrading also apply to separate final demand cate-
gories. Comparing 2002 and 2012, almost all EIs indicate upgrading, ex-
cept for Northwest (where all EIs increased, suggesting downgrading).
What is not shown in Table 2 is that the carbon emission performance
downgraded from 2002 to 2007, which was followed by a larger
upgrading from 2007 to 2012. The evolution also shows heterogeneity
among regions, with some of the inland regions presenting more
upgrading than the coastal regions.

5. Driving factors of China's regional emission intensity evolution

Theprevious section describedChina's CO2 emission intensity evolu-
tion both by region and final demand category. However, it did not
show to what extent the emission intensities were affected by various
driving forces. Employing the multiplicative SDA technique outlined in
Section 3 gives the contributions of each driver of the changes in na-
tional and regional EIs. The drivers (or determinants) are the changes
in: emission coefficients (λ, emissions per unit of output); the technol-
ogy (T ∗); the inter-regional intermediate trade structure (Φ); the sub-
stitution effects (S); the domestic final demand structure (F); and the
export structure (e). At the regional level, we also distinguish between
the intra-regional effects and the inter-regional spillover effects.
Table 3 presents our decomposition results for China (Table 3-a) and
its eight regions (Table 3-b).

To explain what is in the table, let us consider the results for
2007–2012, in which period China's EI decreased by 22.57%. If only λ
had changed (and anything else would have remained the same) the
EI would have decreased by 9.83%. Let us denote this as EI(λ) =
0.9007 (see Appendix C). The other effects are EI(T ∗) = 0.8745, EI
(Φ) = 1.0048, EI(S) = 0.9957, EI(F) = 0.9870, and EI(e) = 0.9955.
Note that EI change = 0.7743 = EI(λ) × EI(T ∗) × … × EI(e). In order
to derive contributions of the drivers that add to 100%, we first take
the natural logarithms: ln[EI change] = ln [EI(λ)] + ln [EI(T ∗)] + …
+ ln [EI(e)]. The contribution of the changes in λ to the change in EI
(−22.57%) then amounts to 100 × ln [EI(λ)]/ ln [EIchange] = 40.9%.
Note that changes in Φ only would have increased EI. The contribution
to the change in EI is −1.9%. So, a negative contribution of a driver
means that it would have driven EI to change in the opposite direction
as the actual change in EI.

The first observation in Table 3 is that over 2002–2012 the national
aggregate EI decreased by 9.30% (indicating mild upgrading) but that
it hides a serious contrast. Downgrading took place in 2002–2007 (an



Table 3-b
Decomposition results at regional level, changes in EI (%) and contributions to these changes (as %), 2002–2012.

Region EI change λ T(r)∗ T(−r)
∗ Φ(r) Φ(−r) S(r) S(−r) F(r) F(−r) e(r) e(−r)

2002–2012
Northeast −28.87 150.5 −21.0 −1.6 −17.3 −1.1 0.7 −0.1 14.1 −7.1 −12.0 −5.2
North Municipalities −37.26 197.9 −78.8 −5.3 −14.2 −0.1 −0.2 −0.1 29.8 −17.5 −6.6 −4.9
North Coast −13.07 508.0 −457.2 −8.7 45.6 −0.5 4.9 −0.1 105.8 −90.0 15.8 −23.7
East Coast −23.06 157.1 −87.3 −1.1 22.2 0.6 −12.6 −0.1 30.7 −0.5 −8.1 −0.7
South Coast −14.15 157.4 −57.7 −3.6 22.8 1.2 −65.2 −0.3 46.8 −2.4 7.2 −6.2
Central Region −20.78 269.5 −109.9 −5.4 −27.9 −4.9 −0.2 −0.9 53.1 −46.0 −8.5 −18.9
Northwest 26.52 −59.9 87.7 4.2 40.0 7.4 4.1 0.3 −50.9 47.1 3.6 16.4
Southwest −15.59 273.5 −170.7 −5.9 27.4 −1.4 4.8 −1.8 73.7 −51.5 −29.7 −18.3

2002–2007
Northeast −3.44 1375.7 −590.2 −28.3 −155.8 −3.4 −10.7 −1.4 52.2 −424.2 −63.2 −50.7
North Municipalities −4.22 1628.3 −1051.3 −42.8 −355.6 −5.4 −21.9 −1.6 36.6 −33.4 −3.5 −49.3
North Coast 22.83 −266.5 396.5 5.8 −23.7 −2.1 0.6 0.5 −41.6 10.5 6.1 13.9
East Coast 6.50 −533.1 591.5 8.4 −20.4 −0.2 56.0 0.4 −10.6 14.7 −13.3 6.6
South Coast 12.96 −152.3 167.7 4.5 −20.0 −0.7 101.5 0.1 −33.4 4.9 22.3 5.5
Central Region 8.43 −554.0 480.3 26.6 18.9 4.3 1.0 2.8 −24.0 66.1 31.2 46.9
Northwest 27.29 −55.2 70.8 6.6 32.8 0.9 2.5 0.6 1.0 23.1 4.2 12.6
Southwest 12.76 −226.1 309.8 13.5 −71.3 1.2 2.0 1.3 −46.0 71.6 19.6 24.3

2007–2012
Northeast −26.33 10.3 44.2 1.5 −1.4 −0.9 2.1 0.0 9.8 40.7 −6.2 0.0
North Municipalities −34.50 52.1 20.3 −1.4 20.6 0.4 2.0 0.0 29.1 −15.9 −6.9 −0.4
North Coast −29.22 47.3 50.6 −0.1 4.4 −1.4 2.3 0.2 18.2 −30.2 10.0 −1.3
East Coast −27.76 23.4 44.2 0.8 13.9 0.4 0.7 0.0 22.7 2.5 −9.2 0.7
South Coast −24.00 19.9 42.4 0.0 3.8 0.3 8.8 −0.1 11.2 0.8 13.9 −1.0
Central Region −26.94 57.1 42.3 2.8 −15.8 −2.5 0.1 0.1 33.2 −17.1 1.7 −1.9
Northwest −0.60 128.0 −582.1 97.6 −245.4 −250.6 −60.8 13.2 2013.4 −905.5 27.1 −134.9
Southwest −25.14 66.4 28.5 2.1 −13.6 −0.3 3.6 −0.5 24.1 −0.5 −9.3 −0.6

Notes: The factors contributing to the changes in emission intensity (EI) are: λ, effect of changes in carbon emissions per unit of output; T ∗, effect of changes in production technology;Φ,
effect of changes in inter-regional intermediate trade structure; S, effect of changes in substitution effect between domestic and imported intermediate inputs; F, effect of changes in do-
mestic final demand structure; e, effect of changes in export structure. Note that the sum of the separate effects equals 100.
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increase of EI by 17.14%), followed by considerable upgrading in
2007–2012 (a decrease in EI by 22.57%). The same finding holds for
most regions.

The second observation is that two determinants have largely driven
the results. Over the entire period, emission coefficients decreased,
which led to serious upgrading, contributing 477.1% of the 9.30% de-
crease in EI. On the other hand, changes in production technology (T ∗)
led to sizeable downgrading, contributing −310.9% of the 9.30% de-
crease in EI. The subperiods again sketch two different pictures. In
2002–2007, we observe much upgrading due to improved emission co-
efficients which was more than nullified by the technology changes so
that the overall result was downgrading. In 2007–2012, the upgrading
due to improved emission coefficients was much less than that in the
period before, but it was accompanied by technology changes that
also led to upgrading. Together, they led to substantial upgrading in
the second subperiod.

From an industry perspective, the upgrading due to lower carbon
emission coefficients canbe attributed to the improvement of energy ef-
ficiency in some energy industries such as “Petroleum refining, coking
and nuclear fuel processing” and “Electricity, gas and water supply”.
The energy efficiency improvement meant a significant drop in emis-
sions per unit of output. Because advanced energy-saving and
emission-reducing technologies were actively promoted, they were
much more used (Zheng et al., 2019). It should be noted that the im-
provement in energy efficiency works primarily in an indirect way.
That is, the production processes of making final products require con-
siderable amounts of intermediate inputs from energy industries and
thus affect CO2 emissions indirectly. Improving the energy efficiency
of the high energy-intensive industries contributes a lot to abating
CO2 emissions.

Change in production technology (T ∗) was the other major factor
that contributedmost to the national and regional EIs. They had a strong
downgrading effect from 2002 to 2007 and an upgrading effect from
2007 to 2012. This result indicates that China's intermediate input
structure became “dirtier” in the first subperiod and “cleaner” in the
second subperiod. This finding is consistent with China's rapid industri-
alization during 2002–2007, when the GDP share of the secondary in-
dustry increased rapidly from 44.5% to 47.6%. In general, the
transformation to an industrial economy relies heavily on “dirty” indus-
trial inputs. In the second period 2007–2012, the share of the secondary
industry decreased slightly. Instead, the GDP share of the tertiary indus-
try—which generally relies on relatively “clean” intermediate inputs—
increased from 42.9% to 45.3%. As a result, changes in overall intermedi-
ate inputs increased the EIs during 2002–2007 and reduced them dur-
ing 2007–2012.

The third observation is the sharp distinction between the North-
west (NW) and the other regions. NW locates in the remote inland
area of China. It has a relatively low level of economic development
but is rich in mineral resources. Natural gas from the Northwest ac-
counts for about 58% of the national total, NW's coal reserves for nearly
30%, and the region's oil reserves for 23% (Zhou et al., 2018). Due to a
continuous improvement of the transportation infrastructure in the
western regions, NW has gradually transformed to a resource-based
production hub. There are significant carbon transfers between NW
and other regions. Our decomposition results reflect this by a clear con-
tribution of the changes in the inter-regional trade of the other regions
(i.e. 7.4% for Φ(−r) in NW) and the changes in the inter-regional spill-
overs (i.e. 47.1% for F(−r) in NW). Producers in other regions buy more
‘dirtier” intermediate inputs from NW and domestic consumers rely
more on final products from NW. Data for the inter-regional intermedi-
ate flows show that 5.8% of China's high-carbon intensive intermediates
were sourced from NW in 2002 and this share increased to 10.0% in
2012.

The only other region for which something similar applies is the
Central Region (CR). Due to its geographic centrality and well-
developed transportation infrastructure, CR plays an important role in
providing intermediates for coastal regions. It is kind of a “transmission
channel” through which embodied CO2 emissions flow from inland
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regions to coastal regions. Our results show that changes in inter-
regional intermediate trade contributed −4.9% (for all other regions
the contribution of Φ(−r) is negligible) to the decrease of EI in this re-
gion. The data from the IO tables show that 18.0% of China's high-
carbon intensive intermediates were sourced from CR in 2002 and this
share increased to 22.0% in 2012. Also changes in inter-regional spill-
overs had a large increasing effect on the EI of CR, the contribution of
F(−r) was−46.0%.

In contrast to NW and CR, coastal regions are more competitive
in human resources and focus more on clean industries (like ma-
chinery and electronics) and services. We find that changes in
inter-regional intermediate trade (Φ(r)) decreased significantly
the EIs of coastal regions. This supports the finding that they are
“importing” “dirtier” products from inland regions, in particular
from CR and NW. The coastal regions are the ones that show clear
contributions of the substitution of imported for domestically pro-
duced intermediate inputs (i.e. S(r)). Coastal regions have better ac-
cess to foreign markets and use more imported intermediates for
production. The emission intensity of China's imported intermedi-
ate inputs is generally lower than that of its domestically produced
intermediate inputs (Duan and Jiang, 2017). Substitution will there-
fore increase the emission intensity. We find that, from 2002 to
2012, substitution in South Coast contributed −65.2% to the de-
crease in the region's EI. In East Coast the contribution of substitu-
tion was −12.6%.

As mentioned above, another aim of this paper is to study
whether and how processing exports affect the embodied CO2 emis-
sion intensity of exports.9 Table 4 presents the decomposition results
for embodied EI of exports. The major driving forces for the export-
related EI evolution are the changes in the direct emission coeffi-
cients and in the production technology. These are the same factors
that also drove the changes in regional EIs (in Table 3). However,
this SDA shows that processing exports matter for the regional EIs
of exports and that its effects show regional heterogeneity. It in-
creased the export EIs for regions with a decreased share of process-
ing exports and, vice versa, decreased for regions with an increased
share of processing exports. For example, from 2002 to 2012, the
share of processing exports (x) in South Coast decreased from
65.9% to 50.5%. The export EI of South Coast decreased by 6.86%,
and the change in the share of processing export (x) increased the
export EI with its contribution being −63.2%. In contrast, the share
of processing export in Central Region increased from 15.2% to
31.2%. This decreased the export EI of Central region and its contribu-
tion was 19.3%. These results are in line with the fact that the emis-
sion intensity of processing exports is much smaller than that of
ordinary exports. Our results confirm that it is very important to dif-
ferentiate between processing exports and ordinary exports when
studying China's export-related questions. Also, at the regional level.

6. Conclusion

This paper analyzed China's emission intensities at the regional level.
The results showed that the EIs exhibit clear heterogeneities across the
eight regions and across final demand categories. The EIs of coastal re-
gions and the Beijing-Tianjin region are smaller than those of inland re-
gions. In terms of final demand categories, the EIs of investments and
exports are larger than those of consumption. The evolution of regional
EIs showed that China's regional carbon emission performance experi-
enced “downgrading” first and then “upgrading” during 2002–2012.
9 We can also analyze the effect of processing exports on regional EIs using themultipli-
cative SDA. However, because the share of production of processing exports in total re-
gional production is small (less than 6%), the contribution of changes in processing
exports to the changes in regional EIs is limited. We do not present the results here, they
are available upon request. Instead, we focus on export-related emissions (like
Dietzenbacher et al., 2012; Su et al., 2013; Yan et al., 2020) and explore the effect of
changes in processing exports on the embodied EI of exports.
The EI increased for most regions in the period 2002–2007 (which indi-
cates downgrading) and decreased (indicating upgrading) in the period
2007–2012.

We employed an inter-regional input-output based multiplicative
SDA to identify the drivers (or determinants) of China's regional EI
changes over time. The SDA showed that changes in direct emission co-
efficients and in production technology were the major driving forces
for the EI evolution of most regions. Changes in inter-regional interme-
diate trade structures and in inter-regional spillover effects exerted dif-
ferent influences on the regional EIs. They decreased the EIs of coastal
regions but increased the EIs of inland regions. This finding suggested
that the upgraded performance of coastal regions should partly be at-
tributed to the fact that over time these regions importedmore “dirtier”
products from inland regions. We also distinguished processing exports
in the inter-regional input-output table. The results showed that the
changes in the share of processing exports had small contributions to
the aggregate EIs at national and regional level, but they did matter
for the embodied CO2 EI of exports.

With respect to the reduction of China's regional EIs, our empiri-
cal findings point to some policy recommendations. First, measures
should be taken to reduce the EI gap between developed coastal re-
gions and other regions. Given that Northwest and Central Region
are facing higher levels of EI, it is important to make great efforts to
reduce them. Inland regions might adopt local policies
(e.g., policies regarding taxes and subsidies) to encourage the
upgrading of energy efficiency and production techniques. It is also
important for inland regions to stimulate local producers to adopt
the energy-saving and cleaner production technologies from the
coastal regions.

Second, the upgrading target of inland regions should be one of
sharing responsibility with developed coastal regions. Our empirical
results show that the central and western regions have been emit-
ting CO2 for producing “dirty” products that are required by the
coastal regions. Therefore, it is necessary for both the central govern-
ment and local governments to co-ordinate the design and imple-
mentation of mechanisms to share the emission-reduction
responsibility. For example, establishing an emissions trading
system10 and implementing stricter standards for investments
from coastal regions. Other potential measures include establishing
a regular exchange system and strengthening the coordination be-
tween coastal and inland regions to accelerate the diffusion of
cleaner production technologies to inland regions.

Third, it is important to promote the use of cleaner inputs because
changes in the production structure appears to a major driving force
of the changes in regional EIs. In this aspect, producers could be encour-
aged to use cleaner, more knowledge-intensive and service-related in-
puts as a substitute for emission-intensive inputs. In addition, for
policymaking it is important to distinguish processing exports from or-
dinary exports at the regional level. From the perspective of emission
reduction, processing exports (which are relatively clean) could be
given priority in regions (e.g. Northwest and Southwest) with a low
share of processing exports.

Our research can be extended in several directions. First, to work
with subnational input-output tables that differentiate China's pro-
cessing exports from ordinary exports, provinces had to be aggre-
gated into regions. Provincial or city level tables, however, may
provide additional insights into important emission-related topics.
For example, how spillover effects change the emissions of a prov-
ince or city. Second, the multiplicative SDA in this paper could also
be extended to a spatial multiplicative SDA framework that analyzes
emission performance disparities across different regions. Lastly, the
analysis is not limited to China. The same method can be generalized
10 This could possibly be achieved by the so-called Domestic Emission Trade System (Cui
et al., 2014; Guan and Hubacek, 2010). This scheme uses emission caps and trade permits
to effectively link developed coastal regions with inland regions.



Table 4
Decomposition results of changes in China's regional EI for exports, 2002–2012.

Region Change in EI for exports λ T ∗ Φ S x h b

2002–2012
Northeast −21.39 251.8 −46.1 3.1 −7.9 −8.8 −59.2 −32.9
North Municipalities −49.01 223.6 −47.4 −42.2 −3.5 −6.2 −3.2 −21.1
North Coast −7.55 828.6 −708.6 72.4 −19.1 −24.7 56.9 −105.5
East Coast −0.44 8980.5 −5908.5 260.0 −1266.3 69.6 −743.0 −1292.2
South Coast −6.86 216.7 67.9 51.3 −160.4 −63.2 35.9 −48.1
Central Region −27.05 179.0 −73.9 −6.9 −5.9 19.3 20.2 −31.7
Northwest 16.03 −75.2 93.3 11.7 28.4 16.1 −46.2 71.7
Southwest −13.78 303.4 −162.0 28.2 −10.2 −3.7 16.0 −71.6
China −1.57 3154.0 −1563.4 −151.3 −251.6 −254.7 −339.5 −493.5

2002–2007
Northeast 14.96 −335.6 183.0 49.7 16.5 19.2 96.6 70.7
North Municipalities 1.54 −4559.6 2449.0 1396.7 174.7 151.7 −554.3 1041.9
North Coast 35.72 −159.6 252.9 −35.6 4.0 9.8 −12.4 41.0
East Coast 19.55 −138.6 180.9 −0.6 31.7 −17.6 11.4 32.8
South Coast 20.63 −39.7 41.0 −14.5 70.1 5.7 29.1 8.2
Central Region 3.90 −968.5 904.3 −70.6 58.6 −52.1 −41.7 270.0
Northwest 14.16 −153.1 137.5 49.8 22.7 26.7 −71.3 87.7
Southwest 10.18 −351.1 339.5 −40.0 25.7 17.4 11.3 97.2
China 27.68 −136.8 145.6 8.7 18.3 7.9 20.5 35.9

2007–2012
Northeast −31.62 36.3 38.0 20.2 1.0 1.5 −2.0 5.1
North Municipalities −49.78 117.4 8.0 −10.3 0.4 −2.7 −15.4 2.5
North Coast −31.88 42.4 56.3 −13.5 −0.7 2.7 1.8 11.1
East Coast −16.72 80.5 34.5 5.6 0.6 −15.5 −6.8 1.0
South Coast −22.77 30.6 48.4 3.5 6.9 −13.2 31.0 −7.2
Central Region −29.79 54.8 31.9 −13.8 1.1 11.6 13.5 0.9
Northwest 1.64 559.2 −265.9 −297.9 74.8 −70.2 158.1 −58.1
Southwest −21.75 44.7 36.2 1.2 4.0 4.7 14.2 −4.9
China −22.91 63.5 41.6 −1.0 1.8 −8.1 −1.4 3.7

Notes: The factors contributing to the changes in emission intensity (EI) are: λ, effect of changes in carbon emissions per unit of output; T ∗, effect of changes in production technology;Φ,
effect of changes in inter-regional intermediate trade structure; S, effect of changes in substitution effect between domestic and imported intermediate inputs; x, effect of changes in the
share of processing exports in regional exports; h, effect of changes in the regional pattern of exports; and b, effect of changes in the product composition of exports. Note that the numbers
give the percentage contribution of a certain factor (in the column) to the change of the EI for exports (in the row). The sum of the separate contributions in a row equals 100.
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to other countries with a high share of processing exports and vast
regional disparities, such as Mexico. The analysis could contribute
to providing support to establish more effective emission reduction
policies.
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