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ARTICLE INFO ABSTRACT

Acetaminophen (APAP) misuse or overdose is the most important cause of drug-induced acute liver failure.
Overdoses of acetaminophen induce oxidative stress and liver injury by the electrophilic metabolite N-acetyl-p-
benzoquinone imine (NAPQI). Plant-based medicine has been used for centuries against diseases or intoxications
due to their biological activities. The aim of this study was to evaluate the therapeutic value of Opuntia robusta
and Opuntia streptacantha fruit extracts against acetaminophen-induced liver damage and to identify the major
biocomponents on them. Opuntia fruit extracts were obtained by peeling and squeezing each specie, followed by
lyophilization. HPLC was used to characterize the extracts. The effect of the extracts against acetaminophen-
induced acute liver injury was evaluated both in vivo and in vitro using biochemical, molecular and histological
determinations. The results showed that betacyanins are the main components in the analyzed Opuntia fruit
extracts, with betanin as the highest concentration. Therapeutic treatments with Opuntia extracts reduced bio-
chemical, molecular and histological markers of liver (in vivo) and hepatocyte (in vitro) injury. Opuntia extracts
reduced the APAP-increased expression of the stress-related gene Gadd45b. Furthermore, Opuntia extracts ex-
erted diverse effects on the antioxidant related genes Sod2, Gclc and Hmox1, independent of their ROS-
scavenging ability. Therefore, betacyanins as betanin from Opuntia robusta and Opuntia streptacantha fruits are
promising nutraceutical compounds against oxidative liver damage.
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1. Introduction aminophenol (APAP) is a safe and effective analgesic and antipyretic

OTC drug when used as recommended (Wang et al., 2017). However,

Acute liver failure (ALF) is a rare and unpredictable clinical syn-
drome, characterized by sudden, severe liver dysfunction associated
with coagulopathy and hepatic encephalopathy (Khandelwal et al.,
2011). An important cause of ALF is unintentional misuse of over-the-
counter (OTC) pain medication, in particular acetaminophen, the most
commonly used OTC product in the United States (Wolf et al., 2012).
Acetaminophen, or paracetamol, 4-hydroxy-acetanilide, N-acetyl-p-

APAP misuse or overdose can lead to ALF and APAP overdose is cur-
rently the leading cause of ALF in adults in Western countries (Fontana,
2008; Kim et al., 2015; Larson et al., 2005). At therapeutic doses, APAP
is conjugated by glucuronidation or sulphation in the liver and excreted
into the urine (> 90%). A small amount is excreted unchanged
and < 10% is biotransformed by cytochrome P450 enzymes into the
reactive intermediate N-acetyl-p-benzoquinone-imine (NAPQI), which

Abbreviations: ALF, acute liver failure; OTC, over-the-counter; APAP, acetaminophen; NAPQI, N-acetyl-p-benzoquinone-imine; GSH, reduced glutathione; GSSG,
glutathione disulfide; NAC, N-acetylcysteine; ROS, reactive oxygen species; RNS, reactive nitrogen species; JNK, c-Jun-N-terminal kinase; MPT, mitochondrial
permeability transition; ATP, adenosine triphosphate; DNA, deoxyribonucleic acid; RNA, ribonucleic acid; ALT, alanine aminotransferase; AST, aspartate amino-
transferase; LDH, lactate dehydrogenase; ALP, alkaline phosphatase; MDA, malondialdehyde; DMSO, dimethyl sulfoxide; PBS, phosphate-buffered saline; PCR,
polymerase chain reaction; HPLC, high performance liquid chromatography; Nfe2l2, nuclear factor, erythroid 2-like 2; Sod2, superoxide dismutase 2; Hmox1, heme
oxygenase 1; Gclc, glutamate-cysteine ligase, catalytic subunit; Gadd45, growth arrest and DNA-damage-inducible; NFkb, nuclear factor kappa B; Sp1, Spl tran-
scription factor; GCDCA, glycochenodeoxycholic acid; Bax, BCL2 associated X; Fas, Fas cell surface death receptor; NASH, non-alcoholic steatohepatitis
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under normal conditions is inactivated by reduced glutathione (GSH)
(Eugenio-Pérez, Montes de Oca-Solano, & Pedraza-Chaverri, 2016;
Lancaster, Hiatt, & Zarrinpar, 2015). At high doses of APAP, the glu-
curonidation and sulphation pathways are saturated resulting in ex-
cessive production of NAPQI causing depletion of liver GSH. NAPQI
then forms covalent bonds (adducts) with proteins and non-protein
thiols, initiating alkylation of proteins, lipid peroxidation of mem-
branes, imbalance of intracellular calcium homeostasis, production of
reactive oxygen species (ROS) and reactive nitrogen species (RNS), ATP
depletion and eventually cell death (McGill & Jaeschke, 2013; Seki,
Brenner, & Karin, 2012). The only approved treatment for APAP
overdose is N-acetylcysteine (NAC), a precursor of GSH. This reduces
oxidative stress and liver injury (Ferner, Dear, & Bateman, 2011).
However, NAC is not always effective and liver transplantation is the
last therapeutic option. Therefore, there is an urgent need for novel and
effective interventions to improve the prognosis of APAP-induced ALF.

Plants and their derivatives have been part of traditional medicine
due to the presence of bioactive components and they play an im-
portant role in the treatment and prevention of diseases (Gonzalez-
Ponce, Rincon-Sanchez, Jaramillo-Juarez, & Moshage, 2018). In
Mexico, cactus species (Opuntia spp.) are an important dietary compo-
nent (Saenz, 2000) and have been used because of their beneficial ef-
fects (Santos Diaz, Barba de la Rosa, Héliés-Toussaint, Guéraud, &
Négre-Salvayre, 2017) such as antioxidant (Coria Cayupan, Ochoa, &
Nazareno, 2011), anti-inflammatory (Antunes-Ricardo, Gutiérrez-
Uribe, Lépez-Pacheco, Alvarez, & Serna-Saldivar, 2015), hepatopro-
tective (Gonzalez-Ponce et al., 2016), hypoglycemic (Leem, Kim, Hahm,
& Kim, 2016), neuroprotective (Dok-Go et al., 2003), anti-carcinogenic
(Sreekanth et al., 2007), anti-atherogenic (Keller et al., 2015), and anti-
genotoxic (Brahmi et al., 2011). These effects are in part due to the
presence of natural pigments (e.g. betalains, carotenoids and flavo-
noids) and other phenolic compounds. Betalain pigments are particu-
larly abundant in the Caryophyllales order and can be found in roots,
flowers, fruits and some vegetative tissues of plants (Gonzalez-Ponce
et al.,, 2018). They provide protection against UV radiation and pa-
thogens and act as optical attractants to pollinators. Betalains can be
classified into betacyanins (red-violet) or betaxanthins (yellow-orange).
The active cyclic amine group of betalains functions as hydrogen donor
and confers reducing properties to these compounds (Kanner, Harel, &
Granit, 2001). The betacyanins such as betanin and betanidin have
enhanced antioxidant capacity compared to betaxanthins due to the
presence of a phenolic ring which increases their electron transfer
capability (Stintzing et al., 2005).

The aim of this study was to investigate the therapeutic effect of
fruit extracts of two Opuntia species, Opuntia robusta and Opuntia
streptacantha on APAP-induced hepatotoxicity both in vivo and in vitro,
and to identify the main component(s) possibly related to their pro-
tective properties.

2. Materials and methods
2.1. Plant materials and preparation of extracts

Ripe fruits of Opuntia robusta and Opuntia streptacantha were col-
lected from randomly selected plants in a semi-arid region of
Aguascalientes, México (21°46’55.86” N, 102°6’16.08” O, and 1994 m
above sea level). The juice extraction of each Opuntia fruit species was
carried out by using a Braun J500 juice extractor (Braun, GmbH,
Taunus, Germany) and juice was collected into 50 ml dark tubes to
remove non-soluble fibers by centrifugation at 5000 rpm for 15 min at
4 °C. After that, the juice extracts were filtered through an 8-um pore
size Whatman filter paper, frozen at —80 °C and lyophilized as de-
scribed previously (Gonzalez-Ponce et al., 2016).
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2.2. Betacyanins content

The betacyanins content was performed as described by (Sumaya-
Martinez et al., 2011). Juice extracts were reconstituted in 50 ml of
deionized water and clarified by centrifugation at 12,000g for 15 min at
15 °C. Determination was carried out spectrophotometrically at 535 nm
and the concentration was calculated using the follow equation:

Betacyanins [mg/L] = [( A% DF x MW % 1000) / (€ * 1)]

where: A = absorbance 535 nm, DF = dilution factor,
MW = molecular weight (550 g/mol), €= extinction coefficient
(60,000 L/mol cm), and 1 = width of the spectrophotometer cell
(1 cm). The quantification was performed in triplicate on a Biotek
PowerWave XS microplate reader and the results were expressed as mg
of betacyanins equivalents/L.

2.3. High-performance liquid chromatography (HPLC) characterization

HPLC analysis was carried out using a Shimadzu-VP system, con-
sisting of an LC-10AT pump, SIL-20A autosampler, and diode array
detector SPD-M10A (Shimadzu corporation, Kyoto, Japan). Separation
set up was based on the method described by (Serra, Poejo, Matias,
Bronze, & Duarte, 2013), with some modifications. It was performed at
35 °C in an Atlantis dC;g (5 pm, 150 mm X 4 mm i.d.) column from
Waters (Milford, MA, USA) with a security guard column C;g AJ0-4287
(8 mm X 3.2 mm i.d.) from Phenomenex (Torrance, CA, USA). The
injected volume of standard and samples was 20 pl. Separation flow
rate was 800 pl/min and the mobile phase consisted of a gradient
mixture of eluent A (water + 0.1% formic acid) and eluent B (acet-
onitrile + 0.1% formic acid). The eluent gradient used was: 0-5 min
eluent A; 5-8 min from O to 7% eluent B; 8-18 min from 7 to 10%
eluent B; 18-21 min 10% eluent B; 21-28 min from 10 to 20% eluent B;
28-35 min from 20 to 50% eluent B; 35-40 min from 50 to 100% eluent
B; 40-45 min 100% eluent B; 45-50 min from 100 to 0% eluent B;
50-55 min 100% eluent A.

A known concentration of betanin (10 mg/ml), gallic acid (0.5 mg/
ml) and quercetin (0.5 mg/ml) standards from Sigma-Aldrich (St. Louis,
MO, USA) were used to identify the main biocomponents in the Opuntia
extracts by comparing retention time and spectra at 535, 280 and
360 nm, respectively.

2.4. Animals

Adult male Wistar rats (200-250 g) were used for the in vivo and in
vitro studies. The animals were obtained from the animal facility of the
Universidad Auténoma de Aguascalientes (for the in vivo experiments)
and University Medical Center Groningen (for the in vitro experiments)
and kept in polypropylene cages at room temperature (25 * 2 °C) with
food and water ad libitum. Experiments were approved by and per-
formed according to the guidelines of the local committee for care and
use of laboratory animals (permission No. 6415A of the committee for
care and use of laboratory animals of the University of Groningen and
Mexican governmental guideline NOM-033-ZO0-1995).

2.5. Rat hepatocyte isolation

Hepatocytes were isolated from albino male Wistar rats (Charles
River Laboratories Inc. Wilmington, MA, USA) by two-step collagenase
perfusion as described by (Woudenberg-Vrenken, Buist-Homan, Conde
de la Rosa, Faber, & Moshage, 2010). Only isolations with a viability
higher than 85% determined by Trypan blue exclusion assay, were
used. Cells were allowed to attach for 4 h on 6-well plates in William’s E
medium (Invitrogen, Breda, The Netherlands) supplemented with
50 pg/mL gentamycin (Invitrogen), 1% penicillin—streptomycin-fungi-
zone (PSF) (Lonza, Verviers, Belgium), 5% fetal calf serum (FCS) (In-
vitrogen) and 50 nmol/L dexamethasone (Department of Pharmacy,
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UMCG, Groningen, The Netherlands). Cells were cultured in a humi-
dified incubator at 37 °C and 5% CO,. Before the start of the experi-
ments, medium was changed to medium without FCS and dex-
amethasone.

2.6. Experimental design

2.6.1. In vivo experiment

Albino male Wistar rats (200 — 250 gr) were randomly divided into
seven groups (n = 10): Group 1 - Control; Group 2 — APAP; Group 3 —
Opuntia robusta (Or) treated; Group 4 - Opuntia streptacantha (Os)
treated; Group 5 — APAP + Or treated; Group 6 — APAP + Os treated;
and Group 7 — APAP + NAC. Rats (groups 2, 5, 6 and 7) were in-
toxicated with a single dose of APAP (500 mg/kg, intraperitoneally,
Sigma-Aldrich). After 0.5 h, rats in the appropriate groups were ther-
apeutically treated with a single dose of Opuntia extract (800 mg/kg,
orally) (Gonzalez-Ponce et al, 2016) or NAC (300 mg/kg, in-
traperitoneally, Sigma-Aldrich) (Geng et al., 2015). After 6 h of APAP
intoxication samples of blood and liver tissue were collected from six
animals of each group for the assessment of biochemical markers of
hepatic damage and for RNA isolation. Liver tissue from the other an-
imals was collected 24 h after APAP intoxication for histological eva-
luation.

Biochemical markers of liver damage, alanine aminotransferase
(ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH),
and alkaline phosphatase (ALP) were measured spectrophotometrically
(Varian UV visible spectrophotometer, model DMS80, Varian, Inc., CA,
USA) in plasma using commercial kits (SPINREACT, Girona, Spain). The
values represent the mean of six samples + standard error of the mean
(SEM) and are expressed as IU/L. Hepatic GSH content in tissue
homogenates from experimental animals was determined according to
(Hissin & Hilf, 1976), using o-phtaldehyde (OPT) as the fluorescent
reagent. The fluorescence intensity was measured at 420 nm using
350 nm as the excitation wavelength using a luminescence spectro-
photometer (Model LS-50B, PerkinElmer Inc., Waltham, MA, USA). The
values represent the mean of six samples + SEM and are expressed as
ug/g. Determination of malondialdehyde (MDA), a product of lipid
peroxidation, was performed using the thiobarbituric acid reactive
substance (TBARS) method according to (Uchiyama & Mihara, 1978)
with some modifications. Samples were measured spectro-
photometrically (Varian UV visible spectrophotometer, model DMS80)
at 530 nm. The values represent the mean of six samples = SEM and
are expressed as nmol/100 mg. Histological analysis was performed by
collecting liver tissue from the experimental animals 24 h after APAP
intoxication. Animals were anesthetized with sodium pentobarbital and
systemically perfused with saline solution (sodium chloride 0.9%),
containing 0.5% heparin and 0.1% procaine and fixed in situ with
neutral formalin (10%). The hepatic tissue was embedded in paraffin
blocks and sections of 5 pum were prepared with a microtome
RM2125RT (Leica Biosystems, USA). The sections were stained with
hematoxylin/eosin (H&E). Liver tissue images were obtained using a
slide scanner NanoZoomer 2.0 HT (Hamamatsu Photonics, Japan) and
Aperio ImageScope Pathology slide viewer software (Leica Biosystems).

2.6.2. In vitro experiments

Stock solutions of acetaminophen (APAP, 2 mol/L in DMSO) and N-
acetylcysteine (NAC, 1 mol/L in PBS) were prepared for all the in vitro
experiments. Opuntia cactus fruit extracts were sterilized through fil-
tration (0.2 um pore size) before use.

Hepatocyte cultures were divided into seven groups following the
same set up as in the in vivo experiments. Cells from Groups 2, 5, 6 and
7 were treated with 10 mmol/L APAP for biochemical and molecular
assays and 20 mmol/L for cell death assays (Gonzdlez-Ponce et al.,
2016). After 0.5 h, cells were therapeutically treated with a single dose
of each Opuntia extract (16.5 mg of lyophilized extract = 10 mg/mL) or
NAC (5 mmol/L) (Odewumi et al., 2011). Cells were harvested at 24 h
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after APAP intoxication for biochemical assays and RNA isolation. LDH
assay was used to determine necrotic cell death and performed 24 h
after APAP intoxication as described by (Verhaag et al., 2016). Per-
centage of LDH released was calculated by measuring the LDH activity
in both the medium and cell lysates. Determination of LDH in each
group was performed in triplo per experiment and values represent the
mean of three different experiments = SEM.

After 24 h of APAP intoxication, SYTOX® Green nuclei acid stain
(Invitrogen) was added to the cells for 15 min at 37 °C (1:40,000, di-
luted in William’s E medium) to determine necrotic cell death by
fluorescence microscopy (DMI6000B, Leica Microsystems, Germany) at
450-490 nm as reported by (Conde de la Rosa et al., 2006).

2.7. RNA isolation, reverse transcription and quantitative real-time PCR

Total RNA from in vivo and in vitro samples was isolated using Tri-
reagent (Sigma-Aldrich), following manufacturer’s protocol. RNA
quantity and quality were determined using the Nanodrop spectro-
photometer (Thermo Scientific, Wilmington, DE, USA). Reverse tran-
scription PCR (RT-PCR) was performed with 2.5 pg of RNA using the
Moloney murine leukemia virus (M —MLV) reverse transcriptase system
and random nanomers from Life Technologies (Breda, The
Netherlands). RT-PCR was performed in 3 steps: 10 min at 25 °C, 1 h at
37 °C and 5 min at 95 °C with the GeneAmp PCR system (Applied
Biosystems, Nieuwekerk a/d IJssel, the Netherlands). Quantitative real-
time PCR (qPCR) was performed using 4 pl 20-fold diluted cDNA in
combination with 2x master mix (Eurogentec, Maastricht, The
Netherlands) in a total volume of 20 pl. 185 mRNA levels were used as
housekeeping gene. Fluorescence was measured using the 7900HT Fast
Real-Time System, and SDS 2.3 software (Applied Biosystems) (Verhaag
et al., 2016). Results are expressed as fold induction and each value
represents the mean of four samples (in vivo) and three different ex-
periments (in vitro) = SEM. Primers and probes are listed in Supple-
mental Table 1.

2.8. Statistical analysis

Data acquired from the experiments were statistically analyzed
using GraphPad Prism 5 software (La Jolla, CA, USA). Considering a
normal distribution of the values, a one-way analysis of variance
(ANOVA) and a post-hoc Dunnett’s multiple comparison test were used
to compare the experimental groups and to determine significant dif-
ferences with a confidence interval of 95%. For the betacyanins de-
termination and time-response curves of the in vitro studies a two-tail
unpaired T-test was performed to compare the control and treated
groups at each time point with a confidence interval of 99%.

3. Results
3.1. Betacyanins content

The amount of betacyanins present in the Opuntia robusta and
Opuntia streptacantha fruit extracts are shown in Table 1. Opuntia ro-
busta fruit extract had a significantly higher concentration of betacya-
nins (2.21 fold; P < 0.01) compared to Opuntia streptacantha fruit
extract suggesting a more potent biological activity of Opuntia robusta

Table 1
Quantification of betacyanins content in the Opuntia fruit extracts.

Fruit extract Betacyanins (mg equivalents/L)

10.87"
5.49

464.974
148.941

Opuntia robusta

=+
Opuntia streptacanta *

Values represent the mean of three different measurements + SD. P < 0.01
vs Opuntia streptacantha.
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Fig. 1. HPLC chromatograms obtained at 535 nm from the betanin standard (A), Opuntia robusta extract (B), and Opuntia streptacantha extract (C). Betanin and

isobetanin were detected after 18 and 20 min, respectively.
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Fig. 2. Biochemical markers of liver damage in plasma (A) ALT, (B) AST, (C) LDH, (D) ALP and liver tissue (E) GSH and (F) MDA of the experimental groups after 6 h
of acetaminophen intoxication and/or different treatments. Each bar represents the mean of six samples + SEM. * P < 0.05 compared to APAP group. * P < 0.05
compared to control group.

fruit extract treatment against APAP-induced hepatotoxicity in com- most abundant antioxidant-related components in the Opuntia cactus
parison to Opuntia streptacantha fruit extract. fruit extracts. No other phenolic acids (280 nm) or flavonoids (360 nm)
with comparable intensity were identified (Supplemental Figs. 1 and 2).

3.2. Characterization of Opuntia extracts by HPLC The chromatograms from Opuntia robusta (Fig. 1B) and Opuntia strep-
tacantha (Fig. 1C) at 535 nm were compared to the chromatogram of

Betacyanins, specifically betanin and its isomer (isobetanin) are the the betanin standard (Fig. 1A). The standard showed a retention time of



H.A. Gongzdlez-Ponce, et al.

(A) Sod2

Relative mRNA expression
(Fold induction vs Control)

(C) Gclc

Relative mRNA expression
(Fold induction vs Control)

Food Research International 137 (2020) 109461

(B) Hmox1

Relative mRNA expression
(Fold induction vs Control)

Gadd45b

S

Relative mRNA expression
(Fold induction vs Control)

Fig. 3. Relative gene expression of oxidative stress-related genes, (A) Sod2, (B) Hmox1, (C) Gclc, and the cell survival promotor (D) Gadd45b, 6 h after APAP
intoxication and/or different treatments in rats. Each bar represents the mean of four samples + SEM. * P < 0.05 compared to APAP group. “ P < 0.05 compared

to control group.

18 and 20 min for betanin and isobetanin, respectively. Both Opuntia
extracts showed two peaks at the same retention time as the betanin
standard confirming the presence of betanin and isobetanin. In both
extracts there were no additional peaks in the whole chromatogram
(55 min) ensuring that betanin and isobetanin are the major compo-
nents in these extracts. The amount of both betanin and isobetanin
appeared to be higher in the Opuntia robusta extract as compared to the
Opuntia streptacantha extract.

3.3. In vivo experiments

3.3.1. Biochemical markers of liver damage

The levels of the biochemical markers of hepatic injury in plasma
and tissue homogenates are shown in Fig. 2.

APAP significantly increased (P < 0.05) the levels of ALT
(90.77 = 9.76 U/I), AST (367.40 =+ 8.50 U/I), LDH
(1572.22 = 57.95 U/I) and ALP (338.06 *= 37.58 U/I) which re-
present an increase of 252, 648, 729 and 67%, respectively, compared
to the control group where the results were 25.76 *+ 1.85 U/I for ALT,
49.09 * 4.50 U/I for AST, 189.61 =+ 22.44 U/I for LDH and
202.17 + 18.65 U/I for ALP. A therapeutic single dose of Opuntia
robusta or Opuntia streptacantha significantly reduced (P < 0.05) all
markers of liver injury in plasma (35.2% and 31.5% for ALT; 31.8% and
24.6% for AST; 45.9% and 23.6% for LDH; 40.2% and 36.3% for ALP,
respectively) compared to the APAP group. NAC was only effective in
decreasing ALT levels (30.3%), the main marker of liver damage,

compared to the APAP group (P < 0.05). Opuntia cactus fruits alone
did not induce significant alterations in the biochemical markers.

There was a significant decrease of 83.3% of GSH content in liver
tissue of the APAP group (131.72 * 6.25 pg/g) compared to the
control group (788.59 + 28.75 ng/g) (P < 0.05) (Fig. 2-E). Treat-
ment with Opuntia robusta and streptacantha fruit extracts preserved the
GSH content in liver tissue of APAP-intoxicated rats with a non-sig-
nificant reduction of 34.1% and 15.4% compared to the control group
(Fig. 2-E). Treatment with Opuntia extracts alone did not induce al-
terations in the total GSH content. NAC was also effective in main-
taining the levels of hepatic GSH in the APAP-treated group with a non-
significant reduction of 8.9% compared to the control group (Fig. 2-E).

APAP intoxication induced a significant increase of MDA levels of
119.4% (130.35 + 10.34 nmol/100 mg) in liver tissue as compared to
the control group (59.40 + 2.75nmol/100 mg) (P < 0.05) (Fig. 2-F).
Treatment with Opuntia fruit extracts and NAC after APAP intoxication
significantly reduced (P < 0.05) levels of MDA (53.6% for APAP + Or,
47.3% for APAP + Os, and 44.9% for APAP + NAC groups) to control
levels (Fig. 2-F). Opuntia extracts alone did not change the levels of
MDA compared to the control group.

3.3.2. Relative mRNA expression of oxidative stress-related genes

After 6 h of APAP intoxication, liver tissue was collected to quantify
the relative mRNA expression of the main antioxidant enzymes (Sod2,
Hmox1, Gclc) and the cell survival promotor Gadd45b (Fig. 3).

APAP significantly increased the expression of Sod2 in 157%,
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Fig. 4. Micrographs of hepatic parenchyma of the central area from liver sections of the experimental animals after hematoxylin-eosin staining, magnification 200 x .
(A) Control, (B) Acetaminophen — APAP, (C) Opuntia robusta — Or, (D) Opuntia streptacantha — Os, (E) APAP + Or, (F) APAP + Os, and (G) APAP + NAC.

Hmox1 in 2029%, Gclc in 178% and Gadd45b in 418% compared to the
control group (P < 0.05). Treatment with a single dose of Opuntia
robusta and Opuntia streptacantha fruit extracts also induced a sig-
nificant increase (P < 0.05) in the gene expression of the antioxidant
enzymes Sod2 (36.9% and 83.6%, respectively) and Gclc (133.6% and
67.2%, respectively) but not for Hmox1 and the cell stress sensor
Gadd45b compared to the control group. For the APAP-intoxicated
groups treated with Opuntia robusta, Opuntia streptacantha or NAC, the
relative mRNA expression levels of the enzymes Sod2 (45.5%, 51.8%
and 50.6%, respectively), Hmox1 (71.7%, 79.1% and 29.2%, respec-
tively), Gclc (35.6%, 65.5% and 43.2%, respectively) and Gadd45b
(86.8%, 81.1% and 58.3%, respectively) were significantly reduced
compared to the APAP group (P < 0.05) (Fig. 3).

3.3.3. Histopathology

APAP intoxication induced significant hydropic degeneration (cel-
lular edema) and focal necrosis in the hepatocytes near the central vein
(centrilobular) (Fig. 4-B). In addition, the normal structure of hepatic
parenchyma (polygonal form of the cells and hepatic sinusoids) was
disrupted in the APAP group (Fig. 4-B) compared to the control group
which showed a normal architecture of liver (Fig. 4-A). Treatment with
Opuntia extracts (Fig. 4-E,F) or NAC (Fig. 4-G) after APAP intoxication
reduced focal necrosis and ballooning degeneration of the central he-
patocytes (centrilobular) of the hepatic acinus (zone III). Opuntia ex-
tracts alone did not induce alterations in the morphology of the hepatic
lobule (central area) (Fig. 4-C,D). Opuntia robusta treatment appeared to
be more protective than Opuntia streptacantha and NAC with respect to
the histopathological changes induced by APAP.
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Table 2
Levels of LDH released after 24 h of exposure to APAP and
therapeutic treatments with Opuntia extracts and NAC.

Group LDH leakage (%)
Control 14.69 = 2.38 "
APAP 70.32 = 5757
or 14.05 *= 4.00 °
Os 10.76 + 1.75 "
APAP + Or 18.23 = 2127
APAP + Os 13.28 + 2337
APAP + NAC 16.89 + 0.36 "
Values represent the mean of three different

experiments = SEM. " P < 0.05vs APAP. "P < 0.05vs
Control. Or, Opuntia robusta; Os, Opuntia streptacantha;
APAP, acetaminophen; NAC, N-acetylcysteine.

3.4. In vitro experiments

3.4.1. LDH leakage

Primary hepatocytes exposed to a single dose of APAP showed sig-
nificant LDH release (3.8 fold increase) into the medium after 24 h
compared to the control group (Table 2). Therapeutic treatment with
Opuntia robusta or Opuntia streptacantha after APAP intoxication sig-
nificantly reduced LDH release to control levels indicating improved
survival compared to the APAP group (P < 0.05) (Table 2). Opuntia
extracts alone did not induce liver cell death after 24 h of exposure
(P > 0.05 vs control). NAC treatment was also effective in protecting
the hepatocytes against APAP-induced cell death and significantly re-
duced LDH release compared to the APAP group (P < 0.05) (Table 2).

3.4.2. Sytox green stain

Cell membrane disruption and necrotic cell death induced by APAP
was confirmed using the cell-impermeable fluorescent dye SYTOX®
Green. As shown in Fig. 5, necrotic cell death was dramatically in-
creased 24 h after APAP intoxication compared to the control group
(Fig. 5-A). Therapeutic treatment with Opuntia extracts (Fig. 5-E,F) or
NAC (Fig. 5-G) considerably reduced necrotic cell death in primary
hepatocytes exposed to APAP compared to the APAP group (Fig. 5-B).
Treatment with Opuntia extracts alone did not alter membrane perme-
ability of the primary hepatocytes (Fig. 5-C,D).

3.4.3. Relative mRNA expression of oxidative stress-related genes

The mRNA level of Sod2 did not change up to 24 h after APAP ex-
posure but was significantly reduced (62.2%) after 24 h of intoxication
compared to the control (P < 0.05) (Fig. 6-A). The mRNA levels of
antioxidant enzymes Hmox1 and Gclc were significantly increased (766
and 328%, respectively) after 24 h of APAP intoxication (P < 0.05)
(Fig. 6-B,C). mRNA level of the cell stress sensor Gadd45b gradually
increased after exposure to APAP and peaked (197%) at 24 h after
APAP exposure (Fig. 6-D).

Opuntia extracts and NAC displayed diverse effects on the APAP-
induced changes in oxidative stress-related genes: therapeutic treat-
ment with Opuntia robusta and Opuntia streptacantha fruit extracts of
APAP-intoxicated hepatocytes restored Sod2 expression (42.2 and
43.6% vs APAP group), whereas therapeutic treatment with NAC did
not restore Sod2 expression. Interestingly, Opuntia robusta and Opuntia
streptacantha fruit extracts alone induced Sod2 expression compared to
controls (74.2 and 130%, respectively). With regard to Hmox1, Opuntia
extracts, in contrast to NAC (91.1% vs control group), did not attenuate
the APAP-induced increase of Hmox1 (762% for APAP + Or; and 613%
for APAP + Os vs control group). Opuntia extracts alone moderately,
but not significantly, increased Hmox1 expression compared to control.
Yet another effect was observed for Gcle: Opuntia robusta and Opuntia
streptacantha fruit extracts further increased the APAP-induced increase
of Gclc (789 and 939% vs control group, respectively; or, 107.7 and
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119.6% vs APAP group, respectively), whereas NAC attenuated 196%
the APAP-induced increase of Gclc expression. Opuntia extracts alone
did not significantly change (P > 0.05) Gclc expression compared to
the control group. Finally, both Opuntia robusta and Opuntia strepta-
cantha fruit extracts, and NAC tended to significantly attenuate (94, 151
and 116%, respectively) the APAP-induced increase of Gadd45b ex-
pression (Fig. 7).

4. Discussion

Opuntia spp. fruits contain many bioactive components with po-
tential health benefits but the exact composition is dependent on phy-
sical, chemical, geographical and environmental factors. Thus, it is
important to identify the main bioactive compounds that are re-
sponsible for the potential protective mechanisms.

In this study we quantified spectrophotometrically the betacyanin
content and determined by HPLC analysis that betalains, specifically
betacyanins, are the most important components in extracts of Opuntia
robusta and Opuntia streptacantha fruits. In our previous study, we
quantified betalains, flavonoids, ascorbic acid and total phenolics in
Opuntia robusta and Opuntia streptacantha fruit extracts by spectro-
photometry and reported that betalains are the second major compo-
nent after total phenolics (Gonzalez-Ponce et al., 2016). In support,
(Stintzing et al., 2005), reported that betacyanins are the second major
group of components after total phenolics in the fruits of Opuntia ficus-
indica clones, although it is important to remark that betacyanins such
as betanin and its isomer might be detected as phenolic compounds due
to the presence of a phenolic ring in their structure. They identified
betanin and isobetanin as the most abundant betacyanins in these
clones, although they also identified additional betacyanins such as
gomphrenin I, betanidin and neobetanin. (Serra et al., 2013), showed
that betacyanins are the major components in hydroalcoholic extracts
obtained from Opuntia ficus-indica and Opuntia robusta.

Our results demonstrate the hepatoprotective effect of therapeutic
treatment with betacyanin-rich Opuntia purple fruit extracts against
APAP-intoxication both in vivo and in vitro. The protective effect is
mainly due to the reduction of oxidative stress induced by the free
radical NAPQL In vivo, Opuntia extracts reduced the biochemical mar-
kers of liver damage; diminished the hepatic levels of malondialdehyde
and restored the levels of glutathione, indicating diminished oxidative
stress; and improved the hepatic architecture, specifically at the cen-
trilobular region (zone III of the hepatic acinus) where the expression of
the CYP2E1 isoform is highest and APAP is biotransformed into the
electrophilic metabolite NAPQI causing most damage in this region
(Abdelmegeed, Moon, Chen, Gonzalez, & Song, 2010). In vitro, treat-
ment with Opuntia extracts reduced LDH leakage into the medium and
Sytox green nuclear staining, indicating reduced necrotic cell death. Of
note, our results indicate that the treatment with Opuntia extracts may
have therapeutic value, since the protective effect of the extracts was
observed when administered after APAP intoxication, both in vivo and
in vitro. We have previously demonstrated the protective effect of the
prophylactic consumption of both extracts (Gonzalez-Ponce et al.,
2016). In addition, the protective effect appeared to be at least as ef-
fective as observed with NAC, the currently used treatment for APAP-
induced acute liver failure, with Opuntia robusta being slightly more
protective than Opuntia streptacantha.

The antioxidant status of cells is dependent on many factors, in-
cluding several oxidative stress-related enzymes like mitochondrial
superoxide dismutase 2, heme oxygenase 1 and the rate-limiting en-
zyme in glutathione synthesis, glutamate-cystein ligase.

Superoxide dismutases (SOD) play a key role in the protection
against reactive oxygen species (ROS). They catalyze the conversion of
superoxide anions (O,7) into hydrogen peroxide (H,O,) and oxygen
(05). Two types of SOD enzymes (Sodl and Sod2) are distinguished:
cytoplasmic Sodl and mitochondrial Sod2 (Wang, Branicky, Noé, &
Hekimi, 2018). (Chen et al., 2015), described that increasing the
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Fig. 5. Necrotic cell death determined by Sytox green fluorescent dye in primary rat hepatocytes after 24 h of exposure to acetaminophen and/or treatments. (A)
Control, (B) Acetaminophen — APAP, (C) Opuntia robusta — Or, (D) Opuntia streptacantha — Os, (E) APAP + Or, (F) APAP + Os, and (G) APAP + NAC.

activity of Sod2 reduced glycochenodeoxycholic acid (GCDCA)-induced
mitochondrial oxidative stress in rat hepatocytes. On the other hand,
Sod2 has also been related to tumorigenicity, both as a tumor sup-
pressor and as tumor promotor (Hempel et al., 2011). Both Hmox1 and
Gcle are inducible target genes of the oxidative stress-responsive tran-
scription factor Nfe2I2. Gcele plays an important role in the synthesis of
GSH. (Botta et al., 2006), demonstrated that overexpression of Gclc in
transgenic animals protects the liver against APAP-induced liver injury.

(Kay et al., 2010), reported that the treatment with ajoene, a compo-
nent of garlic, increased GSH content through Nfe2l2 activation and
induction of Gclc, protecting HepG2 cells and hepatocytes against oxi-
dative stress. Hmox1 is another Nfe2]2-regulated antioxidant enzyme. It
is an ubiquitous stress-responsive enzyme with several functions in
tissue homeostasis (Kim et al., 2011). We have previously shown that
overexpression of the oxidative stress-responsive enzyme Hmox1 pro-
tects hepatocytes against apoptosis via inhibition of superoxide anion-
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time control.

induced JNK activity (Conde de la Rosa et al., 2008). (Chiu,
Brittingham, & Laskin, 2002), described that Hmox1 is an important
antioxidant enzyme in the protection against APAP-induced hepato-
toxicity. Although these oxidative stress-related genes are important,
little is known about their role and regulation during APAP intoxication
and their regulation by natural products.

In the present study, APAP alone increased the gene expression of
Hmox1, Gclc and Gadd45b in vivo and in vitro. Expression of Sod2 was
increased in vivo and decreased in vitro by APAP. The induction of
Hmox1 and Gclc is in accordance with exposure to oxidative stress and
their regulation by the oxidative stress responsive transcription factor
Nfe2l2. In contrast, Sod2 is not an exclusive target gene of Nfe2l2 since
it has been described that its expression is also modulated by the
transcription factors NFkb and Spl-dependent p53. p53 is a tumor
suppressor protein and is known to modulate cell survival and apoptotic
pathways. p53 target genes are involved in cell proliferation (e.g.
Gadd45) and apoptotic cell death (e.g. Fas, Bax) (Vogelstein, Lane, &
Levine, 2000). (Dhar et al., 2010) observed that gene expression of Sod2
is regulated in a dose-dependent manner by p53 via the transcription
factors NFkb and Spl. They propose that p53 has bi-directional effects
leading to either cell survival or cell death by suppressing or activating
target genes like Sod2. At present, the explanation for the opposite
regulation in this study of Sod2 in vivo and in vitro is not clear, although
it is very likely that the presence of other liver cell types in the in vivo
situation, including inflammatory cells with activated NFkb (cytokine

10

SEM. * P < 0.001 compared to the respective

release) and abundant ROS production, lead to a different response in
the regulation of Sod2. It should also be noted that for the mRNA ex-
pression studies, RNA was isolated under non-lethal conditions, both in
vivo and in vitro.

Opuntia extracts alone enhanced the cytoprotective defenses by
significantly increasing the expression of Sod2 in vivo and in vitro.

These results indicate that the Opuntia extracts not only contain
compounds that scavenge reactive oxygen species, but also contain
factors that actually increase the expression of antioxidant genes.

Therapeutic treatment with Opuntia extracts prevented the APAP-
induced increase of Sod2, Hmox1 and Gclc mRNA expression in vivo.
However, Opuntia extracts exerted divergent effects in vitro: although
they normalized Sod2 expression, they did not attenuate the APAP-in-
duced increase in Hmox1 expression and even further increased the
APAP-increased expression of Gclc. The reason for these divergent ef-
fects may be that oxidative stress induces the expression of oxidative
stress-related genes and therefore, antioxidants attenuate these
changes, but that in this case components in the Opuntia extracts
modulate the expression of these genes independent of their ROS
scavenging effects.

Finally, Gadd45 is a family of genes which are induced in response
to (patho)physiological stresses. Gadd45 proteins have important
functions as regulators of the cell cycle, cell survival or apoptosis, DNA
repair and genomic stability (Ueda, Kohama, Kuge, Kido, & Sakurai,
2017). Gadd45b is an early predictor of liver dysfunction and stress
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group.

(Tian et al., 2011). (Papa et al., 2004), demonstrated the cytoprotective
effect of Gadd45b via the activation of NFkB and the capacity to bind
and block MKK7 an essential activator of pro-apoptotic JNK signaling.
In addition, Gadd45b knock-out mice show decreased hepatocyte pro-
liferation and increased programmed cell death after partial hepa-
tectomy compared to wildtype mice (Papa et al., 2008). A recent study
showed that APAP toxicity induced Gadd45b expression, which was
further increased by the protective agent metformin and reduced JNK
phosphorylation. Finally, increased cell death and sustained JNK
phosphorylation was detected in primary hepatocytes with Gadd45b
deficiency after sub-toxic doses of APAP (Y.-H. Kim et al., 2015). To-
gether, these data indicate that Gadd45b is not only a sensor for cellular
stress but also protects against cellular stress. In our study, we observed
that APAP induced Gadd45b expression both in vivo and in vitro and that
Opuntia extracts alone did not modulate Gadd45b expression. These
results are in line with Gadd45b being a sensor of cellular stress. In
addition, both in vivo and in vitro, Opuntia extracts reduced APAP-in-
duced Gadd45b expression, again in line with Gadd45b being a sensor
of cellular stress and Opuntia extracts relieving APAP-induced stress.

5. Conclusion

In conclusion, we observed a therapeutic effect of Opuntia robusta
and Opuntia streptacantha against APAP-induced hepatoxicity. Opuntia
robusta appeared to be slightly more protective, probably due to the

+
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SEM. * P < 0.05 compared to APAP group. * P < 0.05 compared to control

higher amount of betacyanin compounds than Opuntia streptacantha. In
addition, the Opuntia extracts were at least as potent as NAC in the
protection against APAP-induced hepatotoxicity. Furthermore, in ad-
dition to scavenging reactive oxygen species, we show that Opuntia
extracts modulate the expression of important oxidative stress-related
genes at the transcriptional level. In the current study, the therapeutic
action of Opuntia extracts was investigated 30 min after APAP in-
toxication. Further studies are required to investigate whether more
delayed administration of the extracts is effective as well. In addition, it
will be interesting to investigate whether Opuntia extracts protect
against other hepatotoxic drugs (e.g. diclofenac), non-drug hepatoxicity
like bile acids (cholestatic liver diseases) or fatty acid-induced lipo-
toxicity (non-alcoholic steatohepatitis). Finally, studies are required
using purified components of the extracts to confirm the identity of the
protective agents in order to facilitate clinical application.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

The authors like to thank the Universidad Auténoma de



H.A. Gongzdlez-Ponce, et al.

Aguascalientes and the University of Groningen for supporting this
study.

Funding

This work was supported by the Graduate School of Medical
Sciences (GSMS) of University of Groningen; and National Council of
Science and Technology Mexico (CONACYT) [grant number 336940].

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.foodres.2020.109461.

References

Abdelmegeed, M. A., Moon, K.-H., Chen, C., Gonzalez, F. J., & Song, B.-J. (2010). Role of
cytochrome P450 2E1 in protein nitration and ubiquitin-mediated degradation
during acetaminophen toxicity. Biochemical Pharmacology, 79(1), 57-66. https://doi.
org/10.1016/j.bcp.2009.07.016.

Antunes-Ricardo, M., Gutiérrez-Uribe, J. A., Lopez-Pacheco, F., Alvarez, M. M., & Serna-
Saldivar, S. O. (2015). In vivo anti-inflammatory effects of isorhamnetin glycosides
isolated from Opuntia ficus-indica (L.) Mill cladodes. Industrial Crops and Products, 76,
803-808. https://doi.org/10.1016/j.indcrop.2015.05.089.

Botta, D., Shi, S., White, C. C., Dabrowski, M. J., Keener, C. L., Srinouanprachanh, S. L., ...
Kavanagh, T. J. (2006). Acetaminophen-induced Liver Injury Is Attenuated in Male
Glutamate-cysteine Ligase Transgenic Mice. Journal of Biological Chemistry, 281(39),
28865-28875. https://doi.org/10.1074/jbc.M605143200.

Brahmi, D., Bouaziz, C., Ayed, Y., Ben Mansour, H., Zourgui, L., & Bacha, H. (2011).
Chemopreventive effect of cactus Opuntia ficus indica on oxidative stress and gen-
otoxicity of aflatoxin B1. Nutrition & Metabolism, 8(1), 73. https://doi.org/10.1186/
1743-7075-8-73.

Chen, Y., Qing, W., Sun, M., Lv, L., Guo, D., & Jiang, Y. (2015). Melatonin protects he-
patocytes against bile acid-induced mitochondrial oxidative stress via the AMPK-
SIRT3-SOD2 pathway. Free Radical Research, 49(10), 1275-1284. https://doi.org/10.
3109/10715762.2015.1067806.

Chiu, H., Brittingham, J. A., & Laskin, D. L. (2002). Differential Induction of Heme
Oxygenase-1 in Macrophages and Hepatocytes during Acetaminophen-Induced
Hepatotoxicity in the Rat: Effects of Hemin and Biliverdin. Toxicology and Applied
Pharmacology, 181(2), 106-115. https://doi.org/10.1006/taap.2002.9409.

Conde de la Rosa, L., Schoemaker, M. H., Vrenken, T. E., Buist-Homan, M., Havinga, R.,
Jansen, P. L. M., & Moshage, H. (2006). Superoxide anions and hydrogen peroxide
induce hepatocyte death by different mechanisms: Involvement of JNK and ERK MAP
kinases. Journal of Hepatology, 44(5), 918-929. https://doi.org/10.1016/j.jhep.2005.
07.034.

Conde de la Rosa, L., Vrenken, T. E., Hannivoort, R. A., Buist-Homan, M., Havinga, R.,
Slebos, D.-J., ... Moshage, H. (2008). Carbon monoxide blocks oxidative stress-in-
duced hepatocyte apoptosis via inhibition of the p54 JNK isoform. Free Radical
Biology and Medicine, 44(7), 1323-1333. https://doi.org/10.1016/j.freeradbiomed.
2007.12.011.

Coria Cayupan, Y. S., Ochoa, M. J., & Nazareno, M. A. (2011). Health-promoting sub-
stances and antioxidant properties of Opuntia sp. Fruits. Changes in bioactive-com-
pound contents during ripening process. Food Chemistry, 126(2), 514-519. https://
doi.org/10.1016/j.foodchem.2010.11.033.

Dhar, S. K., Xu, Y., & St. Clair, D. K. (2010). Nuclear Factor kB- and Specificity Protein 1-
dependent p53-mediated Bi-directional Regulation of the Human Manganese
Superoxide Dismutase Gene. Journal of Biological Chemistry, 285(13), 9835-9846.
https://doi.org/10.1074/jbc.M109.060715.

Dok-Go, H., Lee, K. H,, Kim, H. J., Lee, E. H., Lee, J., Song, Y. S., ... Cho, J. (2003).
Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin
and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. Saboten. Brain
Research, 965(1), 130-136. https://doi.org/10.1016/S0006-8993(02)04150-1.

Eugenio-Pérez, D., Montes de Oca-Solano, H. A., & Pedraza-Chaverri, J. (2016). Role of
food-derived antioxidant agents against acetaminophen-induced hepatotoxicity.
Pharmaceutical Biology, 54(10), 2340-2352. https://doi.org/10.3109/13880209.
2016.1150302.

Ferner, R. E., Dear, J. W., & Bateman, D. N. (2011). Management of paracetamol poi-
soning. BMJ, 342, Article d2218. https://doi.org/10.1136/bmj.d2218.

Fontana, R. J. (2008). Acute Liver Failure Including Acetaminophen Overdose. Common
Hepatic Emergencies, 92(4), 761-794. https://doi.org/10.1016/j.mcna.2008.03.005.

Geng, Y., Ma, Q., Liu, Y.-N., Peng, N., Yuan, F.-F,, Li, X.-G., ... Song, W. (2015). Heatstroke
induces liver injury via IL-1p and HMGB1-induced pyroptosis. Journal of Hepatology,
63(3), 622-633.

Gonzélez-Ponce, H., Martinez-Saldana, M., Rincén-Sanchez, A., Sumaya-Martinez, M.,
Buist-Homan, M., Faber, K., ... Jaramillo-Juarez, F. (2016). Hepatoprotective Effect of
Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced
Acute Liver Damage. Nutrients, 8(10), 607. https://doi.org/10.3390/nu8100607.

Gonzélez-Ponce, H., Rincén-Sanchez, A., Jaramillo-Juarez, F., & Moshage, H. (2018).
Natural Dietary Pigments: Potential Mediators against Hepatic Damage Induced by
Over-The-Counter Non-Steroidal Anti-Inflammatory and Analgesic Drugs. Nutrients,
10(2), 117. https://doi.org/10.3390/nul10020117.

12

Food Research International 137 (2020) 109461

Hempel, N., M. Carrico, P., & Melendez, J. A. (2011). Manganese Superoxide Dismutase
(Sod2) and Redox-Control of Signaling Events That Drive Metastasis. Anti-Cancer
Agents in Medicinal Chemistry, 11(2), 191-201. https://doi.org/10.2174/
187152011795255911.

Hissin, P. J., & Hilf, R. (1976). A fluorometric method for determination of oxidized and
reduced glutathione in tissues. Analytical Biochemistry, 74(1), 214-226. https://doi.
0rg/10.1016/0003-2697(76)90326-2.

Kanner, J., Harel, S., & Granit, R. (2001). Betalains. A New Class of Dietary Cationized
Antioxidants. Journal of Agricultural and Food Chemistry, 49(11), 5178-5185. https://
doi.org/10.1021/jf010456f.

Kay, H. Y., Won Yang, J., Kim, T. H,, Lee, D. Y., Kang, B., Ryu, J.-H., ... Kim, S. G. (2010).
Ajoene, a Stable Garlic By-Product, Has an Antioxidant Effect through Nrf2-Mediated
Glutamate-Cysteine Ligase Induction in HepG2 Cells and Primary Hepatocytes. The
Journal of Nutrition, 140(7), 1211-1219. https://doi.org/10.3945/jn.110.121277.

Keller, J., Camaré, C., Bernis, C., Astello-Garcia, M., de la Rosa, A.-P. B., Rossignol, M., del
Socorro Santos Diaz, M., Salvayre, R., Negre-Salvayre, A., & Guéraud, F. (2015).
Antiatherogenic and antitumoral properties of Opuntia cladodes: Inhibition of low
density lipoprotein oxidation by vascular cells, and protection against the cytotoxi-
city of lipid oxidation product 4-hydroxynonenal in a colorectal cancer cellular
model. Journal of Physiology and Biochemistry, 71(3), 577-587. https://doi.org/10.
1007/513105-015-0408-x.

Khandelwal, N., James, L. P., Sanders, C., Larson, A. M., Lee, W. M., & and the Acute Liver
Failure Study Group. (2011). Unrecognized acetaminophen toxicity as a cause of
indeterminate acute liver failure. Hepatology, 53(2), 567-576. https://doi.org/10.
1002/hep.24060.

Kim, H. P., Pae, H.-O., Back, S. H., Chung, S. W., Woo, J. M., Son, Y., & Chung, H.-T.
(2011). Heme oxygenase-1 comes back to endoplasmic reticulum. Biochemical and
Biophysical Research Communications, 404(1), 1-5. https://doi.org/10.1016/j.bbrc.
2010.11.067.

Kim, Y.-H., Hwang, J. H., Kim, K.-S., Noh, J.-R., Choi, D.-H., Kim, D.-K,, ... Lee, C.-H.
(2015). Metformin ameliorates acetaminophen hepatotoxicity via Gadd45p3-depen-
dent regulation of JNK signaling in mice. Journal of Hepatology, 63(1), 75-82. https://
doi.org/10.1016/j.jhep.2015.02.008.

Lancaster, E. M., Hiatt, J. R., & Zarrinpar, A. (2015). Acetaminophen hepatotoxicity: An
updated review. Archives of Toxicology, 89(2), 193-199. https://doi.org/10.1007/
500204-014-1432-2.

Larson, A. M., Polson, J., Fontana, R. J., Davern, T. J., Lalani, E., Hynan, L. S., Reisch, J.
S., Schigdt, F. V., Ostapowicz, G., Shakil, A. O., Lee, W. M., & the Acute Liver Failure
Study Group. (2005). Acetaminophen-induced acute liver failure: Results of a United
States multicenter, prospective study. Hepatology, 42(6), 1364-1372. https://doi.
org/10.1002/hep.20948.

Leem, K.-H., Kim, M.-G., Hahm, Y.-T., & Kim, H. (2016). Hypoglycemic Effect of Opuntia
ficus-indica var. Saboten Is Due to Enhanced Peripheral Glucose Uptake through
Activation of AMPK/p38 MAPK Pathway. Nutrients, 8(12), 800. https://doi.org/10.
3390/nu8120800.

McGill, M. R., & Jaeschke, H. (2013). Metabolism and Disposition of Acetaminophen:
Recent Advances in Relation to Hepatotoxicity and Diagnosis. Pharmaceutical
Research, 30(9), 2174-2187. https://doi.org/10.1007/s11095-013-1007-6.

Odewumi, C., Badisa, V., Le, U., Latinwo, L., Ikediobi, C., Badisa, R., & Darling-Reed, S.
(2011). Protective effects of N-acetylcysteine against cadmium-induced damage in
cultured rat normal liver cells. International Journal of Molecular Medicine, 27(2),
https://doi.org/10.3892/ijmm.2010.564.

Papa, S., Zazzeroni, F., Bubici, C., Jayawardena, S., Alvarez, K., Matsuda, S., ... Franzoso,
G. (2004). Gadd45p mediates the NF-kB suppression of JNK signalling by targeting
MKK?7/JNKK2. Nature Cell Biology, 6(2), 146-153. https://doi.org/10.1038/ncb1093.

Papa, S., Zazzeroni, F., Fu, Y.-X., Bubici, C., Alvarez, K., Dean, K., ... Franzoso, G. (2008).
Gadd45f promotes hepatocyte survival during liver regeneration in mice by mod-
ulating JNK signaling. Journal of Clinical Investigation, 118(5), 1911-1923. https://
doi.org/10.1172/JCI33913.

Saenz, C. (2000). Processing technologies: An alternative for cactus pear (Opuntia spp.)
fruits and cladodes. Journal of Arid Environments, 46(3), 209-225. https://doi.org/10.
1006/jare.2000.0676.

Santos Diaz, M. del S., Barba de la Rosa, A.-P., Héliés-Toussaint, C., Guéraud, F., & Négre-
Salvayre, A. (2017). Opuntia spp.: Characterization and benefits in chronic diseases.
Oxidative Medicine and Cellular Longevity, 2017, 1-17. https://doi.org/10.1155/2017/
8634249.

Seki, E., Brenner, D. A., & Karin, M. (2012). A Liver Full of JNK: Signaling in Regulation of
Cell Function and Disease Pathogenesis, and Clinical Approaches. Gastroenterology,
143(2), 307-320. https://doi.org/10.1053/j.gastro.2012.06.004.

Serra, A. T., Poejo, J., Matias, A. A., Bronze, M. R., & Duarte, C. M. M. (2013). Evaluation
of Opuntia spp. Derived products as antiproliferative agents in human colon cancer
cell line (HT29). Food Research International, 54(1), 892-901. https://doi.org/10.
1016/j.foodres.2013.08.043.

Sreekanth, D., Arunasree, M. K., Roy, K. R., Chandramohan Reddy, T., Reddy, G. V., &
Reddanna, P. (2007). Betanin a betacyanin pigment purified from fruits of Opuntia
ficus-indica induces apoptosis in human chronic myeloid leukemia Cell line-K562.
Phytomedicine, 14(11), 739-746. https://doi.org/10.1016/j.phymed.2007.03.017.

Stintzing, F. C., Herbach, K. M., Mosshammer, M. R., Carle, R., Yi, W., Sellappan, S., ...
Felker, P. (2005). Color, Betalain Pattern, and Antioxidant Properties of Cactus Pear
(Opuntia spp.) Clones. Journal of Agricultural and Food Chemistry, 53(2), 442-451.
https://doi.org/10.1021/jf048751y.

Sumaya-Martinez, M. T., Cruz-Jaime, S., Madrigal-Santillan, E., Garcfa-Paredes, J. D.,
Carino-Cortés, R., Cruz-Cansino, N., ... Alanis-Garcia, E. (2011). Betalain, Acid
Ascorbic, Phenolic Contents and Antioxidant Properties of Purple, Red, Yellow and
White Cactus Pears. International Journal of Molecular Sciences, 12(10), 6452-6468.
https://doi.org/10.3390/ijms12106452.


https://doi.org/10.1016/j.foodres.2020.109461
https://doi.org/10.1016/j.foodres.2020.109461
https://doi.org/10.1016/j.bcp.2009.07.016
https://doi.org/10.1016/j.bcp.2009.07.016
https://doi.org/10.1016/j.indcrop.2015.05.089
https://doi.org/10.1074/jbc.M605143200
https://doi.org/10.1186/1743-7075-8-73
https://doi.org/10.1186/1743-7075-8-73
https://doi.org/10.3109/10715762.2015.1067806
https://doi.org/10.3109/10715762.2015.1067806
https://doi.org/10.1006/taap.2002.9409
https://doi.org/10.1016/j.jhep.2005.07.034
https://doi.org/10.1016/j.jhep.2005.07.034
https://doi.org/10.1016/j.freeradbiomed.2007.12.011
https://doi.org/10.1016/j.freeradbiomed.2007.12.011
https://doi.org/10.1016/j.foodchem.2010.11.033
https://doi.org/10.1016/j.foodchem.2010.11.033
https://doi.org/10.1016/S0006-8993(02)04150-1
https://doi.org/10.3109/13880209.2016.1150302
https://doi.org/10.3109/13880209.2016.1150302
https://doi.org/10.1136/bmj.d2218
https://doi.org/10.1016/j.mcna.2008.03.005
http://refhub.elsevier.com/S0963-9969(20)30486-5/h0075
http://refhub.elsevier.com/S0963-9969(20)30486-5/h0075
http://refhub.elsevier.com/S0963-9969(20)30486-5/h0075
https://doi.org/10.3390/nu8100607
https://doi.org/10.3390/nu10020117
https://doi.org/10.1016/0003-2697(76)90326-2
https://doi.org/10.1016/0003-2697(76)90326-2
https://doi.org/10.1021/jf010456f
https://doi.org/10.1021/jf010456f
https://doi.org/10.3945/jn.110.121277
https://doi.org/10.1016/j.bbrc.2010.11.067
https://doi.org/10.1016/j.bbrc.2010.11.067
https://doi.org/10.1016/j.jhep.2015.02.008
https://doi.org/10.1016/j.jhep.2015.02.008
https://doi.org/10.1007/s00204-014-1432-2
https://doi.org/10.1007/s00204-014-1432-2
https://doi.org/10.3390/nu8120800
https://doi.org/10.3390/nu8120800
https://doi.org/10.1007/s11095-013-1007-6
https://doi.org/10.3892/ijmm.2010.564
https://doi.org/10.1038/ncb1093
https://doi.org/10.1172/JCI33913
https://doi.org/10.1172/JCI33913
https://doi.org/10.1006/jare.2000.0676
https://doi.org/10.1006/jare.2000.0676
https://doi.org/10.1155/2017/8634249
https://doi.org/10.1155/2017/8634249
https://doi.org/10.1053/j.gastro.2012.06.004
https://doi.org/10.1016/j.foodres.2013.08.043
https://doi.org/10.1016/j.foodres.2013.08.043
https://doi.org/10.1016/j.phymed.2007.03.017
https://doi.org/10.1021/jf048751y
https://doi.org/10.3390/ijms12106452

H.A. Gongzdlez-Ponce, et al.

Tian, J., Huang, H., Hoffman, B., Liebermann, D. A., Ledda-Columbano, G. M.,
Columbano, A., & Locker, J. (2011). Gadd458 is an inducible coactivator of tran-
scription that facilitates rapid liver growth in mice. Journal of Clinical Investigation,
121(11), 4491-4502. https://doi.org/10.1172/JCI38760.

Uchiyama, M., & Mihara, M. (1978). Determination of malonaldehyde precursor in tissues
by thiobarbituric acid test. Analytical Biochemistry, 86(1), 271-278. https://doi.org/
10.1016/0003-2697(78)90342-1.

Ueda, T., Kohama, Y., Kuge, A., Kido, E., & Sakurai, H. (2017). GADDA45 family proteins
suppress JNK signaling by targeting MKK7. Archives of Biochemistry and Biophysics,
635, 1-7. https://doi.org/10.1016/j.abb.2017.10.005.

Verhaag, E. M., Buist-Homan, M., Koehorst, M., Groen, A. K., Moshage, H., & Faber, K. N.
(2016). Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid
Concentrations Protects against Bile Acid-Induced Toxicity. PLOS ONE, 11(3), Article
€0149782. https://doi.org/10.1371/journal.pone.0149782.

Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature,
408(6810), 307-310. https://doi.org/10.1038/35042675.

Wang, X., Wu, Q., Liu, A., Anaddn, A., Rodriguez, J.-L., Martinez-Larrafiaga, M.-R., ...

13

Food Research International 137 (2020) 109461

Martinez, M.-A. (2017). Paracetamol: Overdose-induced oxidative stress toxicity,
metabolism, and protective effects of various compounds in vivo and in vitro. Drug
Metabolism Reviews, 49(4), 395-437. https://doi.org/10.1080/03602532.2017.
1354014.

Wang, Y., Branicky, R., Noé, A., & Hekimi, S. (2018). Superoxide dismutases: Dual roles in
controlling ROS damage and regulating ROS signaling. The Journal of Cell Biology,
217(6), 1915. https://doi.org/10.1083/jcb.201708007.

Wolf, M. S., King, J., Jacobson, K., Di Francesco, L., Bailey, S. C., Mullen, R., ... Parker, R.
M. (2012). Risk of Unintentional Overdose with Non-Prescription Acetaminophen
Products. Journal of General Internal Medicine, 27(12), 1587-1593. https://doi.org/
10.1007/s11606-012-2096-3.

Woudenberg-Vrenken, T. E., Buist-Homan, M., Conde de la Rosa, L., Faber, K. N., &
Moshage, H. (2010). Anti-oxidants do not prevent bile acid-induced cell death in rat
hepatocytes: Anti-oxidants do not prevent bile acid-induced cell death. Liver
International, 30(10), 1511-1521. https://doi.org/10.1111/§.1478-3231.2010.
02325.x.


https://doi.org/10.1172/JCI38760
https://doi.org/10.1016/0003-2697(78)90342-1
https://doi.org/10.1016/0003-2697(78)90342-1
https://doi.org/10.1016/j.abb.2017.10.005
https://doi.org/10.1371/journal.pone.0149782
https://doi.org/10.1038/35042675
https://doi.org/10.1080/03602532.2017.1354014
https://doi.org/10.1080/03602532.2017.1354014
https://doi.org/10.1083/jcb.201708007
https://doi.org/10.1007/s11606-012-2096-3
https://doi.org/10.1007/s11606-012-2096-3
https://doi.org/10.1111/j.1478-3231.2010.02325.x
https://doi.org/10.1111/j.1478-3231.2010.02325.x

	Betacyanins, major components in Opuntia red-purple fruits, protect against acetaminophen-induced acute liver failure
	Introduction
	Materials and methods
	Plant materials and preparation of extracts
	Betacyanins content
	High-performance liquid chromatography (HPLC) characterization
	Animals
	Rat hepatocyte isolation
	Experimental design
	In vivo experiment
	In vitro experiments

	RNA isolation, reverse transcription and quantitative real-time PCR
	Statistical analysis

	Results
	Betacyanins content
	Characterization of Opuntia extracts by HPLC
	In vivo experiments
	Biochemical markers of liver damage
	Relative mRNA expression of oxidative stress-related genes
	Histopathology

	In vitro experiments
	LDH leakage
	Sytox green stain
	Relative mRNA expression of oxidative stress-related genes


	Discussion
	Conclusion
	Declaration of Competing Interest
	Acknowledgments
	mk:H1_29
	Funding
	mk:H1_31
	Supplementary material
	References




