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Bacteria release and sense small molecules called autoinducers (AI) in a process
known as ‘quorum sensing’ (QS). The classical interpretation of QS states that bac-
teria, by means of sensing the AI concentration, estimate the population density in
order to regulate the expression of functions that are only beneficial when carried
out by a large number of cells. A major challenge to this interpretation is that the AI
concentration strongly depends on the environment, rendering AI-based estimates
of cell density unreliable. Here we propose an alternative interpretation of QS, where
bacteria, by releasing and sensing AI, use social interactions to improve their indi-
vidual estimate of the environmental conditions (i.e., benefit from ‘the wisdom of
the crowd’). Using an evolutionary model, we show that this benefit alone can lead
to the evolution of QS and reconcile the observed dependency of QS on both cell
density and the environment. Additionally, it can explain why QS regulates many
traits that offer a fitness advantage regardless of the behavior of neighboring cells.

132



�.� ������������

Many traits of major relevance for bacteria are controlled by quorum sensing (QS).
QS is a process where bacteria synthesize small molecules known as autoinducers
(AIs) that are either passively or actively released into the extracellular space. The
same bacteria that can produce AIs also sense and respond to the extracellular con-
centration of AIs by using specialized receptors that bind these molecules and initiate
signal transduction cascades once the AI concentration is above a certain threshold.
These signaling cascades have been well described in many systems and regulate
processes like biofilm formation, virulence, competence and sporulation (Fuqua et
al., 1994; Miller & Bassler, 2001; Waters & Bassler, 2005). Despite the detailed under-
standing of the molecular mechanisms underlying various QS systems, the adaptive
value and evolutionary origin of QS are less understood (Lerat & Moran, 2004; West
et al., 2012). The classical functional interpretation of QS states that bacteria engage
in releasing and sensing AIs in order to monitor population density. By regulating
the expression of a trait based on cell density, bacteria would ensure that this trait
is expressed only when a sufficiently high number of other cells (hence the term
‘quorum’) are also expressing it (Fuqua et al., 1994; Waters & Bassler, 2005).

This interpretation is based on two premises that have been challenged in light of
accumulating evidence on the diversity and complexity of QS systems. The first is
that the benefit of expressing a QS-regulated trait for an individual increases with
population density. There is evidence that this premise holds for QS systems that reg-
ulate traits involving the production of ‘public goods’ (e.g., extracellular proteases),
since the benefit of expressing such traits increases if more cells also express them
(Darch, West, Winzer, & Diggle, 2012). However, QS also regulates the expression
of private functions, such as metabolic enzymes or competence, that are not shared
with other cells and thus provide density-independent benefits (Schuster, Sexton,
and Hense, 2017; Darch et al., 2012). Hence, it is unclear why bacteria would regu-
late these functions by monitoring cell density.

The second premise is that bacteria can reliably estimate population density and
the potential for fitness gains by sensing the local AI concentration. This assumption
has been notably challenged by studies in different QS systems demonstrating that
the relationship between cell density and the concentration of AI can be highly con-
tingent on environmental conditions. The best-known environmental factor mediat-
ing this relationship is the diffusivity of the extracellular environment. For instance,
at sufficiently low diffusivity the AI concentration can be such that the quorum for
QS induction is a single cell (Carnes et al., 2010). Such prominent role of environmen-
tal diffusivity on the AI concentration led to the ‘diffusion sensing’ hypothesis. This
hypothesis states that bacteria release AI to test the diffusivity of the medium and
regulate accordingly the secretion of costly molecules to the extracellular environ-
ment (Redfield, 2002). However, given that many other factors such as pH, oxygen
and antibiotic stress can affect QS systems (Decho, Norman, & Visscher, 2010; Hor-
swill, Stoodley, Stewart, & Parsek, 2007; Moreno-Gámez et al., 2017), emphasizing
diffusion as the main functional driver of QS likely underplays the complexity of QS
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regulation. An alternative, more integrative perspective acknowledges that multiple
biotic and abiotic factors regulate QS and that responding to a combination of these
factors rather than to a single one of them better explains the functional role of QS
for bacteria in nature (Cornforth et al., 2014; Moreno-Gámez et al., 2017; West et al.,
2012).

If QS is indeed a mechanism to respond to the environment, this raises the ques-
tion of how bacteria evolve to employ direct and/or collective sensing of environ-
mental information. Here we propose that bacteria benefit from regulating gene
expression through QS because cell-to-cell communication allows individual cells to
more accurately determine the state of the environment at spatially relevant scales,
which in turn enables individual cells to make a more informed decision about when
to upregulate the expression of QS-controlled traits. According to this hypothesis,
cells sense their environment using various mechanisms and encode this information
in the rate of AI production - an assumption supported by observations from multi-
ple QS systems (Duan & Surette, 2007; Horswill et al., 2007; Lee et al., 2013; Mellbye
& Schuster, 2014; Moreno-Gámez et al., 2017; Slager et al., 2014). Then, by export-
ing AIs and monitoring their extracellular concentrations, cells can share private
estimates of the environmental conditions and gain access to a ‘pooled’ estimate of
the environment. This would allow bacteria to collectively sense their environment
and harness the “wisdom of the crowds”, a principle observed in animal decision
making whereby noise in individual estimates of the environment promotes the use
of group consensus (Berdahl et al., 2013; Golub & Jackson, 2010). This functional
view of QS is not mutually exclusive with the hypothesis that bacteria benefit from
coordinating the expression of certain phenotypic traits through QS. Nonetheless,
we show here that this ‘collective sensing’ functionality of QS systems is sufficient to
explain the evolution of QS.

�.� �����

We study the evolution of QS in a population of bacteria facing fluctuating environ-
ments where individual estimates of the current or local environmental conditions
are noisy. We model bacteria that have the simplest possible internal network of feed-
back regulation (Fig. 1a). This network consists of a positive feedback loop where
a gene product A promotes its own transcription (Supplementary Information). We
parametrize this simple network of regulation in a way that there are two possible
stable states: an ‘OFF’ state where A is not expressed and an ‘ON’ state where there
is a high expression level of A. This is a good approximation to many systems where
bacteria use QS to regulate the expression of all-or-nothing programs of gene regu-
lation; this includes decisions like sporulating or becoming competent or virulent
(Gustafsson, Nilsson, Karlsson, & Arvidson, 2004; Hense & Schuster, 2015; Maamar
& Dubnau, 2005; Veening, Hamoen, & Kuipers, 2005). We assume that bacteria
can exchange A with the extracellular environment by passive diffusion through the
cellular membrane (consistent with how QS works in many Gram-negative bacteria
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that do not have dedicated transporters for QS signals (Papenfort & Bassler, 2016)).
Hence, A acts both as a product of the gene regulatory network and as a QS signal.
In order to study the evolution of cell-to-cell communication, we allow bacteria to
evolve a parameter c that determines the permeability of the membrane to A and
thus determines the degree of coupling between the cells. In nature, membrane
permeability depends on the properties of the AIs and the cell membrane and can
change for instance by variations in the length or biochemical structure of the AIs
as well as by the evolution of mechanisms to actively secrete AIs extracellularly (e.g.
carrier proteins) (Kamaraju et al., 2011; Ng & Bassler, 2009; Pearson, Delden, &
Iglewski, 1999).

Bacteria fully occupy a two-dimensional 50x50 grid over which A diffuses at a rate
D. Bacteria evolve through a series of environmental cycles that fluctuate randomly
between two alternative states, EOFF and EON, with equal probability (Fig. 1b). In
each environmental state there is an optimal level of expression of A for all the in-
dividuals in the grid: while EOFF favors bacteria that do not express A, EON favors
bacteria with high levels of expression of A. For instance, EON could correspond to
an environment where bacteria benefit from producing A because a stressor appears
and A activates a program of expression to cope with stress (e.g. competence). Acti-
vating such a program would not be useful in the absence of the stressor (EOFF) and
thus bacteria would benefit from switching off the production of A in this context.
At the end of each environmental cycle the fitness of every individual is determined
by how well its expression level of A matched the optimal expression level for the
current state of the environment, which is denoted as AON or AOFF. This is, by the
absolute difference through the environmental cycle between the value of A and ei-
ther AON or AOFF depending on the state of the environment. Then, the grid is fully
repopulated by the daughter cells of the fittest individuals at the end of the previ-
ous cycle to start a new environmental cycle. The number of offspring produced by
every individual is determined based on its fitness relative to the other members of
the population. The fitness function has a sigmoidal shape such that individuals are
penalized for making a wrong estimate of whether the environment is in the ‘ON’ or
‘OFF’ state but not for small numerical deviations from the values of AON and AOFF,
which are set to the two stable states of A when c = 0 (Supplementary Information).
Upon cell birth, c mutates with probability µ, resulting in c increasing or decreasing
by a fixed step size � with equal probability (subject to the constraint that c > 0).

A key assumption of our model is that bacteria can differ in their individual esti-
mates of the environment despite encountering the same environmental regime and
having the same internal network of gene regulation. Such phenotypic heterogene-
ity has been documented in multiple QS systems (e.g., bioluminescence in Vibrio,
competence in Bacillus and virulence in Listeria) where isogenic populations of bacte-
ria that are actively quorum-sensing contain subpopulations of cells in an ‘OFF’ state
(Garmyn et al., 2011; Grote, Krysciak, & Streit, 2015). The origin of these phenotypic
differences has been partially attributed to stochastic events at the level of expression
of quorum-sensing-related molecules, in particular of AIs, response regulators, and
proteins involved in the cascades of QS regulation (Anetzberger, Pirch, & Jung, 2009;
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Figure 1: Model structure. a) Internally, a bacterial cell has the simplest network of positive
feedback regulation, where A promotes its own transcription. In addition to this
gene regulatory network, bacteria exchange A with the extracellular environment
by passive diffusion through the membrane at a rate proportional to the evolv-
able parameter c. b) Bacteria inhabit a two-dimensional grid. For illustration only
three cells are shown although the grid is always fully occupied. Every timestep,
the intracellular concentration of A is updated for every cell, and the extracellular
concentration of A is updated according to a two-dimensional diffusion process
with diffusion constant D over the 2-D grid. The yellow halo shows how A leaks
from a cell and diffuses over the 2-D grid, and the three cells illustrate different
scenarios: (bottom) a cell with c = 0 that does no exchange A with the extracellular
environment; (center) a cell that either has a low value of c or lives in an environ-
ment where diffusivity D is low; (top) a cell with a high value of c that lives in
an environment with high diffusivity. c) Bacteria encounter an environment that
fluctuates between two states, EON and EOFF, in an unpredictable manner. While
in EON bacteria maximize their fitness by having a high level of expression of
A, in EOFF fitness is maximal if A is not produced. The fitness of every cell is
calculated at the end of every environmental cycle as the difference between its
level of expression of A through the cycle and the optimal level of expression
for the current environmental state. d) Fitness values are then used to determine
the number of descendants of every cell (and therefore an environmental cycle is
longer than the cell cycle) and in turn to update the grid for the start of the next
environmental cycle. The full grid is repopulated in a way that individuals with
high fitness leave more descendants and those descendants are placed nearby the
original location of their parent. To illustrate this idea the offspring of a cell with
high fitness (red circle) is shown from one cycle to the next. Fitness increases from
green to white. See main text and SI for model details.
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Grote et al., 2015; Pérez & Hagen, 2010; Plener et al., 2015). In our model, we
capture this cell-to-cell variation by assuming that at the start of an environmental
cycle each bacterium makes an individual estimate of the state of the environment
that gets reflected in its internal A concentration. In the model we implement this by
letting bacteria sample at the start of each environmental cycle their internal A con-
centration from a (truncated) normal distribution whose mean is the optimal level
of A expression in the current environment (either AON and AOFF). Sampling from
a normal distribution reflects the assumption that bacterial estimates of the current
environment are noisy, due to some combination of environmental unpredictabil-
ity and intrinsic estimation errors. Such noise corresponds to the variance of the
distribution.

�.� �������

Starting from a population where cells make decisions without sharing information
(c = 0 initially), we find that c increases over time and thus communication readily
evolves in the population (Fig. 2). Interestingly, although c increases slowly at the
beginning, there are successive sweeps that lead to a rapid transition towards high
values of c. This occurs because (i) communication becomes beneficial only after
a minimum number of neighboring cells are exchanging information and (ii) these
benefits increase with the size of the population that is communicating (Fig. 2 and
Fig. S1). Thus, this threshold-like pattern indicates that there is frequency-dependent
selection on communication since evolving higher values of c becomes more prof-
itable as more cells in the population have high c.

Exchanging A with the extracellular environment provides cells with information
on the initial extracellular concentration of A, which could potentially be beneficial
if this concentration is informative of the current environmental state. To avoid that
such benefits, which do not result from cell-cell communication, bias the outcome
towards the evolution of high c, we implemented initial conditions for the extracel-
lular concentration of A that were uninformative. In particular, we assumed that the
initial concentration of A was sampled independently for each grid cell from a uni-
form distribution with mean (EOFF + EON) / 2. We then simulated the same scenario
as in Fig. 2 in the limit of no diffusion of A in the two-dimensional grid (D = 0).
In this scenario, c remains near zero, showing that in the absence of information ex-
change between individuals, evolving higher values of c does not provide a benefit
and it is actually costly (Fig. S2). This cost arises because in the absence of cell-cell
communication the extracellular concentration of A is often deceiving and worsens
the estimate that cells made at the start of the environmental cycle. As a result, cells
with high c do (on average) worse than cells that rely exclusively on their initial
estimate of the environmental state and do not exchange A with the extracellular
environment (Supplementary Information).

A consequence of the negative fitness effect of increasing c in the absence of other
communicators is that there is a dependency of the evolution of communication
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Figure 2: Evolution of QS resulting from its collective sensing functionality. a)
Evolution of the communication parameter c across time in a single evo-
lutionary simulation. b) Genetic composition of the bacteria located in
a single row of the two-dimensional grid tracked through evolutionary
time. Although few cells with increased values of c emerge in the first
100 generations, they are mostly surrounded by cells with c = 0 and do
not profit from cell-cell communication. At ⇠500 generations, the amount
of cells with c 6= 0 increases and there are successive sweeps of higher
values of c. c) Mean c (top) and mean population fitness (bottom) across
2500 generations in 50 replicate evolutionary simulations showing that the
rapid spread of communication through the population is associated with
a threshold-like increase in the benefit of collective sensing arising once
there is a minimum degree of communication in the population. When
the mean c exceeds 0.09, most cells are communicating, so fitness increases
marginally by evolving even higher values of c. Parameters: EOFF = 20, EON
= 100, µ = 0.001 , @ = 0.03 and s = 0.8.

on the size @ of the mutational steps. In particular, we find that the evolution of
collective sensing is facilitated by intermediate mutational step sizes (Fig. S3): Very
small mutational steps slow down the evolution of communication, because it takes
very long to reach a minimum cluster of cells exchanging information, whereas too
large mutational steps impose a high fitness cost to the first communicators also
slowing down the evolution of collective sensing. This cost results from the fact that
if a cell is mostly surrounded by non-communicators (as it is the case of the first
communicators), the extracellular concentration of A will not be informative and in
fact will often be deceiving (given our choice of sampling the initial concentration of
A from a distribution with mean (EOFF + EON) / 2). In this scenario, communication
will be costly for the first communicators and this cost will increase the more coupled
a cell is to its extracellular environment (i.e., the higher the value of c).

We find that a series of conditions favor the evolution of collective sensing. The
first two are related to model assumptions justified previously. First, collective sens-
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ing is beneficial only if on average cells make an individual estimate that is close to
the current state of the environment (Fig. S4a). Thus, our model is consistent with
a general principle of group-making decision theory known as the Condorcet Jury
Theorem. This theorem establishes that for a group of individuals using a majority-
rule for decision making, the chance of making the right choice increases with the
number of voters only if individuals make the correct choice more often than the
incorrect one (Boland, 1989). Second, provided that on average individual estimates
of the environment are correct, increased noise in the individual estimates of the
environment facilitates the evolution of collective sensing (Fig. S4b). In fact, in the
extreme scenario where cells could determine the exact state of the environment on
their own, there would be no benefit of cell-to-cell communication as a way to im-
prove individual estimates of the environmental conditions. Interestingly, the shape
of the noise distribution affects the benefit that bacteria derive from communication.
In particular, skewed noise distributions where most of the cells make a good esti-
mate of the current environmental state but a few cells make estimates that are very
inaccurate can delay the evolution of cell-to-cell communication (Fig. S4c).

In addition to the previous conditions, we find that two features of bacterial inter-
actions facilitate the evolution of collective sensing. First, in the absence of motility,
the offspring of a bacterial cell is often located nearby in space. We study the effect of
this feature of bacterial division on the evolution of QS by comparing our findings in
which daughter cells occupy a similar or even the same location as their mother cell
to simulations where offspring are placed randomly on the two-dimensional grid.
Random placement slows the evolution of collective sensing (Fig. 3a,c), in line with
considerable literature on the importance of spatial structure in the evolution of col-
lective behavior (Nadell, Foster, & Xavier, 2010; Pepper, 2000; Wakano, Nowak, &
Hauert, 2009). This occurs because the benefits of cell-to-cell communication are ac-
crued locally through successive environmental generations. Dispersal frustrates this
evolution, both in source habitats of the mother cell and in the target areas to which
daughter cells disperse. Second, we find that similar to cell movement, environmen-
tal diffusivity also influences the evolution of collective sensing. However, unlike the
monotonic negative effect of cell dispersal, extreme high or low diffusion hinders the
evolution of cell-to-cell communication. Whereas the absence of diffusion impedes
the exchange of information between cells (Fig. S2), highly diffusive environments
tend to couple communicating bacterial cells with many non-communicators, dimin-
ishing the benefit of local assortment and slowing the evolution of communication
(Fig. 3b,c). Thus, the evolution of collective sensing is favored when bacterial cells
interact locally.

The patterns identified so far occur in spatially homogeneous environments where
the only spatial inhomogeneities that occur are in the form of differences in signal-
ing among cells. How might our results be influenced by realistic environmental
gradients, similar to those generated by abiotic or biotic processes? To answer this
question we studied the role of spatial heterogeneity in the evolution of communica-
tion by modeling different degrees of intermixing of the environmental states EOFF

and EON. During each simulation, contrasting environmental states existed on fixed
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Figure 3: QS, local interactions and the role of environmental diffusion. a) Genetic com-
position of two populations (shown in the two dimensional 50x50 grid) that start
with a subpopulation of communicators (light blue, c=0.09) surrounded by non-
communicators (dark blue, c=0) across 40 generations of selection. In the top
population, the offspring of a cell is placed randomly in space, whereas in the
bottom population, offspring occupy a position close to their mother cell which
captures a biological feature of bacterial reproduction. Random placement of off-
spring leads to the extinction of communicating cells because bacteria with high
c only benefit from collective sensing if there are other communicators nearby. b)
Individual fitness values in two populations of non-communicators (c = 0) that
contain a subpopulation of communicators (c = 0.09, shown by the red square).
When environmental diffusion is low (D = 1), the subpopulation of communica-
tors benefits from collective sensing, whereas at high environmental diffusion (D
= 10), communicating cells are coupled with non-communicators and the benefit
of collective sensing is lost. The fitness values are calculated after one genera-
tion where the population encounters an EON environment. A similar pattern is
observed in an EOFF environment. c) Cumulative distribution of the time to fix-
ation of cell-cell communication in three scenarios: (green) biologically-inspired
scenario presented in Fig. 2 where the offspring of a cell remains nearby and bac-
teria interact in a short local range; (red) same scenario as Fig. 2 except that the
offspring of a cell is randomly placed on space after reproduction; (blue) same
scenario as Fig. 2 except that the rate D of diffusion in the extracellular environ-
ment is high (D = 10) so bacteria have a long interaction range. 200 simulations
are shown per condition and we define communication as fixed in the population
when the mean c surpasses 0.09. The evolution of collective sensing is delayed in
the last two scenarios relative to the scenario simulated in Fig. 2. For all panels,
unless indicated otherwise, parameters are the same as in Fig. 2.

spatial domains that were created independently for each replicate by a stochastic
spatial pattern generator. Each generation, environmental state EOFF existed on one
of the two domains with equal probability, and state EON existed on the other. These
spatial domains were generated using an algorithm where pixels of a grid prefer-
ably transition to the state occupied by the majority of their neighbors. By running
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Figure 4: Evolution of QS in spatially heterogeneous environments. a) (Top) Exam-
ple of the spatial domains (green vs. grey reflecting EOFF vs. EON or vice
versa) featuring contrasting environmental states in a single evolutionary
simulation with high spatial heterogeneity. The yellow halo represents the
neighborhood of interaction of a focal cell; the size of this neighbourhood
depends on the rate of environmental diffusivity D. (bottom) Mean c across
4000 generations in 100 replicate evolutionary simulations with high spa-
tial environmental heterogeneity. Cell-to-cell communication evolves only
in a very small fraction of the simulations, because communicating cells
receive conflicting information from individuals experiencing a different
environmental state. Panel (b) (top and bottom) show similar information
for a scenario with low environmental heterogeneity. Cell-to-cell commu-
nication evolves in all simulations. Panel (c) (top) reflects a scenario with
low spatial heterogeneity and a high rate of environmental diffusivity, as
illustrated by the large size of the yellow halo. Irrespective of the coarse
spatial patterning, high diffusion increases the coupling between cells that
experience different environmental states, undermining the information
value of the external AI signal. (bottom) As a result, cell-to-cell communi-
cation evolves in only a small fraction of the simulations. Moreover, when
it evolves, it takes much longer than in a spatially homogeneous environ-
ment.

this algorithm for different numbers of time-steps starting from an initial random
configuration of the grid, we were able to generate either fine or coarse-grained do-
mains which we used as a basis for simulating environments with high and low
heterogeneity, respectively (Fig. 4; Supplementary Information).

Fine-grained environmental structure generates highly variable information on lo-
cal scales. As a result, the evolution of collective sensing is strongly hindered in
this scenario because cells are exposed to conflicting information from neighbors
experiencing different environmental regimes (Fig. 4a). When spatial heterogeneity
is low and there is coarse-grained environmental structure this effect also occurs at
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domain boundaries. However, cell-cell communication is still beneficial for cells in
the center of the spatial domains since they interact with other individuals experienc-
ing the same environmental conditions. Therefore, in contrast to highly structured
environments, collective sensing evolves when spatial heterogeneity is low (Fig. 4b).
Importantly, these findings are contingent on the size of the interaction neighbor-
hood of an individual, which is set by the rate of environmental diffusivity D. We
illustrate this idea by showing that in the same regime with low levels of spatial
heterogeneity, high environmental diffusivity can prevent the evolution of commu-
nication by increasing the interaction neighborhood of a cell. This makes it more
likely that a focal cell is communicating with others that experience a different en-
vironmental state, eroding the information contained in the external concentration
of A. Thus, when environments vary spatially, the evolution of collective sensing is
also favored if bacteria interact at a local scale.

�.� ����������

Overall, our model shows that QS can evolve merely as a result of its collective
sensing functionality, without the need of a benefit resulting from the coordinated
expression of a QS-regulated trait at high population densities. Importantly, this
alternative interpretation of QS does not exclude that such benefit exists but rather
complements the classical view of QS. In fact, one of the main questions regarding
the evolution and widespread presence of QS systems in bacteria is how QS can be
stable in the presence of ‘cheaters’ that do not engage in the collective action carried
by the population. One possible explanation is that QS does not only control public
functions but also private functions (i.e. functions that only have a direct fitness
effect on the cell performing them). The latter are common in many QS systems and
a collective sensing interpretation of QS could help explain why they are controlled
by QS and in turn how QS remains protected from ‘cheaters’.

We note that a potential social conflict can also arise in a collective sensing sys-
tem if sharing information is costly and independent from receiving information
from other cells. This does not apply to our model, where sharing and receiving
information are intimately coupled because of our choice of modeling extracellular
exchange of A as a passive diffusion process in resemblance of the QS systems of
Gram-negative bacteria (Papenfort & Bassler, 2016). More complicated QS architec-
tures, especially the ones of Gram-positive bacteria, where AIs are actively secreted
and sensed using different dedicated transporters (Miller & Bassler, 2001; Waters
& Bassler, 2005), can have more potential for the emergence of defectors that reap
the benefits of communication without contributing to the public signal in situations
where communication is costly. This can explain why QS typically involves the pro-
duction of signalling molecules that are ‘cheap’ to synthesize and justifies the choice
of ignoring such costs in our model.

Importantly, our model shows that the evolution of QS as a collective sensing
mechanism could have been particularly favored in bacteria because of two features
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of bacterial interaction networks. First, when bacteria divide, their offspring gener-
ally end up being located close by in space. This feature can not only protect QS
from invasion by cheaters via a kin selection mechanism (Nadell & Bassler, 2011;
Schluter, Schoech, Foster, & Mitri, 2016) but as shown here, it can facilitate the emer-
gence of a minimum cluster of communicators arranged nearby in space which is
necessary for collective sensing to be profitable. Second, recent evidence suggests
that many bacterial interactions occur over short spatial ranges (DalCo, van Vliet,
Kiviet, Schlegel, & Ackermann, 2020; Esser, Leveau, Meyer, & Wiegand, 2015).Our
model shows that this characteristic of bacterial networks could have favored the evo-
lution of collective sensing because emergent communicators (i) are often coupled
to their communicating offspring (Fig. 3) and (ii) avoid long-range interactions with
cells located in different microenvironments that could share deceiving information
(Fig. 4).

Collective sensing has been proposed as a mechanism for decision-making emerg-
ing from social interactions among individuals with rudimentary behavior rules in
other biological systems (Berdahl et al., 2013; Cvikel et al., 2015). Our work shows
that the same collective functionality can arise in populations of bacteria with simple
networks of gene regulation and could have driven the evolution of one of the most
widely used communication systems in bacteria: quorum sensing.
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�.�.� Supplementary Figures
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Figure S1: A cluster of cells communicating is necessary for collective sensing
to be profitable. Individual fitness values in three populations of non-
communicators that contain a subpopulation of cells communicating of
different size. In each panel, the size of this subpopulation is indicated by
n and its location in the two-dimensional grid is shown with a red square.
Cells profit from collective sensing once there is a minimum number of
communicators. For non-communicators, c = 0 and for communicators,
c = 0.09. The fitness values are calculated after one generation where
the population encounters an EON environment. A similar pattern is
observed in an EOFF environment. The rest of parameters are the same
as in Fig. 2.
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Figure S2: Communication does not evolve in the absence of extracellular diffu-
sion. a) Evolution of the communication parameter c across time in a
single evolutionary simulation where D = 0. b) Mean extracellular diffu-
sion c (top) and mean population fitness (bottom) across 7500 generations
in 50 replicate evolutionary simulations. Both panels show that c does
not evolve to high values in the absence of environmental diffusion. This
shows that cells only benefit from exchanging A with the extracellular
environment because they can communicate with other cells and not be-
cause they can gather more information on the current environment from
the initial extracellular concentration of A. All parameters are the same
that in Fig. 2 except from D.
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Figure S3: Intermediate mutational stepsizes favor the evolution of collective
sensing. a) Mean c in 100 replicate evolutionary simulations with the
same parameters as in Fig. 2 but a smaller mutational stepsize (� = 0.01).
The mean time for evolution of communication in Fig. 2 (� = 0.03) is
shown by the dotted line with the first and third quartiles shown by green
lines. b) Genetic composition of a single row of the two dimensional grid
through evolutionary time in one simulation with small mutational step-
size. This illustrates that with a small mutational step it takes very long
for a minimum number of communicators with high enough c to emerge
relative to an intermediate mutational step (like the one in Fig. 2), which
in turn slows down the emergence of collective sensing. c) Mean c in
100 replicate evolutionary simulations with the same parameters as in
Fig. 2 but a larger mutational stepsize (� = 0.1). The solid and dotted
lines indicate the same as in panel a). d) Genetic composition of a sin-
gle row of the two dimensional grid through evolutionary time in one
simulation with large mutational step. This illustrates that with a large
mutational step communicators arise but go extinct often relative to an
intermediate mutational step (like the one in Fig. 2) because in the ab-
sence of other communicators high values of c are detrimental since they
turn the dynamical system monostable and sensitive to the extracellular
concentration of A which is not informative.
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Figure S4: The evolution of collective sensing depends on the amount and struc-
ture of environmental noise. a) When bacteria are unable to individually
estimate the state of the environment, collective sensing is not profitable
and does not evolve. We model this scenario by assuming that bacteria
sample their initial intracellular concentration of A from the same distri-
bution regardless of the state of the environment. b) (top) Mean c across
3500 generations in 200 replicate evolutionary simulations with the same
parameters as in Fig. 2 but with lower noise in the individual estimates of
the environmental conditions (�OFF = 10 and �ON = 30). The mean time
for evolution of communication with higher noise in the individual esti-
mates of the environment is shown by the dotted line (Fig. 2, �OFF = 30
and �ON = 80), with the first and third quartiles indicated by green lines.
(bottom) Cumulative distributions of the time to fixation of cell-cell com-
munication in the two scenarios compared in the figure above. We define
communication as fixed in the population when the mean c surpasses
0.09. Since the benefit of collective sensing comes from the error that cells
make when estimating environmental conditions, lower noise in such es-
timates makes communication less profitable and collective sensing takes
longer to evolve. c) (top) Mean c across 3500 generations in 200 replicate
evolutionary simulations with the same parameters as in Fig. 2 when
noise in the individual estimates of the environment has the same mean
and standard deviation as in Fig. 2 but is gamma-distributed (as opposed
to normally-distributed like in Fig. 2). Vertical lines indicate the same as
in (b). (bottom) Cumulative distributions of the time to fixation of cell-
cell communication in the two scenarios compared in the figure above.
As in (b), we define communication as fixed in the population when the
mean c surpasses 0.09. When noise in the individual estimates of the en-
vironment is gamma-distributed some cells can make very inaccurate es-
timates of the environmental state. When there is communication, these
cells can deceive other cells hindering the evolution of collective sensing.
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Figure S5: Random offspring arrangement and high environmental diffusion hin-
der the evolution of collective sensing especially when mutational step-
sizes are large. Evolution of c across time in a single evolutionary sim-
ulation with same parameters as in Fig. S3b (� = 0.1) but a) when the
offspring of a cell is randomly placed in the new grid and b) when there
is high diffusion in the extracellular space (D=10). Communication did
not evolve during the first 7000 generations in 100 replicate evolution-
ary simulations of each scenario which shows that both conditions are
particularly detrimental for the evolution of communication when the
mutational stepsize is large. The negative effect of both of these scenar-
ios on the evolution of communication is amplified by the mutational
stepsize because when � is high, a single mutational step towards high c
is highly detrimental if cells are not coupled with other communicating
cells (which is not the case when the mutational stepsize is small).
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�.�.� Model description

We study the evolution of cell-to-cell communication in a bacterial population en-
countering varying environments. The phenotype of a cell is determined by a sim-
ple network of positive regulation where a protein A promotes its own transcription
(Fig. 1). We model this positive feedback by assuming that the transcriptional reg-
ulation of A follows Hill kinetics. Bacterial cells inhabit a two-dimensional grid of
size N⇥N where they can communicate with other cells by exchanging A with the
extracellular space. A is exchanged by passive diffusion with a diffusion constant
c. Based on these assumptions the system of equations describing the intracellular
concentration of A and extracellular concentration, AE, is,

dA

d t
= �

k0 Kd + kAn

Kd +An
+ c (AE -A)- dA (1)

dAE

d t
= c (A-AE) +Dr2AE (2)

where � is the number of proteins produced per transcript of mRNA, k0 is the
basal transcription rate when the promoter is not bound to any molecule of A, Kd

is the dissociation constant, k is the maximal transcription rate, n is the degree of
cooperative binding, d is the rate of degradation of A and D is the rate of environ-
mental diffusion. Since most QS systems exhibit bistability we choose the parameter
values in a way that there are two stable states at a high and low concentration of
A when c = 0 (Fig. S6). The parameter values we chose are � = 5.14, n = 6.75,
Kd = 1.1⇥ 1012, d = 0.1, k0 = 0.39 and k = 2.0. We use this set of parameters in all
the simulations. Every generation we solve the previous system of equations for a
fixed number of time steps T and calculate fitness at the end to determine which in-
dividuals will leave offspring in the next generation. We assume periodic boundary
conditions for the extracellular diffusion of A.
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Figure S6: Steady-states of the model with c = 0. In the absence of diffusion of A
to the extracellular space, we chose a set of parameter values that renders
the system described by Eq. (1) bistable. The rate of production of A is
given by �k0 Kd+kAn

Kd+An and the rate of degradation is dA.
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�.�.�.� Fitness calculation and reproduction

Every generation a bacterial population faces one of two possible environments with
equal probability. Each environment has an optimal expression level of A, denoted
by AOFF or AON. AOFF and AON are set at the stable equilibria of the bistable system
when c = 0 (Fig. S6). At the start of a generation all cells sample their initial intracel-
lular value of A from a truncated normal distribution with mean either AOFF or AON

depending on the environment and standard deviation �OFF or �ON .The fitness of a
cell is determined by how well its intracellular A concentration matches the state of
the environment throughout the duration of a generation. The fitness function is,

w(�E) =
1

1+ es (�E-x)

where s determines the strength of selection, �E = 1
T

PT
t=1At-AON (i.e. the aver-

age difference over the T time steps between A and the optimal level of A expression
in the current environmental state, in this example EON) and x is the the midpoint
of the sigmoid curve. For all simulations we set s = 0.8 and x = 25. For this choice
of parameters w has a sigmoidal shape that strongly penalizes cells that are in the
incorrect phenotypic state but not cells that slightly deviate from the optimal expres-
sion levels (Fig. S7).
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Figure S7: Fitness function w. Function applied at the end of one generation to
determine the fitness of a cell depending on the difference �E between
its average value of A and the optimal expression level for the current
environmental state.

At the end of a generation the fitness of every cell is calculated and fitness values
are normalized by the total fitness of the population. Then, N⇥N cells are randomly
sampled using the normalized fitness values to populate the new grid. The algorithm
for creating and placing the offspring of a cell in the new grid is the following,

1. Draw a random number to determine if c mutates. If c mutates, draw an
additional random number to determine whether the new value of c is c+ � or
c- �. If c- � < 0, c does not mutate.

2. Calculate distance of the mother cell to all other cells in the grid. We use a
euclidean distance metric.
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3. Place the new cell in the closest grid cell to the mother cell that is still empty.

This algorithm is applied to the N⇥N vector containing the coordinates of the
cells that will reproduce and it ensures that the offspring of a cell remains close
to the location of its mother cell. In simulations where the offspring of a cell is
randomly placed on the two dimensional grid, the grid is filled by rows in the order
that cells appear in the N⇥N vector.

�.�.�.� Spatial heterogeneity

We model variations in the environmental conditions on space by using an Ising
model (Onsager, 1944) to establish the initial configuration of the environment. Us-
ing this model we can vary the scale of spatial heterogeneity from a random con-
figuration to a homogeneous grid. In two dimensions, this model consists of a grid
where cells can be in two possible states (-1 or +1). The total energy of the system is
determined by whether neighboring cells are in the same or in different state and is
given by,

H = -J
X

<ij>

sisj

where < ij > denotes all the pairs of neighboring cells, si is the state of the grid
cell i and J determines the sign of the interaction. We assume that J > 0 so over time
the system converges from a random configuration to a configuration where all the
cells have the same state.

Starting from a random configuration where each grid cell is assigned to any of
the two states with equal probability, we simulated this model using a Metropolis
Monte Carlo algorithm for I number of iterations (Adler, 2010). Briefly, each itera-
tion a grid cell is selected at random and its state is flipped. If the energy of the new
configuration is lower than the energy of the old configuration the change in state
is accepted and the state of the cell is flipped. If �E ⌅ 0, the state of the cell can
still be flipped with probability e-�E/ST , where ST is a scaling constant. In every
iteration, this is repeated N⇥N times. Given that the grid configuration will reach
equilibrium when all grid cells are in the same state, we can vary the scale of envi-
ronmental heterogeneity by modifying I.

For each simulation run we first determine the configuration of the N⇥N grid by
running the previous algorithm for I iterations. We use the resulting grid configura-
tion made of the two states, -1 and +1, to determine the state of the environment in
each grid cell every generation. At the start of every generation a random number
is drawn to assign the environmental states to the grid states. EOFF and EON are
assigned to grid cells -1 and +1 or vice versa with equal probability every generation.
Every bacterial cell samples an initial intracellular A concentration from a distribu-
tion whose mean is determined by the environmental state in the grid cell inhabited
by the bacterium.
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