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SUMMARY

This Working Paper on real-time flood forecasting (RTFF)
replaces the Interim Working Paper submitted in July 1991 and gives our
recommendations for the pilot RTFF scheme for the Indus Basin. The
intention is that this final Working Paper should be read on its own and
there should be only a limited requirement for most readers to refer
back to the earlier Interim Working Paper.

The objectives of this Stage I study were to report on the
technical viability and cost-effectiveness of RTFF on the Indus Basin.

The development of an operational RTFF scheme as a pilot study
on the Indus Basin is considered to be technically feasible. There are
two main problems in implementing a suitable system, the current lack of
real-time hydro-meteorological data for that part of the Shenzhen Basin
draining from the PRC, and the problem of forecasting sea levels in Deep
Bay, which will form the lower boundary condition for the model.
Solutions to both of these problems are proposed in this working paper,
although that of storm surge forecasting in Deep Bay is probably easier
to resolve. However, the lack of data from the PRC could be resolved
through discussions between the appropriate authorities on each side of
the border leading to a freer exchange of such data. There would be
considerable benefits to both countries in such an arrangement.

The proposed pilot RTFF scheme would have to be supported by an
appropriate flood warning dissemination system, and it is suggested that
a series of procedures developed specifically for the Indus Basin are
required. It should be possible to give most of the current flooded
areas a warning time of at least one hour, and much of the lower
catchment would receive a longer period of warning.

The cost of proposed pilot RTFF scheme is $2,843,220. The
annual running costs for the scheme are estimated to be $142,000, of
which the éreatcst part is for payment of flood wardens. This figure
may be over-generous, particularly if existing Government staff could be
identified for such a task.

The average annual flood losses in the Indus Basin are
estimated to be $10.4 million. The average annual benefit to be accrued
from RTFF is estimated to be $520,000, or $378,000 if the annual running
costs of the RTFF are subtracted (all prices quoted are 1992 prices).

It is calculated that the investment in the pilot scheme would be
recouped in about 10 years through savings in flood damage costs. ;
However, if the potential savings in intangible flood danmage costs (loss
of life, health risks, anxiety and distress), which are difficult to
quantify, were to be taken into account, it is calculated that the
investment could be recouped in about half this time.

The proposed pilot RTFF scheme will provide valuable
information to Government in real-time during any major flood and will
enable modern techniques for data collection and modelling to be tested
under Hong Kong conditions. The scheme proposed can readily be extended
to other basins such as the Kam Tin, and it is believed that as improved
data become available from the PRC and as the staff of DSD and the RO
gain experience in operating the system, the benefits to Hong Kong will
increase,
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INTRODUCTION

Indus Basin

The River Indus located in the North East New Territories
drains a predominantly rural catchment (70 sq.km) although
there are significant areas of population in numerous villages
and the New Town Developments of Fanling and Sheung Shui.
Topographically the catchment consists of a steep upland region
and a flat valley floor. The highest point (639 mPD) is at
Wong Leng in the eastern part of the basin.

The River Indus is a tributary of the Shenzhen River, the
confluence of the two rivers being at Lo Wu. The Shenzhen
Basin encompasses most of the North New Territories and the
largely urbanized district of the Shenzhen Special Economic
Zone In the Pecoples’ Republic of China (PRC). It drains into
Deep Bay in the North West New Territories near Mai Po. The
total area of the Shenzhen Basin is 312 sq.km of which

187.5 sq.km drains from the PRC,

Flows in the River Indus are influenced by the backwater effect
from the Shenzhen River. Unfortunately, there is very litcle
hydro-meteorological data available, in Hong Kong, for the PRC
and there is no gauging on the Shenzhen River itself. of
particular concern is the fact that the operational rules
governing releases from the Shenzhen reservoirs, situated in
the PRC on tributaries of the Shenzhen River, are unknown.
Releases from the main reservoir enter the Shenzhen River just

a few kilometres upstream of the confluence with the River
Indus at Lo Wu.

Water levels along the Shenzhen River from its mouth at Decp
Bay to Lo Wu, and consequently, the water levels in the Indus,
are dependent on tidal levels in Deep Bay. 1In the past storm
surges have contributed to significant flooding in the Indus.
At present no quantified forecasts are made of storm surges
because of the difficulty of producing accurate results under
the complex conditions experienced in Hong Kong waters.

History of Flooding

Historically, flooding has occurred regularly on the low-lying
land adjacent to the River Indus and its tributaries. However,
in recent years the consequence of floods has been made greater
by increased population density and the encroachment of fish
ponds and other land use changes on the floodplains.

Historical records of flooding are limited, but in the last
decade major floods that occurred in 1982, 1988 after typhoon
Warren and 1989 after typhoon Brenda have been relatively well
documented. Although there was no loss of life, in all cases
large numbers of people were affected, many had to be evacuated
from their homes and household property was damaged.
Significant areas of agricultural land were inundated and much

livestock (pigs and poultry) and fish lost. Additionally there
was some disruption to traffic.

[repore\rt££0493] 1
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During the 1982 flood, throughout the New Territories,
agricultural losses alone were $23 million. Following the 1988
and 1989 flooding, losses in the Indus Basin were estimated at
$9.0 million and $8.2 million, respectively. 1t was estimated
in the Phase I study that average annual losses in the Indus
Basin are $10.4 million (1992 prices) (Reference 11).

Available Data

An important data requirement for the proposed pilot Real-Time
Flood Forecasting (RTFF) scheme is reliable and representative
rainfall obtained automatically in real time. The Royal
Observatory (RO) and Geotechnical Control Office (GCO) operate
an extensive network of raingauges throughout Hong Kong, many
of which are telemetered. Using a system of dedicated
telephone lines, "reporting raingauges” are polled at 5 minute
intervals. However, within the Indus Basin there is presently,
only one reporting raingauge. This gauge (NOS5) is located in
Fanling on the Cheung Wah Estate (Figure 2).

Rainfall throughout the Indus Basin is very often highly
localized, both in space and time and appears to be elevation
dependent. Consequently, a single gauge at low elevation is
not representative of the whole 70 sq.km catchment and in
particular it often fails to represent rainfall on the steeper,
runoff producing, parts of the catchment. The Phase 11 study
has recommended that a further seven reporting gauges are
located within the Indus Basin. These will be distributed
throughout the catchment at locations designed to give a good
areal spread and menitor over the range of elevations. Details
are given in Working Paper No. 5. The gauges will be used for
general data acquisition and as part of the flood monitoring
programme of Phase II, and only two of the gauges will be
installed solely as a requirement of RTFF. Details are given
in Chapter 2.

As an aid to model calibration and for updating throughout a
storm, it is also essential to have gauged flow in real time at
various locations within the catchment. At present there are
two river flow gauging stations within the Indus Basin, Hok Tau
and Shek Pi Tau, neither of which is monitored in real time.
The Kam Tin water level station, which is located just to the
west of the Indus Basin, is telemetered at 5 minute intervals
by the RO and we have used these data in some of the
preliminary RTFF analyses to date. It is proposed that this
gauge continues to be used when operating RTFF as it will act
as a surrogate catchment, mimicking to some extent what is
occurring in the western areas of the Indus Basin,

[report\rtff0493} 2
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If the pilot RTFF scheme is to go ahead it is imperative to
have some telemetry in the Indus Basin itself. It is
particularly necessary that this is introduced at Hok Tau,
since this station will act as an indicator of what is
occurring generally in the high elevation upper reaches of the
Basin. Unfortunately, the Shek Pi Tau station is extremely
unreliable during periods of high flow both because of
significant bypassing of the station and because the rating
equation is suspect. Consequently, it is not felt to be
worthwhile telemetering this station. As part of the data
acquisition system for the study, it has been proposed in
Working Paper No. 5 that four additional water level gauging
stations are installed in the catchment. All of these stations
will provide useful data for the pilot RTFF scheme. Details
are given in Chapter 2.

Since the lower reaches of the Indus are dependent on tide
levels, RTFF must be able to take this inte account. Presently
sea water levels are monitored at the tide gauge at Tsim Bei
Tsui and telemetered in real time to the RO. In the past this
gauge has been seriously affected by siltation and periods of

historic data are missing. The gauge is presently being moved
to a better location.

Proposed Pilot RTFF Scheme

The proposed pilot RTFF scheme will provide flood warnings for
regions of the Indus Basin over which flooding occurs.
Following previous floods, reports from villagers have
indicated that floodwaters have risen very quickly withour
warning and they have had no time to move livestock or proper:y
to regions of safety (Reference 6).

RTFF will predict flows and consequently stages exceeding
predetermined critical levels at key locations within the Indus
Basin. These stages will be used to give an indication of the
severity of flooding along reaches serviced by the key
locations. The BMP studies will identify areas that will be
flooded for various levels of risk, and the RTFF studies will
link into this database in order to determine flood extent
rapidly in real-time from forecast levels at the key cross
sections. With time, as more data become available from the
flood reporting aspect of Phase 1I, estimates of flood depths
at different locations will be refined.

It is proposed that at the core of the pilot RTFF scheme will
be a general conceptual rainfall-runoff model, the Probability
Distributed Model (PDM) (Reference 7). This model is
specifically tailored for real-time application and will be
used to transform 5 minute telemetered rainfall data into flow
at various "strategic" locations throughout the catchment. The
model is designed in such a way that model forecasts can be
corrected in real time. Estimated flows from the portion of
the Shenzhen Basin draining from the PRC will also be produced
by the model. Both models and real time "updating” facilities
are described in more detail in Chapter 3.

{report\rtff0493) 3
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The hydrological output from the PDM and water levels predicted
by the storm surge/astronomical tide model will be incorporated
into a hydrodynamic model which will be used to convert flows
to water levels across the floodplain. On the basis of model
results and "what-i{f" scenarios, considering the possible
impact of forecast rainfalls, storm surges and future structure
(e.g. reservoir) operation, a decision can be made as to
whether or not to issue flood warnings. Sea water levels will
be based on predicted astronomical tides, but a statistical
model of extended ARMA form will be incorporated to forecast
Storm surges.

All RTFF modelling will be done on a SUNSPARC II workstation
that will be situated at DSD after we have handed the system
over to them. Telemetered data will be transferred in real
time from the RO computer to the SUNSPARC using a dedicated
line, with possibly a duplicate line as a backup as this link
is one of the most vital components in the data transfer
process. Model runs will be performed automatically every

5 minutes. This will achieve two objectives. Firsely, ic will
allow model "states” that is the water contents of the
conceptual stores within the model to be updated. Secondly, on
the basis of results from model runs, alarms will be tripgered
if certain preset thresholds are exceeded. It will then be up
to the system operator to review the situation, instigate
"what-if" forecast runs and, if necessary, to issue flood
warnings. . - - S .

For the Indus Basin, where catchment lag is very short, it is
prcferable that some sort of rainfall forecasting is
incorporated into the system in order to increase forecast lead
times. Simple forecasts will take the form of "what-if*"
scenarios based on typical rainfall profiles. Such profiles
could be seasonally adjustable and categorized into light,
moderate and heavy with the option of invoking a selection at
run time. In future more comprehensive forecasts might be
possible using the radar data blended with raingauge data.
However, this will not be possible when the system is first
operational in 1993. It is important to note that on small
catchments with steep headwaters, as in the Indus Basin, peak
flow often results from peak rainfall intensity and
consequently flood waters will not necessarily rise just
because it is still raining. Incorporation of rainfall
forecasts will take this into account.

Since river levels at the lower end of the catchment are sea
level dependent it is necessary to incorporate this information
in the model and make predictions of future sea levels. The
basis of such predictions will be the astronomical tidal
predictions published by the RO. These would be stored as

15 minute values. Storm surges such as occur during tropical
cyclones will be modelled using an extended form of Auto
Regressive Moving Average (ARMA) model to complement the
astronomical predictions when necessary. Similarly the model
will be very dependent upon inflows from that part of the
Shenzhen River draining from the PRC, which is largely
ungauged. Further details of this technique are given in
Chapter 3.

{report\rtff0493] 4
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Effectiveness of the Proposed Solution

Research in the UK, Australia and the USA (References 12 and
1l4) has indicated that with flood warnings of less than one
hour people do not respond well and there is little reduction
in the amount of flood damage caused. However, the same
research has shown that with greater than one hour of warning,
significant savings can be made if household contents, cars and
livestock are moved to areas of safety. Figure 1 indicates the
points downstream of which we believe the proposed RTFF scheme
would be able to give a greater than one hour flood warning
based directly on the catchment response time. For much of the
lower Indus flood warnings of two or more hours should be
possible, however.

The effectiveness of flood warnings are dependent on a number
of factors, not least of which is the dissemination of the
warning to the public. If warning dissemination is poor this
will have a detrimental affect on the overall warning
efficiency. Methods of dissemination are discussed in
Chapter 4. Other factors that influence effectiveness are:

- time of day; people are generally less efficient at
night;

- the preparedness of the population; this should not be
too much of a problem in the Indus” Basin where floods
occur frequently and there is consequently a high
awareness of the risks; and

- the number of previous false warnings, which
considerably reduces the motivation te act upon
warnings.

It is not possible to quantify precisely how reliably floods
may be forecast for the basin as a whole as different parts of
the basin will have different lead-times. As discussed above -
however, much of the flood-prone area of the basin can be given
a warning time of one hour or more. Experience elsewhere in
the world has shown that this is sufficient time to enable the
public to respond positively and to permit significant savings
in flood damage costs.

Wicth regard to the last point, one of the primary aims of RTFF
must be reliability and it is proposed that the RTFF scheme
should initially be implemented for a trial period without
issuing warnings to the public. This will ensure that it is
operating correctly before any warnings are issued.

[repore\rtf£0493] 5
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It is felt that flood forecasts and their associated warnings
should be judged proficient primarily on the basis of whether
or not a threshold exceedance (or non-exceedance) was correctly
forecast as the warning system will operate on the basis of a
series of thresholds. The probability of correctly forecasting
exceedence or non-exceedence of these is covered in Chapter 4.
Any further "accuracy" in terms of the level of peak between
thresholds should be considered a bonus, not necessarily a
target. As more experience is gained with the system, improved
rainfall forecasts become available and more detailed
information on hydro-meteorlogical conditions in the PRC side
of Shenzhen Basin become available it would be possible rto
forecast the peak levels with more confidence.

Cost Effectiveness of the Proposed Solution

The cost effectiveness of the pilot RTFF scheme is determined
by comparison of the benefits that would accrue from the
installation of what we believe to be a soundly designed flood
forecasting system, offset by the cost of the proposed scheme.
Financial savings arise from the actions taken in the
lengthened warning time that results from the operation of the
system.

An estimate of the reduction of tangible damage, that is damage
to which a monetary value can be attached, first requires an
estimate of pre-warning damage. The socio-economic data
required to evaluate flood damage in detail is not available in
Hong Kong and the estimated losses quoted in this report are
necessarily crude. However, an attempt has been made to derive
the annual benefit arising from RTFF in the Indus Basin.
Furcther details of RTFF costs and benefits are given in

Chapter 5,

ADDITIONAL TELEMETRY NEEDED FOR RTFF

The proposed additional telemetry that will be used by the
pilot RTFF scheme if it is implemented can be summarized as:

- seven new reporting raingauges, six located in the Indus
Basin and one in the Kam Tin Basin:

- four new water level gauging stations in the Indus
Basin, one each lqcated on the River Ma Wat and the
River Beas and two on the River Indus;

- one new water level gauging station, located at Lok Ma
Chau, on the Shenzhen River (Basin 10); and

- new telemetry at the existing Hok Tau flow gauging
station.

The types and locations of existing gauges are shown on
Figure 2. Table 1 lists the proposed stations and locations
are shown on Figure 3.

[report\rtff0493} 6



TABLE 1

SUMMARY OF NEW STATIONS USED BY PROPOSED RTFF SCHEME

Site Name Station Ko, Type Location Cooment
River Beas PSAl A River Beas at NTICR Only reasonable location on thae
(Haung Tal Po) Service Road Beas River
Gallipoli Lines PSA2 A* River Indus at Best possible location on lower
Gallipoli Lines reaches of the Indus River
Lo Wu PSA3 A River Indus at Lo Wu Good location adjacent to
confluence of River Indus and
Shenzhen River
River Ma Wat PSB1 B River Ma Wat in Best location on the lower reaches
(Luen Wo BHui) Fanling of Ma Wat River
Lo Ma Chau PSBS B River Shenzhen at Good locstion on the tidal reach of
Lok Ma Chau the Shenzhen River
Although the site is in Basin 10 it
will be a useful indicator of
intermediate conditions between
Deep Bay and Lo Wu
Robins Nest PSC1 [of Part-way up Hung Fa Beat locatton would be on top of
Leung (Robina Hest) Bung Fa Leng but cost of telemetry
would be prohibit:ive
Selected site is highest point with
telephone lines nearby
Cloudy Hill PSC2 o Top of Kau Lung Hang Excellent locat:on with power and
Shan (Cloudy Hill) telephone lines nearby
Pak Tai To Yan PsC3 C Fire Services Preferred site wculd be on high
(F3D Trainming Department training grourd L0 east or west but the cost
Depot) depot at Pak Tai To of telemetry would be proh:bitive
Yau on Fan Kam Road
Selected site 18 Just within
Basir 9, but 1s the best af the
si1tes available at reasonable cost
Although the site is just within
Basin 9 the dats is considered
suitable for use in the Indus Basin
Hok Tau PSC#4 c* Hok Tau Reservoir Appropriate site for monitoring
rainfall in the Aok Tau sub-
catchoent and sssessing catchment
response by calibrating with
discharge record at Station PSD3
Eok Tau PSD& p* Hok Tau Reservolr Telometry edded to existing WSD
river water level gaugze
* Raingauge required for RTFF only
+ Telemetry of river water level gauging station required for
RTFF only

Station types:

A -
B -
[ .
D -
[report\rtff0493]

combined river stage and raingauge

river stage only

raingauge only

existing river stage gauge rto be telemetered to the RO's

central computer
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Most of the telemetry listed will be installed for the proposed
data acquisition system and flood reporting programme for the
Phase II study, whether or not the pllot RTFF scheme {is

implemented. The additions that are required just for RTFF
are:

one raingauge to be sited at the same location as the

proposed water level gauging station at Gallipoli Lines:
and

full telemetry of rainfall and water level gauges at the
existing Hok Tau flow gauging station.

The cost of these additions, including the installation of a

long telephone cable and power line to the remote Hok Tau site
are discussed in Chapter 5.

It was originally hoped that raingauges could be located on
more of the hilltops, notably Hung Fa Leung (Robins Nest) and
Wo Hop Shek. However, due to the high cost of installing
telephone lines to these remote sites these gauges have had to
be omitted. It is therefore imperative that the highest

raingauge situated at the top of Kau Lung Hang Shan (Cloudy
Hill) be installed.

Seven raingauges are the minimum required to provide an
adequate spread over the catchment. In order to calculate
areal catchment rainfall at any given time the isopercentile
method will be employed. For each time interval the rainfall
at each raingauge as a percentage of its long-term average
annual fall is computed. This average annual rainfall will be
assessed from the RO maps for the catchment. These gauge
percentages are averaged, possibly using welghts reflecting the
representativeness of each gauge for each sub-catchment of
interest. The average percentile in each time interval is then
multiplied by the average annual rainfall for the sub-
catchments of interest to obtain the areal rainfall input for
the time interval, Weighting of gauges could be related to
orographic features such as gauge elevation and aspect and
would be determined during model calibration. Since the basis
of RTFF is rainfall-runoff modelling (there is no time for
routing observed flows downstream on such a small catchment)
good rainfall estimation is imperative. With the seven
raingauges proposed, if one or two are lost during the course

of an event there will be enough remaining to continue RTFF
operation, ’

[repore\rtff0493) 8
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It is essential for the pilot RTFF scheme that telemetry is
installed at the Hok Tau flow gauge, since it is ideally
situated to be a real time indicator of what is occurring
throughout the upland runoff producing regions of the
catchment. It is well located in a deeply incised channel with
no chance of bypassing and there is a reliable flow rating
curve. The actual contribution of flow to the River Indus via
this location is itself usually negligible, because the Hok Tau
Reservoir located downstream of the gauge dramatically
attenuates its impact. Furthermore, some water is diverted by
pipeline from the Lau Shui Heung Reservoir to the Hok Tau
Reservoir and then to Plover Cove Reservoir. The runoff
contributed to the River Tndus through spill from these
reservoirs will take account of the attenuation and draw-off.

The other water level stations will allow water levels to be
monitored at key locations throughout the catchment. The
station suggested at Lok Ma Chau is located in Basin 10 (San
Tin). It will provide a useful intermediate level on the
Shenzhen River, between Deep Bay and Lo Wu. It is recommended
that in time rating equations should be established for all
these stations in order that flows as well as levels can be
determined. As the gauges at Lok Ma Chau and Lo Wu are on
tidal sections of the river development of a rating equation
will not be possible.

Further details of the proposed additions to the existing

telemetry network are given in the Phase II Study Working Paper
No. 5 - Hydrological Data Acquisition.

[report\rtff0493) 9
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RTFF HMODELLING AND PROPOSED SOFTWARE
Cholce of Model

In the Interim Working Paper it was suggested that a
combination of the PDM rainfall-runoff model developed by IH
and the hydrodynamic channel routing component of MIKE 11 would
be used as the basis of the RTFF software. The reasons for
suggesting this combined approach was to utilize the most
appropriate and up-to-date rainfall-runoff modelling techniques
with the hydraulics of MIKE 11 which would have been fitted to
the Indus Basin as part of the BMP studies. However, there are
two inherent problems in this suggested approach, firstly that
of how the PDM and MIKE 11 models would be efficiently linked
and secondly how this combined software would be supported.

Because there are obvious practical problems with this software
solution, two alternative methods of meeting the main software
requirements of the proposed pilot RTFF scheme for the Indus
Basin have been investigated. The first of these would be to
adhere wholly to the MIKE 11 system adopted for the BMP studies
by using the real-time forecasting wversion, MIKE 11 FF. The
second would be to use the equivalent IH software package
developed in recent years called RFFS (River Flow Forecasting
System).

MIKE 11 FF is a relatively well tried-and-tested software
package for real-time flood forecasting which was developed on
PC computers to run under DOS. It has recently been converted
to run under UNIX, but has only been applied in this mode very
recently. At present the model has been applied only to large
catchments and has not been tested in earnest on any catchment
as small as the Indus. The normal modelling time step is from
one hour to one day, but the model formulation is not ideally
suited to real-time application on small catchments. The model
may be linked to a real-time data collection system but the
user would have to write appropriate software to input data to
the database files within MIKE 11 FF as no standard interface
software exists. The real-time data are stored within an
internal database system developed by DHI. Commercial
relational database software can be used for this task, but it
can be computationally more efficient to use purpose-written
routines to store the data.

The approximate cost of the MIKE 11 FF software was given by
DRI as $%196,300 (DKK 165,000), and annual support $30,000

(DKK 25,000). DHI also quoted for installation, training,
technical assistance and linking to the RO database for a cost
$545,000 (DKK 458,000). Some of this work would be covered by
the existing Stage II RTFF lump sum consultancy fees. The
likely additional cost of DHI inputs therefore are estimated to
be some $200,000. Thus the total cost of DHI software is
estimated to be $395,000 with $30,000 required annually for
software support.

{report\rtff0493) 10
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The best alternative to the MIKE 11 FF software is the River
Flow Forecasting System, or RFFS, developed by IH, that
incorporates the PDM rainfall-runoff model. The RFFS software
has been utilized in the UK on a wide range of catchment sizes
and types and forms the basis of a major real-time flow
forecasting system for the whole of the 13,500 sq.km Yorkshire
region of the UK National Rivers Authority. Although RFFS was
developed for a large basin, the Yorkshire NRA system is
currently configured to produce forecast flows and water levels
at over 100 points throughout the region, and some of the small
headwater catchments modelled are even smaller than the Indus.
The software is very flexible and way readily be configured to
any river and sub-catchment network. Parts of the software
have also been used for a real-time flood forecasting system to
protect the city of Lincoln for the Anglian region of the NRA.
Three main catchments were modelled in this case having areas
of 128, 140 and 300 sq.km, although the model was also applied
to sub-catchments of less than 10 sq.km. As for the Yorkshire
study, 15 minute telemetry data were used. A summary of the
RFFS system as applied in Yorkshire is given in a recent paper,
reproduced here as Appendix A (Reference 10).

The RFFS software developed by IH is proposed in preference to
the real-time version of MIKE 11 for a variety of reasons.
These include its flexible, reconfigurable structure, making
extension to other basins in Hong Kong particularly easy, its
resilience to missing data and its use of models tailored to
operate in a real time environment. We also believe that the
rainfall-runoff model, NAM, used within MIKE 11 is not well
formulated for use on such a small, responsive, catchment as
the Indus. It is also not well suited to state correction in
real time. The IH model uses a continuous formulation through
differential equations and is suitable for use at a range of
time intervals. NAM is a good model for larger basins, but is
not ideally suited to the small, responsive catchments found in
Hong Kong.

We believe that the proposed RFFS software is not only
technically superior to many aspects of MIKE 11 FF, but will be
less expensive to purchase and maintain. Whilst in our Interim
Working Paper we suggested that the best option could be to use
the PDM rainfall-runoff model developed by IH combined with the
hydrodynamic routing model of MIKE 11, we now feel thar such an
approach will be difficult and expensive to achieve and to
support. Consequently, we now recommend that the software for
the pilot RTFF scheme on the Indus should bé the IH RFFS
software,

[report\rtff0493) 11
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The cost of the RFFS software is $168,750 (£12,500) ; training
would be provided at no extra cost as part of the Phase I1 RTFF
consultancy fees. Whilst the PDM component of the RFFS
software was allowed for in the Stage II RTFF consultancy fees,
the hydrodynamic routing was not. The licence fee for this
software would be the $168,750 quoted above. Annual support
would cost $27,000 (£2,000). As with MIKE 11 FF, some extra
software would have to be written to link RFFS to the RO
telemetry database, but this is included in the Stage I1 fees.
Thus the overall cost of using the RFFS software system for the
pilot RTFF system for the Indus basin would be $168,750 with
$27,000 annual support fee, significantly less than the
comparable cost of MIKE 11 FF.

The RFFS software uses a flexible rainfall-runoff model called
PDM (Probability Distributed Model (References 7 and 8), which
1s a general conceptual model developed specifically for real-
time forecasting and which may be readily updated during a
flood event using observed telemetered flows. Further details
are given in Appendix B of this Working Paper. Copies of a
number of more detailed papers from the scientific press are
available for interested readers.

One of the commentators on the Interim Working Paper asked
whether the DISPRIN model might be a suitable alternative .to
either NAM or PDM. The DISPRIN model was developed for use as
a real-time rainfall-runoff model on the River Dee in nerth
Wales, but the input-storage-outflow, or IS0 function model
developed by Lambert (Reference 5) was finally adopted for
operational use. The DISPRIN model is a fairly complex semi-
distributed conceptual model which had between 11 and 23
parameters, depending upon the complexity of the catchment
model selected. This number of parameters is excessive for the
current data-poor Indus Basin, and although the model is
conceptually sound, it is difficult to establish parameter
values for ungauged catchments. The model is also demanding in
computer time and memory. The preferred PDM model has only

11 parameters, one of which is always fixed and three others of
which have equivalent physical meanings and can therefore be
set externally, leaving just 7 parameters to be fitted by
objective means. The DISPRIN model is not readily initialized

in real-time and has no in-built state correction facility for
real time application,

The use of catchment lag as an indicator of forecast lead-time
was discussed in our Interim Working Paper and commented on
subsequently by WSD. For responsive catchments such as the
Indus, peak runoff will often result from a brief period of
high intensity rainfall within the body of the storm, and
catchment lag is a poor indicator of lead-time in such cases.
This point is illustrated on Figure 4.

[report\rtff0493) 12
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The hydrographs of forecast flow produced by the PDM model from
the various upstream sub-catchments will be routed down those
reaches of the upper channel network where flow is
predominantly within bank using the kinematic wave model
(References 4 and 9). However, for much of the central and
lower Indus Basin, flood flows go overbank for even modest
floods and a hydrodynamic routing model employing a full-
solution of the Saint-Venant equations is required. The RFFS
software uses an adaptation of the well known United States
National Weather Service's DWOPER/NETWORK hydrodynamic model
described by Fread (Reference 1).

The RFFS software is written in standard FORTRAN 77 and at
present runs either on a PC under DOS or on a MicroVAX under
VMS. Only minor modifications are required so that the
software would run under UNIX on a SUNSPARGC II workstation,
These will be carried out at the outset of the pilot scheme.
The software will be accessed via a user-friendly graphical
user interface, using either the Panel-Plus system currently
used by IH for their Lincoln model, or more probably using the
X-Windows system available on the SUNSPARC.

A number of technical problems were discussed briefly in the
Interim Working Paper, particularly the influence of sea levels
in Deep Bay, and the complexities of modelling the Indus as
part of the largely ungauged Shenzhen Basin. Further
discussion on these topics is given below.

Storm Surge Forecasting

One of the comments on the Interim Working Paper was that we
had not covered the question of the influence of sea levels on
the RTFF models adequately. The influence of sea levels on
flows and levels on the lower Indus, and our proposals for
dealing with the problem, were discussed at some length in
Appendix A of that paper (paragraph A.40 to A.46), although
only brief coverage was given in the body of the text.

For an operational RTFF scheme on the Indus Basin, a real-time
forecasting model of tidal residuals (the difference between
predicted astronomical tide and observed tide) would be
required. Values for the predicted astronomical tide at Tsim
Bei Tsui would have to be obtained from the RO, probably on an
annual basis. These data, which are available as 15 minutes
values, would have to be stored on the SUNSPARC computer as the
basis for the downstream boundary conditions. However, for
some flood events, heavy rainfall may be associated with strong
winds and a resultant storm tide surge which would have to be
taken into account.

[repore\rtff0493] 13
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Ideally storm surge forecasts should be derived from a
physically-based numerical model. Such a model is not yet
available for Hong Kong waters because of the complexity of the
combination of currents, seabed topography and pressure systems
affecting the area. The RO have stated that although they have
a tidal model which can be used to estimate storm surges, they
do not believe that it could be used as part of the proposed
pilot RTFF scheme. Because reliable quantitative forecasts of
such surges are unavailable at present, the RTFF model will
have to make its own short-term forecasts of surge residuals
for up to four or six hours ahead.

In the absence of a suitable numerical model of storm surges, a
statistically-based forecasting model will be employed to
derive short-term forecasts of sufficient accuracy. Historical
storm surge residuals for a number of events would be derived
by comparing the observed telemetered tide level at Tsim Bei
Tsui with the stored astronomical prediction and computing the
tidal residual every 15 minutes. As the RO provide the
astronomical data at 15 minute values and as both tide level
and storm residuals change only slowly, 15 minute values will
be adequate for use within the RTFF model. From our analysis
of a number of such events, it is apparent that time series
plots of the residuals show considerable persistence which can
be used as the basis of a forecasting model. By analyzing data
from historical events having a significant storm surge, an
auto regressive moving average, or ARMA, model would be
developed. Such a model, possibly incorporating explanatory
variables such as wind and pressure (a so-called ARMAX model)

would provide adequate short-term forecasts for effective RTFF
modelling.

Not all significant flood events are associated with storm
surges, and even where heavy rainfall does occur at the same
time as a major tide surge, about half the flood peaks on
average will occur during the low-tide window. The accuracy of
the suggested ARMAX model is difficult to estimate at this
early stage, but we would estimate that it would be within
approximately 25 per cent of the true value. Thus given that
the maximum likely surge in Deep Bay is 2 metres, the surge
forecast would be accurate to better than 0.5 metres, and
probably would be accurate to about 0.3 metres at Tsim Bei
Tsui. This would imply a potential error in forecast levels on
the Lower Indus of between 0.1 and 0.25 metres during those
events where storm surges coincide with flood producing
rainfall. For many flood events, astronomical tide level alone
provides an adequate downstream condition for the model. The
suggested short-term forecasting model for the downstream tidal
boundary condition of the RTFF model will be sufficiently
accurate for the proposed pilot scheme. Experience with the
model will show whether additional refinement is required, but
the model outlined above should suffice for the vast majority
of flood events. It is not possible to quantify how successful
or accurate the proposed storm surge forecasting mode will be.
However, because of the RTFF model’'s ability to update its
forecast using telemetered levels at Lo Wu and Lok Ma Chau in
particular, any deficiency in the model will be corrected for
in real-time during any flood event.

[report\rcff0493) l4
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The Estimation of Flows on the Shenzhen River

As noted earlier, the Indus Basin is a tributary of the
Shenzhen River, which it enters at Lo Wu. The Indus Basin
drains some 22 per cent of the total Shenzhen Basin, much of
which drains from the PRC and we understand that river gauging
data is not pPresently available to DSD. Whilst rainfall data
for the raingauge at Bai On in the PRC is available to rhe RO,
at present on a daily basis, although in the future it will be
available every six hours, this does not provide sufficient
information to permit estimation of flows from the Shenzhen
Basin in real-time. However, the real-time data that will be
available from the new Lok Ma Chau gauge will greatly help in
keeping model predictions on track during an event,

We recommend that DSD and the RO pursue their objective of a
freer exchange of hydro-meteorological data between Hong Kong
and the PRC. These data should ineclude detafls of discharges
from the Shenzhen reservoirs. For the pilot RTFF scheme,
however, flows in the Shenzhen River, which forms a boundary
condition to the RTFF model at Lo Wu, will have to be
estimated. Without measured rainfall data over that portion of
the Shenzhen Basin draining the PRC, the simplest method of
estimating flows would be to assume that the rainfall was cthe
same as that measured on the Hong Kong part of the catchment .
This would provide a reasonable estimate for many storms, but
could be very markedly in error in other cases. The
variability of daily rainfall over Hong Kong
Kong and Shenzhen are available from various
data will be available later in the P
comparison of short term rainfal
at the RO. These data will be r
to determine the most appropriat
rainfall in the PRC.

and between Hong
reports. Further
hase II study for

l in the study area with that
eviewed during Stage I1 of RTFF
€ assumptions for estimating

The best means of estimating areal rainfall over the Shenzhen
Basin would be through the weather radar data available in real
time at the RO. At present such data are not fully calibrated
to provide quantitative spatial data, but this is understood to
be a long-tern objective of the RO. The calibration of radar
data would greatly enhance the performance of a RTFF scheme.

It is techniecally achievable, and IH have implemented
operational systems in the UK. If the pilot scheme is
successful, DSD and the RO should maintain calibration of radar
data as an important objective. Until such a study could be _
carried out, it will be necessary to assume that the rainfall
over the PRC is similar to that over Hong Kong and to update

this assumption in real-time using telemetry data on the
Shenzhen at Lok Ma Chauy.
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Updating in Real Time

Updating in the PDM rainfall-runoff model uses empirical state
correction to adjust the water content of the conceptual
storages to gain closer agreement between observed and modelled
flows. 1In contrast, error predictor schemes are used for the
hydrological channel flow routing model and for the
hydrodynamic tidal river model. The former involves using the
discrepancy between modelled and observed flows to predict
future errors, relying on the persistence of past errors to

predict future errors which are added to the model predictions
to form the updated forecast.

A simjlar scheme is used in the hydrodynamic tidal river model,
but in this case the error predictor operates in terms of
levels and is used to update predictions of levels from the
model. In both cases the error predictor operates externally
to the production of the model forecasts and does not need to
be built inte the model code itself, as is the case for state
correction of the PDM rainfall-runoff model. Because the tidal
river model operates as a single entity and produces a set of
level forecasts for a number of cross-sections for which level
measurements are made, the implementation of the error

predictor involves the use of a multivariate form of ARMA
predictor,

The model must have some facility for the user to enter a range
of "what-if" scenarios for both short-term future rainfall, for
storm surges and for releases from the Shenzhen reservoirs in
the PRC. These will be built into the software as a series of
options which will enable users to select likely scenarios from
a short list through a menu system. These "what-if" rainfall
scenarios should probably be based on simple storm rainfall
profiles typical of some particular part of the year. Thus a
conditional probabilistic approach could be adopted based on an
assessment of what the remainder of the storm is likely to look
like from examination of the storm duration and accumulation up
to "time-now". A series of seasonal dimensionless storm
profiles might be incorporated within the model and the user
might simply select from a series of likely storm continuation
patterns based on current telemetered data. The value of
simple rainfall forecasts is shown in Figure 5. Further work
on development of short-term quantitative rainfall forecasts is
desirable either by the RO alone or possibly with the
assistance of experienced external consultants. Until such
work can be carried out, the proposed range of probabilistic
rainfall profiles is believed to offer the best option for
"what-if" rainfall forecasting within the proposed pilot RTFF
scheme.
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The downstream tidal limit scenarios are likely to offer the
user less options, partly because it is anticipated that the
time series storm surge model to be built into the model should
produce better estimates of storm surges in real-time than the
equivalent potential rainfall forecast scenarios. Storm surges
have a natural persistence which may be detected and modelled,
whereas there is no equivalent underlying pattern to rainfall.
Thus the rainfall forecasting problem is intrinsically more
difficult and must therefore be simplified for ease of use by
the system operators during an event.

The probable release scenarios from the Shenzhen reservoirs
could be produced only once information on how the reservoirs
were operated under normal flood conditions could be
established. We suggest DSD hold discussions with the
appropriate authorities in the PRC during the pilot study phase
of the RTFF implementation.

DISSEMINATION OF FLOOD WARNINGS

A Territory-wide network of information dissemination already
exists for the heavy rainfall/flood warnings currently issued
by the RO, but this network is believed to be too complex and
unwieldy for use on the Indus Basin alone. In order to avoid
confusion, a new, purpose-designed, flood warning dissemination
system should be developed specifically for the Indus Basin as
part of the pilet RTFF scheme.

We suggest that it would be best for the pilot RTFF scheme to
be operated as a separate entity by DSD. The resultant flood
forecasts specific to the Indus Basin should however be issued
to the public and Government agencies by the RO, who already
have the responsibility for issuing heavy rainfall warnings.

It is important throughout the process of warning dissemination
that the role of all organizations is clearly defined. In line
with overseas experience, we have assumed that some 65 to 75%
of households within identified flood-prone areas will receive
warnings in any flood event. This figure is based upon post-
event analysis of floods in the UK, USA and Australia.

However, because of the high population density and good
infrastructure of roads and telephones in the northern New
Territories, warning dissemination in Hong Kong should be as
good as, or better, than that achieved elsewhere in the world
given sufficient public-education and training of Government
staff,

The required flood warning dissemination system may require the
involvement of the Government Secretariat Emergency
Coordination Centre and the Information Services Department so
that one or more circulars may be produced and circulated to
the public living in the Indus Basin, or likely to pass through
it regularly by road or train. The public have been educated
as to the meaning of the numerical strong wind and typhoon
warning system through a series of such circulars, and it would
be sensible to adopt such an approach with the Indus Basin
flood warning scheme.
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However, rather than using a numerical system of flood
warnings, which might be confused with the strong wind
warnings, a system of colour coded warnings and alerts is
proposed. A suggested cascade of alerts and warnings is set
out below and would be initiated by a series of thresholds
determined in Stage II of the RTFF:

Standby - DSD are alerted by the RO that significant rainfall
is anticipated and that a flood situation may be developing.
DSD will be responsible for assessing the hydrological
implications of such anticipated rainfall. DSD should then
notify other Government staff that they should be prepared for
a call out., 24-hour manning of the DSD flood control room is
initiated. No alert or warnings would be issued to the public
at this stage however.

The possibility of the standby alert not being initiated will
be very small as the RO is manned 24 hours per day. In _gjfe any
cases it will not be necessary to proceed to the next level of
alert.

Yellow Alert - There is a risk that flooding may occur within
the Indus Basin. The public should be made aware of this alert
(note that at this stage they are just alerted to the
possibility of flooding; no warning would be issued at this
stage). Staff of Government agencies would be placed on the
next level of preparedness.

For the Yellow Alert to be effective it should be initiated
about two hours in advance of the predicted time for issuing a
Red Warning. We estimate that the probability of correctly
initiating a Yellow Alert will be about 60% as both rainfall
and sea level forecasts and "what if" scenarios will be
involved in the predictions. Of the remaining 40%, some will
not progress to a Red Warning and the remainder will be late
initiation of the Yellow Alert.

Red Warning - The public are now warned that some flooding is
expected to occur and that the Indus is expected to overtop in
some reaches. The public are issued with regular information
on when and where flooding may be expected. Staff of all
Government agencies put on a high state of readiness to respond
as far as possible to the event by perhaps sending out
maintenance teams to keep bridges and culverts clear,
sandbagging key areas to minimize flocd damage, by diverting
traffic and by assisting with damage prevention as far as
possible.
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The probability of correctly forecasting with one hours lead
time, the time at which threshold(s) will be reached requiring
a Red Warning to be issued is estimated to be 90%. The same
level of confidence can be attached to forecasts of longer lead
times for areas downstream of the one hour lead time boundary
shown on Figure 1. The probability is high because it will be
based on measured rainfalls, river levels and sea levels: no
forecasts of rainfall or sea levels will be necessary. Of the
remaining 10%, some cases will be flooding being predicted but
not occurring (i.e. false warnings) and in the others, to the
warning being issued late which would still however give
valuable warning to the lower basin.

Stand-Down - This is an important final link in the cascade of
alerts and warnings and must be issued to both the public and
Covernment agencies to indicate that for the time being, no
further flooding is anticipated. This would be Issued after
the alert/warning level had decreased back below the yellow
alert level,

We are aware that the proposed colour coded warning system is
similar to the existing countryside fire hazard warning scheme,
but feel that this may be beneficial. The public are already
aware of the general meaning of these colour-coded warnings and
there should be no confusion in also using them for floods as
there 1s no risk a flood alert being issued at the same time as
fire hazard warnings.

Throughout a flood event, the accuracy of the forecast will
increase and the level of alert and warning issued would be
expected to change, as more data are collected. The public
education leaflets will have to explain not only the cascade
system of flood warnings, but will also have to explain that
during many events, the alert/warning level would be expected
to change over time. It is important to ensure that during an
event the state of alert or warning does not oscillate up and
down as this could confuse the public and would lead to loss of
confidence in the forecasts. Experience in the UK shows that
with training and experience, flood duty officers are able to
ensure that this does not happen, and that the public receive
updates to the alert/warning state only when the data clearly
indicate that some significant change in catchment state has
taken place. There will have to be a very careful programme of
public education te ensure that they understand how the system
is designed to work. There may also be occasions where
different zones of the Indus Basin have different levels of
alert/warning due to spatial rainfall variability. For
example, flooding may be indicated on the Beas but not on the
Indus. Whether the DSD choose to issue different warnings to
sub-areas of the basin will have to be resolved during the
pilot study stage.

Whenever an alert or warning is issued, it must be labelled
with a very clear timing and it must also be made clear that it
supersedes all previous warnings. Thus the warnings may have
the form:
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"Red flood warning issued for the entire Indus basin by the RO
on Thursday 10th August at 13:15 hours. This warning
supersedes the earlier yellow alert issued at 12:35 hours. The
RO anticipate some flooding along the lower Indus and Beas
rivers commencing at approximately 14:45 hours and lasting for
some 2 hours. Areas likely to be affected are ... Further
bulletins will be issued as more data become available. "

We initially proposed that the radio and television might be
used to broadcast warnings of imminent flooding within the
Indus Basin., However, it was pointed out that as such
broadcasts would be made to the whole Territory, they might
cause anxiety in areas not at risk of flooding, and confusion
in areas where flooding was possible, but for which the
localized flood warning system for the Indus Basin did not
apply. It is therefore necessary to develop a more localized
and area-specific means of issuing flood warnings to the
population within the Indus Basin alone.

In the UK this can be achieved through local radio stations and
regional television networks, but such an option is not
available in Hong Kong. Another commonly used method of
broadcasting flood warnings and other messages of local
interest is through loudspeaker vans touring local areas. This
may offer one means of targeting flood warnings to the
population of key local areas. The method will possibly only~
be useful for small, localized areas, because of the time
involved in mobilizing vehicles, drivers and assistants who
will read out a pre-determined message over the loudspeaker, °
and in driving to the areas at risk. Through the use of the
standby alert system planned for the pilot RTFF scheme, much of
this potential delay may be eliminated by mobilizing the staff
early in a potential event and having them stationed within the
key flood prone areas at an early stage. This system may well
provide the most reliable and cost-effective way of issuing

warnings to the population of small, localized flood-risk
areas.

Nevertheless, with the short warning times that are going to be
achieved over much of the Indus Basin, some other, general
dissemination method is obviously also required. Two methods
seem to offer the best solution for use within the Indus Basin,
a system of local flood wardens, and a telephone warning system
which members of the public may telephone to receive up-to-date
information about the local flood situation.
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The proposed flood warden system might be set up in one of two
ways. The first would use staff of the various local
Government agencies, such as DO and DLO (N and TP Districts)
plus DSD staff to act as a first point of contact for
dissemination of warnings to local communities. The
alternative would be to appoint local residents in key flood-
prone areas as flood wardens, presumably by paying them a small
annual fee. 1In both cases, the role of the flood warden would
be to pass on the details of the flood warning issued by DSD to
the local population. This could probably best be achieved
through a network of telephone calls where the flood warden
telephones three other people with details of the warning, they
each telephone three others and so on. For properties not on
the telephone, the flood warden and other key members of the
warning network should contact these residents personally after
passing on the warning through the telephone network. As an
aid to warning dissemination in sparsely populated and poorly
serviced areas, flood sirens might be triggered by the flood
wardens as discussed in paragraph 4.14. The flood warden could
also pass details of blocked bridges and culverts together with
local flood level data back to the DSD control room by
telephone, thus helping to update the forecasts in real-time
and assisting maintenance staff.

A further method of disseminating flood warnings and
information on the status of flooding in general would be
through use of a telephone "help-line". Throughout a flood
event, staff at the DSD control room could produce a series of
specific, detailed flood warnings on a relatively simple
recording device linked to a telephone. The public could then
telephone this number (or numbers perhaps) and listen to up-to-
date information on flood status throughout the Indus Basin.
The technology for such a system should not be difficult to
achieve in Hong Kong as the HKTC is technically capable of
supplying and supporting such technology.

The flood warning dissemination system proposed in our Interim
Working Paper was too closely linked to the Territory-wide
system of heavy rainfall and flood warning dissemination
networks to be wholly effective for the Indus Basin. The
revised warning dissemination System now proposed is believed
to be more appropriate to the local situation that will result
within the Indus Basin from operation of the pilot RTFF scheme.
What is required is a series of paths of information which
minimize as far as possible the inter-agency communication
links which are prone to failure during emergencies, partly
because of technology failures of telephone lines, but largely
because of human error and institutional failings exacerbated
by stress during the emergency. The system should be designed
to operate with staff from the minimum number of Government
agencies possible and should aim to communicate warnings to the
public as rapidly as possible to permit them to react. Should
the public choose not te react to a warning, there can be no
blame attached to Government, whereas if a warning is not
issued because of institutional failings, the public have a
right to be concerned.
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The pilot flood siren scheme currently being implemented as a
task of the Phase Il study will also provide a means of
disseminating flood warnings generated by the pilot RTFF
scheme. 1t is suggested that the sirens be triggered manually
in response to warnings issued by the DSD duty staff in the
RTFF flood control room. Whilst automatic triggering would be
possible, as adopted for the pilot flood sirens, it is not
recommended to be the sole method of operation for RTFF.

The proposal to have flood wardens as one primary means of
communication combined with the telephone "help-line" should
provide two alternative information paths to the public and at
the same time permits feed-back from the public to DSD through
the flood wardens. Experience in other parts of the world has
shown that this two-way transfer of information is vitally
important in ensuring that RTFF systems are an effective means
of reducing flood damage.

The system described above should suffice for the common floods
of low return period, but would not be fully adequate for rarer
events. During the development of what appears to be a major
flood, it may be necessary for the DSD duty officer to notify
other Government departments such as the DECC, CAS, RHKPF,
RHKAAF, FSD and so on. Details of this additional
dissemination network have not yet been finalized, and indeed
cannot be organized without detailed discussion with the
various appropriate organizations. This task is best left
until the decision to proceed with the pilot RTFF scheme has
been taken in order to avoid confusion,

Ideally a third line of communicavion should be sought,
preferably one less reliant on the public telephone system.
The best possibility here might be to use radio communication
links operated by either the RHKPF or the ACC, but again no
discussions have been held with such bodies until the decision
to proceed with the pilot RTFF scheme has been taken.

COST EFFECTIVENESS OF PROPOSED RTFF

Costs

The costs of the recommended RTFF system are broken down below:
Installation of additional telemetry 1§ 774,470
RTFF development fee : §1,850,000
RFFS software 1§ 168,750

Production of educational pamphlets : 8 50,000

TOTAL CAPITAL EXPENDITURE : $2,843,220
Running cost of additional telemetry (per year) : §$ 15,000
Software support (per year) :@ § 27,000
Flood Wardens Duty Allowance {per year) : § 100,000

TOTAL ANNUAL EXPENDITURE :§ 142,000
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As outlined in Section 3 additional telemetry includes the
installation of a raingauge at Gallipoli Lines, and the
installation of telemetry and a raingauge at the site of the
Hok Tau water level gauging station. Based on the Hong Kong
Telephone Company’s estimates for line installation and
estimates of equipment purchase these costs will be $766,470
for the Hok Tau site and $8,000 for the Gallipoli Lines site.
The total ($774,470) {is approximately a 50% increase on the
cost of telemetry that will be installed throughout the
northern New Territories for the purpose of flood reporting and
data acquisition; the total cost of which is estimated at
$1,382,840.

It will not be necessary to employ additional Government staff
beyond those already identified as necessary for maintaining
the telemetry and the stations that will be installed for data
collection and flood reporting. The duties of running the RTFF
system will presumably fall upon the staff within the Flood
Control Unit. As this will be only an intermittent commitment,
no additional resources are considered necessary and the
marginal cost is zero.

Benefits Analysis

To determine the average annual benefit to be gained from the
pilot RTFF scheme it is necessary to consider the benefits that
will arise from flood warnings for floods of different
recurrence interval, taking into account the probability of
flood occurrence. An estimate of the benefits.that will.arise
from an RTFF scheme requires first an estimate of the costs of
flood damage.

Flood damage is usually categorized as tangible or intangible
based on whether or not monetary values can be placed on the
consequences of flooding. The tangible costs of flooding can
be divided into direct and indirect damages. Direct damages
arise from the physical contact of water with property or
produce and comprise building fabric and contents damage and
agricultural losses. Indirect losses are more difficult to
quantify, but are those costs arising from the disruption
caused by flooding. This includes traffic disruption,
emergency service costs, Industrial production losses and
retail losses. Intangible losses include loss of life,
personal stress and anxiety and ill-health. Intangible factors
are influenced by both flood event and social characteristics.
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The pilot RTFF scheme will produce some Intangible benefits,
which are not readily expressed in financial terms, the
greatest of which is obviously the potential saving of lives.
Although in recent years loss of life has been avoided the
flooding following recent events (typhoons Warren and Brenda)
has "emphasised how close some people came to serious injury or
death as flood waters rose very quickly and flooded village
areas, farm houses, and temporary structures without warning"”
(Reference 6). There will also be some reduction in anxiety
and stress of people living in flood risk areas. Following
typhoons Warren and Brenda there were some indications of
public misgivings about the lack of flood protection within the
Basin and the fact that no warnings were given. It is
generally agreed that public expectations regarding levels of

service are increasing. These could at least in part be met if
reliable warnings were given.

In the past, assessment of flood damage in the Indus Basin has
concentrated on agricultural losses which are reasonably easily
assessed and can be determined, at least in part, from claims
to the Emergency Relief Fund (ERF). Losses in other categories
are much more difficult to quantify, since the detailed socio-
economic data required is for the most part unavailable in Hong
Kong. However, the Phase 1 study report (Reference 11)
included estimates of flood losses arising from flooding caused
by typhoons Warren and Brenda relating to property damage,
agricultural losses and traffic disruption. Neither event was
particularly severe and Table 2 lists the losses incurred. The
estimates were based on standard UK practice, as outlined in
Penning-Rowsell & Chatterton (Reference 12) and in the absence
of an extensive Hong Kong socio-economic database numerous

assumptions were made about social differences betwecen Hon
Kong and cthe UK. '

TABLE 2

SUMMARY OF FLOOD LOSSES FOR TYPHOONS WARREN AND BRENDA

Typhoon Warren Typhoon Brenda
($ million) ($ million)

Property 3.2 0.5
Traffic 0.7 -

Agriculture 5.1 7.7

TOTAL 9.0 8.2

The damage estimates determined during the Phase I study for
typhoon Brenda were those used in this study as the basis for
determining the damage and hence benefits for floods with
different return periods. Typhoon Brenda was chosen as the
profile storm because it is the most recent event for which
data is available and no flood alleviation schemes have been
completed since it occurred. The flood mitigation scheme at
Sheung Shui was substantially completed between 1988 and 1989
and consequently far fewer properties were affected in typhoon
Brenda than in typhoon Warren.
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Typhoon Brenda caused flooding over an area of some 270 ha in
the Indus Basin. Flood extents were determined for floods with
return periods of 2, 10 and 50 years from the flood extent maps
published in the River Indus Study (Reference 6).

Property Damage

Flood warnings will not significantly affect losses arising
from damage to building fabric but will enable some reduction
in household contents damage. The damage reducing effects of
flood warnings are generally greater for high rather than low
flood stages. For example, research conducted in Australia
(Reference 2) indicates that with a one hour warning reduction
of potential damage to household property can be as high has
29% for a flood of frequency 1:25, 38% for a flood of frequency
1:50 and 43% for a flood of frequency 1:100. Even for floods
with shorter return periods it is clear that with some warning
simple damage prevention carried out by people does result in
considerable damage reduction. It should be noted that the
figures given above are presently the best information
available, but relate to Australia where the situation is
somewhat different to Hong Kong. However, as a starting peint
they are the best that can be obtained.

In most events householders will take some damage reducing
action, such as moving smaller luxury items and valuable
personal affects whether flood warnings are given or not. If
it is estimated that in all cases even with no warning there
would be a.5% reduction in household -contents damage, then
flood warning results in potential savings of 24%, 33% and 38%
for each of the stated return periods respectively.

The above figures assume total population response. In reality
this is unlikely to occur but communities which are aware of
the hazard and have flood experience, usually have a reasonably
high degree of preparedness and effective response. It is
assumed that the regular flooding in the Indus Basin means
local communities are generally well prepared and will
implement standard procedures on receipt of a flood warning.

In this study, savings of the order of 20%, 29% and 34% have
been assumed for floods of return period 25, 50 and 100 years
respectively. Estimated savings of 15%, 16% and 18% were
assumed for floods of 2, 5 and 10 year return periods.

It is likely that over time and with practice flood warning
dissemination and the operation of the responsible authorities
will improve leading to increased efficiency and hopefully
greater damage prevention. It is recommended that the
preparedness of the authorities responsible for flood warning
dissemination is maintained with regular liaison and review
meetings and after-event debriefings.

Flooding in the Indus also causes damage to agricultural
buildings and their contents. That is damage to machinery,
feedstuffs, seeds, fertilizers and stored crops. Flood
warnings would enable some reduction in contents damage through
moving machinery to levels of safety (for example lifting
equipment off the floor) and temporary flood procefing of
buildings, for instance by sandbagging.
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The number of buildings within the area of flood extent was
deternined for events with return periods of 2, 10 and

50 years, by transposing the flood extents published in the
River Indus Study (Reference 6) onto 1:2,000 scale maps. The
number of buildings included only those which would have a
warning time exceeding one hour (refer to Figure 1). Buildings
were divided inte permanent and temporary structures. The vast
majority of permanent structures are houses and for the
purposes of this study it was assumed that all permanent
structures were residential properties. Temporary structures
are both low quality residential properties (shacks and
squatter housing) and farm buildings.

Field surveys during the Phase 1 study showed that in areas
affected by flooding some buildings are constructed on raised
foundations. Consequently, for all floods no wmatter what the
return period some buildings lying in the area of flood extent
will have ground floors above the high water mark. In order to
take this Into account the number of structures not affected by
flooding was assumed to be 50% of the total number located in
the region of flood extent for the 1 in 2 year event and to be
20% of the total number located in the region of flood extent
for the more extreme events. The difference in the reduction
reflects the fact that more people will be aware of the risk
from the more common 1 in 2 year event than are aware of the
risk from the rarer events. Consequently, a greater proportion
of the total number of structures will have been built to avoid
the more common event than have been built to avoid the rarer.
events. The reductions were made for both permanent and
temporary siructures.

Field surveys during the Phase 1 study also showed that
typically 20% of the older village houses are unoccupied. This
reduction was therefore also made to the number of buildings,
permanent and temporary, for all flood events.

Table 3 lists the flood extent and the number of permanent and
temporary structures affected by flooding for the events of
different recurrence intervals. No flood extent map exists for
the 1 in 5 year event and consequently the area flooded and the
number of structures inundated was determined by linear
interpolation between the 2 and 10 year events.

It should be noted that although the extent of flooding
resulting from typhoon Brenda is close to that of the 1 in

2 year event (273 ha and 330 ha respectively) several villages,
notably Tsung Pak Long, Tai Tau Long and San Uk Tsuen are
flooded during the 1 in 2 year event but were not flooded
during typhoon Brenda. The total number of houses in these
villages exceeds 400 and consequently the total number of
structures we estimate to be affected by the 1 in 2 year event
(510) is far greater than the 260 affected during typhoon
Brenda.
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TABLE 3

FLOOD EXTENT AND THE NUMBER OF STRUCTURES
AFFECTED FOR EVENTS WITH DIFFERENT RETURN PERIODS

Flood Return Flood No. Permanent | No. Temporary
Period Extent Structures Structures
{yrs) {(ha) Affected Affected

2 330 240 200

5 465 500 600

10 690 700 1050

50 940 1000 1400

The average losses incurred on residential properties as a
consequence of flooding during typhoon Brenda was determined
from the Phase I report. During typhoon Brenda 73 residential
properties were flooded to varying depths and damage to
individual properties was in the range $15,912 to $546. The
mean value is $6,850. Research in the UK has shown that
building fabric damage is usually in the range 20-50% of total
household damage and in the Phase I study report it is assumed
to be 25% of the total. Making the same assumption in this
study the average household contents damage was taken to be
$5,138 for flood events of all return periods.

In this study damage to temporary structure contents. whether
agricultural or residential was estimated to be $35/m? and
typical building size is assumed to be 25 m?. This is the
formula used in the Phase I report to determine average
agricultural building contents damage. Thus average contents
damage of the temporary structures is estimated to be $875. It
is felt to be justifiable to apply the same average damage loss
to both the agricultural and residential temporary structures
because many of the people living in these houses have
relatively low incomes and few expensive possessions.

It is recognized that during flood events most people will
concentrate on saving personal property rather than
agricultural building contents and consequently it was assumed
that only 5% of losses would be saved as a result of RTFF. The
same percentage saving was assumed for the temporary
residential properties since many of these are single storey
dwellings and the householders will have very little
opportunity to save their possessions. Thus savings resulting -
from RTFF was assumed to be $44 for all temporary structures.

It should be noted that the total number of temporary
structures estimated in this study is probably an under
estimate since large structures shown on the maps probably
comprise many buildings.
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Agricultural Losses

Agricultural losses arise primarily from damage to and drowning
of crops and loss of livestock (pigs and poultry) and fish.
With the limited amount of flood warning that is achievable in
the Indus Basin it will not be possible to either harvest or
protect crops and so there will be no mitigation of these
losses. Primarily, savings will therefore be made by moving or
protecting livestock and fish.

The flooding caused by typhoon Brenda resulted in total
agricultural losses, excluding agricultural building damage, of
some $7.5 million of which $6.2 million was crops and

$1.3 million was livestock and fish.

In this study it is assumed that either by moving livestock or
by netting off fishponds, just 5% of livestock and fish losses
can be saved given at least a one hour flood warning. Using
this figure the effective saving that would have been achieved
during typhoon Brenda is $65,000. Since the total area
inundated during the typhoon was 273 ha the per hectare saving
in the Indus basin is $238. This saving per hectare was
assumed to be constant in order to determine the saving for the
floods of different recurrence interval.

Traffic Disruption

Costs of road traffic disruption caused by flooding can be
substantial. These costs arise in two ways; through additional
marginal transport costs and through lost opportunity costs
caused by delay. Additional marginal transport costs comprise
additional fuel, oil and depreciation costs incurred in
travelling further or at less efficient speed.

Flood warning will only serve to mitigate these losses in
instances where people forewarned postpone a journey or find an
alternative route such that the consequent economic loss is
less than that which would have been incurred had no warning
been received.

The approach to determining traffic disruption costs is

outlined in the Phase I study report and is summarized as
follows:

- determine alternative travel routes

- determine marginal cost of normal traffic flow on the
normal route

- determine marginal cost of traffic flow on the diversion

route, taking into account reduced speed and additional
distance etc.

- calculate the difference in marginal costs

- calculate additional journey times and evaluate the cost
of loss opportunity through delay.
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During typhoon Brenda traffic losses throughout the northern
New Territories were estimated to have cost $4.6 million. No
breakdown of this figure is given, but the Phase I study report

states that the pattern of road flooding was similar to that of
typhoon Warren.

During typhoon Warren flooding affected several arterial routes
in the Indus Basin but according to the Police this only
resulted in delays on the Man Kam To Road, for which there was
no appropriate diversion. The total cost of this disruption is
estimated to have been $128,000. As a consequence of flooding,
the power supply to the computer at the lo Wu Immigration post
was interrupted and passport processing had to be carried out
manually. This caused delays to passengers on the KCR over a

5 hour period. The cost of this disruption is estimated to
have been $556,000. Total traffic disruption is therefore
estimated to have cost approximately $700,000.

The rail disturbance that occurred during typhoon Warren is not
common and could be avoided at minimal cost by floodproofing
the Immigration Department power room. The flood extent caused
by typhoons Warren and Brenda (283 and 273 ha respectively) are
not much different to the flood extent of the 1 in 2 year flood
(330 ha). Consequently losses arising from traffic disruption
ls estimated to be $128,000 for the 1 in 2 year event. For
events of greater severity an arbitrary 1% increase was assumed
for each year increase in return period.

For the most.part the short warnings available in the Indus
Basin will only allow savings to be made in a relatively small
fraction of the journeys made. In many instances the losses
incurred by people postponing journeys before they depart as a
consequence of the warning will be nearly as great as they
would have been had the journey been undertaken. It is
therefore estimated that savings will probably be of the order
of 108 of the total.

Summary and Benefit Analysis

Table 4 lists a breakdown of the benefits to be gained fronm
RTFF for floods with different return periods.

TABLE 4

BREAKDOWN OF BENEFITS FOR A WARNING OF AT LEAST
ONE HOUR IN THE INDUS BASIN

Flood
Return
Period

(¥rs)

Benefit
Relating to
Permanent
Structures
(5)

Benefil
Relating to
Temporary
Structures
(£:3]

Benefit to
Agriculture

Benefit to
Traffic
Disruption

(8)

Total

(3

2

185,040

8,800

78,540

12,800

285,180

5

411,000

26,400

110,670

13,814

561,254

10

647, 500

46,200

164,220

13,824

871,744

50

1,490,000

61,600

223,720

18,944

1,794,264

5.35 In order to determine the average annual benefit to be obtained
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5.35 In order to determine the average annual benefit to be obtained
from RTFF it is necessary to take into account the probabilicy
of the events occurring in any given Year. In effect it is
necessary to determine the integral of the curve of benefits
against probability. A simplified integration can be
determined using the following equation:

n
E(B) - X Yi By
1=
where pP; is the probability of a flood wvithin the
increment i and i-1
B, is the average benefit to be gained from RTFF in
the interval i to i-1
E{B) is the expected annual benefit
n is the flood return period
5.25 Table 5 lists the annual average benefits of floods with
different return periods and the cumulative total:
TABLE 5
THE AVERAGE ANNUAL BENEFIT FOR THE RTFF SCHEME
Item Flood Exceedance Area Benefit Interval Cumuiative
Frequency Prohability Flooded (5 million) Benefit Benefi:
Retumn (ha) p, B (S million;
Period {S m1llion)
{yra)
.08
1 2 0.5 130 0.3 0.08
0.13
2 5 0.2 465 D.55 0.21
0.07
3 10 0.1 690 0.9 .28
0.11
& 50 0.02 940 1.8 0.39
The cumulative total gross benefit is calculated as $390,000.
This is the benefit based on 1989 prices, Assuming an
inflation rate of 10% this is equivalent to $520,000 at 1992
prices. Thus the net annual benefit at 1992 prices, allowing
for the annual costs of the pilot RTFF scheme ($142,000), is
$378,000.
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Although it is very difficult to quantify the intangible
benefits that will occur as a consequence of a flood warning
system it should be remembered that at present there {s a
general rise in the affluence of the population in rural areas
of Hong Kong and this means that people are increasingly at
risk in a flooding situation. Many people now face
considerable financial setbacks as a consequence of flooding.
The ERF scheme only provides assistance to restart, rather than
compensation for loss and does not cover farmers costs. There
is no agricultural insurance system in Hong Kong. Furthermore
improvements in education and the spread of the media, mean
that people are also more aware of their living enviromnment and
more likely to be critical of its management. It is therefore
not surprising that the people in the villages of the Indus
Basin expect something to be done with regard to the flooding
problem in their area, especially when they witness the large
investments in their vicinity, in the form of new towns. It is
apparent that since people do want something to be done they
will be ready and willing to act on flood warnings,

Techniques for appraisal of intangible flood losses are under
development in the UK. Research to date indicates that people
rate the intangible benefits of a flood warning at least as
highly as the tangible benefits. Thus if a monetary value
could be placed on the intangible benefits to be gained in the
Indus Basin as a consequence of RTFF it would have to be of the
same order as that associated with the tangible benefits, that
is $520,000 (1992 prices).

If only the tangible of RTFF are considered and assuming a
discount rate of 5%, then the estimated payback period of the
proposed pilot RTFF scheme is about 10 years. This compares
well with the Phase I (Reference 11) estimate of 7 years., If
it is assumed that the intangible benefits are as great as the
tangible benefits, the effective payback period is 4 years.

We feel that throughout this RTFF cost evaluation, the estimate
of benefits to be gained from RTFF are fairly conservative.

For instance the estimated reduction in household property
damage is based on the assumption that people will get just one
hours flood warning. While this simplifies the subsequent
calculations it should be remembered that most of the
properties further downstream of the line indicated on Figure 1

will get more than one hours warning and some may get two to
three hours warning.
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It should be noted that the design of the pilot RTFF scheme
proposed is such that if the pilot scheme proves successful it
would be fairly easy to transfer it to other catchments in Hong
Kong for relatively little cost. All that would be required
would be reconfiguration of the model network and installation
of some additional telemetry. For instance it could be used on
the Kam Tin basin, a catchment in which the financial losses
arising from flooding are even greater than in the Indus basin.
During typhoon Brenda property damage in Kam Tin is estimated
to have been $2.8 million and agricultural losses were

$6.2 million (Reference 11). Since the major savings arising
from RTFF relate to building contents damage the potential
savings in the Kam Tin Basin are obviously very great, and
could be realized with a very small additional investment.

CONCLUSIONS AND RECOMMENDATIONS

The objectives of this stage 1 RTFF study were to report on the
technical viability and cost-effectiveness of implementing an
operational pilot RTFF scheme on the Indus Basin.

The technical viability of the proposed pilot RTFF scheme
implementation is affected by a number of separate factors
which may be grouped under the headings of:

- data collection,
- modelling, and
- dissemination of flood warnings.

The data collection topic includes telemetry, infilling missing
data and data archiving. As has been explained, much of the
data required for the pilot RTFF scheme for the Indus Basin is
already telemetered, or will shortly be telemetered as part of
the data acquisition task of the Phase 11 study. The only
significant new telemetry input required just for RTFF s the
suggested telemetry link to the Hok Tau gauge. The cost of
this is some $750,000, and whilst the pilot RTFF scheme could
operate without this input, it would be less effective than
would be the case if Hok Tau were to be telemetered.

There will be sufficient rainfall inputs over the Indus basin
itself to permit the pilot RTFF scheme to operate with many of
the gauges inoperative through the use of the isopercentile
method of estimating areal rainfall proposed. In an extreme
case, the system could operate with only one raingauge, but the
confidence of the resultant forecasts could be low. Similarly,
the system will operate very satisfactorily with none of the
river level or flow telemetry inputs operating provided that
some occasional manual staff gauge readings were input to
verify and update the model forecasts. Even with the absence
of data from that part of the Shenzhen Basin draining the PRC,
the proposed pilot RTFF scheme will provide a valuable insight
into the flood situation throughout the Indus Basin during a
flood.
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Given that the SUNSPARC II workstation upon which the RTFF
software will run is linked over a local area network to other
SUNSPARC workstations, computer integrity could be provided by
keeping a backup copy of the software on a second machine and
by copying the hydro-meteorological database from the dedicated
RTFF computer to the backup machine automatically every half to
one hour. The weak link in the proposed pilot RTFF scheme is
the mini-computer at the RO and the dedicated line between this
and the SUNSPARC used for the RTFF system. Consideration might
be given to provision of a duplicate line between the RO and
the DSD SUNSPARC, however, it is difficult to provide absolute
security for the RO mini-computer. Perhaps one option to be
discussed with the RO during the implementation phase, would be
that of copying incoming telemetry data to the RTFF SUNSPARC
before it is written to the RO mini-computer. Because the
telemetry comes from three separate networks operated by the
RO, GCO and the new DSD system, it is possible that in real-
time at least one of these would continue to operate.

It is suggested that there will be sufficient data to operate
an operational RTFF system and that with the exception of the
RO mini-computer, effective safeguards could be built into the
system to avoid failure during a flood event. However, even
given complete failure of the RO mini-computer, data read in
the field by staff of DSD and other agencies could be input
manually to the model to provide some backup forecasting
capability.

It is suggested -that the RFFS computer software recommended as
the basis of the RTFF modelling is sufficiently well-proven in
the UK to justify its use on the Indus Basin. It has already
been applied to a range of operational RTFF systems. A version
configured to meet the particular requirements of the Indus
Basin could provide forecasts of level throughout the lower
basin. There are a number of significant problems in
adequately modelling the Indus Basin, particularly the absence
of data from the PRC, the difficulty of forecasting storm
surges, and the need to use simple probabilistic rainfall
forecasts. These rainfall scenarios could in time be
supplemented by weather radar data. However, the models
proposed will enable the developing flood throughout the Indus
Basin to be moritored and forecast in real time, thus enabling
reduction in flood damage costs due to the timely issuing of
flood warnings.

The pilot RTFF scheme proposed for the Indus Basin will only
produce savings in flood damage costs if an effective flood
warning dissemination programme is developed. Because the
pilot RTFF scheme will provide information in real time during
a flood which has not previously been available in Hong Kong,
no such dissemination procedures yet exist. It will be
necessary to develop a set of procedures specifically for the
Indus Basin, with DSD providing the forecasts through the RTFF
models proposed, but with warnings being issued to the public
and various Government agencies through the RO, who have long
had such a role of issuing similar strong wind and heavy
rainfall warnings.
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Further discussions between DSD, the RO, other Government
departments and ourselves will be required during the pilot
study, but it is suggested that the methods proposed in
Chapter 4 could provide the basis of an effective dissemination
system. A major programme of public education would be
required, not just for those people who live and work within
the Indus Basin, but to a lesser extent to those that travel
through the basin. Disruption of road and rail communications
is one of the inevitable consequences of flooding and can
contribute significantly to the damage costs. Therefore the
travelling public must be made aware of the colour-graded
system of flood alerts and warnings planned such that they may
avoid potentially wasted journeys through traffic disruption
during periods of high flood risk.

It is suggested that although there are a number of recognized
pProblems in implementing an operational pilot RTFF scheme for
the Indus Basin, none of these problems 1s insurmountabile and
that the overall scheme is technically feasible. The proposed
pilot RTFF scheme for the Indus could also easily be extended
to other basins throughout the New Territories.

The cost of implementing the pilot RTFF scheme for the Indus is
$2,843,220. The potential average annual savings in flood

damage from having an effective RTFF scheme are estimated to be
$378,000. Thus the estimated potential pay-back period for the

investment is estimated to be about 10 years, for tangible
benefits alone.

These cost-benefit calculations have not been able to take
account of the savings that might accirue from the reduction in
intangible costs, such as loss of life, risks to health,
anxiety and distress, even though it has been suggested by some
authors that these damage costs may be as high as those
tangible costs such as damage to buildings and property. If
one accepts that there must be some potential saving in these
unquantified, but significant damage costs through the
introduction of flood warnings resulting from RTFF, the cost-

effectiveness of the proposed scheme must be better than
presented,

The proposed pilot RTFF scheme will be very flexible and could
easily be extended to cover other basins in the New Territories
for modest additional costs on installation of hydro-
meteorological stations and telemetry. Thus once the initial
pilot study for the Indus has been completed, extension to the
Kam Tin for example, where potential flood damage costs are
even greater than on the Indus, would be relatively simple and
inexpensive. Again, it is difficult to quantify accurately the
savings from such an extension of RTFF, but it is clear that
the potential damage reduction would be significant.

It is suggested that the proposed pilot RTFF scheme for the
Indus Basin is cost-effective in its own right. If the
additional potential savings due to reduced intangible flood
damage cost savings are considered, the scheme becomes even
more attractive. The system could alse readily be extended to
the Kam Tin basin, further enhancing the cost-effectiveness of
the pilot study investment.
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REGION-WIDE APPLICATION
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INTRODUCTION

Since 1988 the Institute of Hydrology, under subcontraci to Logica, has been
engaged in the design and development of a River Flow Forecasting System
(RFFS) for use by the Yorkshire Region of the National Rivers Authority.
Whilst currently configured to make forecasts at over 100 sites in the
Yorkshire Region the design of the system allows reconfiguration to any river
network or set of networks without recoding. In addition, a modular and
generic  design allows use of a wide choice of hydrological and hydraulic
forecasting models and river control algorithms. It is the purpose of this paper
to review the general functionality of the hydrological kemel of the RFFS and
to describe the models and associated algorithms incorporated in the Yorkshire
implementation. Further information on the scope of the Yorkshire RFFS is
contained in a companion paper for this conference by Cottingham and Bird.
Also Moore et al (1990a) provide additional detalls of the design philosophy
underpinning the System.

THE INFORMATION CONTROL ALGORITHM

At the heart of the RFFS is an algorithm which controls the flow of data
required to make forecasts and which selects the model algorithms to be used
in their construction. This is the Information Control Algorithm or ICA. A
particular configuration of forecast points within 2 river system is described
within the ICA by a set of description files. These files take two main forms:

(i) a Model Component file which defines the form of model structure and
data inputs to be used to make forecasts for a particular location or set
of locations; and

(i) a Forecast Requirement file which defines for each forecast point the
Model Component to be used to construct the forecast for that point,
the type of forecast (eg.  river level, flow, snowmelt) and the
connectivity with other model .components. . .

A Model Component is typically made up of a number of Model Algorithms,
for example for snowmelt modelling, rair-fall-runoff modelling and real-time
updating. The model algorithms to be used are defined within the Mode
Component file description. Figurc 1 illustrates a typical model component and
its associated model algorithms and Figure 2 illustrates the connectivity
between model components. This connectivity allows the ICA to represent fiver
Systems with complex dendritic structures including bifurcations.
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The Model Algorithms are formulated within a generic subroutine structure
which allows new algorithms to be coded and accessed by the ICA without
recoding of the ICA itself The generic structure is sufficiently general to allow
algorithms of varying complexity to be coded. For example, algorithms can be
as simple as calculating catchment average rainfall as a weighted average of
raingauge data or may be as complex as ones which incorporate contro! rules
for river gate settings as part of a hydraulic model of a tidal river.

Having constructed a set of Model Component and Forecast Requirement
description files to define a structure for the particular forecasting problem,
the ICA initially employs these to construct a file used to order the sequernke
of model component executions. This “order-of-execution” list need only be
constructed once for a given forecast network configuration. Operational
running of the 1CA deploys this list to get the data it requires to make the
forecast run and then to exccute each model component. The ICA works
down the tree network of the river system, in the order dictated by the list,
so that forecasts of flow or level are used as input to the next model
component downstream. At run time the lead time of the forecasts can be
changed as well as various scttings controlling the input used by the model
componcents.

The ICA allows the user to dynamically define "subnetworks” within the
overall model network configuration. These can be defined, for example, to
only execute the non-tidal part of the model, or to execute a selected set of
rapidly-responding catchments requiring a flash-flood warning, updated at
frequent intervals. On completion of a forecast run the “states” of the models
required to initialise a subsequent run are stored; the time selected for storing
the states is usually 30 minutes before the present time to allow for delays in
receiving telemetry data The states will be typically the water contents of
conceptual stores within snowmelt and rainfall-runoff models or the river levels
and flows of channel flow routing models. A subsequent run at a later
forecast time origin will start forecasting forwards from the time of storing the
states from a previous nun

Operationally in non-flood conditions the system is run automatically once a
day at about 7 am following routine data gathering by the Regional Telemetry
System. This means that the model states are available to provide good
initial conditions from which t0 run the model for a flood event occurring
later the same day, thus avoiding the need for a long “warm-up” peniod for
model initialisation. During flood events the system is run frequently under
the control of the RFFS operator.

RFFS MODEL ALGORITHMS

Introduction

The model algorithms used within the ICA fulfil a range of functions. They
can serve as simple utilities to sct flows to a constant value, for example to
represent a fixed compensation release from a reservoir, or to merge data
from different sources according to a priority hirearchy to ensure that a data
scries required for forecasting is complete. The mose conventional form of
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model  algorithm  performs some  specific hydrological function such as
rainfall-runoff modelling, channel flow routing, snowmelt modelling or hydraulic
modelling of the tidal river. The particular forms of hydrological modelling

algorithms implemented as part of the Yorkshire RFFS will be briefly reviewed
in what follows.

The PDM: a rainfall-runoff model for rcal-time use

The Probability Distributed Model or PDM is a fairly general conceptual
rainfali-runoff model which transforms rainfall and evaporation data to flow at
the catchment outlet. Figure 3 illustrates the general form of the model.
Runoff production at a point in the catchment is controlled by the absorption
capacity of the soil to take up water: this can be conceptualised as a simple
storc with a given storage capacity. By considering that different points in a
catchment have differing storage capacities and that the spatial variation of
capacity can be described by a probability distribution, it is possible to
formulate a simple runoff production model which integrates the point runoffs
to yield the catchment runoff. :

p Suriace
‘ ‘ ‘ l Direct slorage
runoft
S2 o
q, Surface
$ runof!
Probability - distributed
soil moisture storage -
Baseflow
Cl,b
- SS -
Groundwater
slorage

Figure 3 The PDM minfall-runoff model

The probability-distributed store model is uscd to partition rainfall into direct
runoff, groundwater recharge and soil moisture storage. Direct runoff is ropted
through a “fast response system”, representing channel and other fast
translation flow paths. Groundwater recharge from soil water drainage is routed
through a “slow response system"™ representing groundwater and other slow
flow paths Both routing systems can be defined by a variety of nonlinear
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storage reservoirs or by a cascade of two linear reservoirs (expressed as an
equivalent sccond order transfer function model constrained to preserve
continuity). A variety of spatial distributions of store depth are available to
define the probability-distributed store model. Alternatively the store model can
be replaced by a simple proportional splitting rule for partitioning rainfall to
follow surface and subsurface translation paths. A constant background flow
can be included to represent compensation releases from reservoirs, or constant
abstractions if negative.

The model is specifically tailored for real-time application. Facilities exist to
correct the model forecasts in real-time, either by modifying the water contents
of the conceptual stores or by augmenting the forecasts with an  error
predictor: these techniques are discussed later. Further details of the model
structure deployed are contained in Moore (1985, 1986, 1988).

The KW model: a channe flow routing model for real-time use

The KW model is a generalised form of kinematic wave model which makes
allowance for wave speeds to vary with discharge magnitude. In addition,
storage functions are provided to represent flow into washlands to complement
the modelling of in-bank flows. The basic form of the model is presented in
Moore and Jones (1986) and Jones and Moore (1987). Water movement down
a river channel is approximated by the kinematic wave equation with lateral
inflow

x,. 0
& b rs 9

where Q is channel flow, q is the lateral inflow per unit length of the reach
and ¢ is the wave speed. This is expressed in finite difference form as

= (1)) Qf; ¢ < [Qt}l * th

where QF is the flow at the k th node at time t and qf is the lateral inflow
into the k th section at time t-1L Node k is the downstrcam node of section
k The wave speed, c, is actually time varying, changing as a function of the
observed flow at a particwlar node K. A choice of functions are available
including a piecewise linear function over 3 or 4 segments as well as cubic
and exponential parametric functions. An auxiliary threshold storage function
can be applied, cither at sclected model nodes to represent overfiow into
washlands, or to observed lateral inflows to compensate for errors in the
rating rclationship, especially for out-of-bank flows. A number of forms of
parameterised threshold functions are available.

The use of a variety of parametric functions to define the model form is
particularly useful for real-time application to large, complex river basins where
the use of survey data would be cxpensive in time or survey data may not be |
available. However, a tabular form of wave speed-discharge relationship can be
used if survey data are available to infer the relation from hydraulic principles
(Institute of Hydrology, 1990) and if this method is preferred. Calibration of
the parametric model functions is accomplished wusing the RFFS Model
Calibration Facilities discussed later.



PACK: the Pragmatic Snowmelt Model

This model was originally formulated under contract to the Severn Trent
Water Authority (now the NRA Severn Trent Region) with additional support
from the Ministry of Agriculture Fisheries and Food (Harding and
Moore,1988). The snowmelt process is represented in simplified terms using a
snow store and a melt store to represent the snow pack storage. Melting of
the snow store is controlled by a simple tcmperature index equation; this
could be readily extended to incorporate turbulent heat exchange through the

additon of a wind velocity term if required. The resulting melt enters the -

melt store where it is released slowly from its base. A sccond higher orifice
allows release of water from the pack (snow and melt water) at a higher rate.
The height of the orifice varies with the total water cquivalent of the pack
This serves to represent the rapid break-up of the pack as a critical liquid
water content is reached. A schematic of the structure of the PACK model is
shown in Figure 4. An additional component is included to allow for
incomplete spatial coverage of snow over a catchment for shallower, older
packs This employs an areal depletion curve to calculate -the proportion of the
catchment covered by snow, allowing some rain to fall on snow-free ground
and effectively enter the rainfall-runoff model directly.
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Figure 4 The pragmatic snowmell model



S 00 00 6-0-0 6.0 0.0_ 90 09 0 ¢ 90 0 %9 ° 060 9% 0 o 0

Two forms of the snowmelt algorithm exist within the ICA. The first is used
in “point form" at snow survey sites and excludes the arcal depletion curve.
This is used (o obtain errors between the model snowpack water equivalent
and the surveyed amount. These errors are transferred to the the "catchment
form” of the model to adjust catchment snowpack water equivalents

The Hydraulic Model used for tidal river modelling

The hydraulic model incorporated in the ICA is based on the United States
National Weather Service’s DWOPER/NETWORK program (Fread, 1985) which
employs a four-point implicit scheme to solve the Saint Venant equations
However, the code has undergone substantial modification to conform with the
generic structure required of an ICA model algorithm, to operate in a
real-time ecnvironment and to extend its functionality. These ecxtensions include
modelling of “static washlands”, coping with gen¢ral multi-branched channel
trees and not just a simply-branched single main channel, allowing a "network”™
or braided channel to form a branch of a tree rather than treating the whole
channel structure as a single network (this simplifies the setting vp of data
structures and can save c¢xeqution time), more flexible specification of data
required for a modelling problem, improved extraction of channe! geometry
data, and computational refinements to achieve faster execution The option to
model pipes and sewers has been removed. The Hydraulic Model algorithm has
also been extended in the Yorkshire RFFS implementation to incorporate a
predefined rule for gate operation of Barmby Barrage which serves to inhibit
incursion of salt and sediment laden water of the tidal Ouse up the River
Derwent.

The ARMA Error Predictor Algonthms

Two forms of updating of model forecasts te incorporate information from the
most recently telemetered values of niver level and flow are available within
the RFFS. The first is state correction which has been briefly discussed in the
context of the PDM nainfall-runoff model; at present this form of updating is
only available for this model. Both the KW channel flow routing model and
the Hydraulic Model employ an ARMA (AutoRegressive Moving Average)
model as the basis of updating. This technique exploits the dependence seen in
model ertors, with runs of overprediction and underprediction being common.
The ARMA model structure characterises this dependence through a weighted
combination of past model simulation errors and one-step ahead updated
forecast ertors. The result is a predicton of the future errors which are added
to the model simulation forecasts to form updated forecasts for different
lead-times. Extensions to the normal form of ARMA aror predictor
incorporated in the RFFS are a logarithmic form, in which proportional errors
are treated rather than the normal additive ones, and a multiple time series
form. The latter is applied as a single model algorithm to the error series
from the Hydraulic Model for multiple level recording sites along the tidal
River Quse.
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MODEL CALIBRATION FACILITIES

A comprehensive range of facilities are provided within the RFFS to calibrate
the above models using observed data Calibration facilities for the PDM
rainfall-runoff model, the KW channel flow routing model and the PACK
snowmelt model share a common Calibration Shell Program. This shell
essentially provides a framework within which any time series model may be
optimised (i¢. parameters of the model are estimated to minimise a prescribed
objective function which makes the modelled time series approximate the
observed) and model performance assessed. The shell can also be used to
incorporate new models to allow model development to procced in an efficient
manner. A modified form of the Nelder and Mead simplex, or polytope,
method is used for optimisation (Nelder and Mead, 1965: Giil, Murray and
Wright, 1981). The program may be used in the normal optimisation mode, or
to gencrate plots and statistics to assess the performance of a given model or
to generate a response surface plot showing how a pair of parameters affects
the value of the objective function. The latter is used to reveal any
interdependence between model parameters which may degrade the search for
an optimal parameter set. An cxample of a plot used for performance
assessment is shown in Figure S.

Figure 5 Calibration result for the PDM rainfall-runoff model
applied Snaizeholme Beck at Low Houses (Upper dashed
line: total forecast flow; Lower continuous line : baseflow
forecast; Lower das. line: soil moisture deficit)
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A scparate Transfer Function Noise (TFN) Modclling System is provided to
support general exploratory data analysis prior to formal modelling It is also
used to identify the “pure time delay” between rainfall and the first significant
response at a flow gauging station needed as a parameter within the PDM
rainfall-runoff model. The TFN Modelling System incorporates modules for
correlation function analysis and Otting of transfer function and ARMA models
(Box and Jenkins, 1970). The latter are used to construct emor predictors for
the KW channel flow routing model forecasts to achieve improved performance
in real-time, through the incorporation of the most recently telemetered values
of flow.

Whilst the Hydraulic Modcl has no automatic optimisation facility a mode of
running is provided for usc in model calibration. Performance statistics,
including pooled statistics over a set of sections where river level
mecasurements are observed, are complcmcnlcd by graphical displays of observed
and model simulated levels.

SYSTEM RESILIENCE, MERGING ALGORITHMS AND
PROFILE DATA

A requirement of the RFFS Specification was that the flow forecasting system
be resilient to data loss.  This is accomplished for a point “internal” to the
network by ensuring that the model component which constructs forecasts for
the point will also infill missing values in the past data. For “external”
points, typically rainfall and other forms of climate data, model algorithms are
used to merge data time series from a2 variety of sources In the event of
no data being available provision is made to supply a backup pofile. A
hirearchy of priority of data source can be imposed in the case of data being
available for a given time from more than one source. For example, in the
case of rainfall the prority for a given catchment rainfall might be radar data
from Hameldon (the North West radar), radar data from Ingham (the Lincoln
radar}, raingauge data from n raingauges and then any combination of Jess
than n (allowing for raingauge system malfunction), and a backup rainfall
profile. For future times when no observation data are avaidable the priority
might be a Local Radar Rainfall Forecast (not currently available but see
Moore et al, 1989, 1990b), FRONTIERS forecasts and synoptic forecasts
(provided in the Yorkshire RFFS automatically to the modelling computer by
a computer/telex facility from Leeds Weather Centre) and finally the backup
rainfall profile. The rainfall profiles in the Yorkshire RFFS are scasonally
dependent and categorised into light, moderate and heavy with the option of
invoking a selection at run time. They are also subdivided into seven synoptic
regions over Yorkshire: these comrespond with the regions adopted for the
synoptic forecasts provided by Leeds Weather Centre.

Another important use for profiles within the RFFS is to provide boundary
conditions for the tidal hydraulic model. Astronomical tidal predictions supplied
by the Provdman Laboratory are stored as 15 minute values in profile form.
These are augmented by tide residua! forecasts supplied by the Storm Tide
Waming Service by Fax and entered manually into the RFFS. Other uses for
profiles are for potcntial cvaporation and temperature to support rainfall-runoff
and snowmelt modelling.
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THE OPERATIONAL SYSTEM FOR THE YORKSHIRE
REGION

The Yorkshire RFFS has been configured to make forecasts at 115 forecast
points on the Ouse river network and other river networks within the 13,500
km? of the NRA Yorkshire Region. This has required the specification of 208
Forecast Requirement and 89 Model Component files. A total of 16 model
algorithms are used and there is a requirement for 49 profiles. There are
1578 state variables of which 488 relate directly to the Hydraulic Model of
the tidal Ouse. The configured Yorkshire RFFS awaits completion of the
Regional Telemetry System but it is expected to become operational on a trial
basis in the Autumn of 1991. Figure 6 shows a forecast produced by the
System operated in a mode which accurately mirrors how the system will be
operated in real-time: the lower forecast is based on observed data only up to
the forecast time-origin and backup profile data beyond this, whereas the
upper forecast assumes perfect knowledge of future rainfall. This points to the
importancc  of rainfall forecasts for headwater catchment rainfall-runoff
modelling for extended lead-time forecasts; however, this importance diminishes
further down the river network when the natural lag time in the river system,
observations of river level and the relatively good accuracy of channel flow
routing models make forecasts more accurate and resilient.

Church Houses and Kirkby Mills
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Figure 6 Flo:”c{orecast for the River Dove at Kirkby Mills using
Ch

Houses rainfall: the upper forecast assumes perfect
Joreknowledge of rainfall whereas the lower forecast is based
ongon observed rainfall up to 1200 1 January 1987 and
a backup rainfall profile after this.
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CONCLUSION

The flexible System design of the RFFS, realised through jts Information
Contro! Algorithm, makes it ideally suited for application elsewhere within the
National Rjvers Authority, to other areas of the UK and overseas,
Reconfiguration to another niver network is achieved cxternally to the program
code through a set of Bles. The generality of the models
provided with the System should Prove to be applicable elsewhere but if this
is not the case, or other models are preferred, then the generic model
algorithm structure wilt readily accomodate new models or control algorithms,

This vision of adaptability in the design of the System is expected to prolong
the life of the RFFS well beyond the year 2000.
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The probability-distributed principle and
runoff production at point and basin scales

Rn Jo rmE
Institute of hKydrolcgy, Wallingford,
Oxfordshire 0OX10 8BB, UK

ABSTRACT The probability-distributed principle in
basin-scale hydrology considers the frequency of
occurrence of hydrological variables (model inputs,
parameters or elements) of certain magnitudes over the
basin without regard to the location of a particular
occurrence within the basin. The random assemblage of
different parts is considered more important than the
relation of the parts, one to another. Rainfall-runoff
models based on probability-distributed infiltration
capacity and storage capacity concepts, and which
generate runoff according to Hortonian and saturation
overland flow mechanisms respectively, are distinguished.
Two types of probability-distributed storage capacity
model are identified, one based on an assumption that
storage elements at points in the basin respond
independently of their neighbours, and the other where
storage elements interact so as to equalize the depth
of stored water over the basin. Allowing redistribution
of water leads to simplification of the model equations.
The probability-distributed principle is also used to
represent the process of water translation through the
basin. Interpretation of the instantaneous unit
hydrograph as a probability density function of
translation time is demonstrated and the inverse
Gaussian density proposed as a suitable functional form
on physical grounds,

Le principe de la distribution des probabilités et la
production d'écoulement en un point et & 1'6chelle
d'un bassin

- RESUME Le principe de la distribution des probabilités
dans 1'hydrologie & l'échelle d'un bassin considdre la
fréquence de 1'occurrence des variables hydrologiques
(telles que les entrées dans un mod2le, les paramétres ou
€1éments) de grandeurs données sur toute 1'étendue du
bassin sans regarder l'endroit od a pu étre observée une
occurrence particulilre 3 1'intérieur des limites du
bassin. L'assemblage au hasard des différentes parties
est considéré comme plus important que le rapport de
chaque partie, l'une avec !'autre. On souligne

*Paper presented at the Anglo-Polish Workshop held at Jablonna,
Poland, September 1984. (Sec report in Hydrologyical Sciences
Journal vol. 30, no. 1, p- 165.)
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l1'importance des modeles précipitation-débit basée sur
les capacités de 1"infiltration distribuées suivant une
lo1 de probabilité donnée et les conce

pPts de capacité
d'emmagasincment,

et qui produisent 1'€écoulement
conformément aux mécanismes de ruissellement décrits par
Horton et de ruissellement de surface lors de 1la
Saturation. On identific deux types de nodele de 1g capacité
d'emmagasinement distribuée suivant une probabilité
donnée: un modéle est basé sur 1'hypothése que les
€léments de mise en réserve aux divers points du bassin
donnent une réponse indépendamment de leurs voisins, et
1'autre modéle présente des éléments d'emmagasinement qui
réagissent 1'un sur 1'autre afin d'équilibrer la hauteur
de 1'eau emmagasinée sur toute 1'ét

endue du bassin,
Grace a 1la redistribution de 1'eau on arrive a une

Simplification des équations de modéle. On utilise aussi
le principe de distribution des probabilités pour
représenter le processus de transfert de 1'eau 3 travers
le bassin. On montre une interprétation de 1'hydrogramme
unitaire instantané comme fonction de 1a densité de
probabilité du temps de transfert et on propose la

densité inverse gaussienne comme forme fonctionnelle bien
adaptée pour des raisons physiques.

INTRODUCT ION

The conventional approach adopted for modellin
Processes is either one based, where possible,

one which invokes a simplified conceptualizatio
dynamics.

g bydrological
on physical laws, or
n of river basin
The first approach is usually termed physically-based
distributed modellang, and the second conceptual modelling; in
contrast to the distributed nature of the former, the latter
provides a lumped description of river basin behaviour. Physically-
based distributed models are rarely entertained for operational
applications, such as real-time flood forecasting, on account of
their inherent complexity. Shortcomings of the simplified lumped
conceptual approach suggest, however, that models of intermediate
complexity should be sought which take some account of the snatial
variations of hydrological quantities over the basin. One such
approach is based on the Probability-distributed Principle,

¥hereas physically-based models attempt to take account of the
actual spatial configuration of hydrological variables over a basin,
those based on the probability-distributed principle consider only
the frequency of occurrence of hydrological variables of certain
magnitudes over the basin without regard to the location of a
Particular occurrence within the basin. By first characterizing
the runoff production process at a point within the basin,
Probability distributions describing the
Process parameters over the basin are use
expressions for the integrated flow respo
make the probability-distributed approach
it isg Necessary to employ simple represent
Production process operating at a point an
interactions between neighbouring points,

spatial variation of

d to derive algebraic

nse from the basin. To
analytically tractable,
ations of the runoff

d of the nature of the
Two forms of point-runoffr
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production will be considered, one based on the storage capacity
concept and the other on the concept of infiltration capacity. In
the case of probability-distributed models developed according to
the storage capacity concept, distinctions are drawn according to
the nature of the interaction between storage elements. Finally,
application of the probability-distributed principle to
translation of water to the basin outlet leads to a probabilistic
interpretation of the instantaneous unit hydrograph and discussion
of an appropriate functional form.

PROBABILITY-DISTRIBUTED MODELS OF STORAGE CAPACITY

Theory of non-interacting storage elements

Consider that the process of moisture storage (possibly both
interception and soil moisture storage) at any point in a river
basin may be represented by a simple store or reservoir,
characterized by its depth or capacity, c¢' (Fig.1(a)). The depth

(a) Point representation of runoff production by a simple store

j ‘ I r\k ’

q

T
(b) Basin representation by storage elements of different depth and their associated

probability density function s::wlget
i ; elemen
probability density, flcl = / 5
' r
E
<
store
capacity, ¢

(c) Direct runoff production from a population of stores

Fig. 1 Definition diagrams for the probabilitydistributed non-interacting storage
capacity model.

L}
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of water in storage is increased by rainfall, P, is depleted by
potential evaporation, E, and when rainfall exceceds the Storage
capacity, c', generation of direct runoff, qQ', occurs. A river
basin may be considered to be madec up of many such Storage elements,
each one characterized by its store depth, ¢, and acting
independently of neighbouring storage elements so that no water isg
transferred between elements (the importance of this independence
assumption will be discussed later when the effect of allowing
to redistribute across Storage elements is considered). As a
consequence, the store depth, c, may be viewed as a randonm variate
with probability density function, f(c¢), so that the proportion of
stores in the basin with depths in the range (c, ¢ + de¢) will be
f(c)dc.

If stores of all possible different depths are arranged in
ascending order of depth from left to right and with their open
tops positioned at the same horizontal level, then a wedge~shaped
diagram results if lines AB and AC are drawn through the store tops
and bottoms respectively (Fig.1(b)). Note that this diagram does
not represcent the statistical population of stores, but stores of
different depth; it will be used to establish the water leve)
profile across stores of different depth resulting from a sequence
of wet and dry periods. The probability of occurrence of stores of
a particular depth is specified through the density, f(c¢), and is
displayed alongside the wedge-shaped diagram in Fig.1l(b).

Now consider the basin to be saturated following a prolonged wet
period so that all storage elements are full, and evaporation then
occurs at a rate E. At the end of a unit time interval the water
level profile will be as shown in Fig.1(b). If rainfall, P, occurs
in the next unit time interval, then the water level at the end of
this interval will be that depicted by the line AWW' in Fig.1(c).
The hatched triangular area indicates the volume of direct runoff
produced in the interval as a result of store capacities of
increasing depth being progressively replenished and starting to
spill. The actual volume generated must be obtained by weighting
runoff gencration from a store of a given size by its probability
of occurrence as specified through the density, f(c¢). This
procedure will be developed next.

At the end of the urit interval, all stores of capacityv less than
P will be contributing direct runoff; the critical capacity below
which all stores are full at some time, t, will be denoted by
C* = C*(t), and in this example C*(t) = P. The proportion of the
basin occupied by stores with depths less than or equal to Ce(r)
will be:

water

L 3
prob(c $ C*(t)) = F(C*(t)) = [ yqc (1)
o]

in which the function F(.) is the distribution function of store
depths, and is related to the density function through the relaticon
f(c) = dF(c)/dc. Since F(C*(t)) defincs the sSaturated proportion of
the basin, it follows that the contributing area of direct runoff
gcneration from a basin of area A is:

Ac(t) = F(C*(t)) A (2)
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The instantancous rate of runoff generation per unit area from the
entire basin, q(t), is obtained by multiplying the net rainfall rate,
denoted by n(t), by the proportion of the basin which is saturated,
so that:

q(t) = mw(t) F(C*(t)) (3)

Considering the i-th wet interval, (t, t + At), during which time
the net rainfall rate is constant and equal to ;= Pi - E then
the critical capacity will increase according to:

i "
C*(1) = C*(t) + ni(r - t), t ST ¢t + At (4)

and the volume of basin direct runoff per unit area generated in
this interval will be:

t+At t+At
V(t + At) = | q(u)dt = | m; F(C*(1))d1
t
t+At ([C*(T
N [ ¢ crde ar
i
t o
C*(t+At
= [C*¢ ) Fic)de (5)
Ce(t)

The evolution of the water profile across stores of different
depth as a consequence of a series of net rainfalls, "3 = P4 - Ey,
in successive unit time intervals, i = 1,2,3,..., falling on an
initially saturated basin, is illustrated in Fig.2. A number of

horizontal (or deficit) segments, Dk = Dk(t), and sloping (or

0. LM -2

\\\ £°"2
c-e

i Ce
¢ ‘

2. M- -2 3. N,-2
0;=2
- |
C* -2 C,*@
feve .
1] t
4 ne -1 46105 M-

Dy=1
0;-3
C'=»
Ci- .
L]
'

Fig.2 Evolution of the water profile across non-interacting stores of different
depth in response to net rainfalls, n, = (-2, =2, 2, -1, 5), falling in successive unit time
intervals on an initially saturated basin.

.................O................1
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content) scgments, Ck = Ck(t), are formed across the assemblage of
Stores as &8 result. Instantancous direct runoff, q(t),
from this series of net rainfalls is controlled solely by the
temporal evolution of C*(t) over this period, and may be calculated
using equations (3) and (4) for an appropriate distribution of store
depths. The critical capacity, Ce*(t), will vary according to (4)
during a wet interval. However, whereas the interval, At, is
usually taken to be the measurement interval of rainfall, it may be
less if a deficit segment is replenished during this time. For
example, in the interval (4,5) in Fig.2, at time 4.6 the critical
capacity C*(t) jumps abruptly from 3 to « as the deficit segment is
fully replenished, so two intervals, (4,4.6) and (4.6,95) must be
used. Also, if the density, f(c), is bounded to the right by ¢
the maximum store depth (as would be the case for triangular or

Power distributions), and Ce(t + 4t) would exceed Chax

resulting

max’

according to
(4), then At must be chosen when C*(1) first equals Cpax: and

Ce(1) = Cnax USed over the remainder of the rainfall sampling
interval. It will be understood that integrals developed later
involving an infinite upper limit on ¢ should be replaced by Cm
the case of right-bounded density functions.

Expressions describing the volume of distributed soil moisture
over the basin as a whole will now be developed. The total
Storage available in the basin is given by:

ax in

Smax = fmcf(C>dc = f“(l - F(c))de = ¢ (6)
s} O

which by definition

is equal to the mean store depth, E, over the
basin; here, §

max 1S €xpressed as water depth over the basin. By
considering each horizontal deficit segment and sSloping content
Segment in turn across the water level profile, AWW'
general expression for the actual basin Soil moisture
at any instant in time is obtained:

in Fig.3, a
deficit at

C.+D. C,_y+D,
Kk k -1
sMD(t) = . [ ' P (¢ - ciyf(erde » 1 [ (e de
152°Ci+Dj4) i=3 Ci+D;

e et ———

sloping horizontal

~ Dof(e)d 7
* ICzi'Dz 2 (C) ¢ ( )

e s

last horizontal

Here Dk+1 = Ck =0. It follows from equations (6) and (7) that the
basin soil moisture storage is:

S(t) = Spax ~ SMD(t) (8)

and continuity gives the actual cva

poration over the i-th interval,
(t,t + At), as:
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— - —W

Fig. 3 _ Definitipn diagram for deriving expressions for basin soil moisture storage,
soil moisture deficit, actual evaporation and drainage for the probability-distributed
non-interacting storage capacity model,

S(t) - S(t + At) P; =0
i . > E.
E; E At Pi 2 Eg (9)
Pijdt + S(t) - S(t + Ot) 0 £ PsS E

Using D* = D*(t) to denote the depth of the minimum deficit segment

~(i.e! D* = D), the instantaneous rate of actual evaporation at
time t, when nw(t) = P, - Ei' is:
Eif  f(c)de P. = 0
S0 1
Py f(c)d 0 $.P; SE
P. + (E. - . c)dc = P, s :
i i i D*(t) i i

Figure 4 illustrates the relationship between the ratio of actual to
potential evaporation and soil moisture deficit that results from
assuming store depths to be distributed according to either
exponential or lognormal distributions. Thbe range of relationships
provided by these functions appears to be reasonably realistic,
bearing in mind other relationships presented in the literature
based on experimental data (sce, for example, Fig.4 of Moore &
Clarke,  1982). Explicit dependence of actual evaporation from an
individual storage element on its molsture deficit through a
specified functional relation would lead to the horizontal and
sloping water level profile in the wedge-shaped diagram becoming
curved, and the probablility-distributed theory would become
analytically intractable. This presents an important shortcoming
of the approach. The problem may be circumvented, although at some
cost in terms of representing reality, by assuming that actual
evaporation varies as a function of basin s0il moisture deficit as
expressed by equations (8), (7) and (6). This problem will be
discussed further when redistribution of water between stores is
considered.

An extension of the approach is possible to ailow for drainage
to baseflow. By considering now that a storage element is open at
the bottom allowing drainage to occur at a constant rate, y, until
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Fig.4  Relation between the ratio of actual to potential evaporation, E'/E, and soil

moisture deficit, SMD.

the store empties, then the instantaneous drainage rate, b(t), from
the population of storage elements at time, t, can be calculated as
follows. Consider first of all a dry period. At some time t
during this dry period let the water level surface across the
population of stores be as depicted by the line AWW' in Fig.3.
Drainage oc¢curs at the instantaneous rate Y from all stores
containing water, that is from all stores of depth greater than

Dk = D*(t). The instantaneous drainage rate from the basin at time
t, is therefore:

b(t) = [ yf(c)de= y(1 - F(D*(t))) (11)
D*(t)

Over a dry interval, (t,t + At), the critical deficit, De(1), will
vary according to:

De(r) =D*(t) - (w5 - ¥)I(1 - t) (12)

where the interval, At, is usually the sampling interval, but may be
8 shorter interval if a content segment is fully depleted. Note
that the emptying of a content segment will result in an abrupt
instantaneous increcase in D*(1), in an analagous manner to
replenishment of a deficit segment during a wet period causing
C*#(1) to change 1its value abruptly.

We may now calculate the volume of water drained in the f-th
interval, (t,t + At), as:

ID‘(t+At)
D*(t)

Now consider the complications introduced when drainage occurs
under raining conditions. Provided that the instantaneocus rainfall
rate is less than the evaporation rate (P§ S E4) then equations (11
and (13) clearly still hold. However, when rainfall exceeds the
eévaporation rate, then drainage from stores with depths less than
D*(1) must also be considered, even though some or all may remain

B(t + at) = ["P(rrdr = yae - F(z)dz (13)
t
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empty due to drainage losses. Two cases must be considered.

Case‘l: LI ¢ when the net rainfall exceeds the drainage rate
then all stores will drain at the instantaneous rate, Y. Therefore
the instantaneous drainage rate from the basin over the wet
interval, (t,t + At), is:

b(t) = [y f(crde = ¥ (14)
o

that is it remains constant and equal to the maximum rate, Y. Also
the volume of drainage over the interval (t,t + 4t) will be:

B(t + At) = vyit (15)

Case 2: w; Sy When the net rainfall rate is less than the
drainage rate then stores with depths less than D*(1) will lose water
by drainage at a rate, 7y, whilst stores with depths greater than
D*(1) will drain at the maximum instantaneous rate, y. Consequently
the instantaneous basin drainage rate will be given by the sum of
two integrals:

b(x) = [Ty rcerde + [0 rcerde
(o]

D*(1)
=y + (ny - Y) F(D*(T) | | - ae)

Integrating b(t) over the interval, (t,t + At), to obtain the
volume of basin drainage, B{(t + 4t), results in the same expression
derived for the no-rain case, and given by equation (13). Note that
since m; £ Y then the minimum depth of store containing water,
D*(1), will decrecase over the interval (t, t + Ot), and At must be
chosen such that equation (12) is satisfied; thus the time t + 04t
may coincide with the time at which a contents segment is fully
depleted and not the end of the sampling interval. The above
development is exact and replaces the approximation given in Moore
& Clarke (1983).

The above completes the development of the probability-
distributed theory for non-interacting storage elements, providing
expressions for basin direct runoff, drainage, and actual
evaporatibh,'both in terms of instantaneous rates and -as volumes
(expressed as depth over the basin) over any interval of time.
Expressions for the basin soil molsture storage and soil moisture
deficit at any instant in time have also been derived.

Translation of direct runoff and drainage, generated at points
within the basin, to the basin outlet remain to be considered in
order to obtain the total basin runoff hydrograph. How the
probability-distributed principle may be applied to the translation
problem will be dealt with later. The effect of relaxing the
assumption that storage clements respond to rainfall inputs
independently of each other will be considered next.

Theory of interacting storage elements

If the assumption that storage elements act independently of each
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other is relaxed, and water is allowed to redistribute itself

-between stores, then the probability—distributed thecory becomes
both simpler and more flexible. Two modes of redistri
considered initially. The first mode all
in such a way as to cause all stora
depth of water, Ce(v),
which will be full.
redistribution",

bution will be
Ows water to redistribute
ge elements to have an €qual
eéxcept those with depths less than C+(t)
This will be called "equal storage
A second possibility is to Suppose water
redistributes so that a constant deficit, D*(t),
across the population of Stores, except stores with depths less than
D*(t) which will be empty. This will be called "equal deficit
redistribution”". The effect of allowing redistribution according to
these two modes of behaviour s to replace the water level profile
of deficit and content Segments seen in Fig.3, by either a single
content segment or a single deficit segment depending on the mode
assumed. A little thought quickly leads to rejection of the equal
deficit redistribution mode as a realistic candidate, since
immediate redistribution according to this mode will result in an
abrupt switch from no contributing area of direct runoff to the
total basin contributing as the deficit D*(t) is completely
replenished by rainfall. On the other hand the equal content
redistribution mode appears as an attractive candidate, since the
temporal evolution of C*(t) will reflect the overall wetness of the
basin, and it is C*{t) which 1s used to determine the contributing
area of direct runof? gencration. The equal Storage redistribution
mode will be adopted conscquently in the development to follow,
Consider that the water level aCross the assemblage of stores of
different depth is as depicted in Fig.5 so that all stores contain
water to a depth C*(t), except those that are smaller than C* (1)
which will be full. The total water in storage over the basi

is maintained

n is:

sct) = [TV icrae + cod) [T reeyde
o C*(t)

(17)
Making use of the general result:
J¥et(erde = x F(x) - [*F(c)de (18)
o Lo}
basin water sStorage at time t may be re-expressed as:
Ce
sty = [0 L reerrde (19)
Lo}

Fig.5  Water level across stores

of different depih according 1o the equal storage
mode of water redistribution.
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This equation assumes great importance, since 1t allows the basin
water storage to be calculated for a given ¢critical content, C*/t),
and vice versa. It corresponds to the area above the distribution
function of storage depth between zero and C*(t). Over the wet
interval, (t,t + At), the critical capacity, C*(1), will vary
according to equation (4), the instantaneous direct runoff according
to equation (3), and the volume of basin runoff generated in the
interval will be given by equation (S5). If net rainfall LA $ 0 in
the interval (t,t + At), then no direct runoff is generated. The
basin storage can be determined by continuity as:

S(1) = S(t) + LI (r - t) (20)

and equation (19) solved for C*(T) given S(t1) when required at the
beginning of a subsequent wet interval in order to calculate basin
direct runoff.

A weakness in the above development is that the redistribution of
water between stores ensures that evaporation occurs at the potential
rate throughout the basin until it dries up completely. This defect
is readily overcome by allowing the actual evaporation rate to
depend on the basin soil moisture deficit, Smax - S{(t). A number of
possible functional relations are reviewed in Moore & Clarke (1982),

but the linear relation:

4]

i (Smax - 5t S(t)
— =1 - = (21)
1 Smax Smax

will be used for the purposes of illustration, dependence on storage
S(t) at the beginning of the i-th interval, (t,t + 4t), may be
assumed for simplicity, so that actual evaporation, E;, is also

constant over the
storage (equation

'IIi with TI'. = P, -
1 1

interval. The
{20)) requires
E;, and is now

continuity equation for basin
to be modified by substituting
valid for ﬂ; £ 0.

Generalization to accommodate dra}nage to baseflow, Yy is also
accomplished by substituting (Pj - Ej - y;) for 7m; in the continuity
equation (20) and in the expressions used to compute direct runoff
generation in a wet interval (equations (3), (4) and (5)). To take
account of the dependence of drainage on the amount of water in
storage, S(t), a simple linear relation: SRR . . Coe

Y; < kb S(t) (22)

may be invoked, where k, is a groundwater recession constant with
units of inverse time. The continuity equation in this general case
becomes:

S(t) = S(t) « (Pi - EiS(t)/S ka(t))(T - t) (23)

max
during a period, (t,t + At), when no runoff generation occurs.

The general development of the probability distributed theory of
interacting storage elements is now complete. It should be
emphasized that, for interacting storage elements, no redistribution
of water is necessary during periods of direct runoff gencration
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since all stores will contalin the same depth of water, except of
course those of smaller depth which will be full. Redistribution
of water to equalize the depth of water in each sto

€ inter-storm periods does not
seem too unreasonable, and the unique relationship between s0il

molsture storage, S(t), and critical capacity, C*(t), which results,
leads to considerable simplification.

Development of the probability-distribu

ted theory of Storage
capacity for a particular distribution

Development of the general theory for
storage capacity will serve to clarif
and in particular demonstrate the imp
obtained when redistribution of water
capacity is allowed.

basin will be assumed
distribution function:

a particular distribution of
Y the approach outlined above,
ortance of equation (19),

between stores of different
The spatial variation in store capacity over a
to be well represented by the reflected power

b

F(e) =1 - (1 - crey, ) 05 cs ey, (24)

The corresponding density function is:

. b-1
- dF b
f(c) = () = (] - < ) 0 <
X

S c S (25)
max
dc <ma Cmax

and both distribution and density functions are plotted fo
of values of b in Fig.6. Parameter Cpmax 15 the maximum store
Capacity in the basin, and parameter b controls the degree of
spatial variability of store capacity over the basin;
cases, b = 0 implies a constant value of capacity over
b =1 implies that capacity varies uniformly from 0 to

r a range

as special
the basin, and
Cmax

(a) Probability density function (b} Distribution function

S o]
& -
Probatmiity Distesutaon
Densily Funciion
Function Ficl
fie) b

| Y
0 100 200 0 I60
S1ocepe capaciy, ¢ mm

:'°"9' Capec ity ¢ mm
The reflected power distribution of storage capacity.

Fig. 6
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(i.e. store capacity has a rectangular distribution). The area
above the curve, and bounded by the dashed lines in Fig.7, is equal
to Sm and given by equation (6); specifically for the reflected

ax
power distribution:
Cmax
Smax - {, (1 - Fleyde = cmax’,(b + D (26)

and it follows that the mean store depth is c .. /(b + 1).

If at some time, t, the basin moisture storage, S(t), 1is known,
then the corresponding critical capacity C*(t) can be obtained by
solving equation (19) for C*(t). The unique relationship between
storage, S(t), and critical capacity, C*(t), expressed by
equation (19), applies only to interacting storage elements, when
the water level across stores of different depth will be of the
simple form shown in Fig.5, and not of the complex, segmented form
shown in Fig.3. Solution of equation (18) for C*(t) in the case of
the reflected power distribution is obtained as follows:

* “(t
scty =[S0 - Feende = [0 - crepa,0’ac
(o) o]
b+1
= S, (1 - (1 -Crye )
which yields
coty = ¢ {1 - (1 - s(tass 0T (27)

max

Although the reflected power distribution gives the above
straightforward solution of equation (19) for C+(t), it is worth
noting that this attribute is not always shared by other possible
candidate distributions of store capacity; for example, a triangular
density requires the solution of a cubic equation in C*(t) over part
of its range, and a lognormal density demands an iterative

P e TRl ol

aSlestl

- ol

T T T
.—--‘--.‘---‘I...--O---b

Cotu Cits 1l
Stocage capeciy ¢ mm

Fig. 7 The storage capacity distribution function used to calculate basin moisture
storage, critica! capacity, and direct runoff according to the probability distributed
interacting storage capacity model,
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solution such as Newton-Raphson.
Reference to Fig.7 indicates the rel
S(t), the stippled area representing the basin storage, S(t). Rain

falling in the interval (t,t + At) will generate a volume of
direct runoff given by equation (S5) so that:

ationship between C*(t) and

C*(t+at
Vit + sty = [CTUAU R e
Ce (1)
b+1
= et - s {Qa - C*(t)/c )
b+1
-1 - Cx(t o+ At/ ) ) (28)
where Iy = P, + E{ - y., and C*(t + At) = Cv(t) + 36t in the
general case of soil storage dependent evaporation, and drainage.
The addition to soil moisture storage:
AS(t + At) = 8t - V(t + At) (29)

is indicated in Fig 7. If C*(t) + I;0t exceeds <,

ax then the above
requires modification, as follows.

The critical capacity C*(t + At)
will be equal to Cpax (the maximum possible) and the volume of
direct runoff generated will be :

b+1
Vit + At) = HiAt - Smax(l - C‘(t)/cmax)
= ﬂiAt - (Smax - S5(t)) (30)
and S(t + At) = Smax‘ Alternatively, the interval 4t may be chosen

50 that C*(1) first reaches the value Cpax 3t the end of this
interval and equals Cmax fOr the remainder of the rainfall sampling
interval; then no modification to equation (28) is required.
Equations (28) and (30) may be used together with equation (27) for
C*(t) to construct a family of rainfall-runoff relationships (Fig.8)
for given conditions of basin soil moisture, S(t).

The sequence of water balance calculations for successive wet and
dry periods is as follows. Drainage to baseflow, Yj. and actual
evaporation, Ej, are obtained from equations (22) and (2}) using the
current value of s0il moisture Storage; net rainfall over the
interval will be Ili = Pi + Ei ~ Y4- During periods when no direct
runoff is generated, the continuity equation (23) is used to update
the so0il moisture storage. At the beginning of a storm period, the
current value of storage is used in equation (27) to obtain the
critical capacity. This allows the volume of runoff generated in
the interval to be calculated from either equation (28) or
equation (30), which is then used in equation (29) to calculate the
addition to storage, and so on.

The above may be compared with the procedure for deriving runoff
according to the independent storage element theory. - Equation (28)
(or equation {(30)) remains valid ag the solution of equation (5) for
a reflected power distribution of Stores., However, there is no
unique relation between Storage and critical capacity, as expressed
by equation {(27), and evaluation of C*(t) must be obtained by
continuously updating the water profile of content and deficit
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Fig.8  Rainfall-runoff relationship for the probability distributed interacting storage
capacity model,

segments in the manner illustrated in Fig.2. Details of the steps
involved in this calculation can be found in Moore & Clarke (1981,
p. 1373). Computation of soil moisture deficit and baseflow must
also take account of the particular configuration of content and -
deficit segments, and demands solution of equations (7), and
(11)-(16) respectively.

Historical perspective

The concern so far has been to present a rigorous developrnent of the
theory of probability-distributed models of storage capacity; full
recognition of the published research which underpins this theory
has not always been given. It is now timely to present a brief
historical perspective of the theory's development. Use of the
probability-distributed principle to account for the effects of
areal variability in losses on runoff formation has enjoyed
considerable attention over the last three decades. Kharchenko &
Roo (1963) review work carried out in the USSR since the 1950s,
beginning with the analysis presented by Bagrov (1950) and
including Popov's (1956) use of exponential and hyperbolic .-
distributions to represent spatial variation in "“absorption losses".
Kharchenko & Roo also treat rainfall as a probability-distributed
input and show how it influences the basin runoff when used in
conjunction with probability-distributed absorption losses over the
basin. More accessible accounts of Popov's work, including its
application to snowmelt flooding, are to be found in Popov (1962,
1973, 1980).

Research in China may be traced back to the early 1960s, and to
studies at the East China College of Hydraulic Engineering (ECCHE),
beginning with the work of Zhao & Zhuang (1963). Subsequent
developments of the probability-distributed approach are documented
in ECCHE (1977) and Zhao et al. (1980) where the resulting model 1is
referred to as the Xinanjiang model. The reflected power
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distribution of Storage capacity is adopted in this model because
gave bLest agreement with observed rainfull and runoff data.
gilves a straightforward solution for the critical capacity, Ce*(t),
(equation 27)). The theory of interacting storage elements
presented here derives largely from the above-cited rescarch in
China and the USSR, and the illustration using the reflected power
distribution is drawn from the work of Zhao and his co-workers.
However, the presentation of the theory given here differs from that
contained in the above-cited works, and aims to clarify its link
with the theory of independent storage elements.

In the German Democratic Republic, Becker (1874) also developed a
Probability-distributed model based on interacting storage elements.
He recognized that interception storage provided by s forest canopy
would vary over the basin, ranging from zero at unvegetated sites to
S0me maximum value where the canopy was deepest. The simple storage
element was used to represent the interception process at a peint,
its capacity was viewed as a random variate from a rectangular
distribution, and expressions for throughfall (water spills) and
canopy water storage derived. These expressions may be obtained as
special cases of the equations developed here for direct runoff
generation using the reflected power distribution with b = }.

Becker explicitly acknowledges that redistribution of water between
stores was invoked to arrive at an analytically tractable solution.

The exact analytical theory for independent storage elements was
developed a decade later by Moore & Clarke (1981, 1982, 1983) and
Moore (1983). The pPresent paper has aimed to establish and clarify
the link between the two theories, one based on independent storage
elements and the other on interacting storage elements.

it
It algo

PROBABILITY DISTRIBUTED MODELS OF INFILTRATION CAPACITY

Other research on the application of the probability-distributed
Principle to derive models of direct runoff generation has not been
based on the variability of Storage depth over the basin but rather
on the spatial variation in the rate at which water can enter the
s0il. These developments of Probability-distributed models based on
the concept of infiltration capacity will now be considered.

Perhaps the best known development of the probability-distributed
Principle in hydrology is contained in the Stanford Watershed model
developed by Crawford & Linsley (1966). They used s rectangular
distribution to describe the spatial variation of infiltration
capacity over the basin and allowed the maximum infiltration
capacity parameter of this distribution to vary as a function of
soil moisture storage.

As a simple illustration of the type of runoff calculation made
in the Stanford Watershed model, consider the rectangular
distribution function of infiltration capacity, F(i) = /10
presented in Fig.9. Rain falling at a rate P in a unit interval
will generate runoff at all points in the basin with infiltration
capacity less than P: the proportion of the basin contributing
runoff will therefore be F(P). The total volume of direct runoff

génerated in the basin in the unit interval, and indicated by the
hatched area in Fig.8, will be:
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Fig.9 Basin direct runoff production and infiltration to storage according to the
probability-distributed infiltration capacity modei.

p .
_ - <

v —uIOF(l)dl Ps i (3ta)
V=P-i, + jo F(i)di 2 4., (31b)

and the addition to soil moisture storage will be A4S = P - ¥
(ignoring evaporation). Dependence of infiltration capacity on soil
moisture in the Hydrocomp version of the nmodel (Hydrocomp
International, 1969) is represented by allowing the maximum
infiltration capacity parameter to vary inversely with soil
moisture, S, according to & modified Philip equation (Philip, 1957):
(32)

imax = 210/(8/50)2

where 1, is an infiltration parameter, and S0 is a reference level
of moisture storage.

The distributed infiltration capacity component of the Stanford
Watershed model has been used in modified form in various USGS
rainfall-runoff models (Dawdy et al., 1972;  Dawdy-et-al., 1978;
Alley et al., 1980). Different distributions of infiltration
capacity have been developed by other workers. Pitman (1973, 1976)
used a symmetric triangular distribution, Clark (1980) considered a
power distribution, and Moore (1983) obtained an exact expression
for direct runoff generation according to = lognormal distribution
of infiltration capacity. Supporting evidence for the use of a
lognormal distribution can be found in a number of empirical and
theoretical studies on the spatial variation of infiltration
(Nielsen et al., 1973; Warrick et al., 1977; Smith & Hebbert,

1979; Sharma et al., 1980).

The distinction between distributions of infiltration capaclty
used in the Stanford Watershed model and its derivatives and the
probability-distributed podels for storage capaclty should be made
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clear. In physical terms, infiltration capacity specifies the
maximum rate of entry to soil moisture Storage, whereas storage
capacxty refers to the depth of water storage available. Probability-
distributed infiltration capacity models generate direct runoff
according to the Hortonian overland flow mechanisms, in contrast to
the saturation overland flow mechanism inherent in models based on
the storage capacity concept (Dunne, 1982). The observed dependence
of infiltration capacity on soil moisture storage demands that
probability-distributed infiltration models incorporate such depend-
ence explicitly, through relations such as equation (32) or the Green-
Ampt type equation used by the USGS models. In contrast, models based
on distributions of storage capacity have soil moisture storages
which are determined directly through the distribution function of
store depths; for example, the mean storage capacity is equal to the
maximum storage available in the basin (see equation (6)).
Probability-distributed models of storage capacity and
infiltration capacity discussed up to how have accounted in
different ways for the loss-accounting component of runoff
generation. Two components of runoff have been generated, one
produced at the surface and called direct runoff and the other below
ground and termed drainage to baseflow, and expressions have been
developed for the integrated response of these components from the
entire basin. However, no account has been taken up to now of how
translation of direct runoff and drainage through the basin to the
basin cutlet will shape the resulting hydrograph. Only the volume
of basin direct runoff and drainage have been determined and not
their distribution over time as observed at the basin outlet. How
the probability-distributed principle may be applied to represent
the mechanism of water translation through the basin will be dealt
with next.

PROBABILITY-DISTRIBUTED MODELS OF TRANSLATION TIME

Translation of direct runoff to the basin outlet

When direct runoff is generated from the spilling of a full storage
element, this runoff will be assumed to travel independently of
runoff Irom neighbouring elements, and to be routed to the basin
outlet by means of a linear channel ‘with constant delay, t. Each
member of the statistical population of stores will be characterized
not only by its capacity c, but by its translation time t, and

both ¢ and t may be considered to be random variates from some
distribution. The density of store depths f(c), may now be
replaced by the bivariate density f(c,t), where t 1is the time taken
for direct runoff from stores of depth ¢ to reach the basin outlet.
This formulation allows for possible interdependence of the
variables ¢ and t; for example, a positive correlation for ¢ and t
may be justifjed on the grounds that in close proximity to the
Stream channel the water table will be close to the ground surface
SO that effective store depths and travel times will both be small,
whereas further away from the channel, deeper storage elements vill
be more abundant and be associated with longer times of travel.

A contrary argument in favour of a negative correlation between ¢
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and t was presentcd by Moore & Clarke (1981). Note that to simplify
notation. arguments of the function, f(.), are used to denote
different probability density functions: f(c), f(t) and f(c,t).

For the general bivariate case the basin runoff rate at time t
will be given for probability-distributed models of storage capacity
by:

Q(t) = f n(1) IC (T)f(c,t - 1)dcdr (33)
o

For the degenerate case when the bivariate density factorizes to the
product of two independent densities, f(c,t) = f(c)f(r),
equation (33) becones:

Q) = [“nco jc M eerde tee - nyar (34)
[0}

Substituting equations (1) and (3) reduces the above to

Q(t) = [TqC1) £t - T)ar (35)
[0

which indicates that basin runoff is given simply by the convolution
of the basin direct runoff, q(t), with the probability density
function of translation time, f(t). Note the equivalence of f{t) to
the instantaneous unit hydrograph or kernel function, and the -
probabilistic interpretation of f(t)dt as the probability of the
travel time being in the range (t, t + dt). Equation (35) for basin
runoff applies to all mechanisms of direct runoff generation
considered here (that is, based on distributed infiltration capacity
Oor storage capacity concepts).

Translation of drainage to the basin outlet

Two possibilities present themselves when considering translation
of drainage to the basin outlet. The simpler option is to merely
sum the instantaneous direct runoff and drainage rates and to

convolve this quantity with the density of travel times so that the
basin runoff is given by:

Q(t) = ft (Q(t) + b(1)) f(t + 1)dr (36)

o . . - - ’ -

Conceptually this might be justified by considering direct runoff
and drainage to be contributions from hillslope segments to the
channel system, and therefore should share the Same translation
properties from thereon as controlled by the channel network. Thus
the characteristics of the density of travel times, f(t), would be
dictated by the characteristics of the channel network,
Alternatively, direct runoff and drainage may be considered to
take separate paths to the basin outlet, so that basin runoff is

€iven by the sum of a translated direct runoff coamponent and a
baseflow component, that is:

Q(t) = ftq(T) f(t - 1)ds « Itb(t) fy(t - )ar (37)
o o
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Distributions of translation time

The problem of choosing a density function to dcsﬁribe the random
nature of the travel time taken for d

who pointed
to regarding the translation
process as a single linear reservoir. An fmportant advantage of the

exponential density is that a simple recursive solution to the
convolution integral of e€quation (35) can be obtained. However, the
simple exponential recession behaviour obtained does not conform to
observed recessions, which tend to fall abruptly immediately
following the peak, and subsequently at a much slower rate. If the
total runoff is considered to be the sum of direct runoff and
baseflow components according to equation (37),
distribution may be appropriate for the baseflow
Indeed, use of two different exponential densitie
and baseflow components would allow recessions to
Tunoff is dominated by direct runoff and later at
baseflow assumes dominance. However,

then an exponential
density, fb(t).

s for direct runoff
fall abruptly when
2 slower rate as

An approximately analogous translation problem arises in the
theory of Brownian motion where a particle moving with uniform
velocity v undergoes linear Brownian motion so that it takes a
variable amount of time, t, to cover a fixed distance, x. Then the

translation time, L, 1s a random variable with probability density
function:

V 2
- vt
£(t,x; v, 0) = —=— exp | X2 V03" > ) t 20 v2o0 (38)
ov2nt 20t

where x/v is the mean translation time, and g¢?
constant. By invoking this analogy in the pres
runoff is assumed to be generated only from tho
basin at a distance x from the basin outlet,

constant velocity v along paths of different

taken to reach the basin outlet will depend o
taken. Eagleson (1970) demonstrates how this
obtained as a linearized solution to the Saint
open channel flow, and its relation to the conv
€equation,

The density may be expressed in the stan
inverse Gaussian densit

is a diffusion

ent context, direct
se points in the
and travels at a
length. The time

n the particular path
density may be
Venant equations of
ection-diffusion

dard form known as the
Yy {(Johnston & Kotz, 1970; Folks & Chhikara,

1978) :
A \1/2 At - my?
£(t; u,)) =( 3) exp —‘L—;—El— t 20 {39)
20t 2u°t
obtained from equation (38) using the Féparameterization v = x/p,
o2 = xz/A, where the new parameters py and A are positive and of

dimension time, A special case is the one parameter distribution:

A 172 A |
fCt; ) =(-—-;) exp(-—) (40)
2ne 2t
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obtained when p + =, and corresponds to pure diffusion. Venetis
(1968) shows how this density may bec derived as the impulse response
function of one-dimensional flow in a homogeneocus isotropic confined
aquifer.

The inverse Gaussian density is unimodal and positively skewed
and a particular feature is its heavy tail (Fig.10)}. It would
appear to be a suitable choice for the density of translation time
f(t), both on account of its shape characteristics, and its physical
interpretation through its relation to the Saint Venant equations of
open channel flow and the general convection-diffusion equation.

Its relation to the equations of groundwater flow also suggest that,
in the form of equation (40), it would be a suitable choice for
fr,(t), the density of drainage translation time.

Of course there is no necessity to seek a parametric function to
represent the density of translation time, f(t). Indeed f(t) may
be dealt with as an empirical density function whose form is to be
determined from rainfall and runoff data. Then classical methods
for identifying the instantaneous unit hydrograph may be used, or
those based on constrained programming solutions which aim to ensure
that the shape of the empirical density is physically realistic.

DISCUSSION

Simplified representations of direct runoff generation and soil
moisture at a point within a river basin have allowed the
probability-distributed principle to be applied to obtain analytical
expressions for the runoff response from the basin as a whole. If
more complex point representations are entertained, possibly
incorporating more of our understanding of the physics of runoff
generation and s0il moisture storage, then this analytical
tractability is soon lost. Recourse must then be made to numerical
integration procedures in order to derive the basin response. An
example is provided by the work of Takagi & Matsubayashi (1980)

.28
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Fig. 10 inverse Gaussian probability density function of translation time for various
values of mean translation time, u, with \ = 1,
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where a hillslope scgment is chosen
element, and a simplified representa

tion of discharge from the bage
of the hillslope segnment,

based on Darcy's law, is cmployed. A
Statistical distribution of hillslope elements over the basin ig
envisaged, cach member being characterized by a set of parametersg
whose probability distributions represent their variability over the
basin, some being considered uniform and therefore constant. Slope
length and inclination are used as morphological parameters, and
hydraulic conductivity and effective porosity as soil parameters,

Since an analytical expression cannot
response,

al basin response. Thus the
Y a discrete summation of weighted

responses from hillslope elements

It scems unlikely that such probability-distributed models based

nt representations of runoff
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CONCLUSION

This paper has aimed to highlight the role of the probability-
distributed approach as a formulating principle in many rainfall-
runoff models in use today. The principle's widespread application
serves as a testimony of its value in rainfall-runoff mode]
formulation. Two types of probability-distributed model have been
identified, one based on infiltration capacity, which controls
entry of water into the s0il, and the other based on storage
capacity, which controls subsurface Saturation. Early models based
on the storage capacity concept, and developed in the USSR, China
and the GDR, have been shown to invoke the assumption of
redistribution of water on entry to storage, which leads to an
analytically tractable and flexible model formulation. More
demonstrated that an exact
analytical model formulation can be obtained without requiring that
water is redistributed below ground. Further generalization of
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¥hich mode of runoff production will be dominant will depend on
climate, soil, vegetation and topography, but in general models
based on infiltration capacity are likely to be appropriate for
more arid regions. Dependence of infiltration capacity on soil
moisture storage must be incorporated explicitly through an
infiltration equation in models based on the infiltration capacity
concept; however, soil moisture storage is determined directly by
the distribution function of storage capacity in storage-based
models.

Finally, it has been shown that translation of runoff generated
at points in the basin outlet can be regarded as a problem of
defining a probability distribution of translation time. The
inverse Gaussian density is presented as a suitable translation
time distribution.
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APPENDIX C

COMMENTS AND RESPONSE
FOR INTERIM WORKING PAPER ON RTFF



TERRITCRIAL LAND DRAINAGE AND
FLOOD CONTROL STRATEGY STUDY - PHASE II
INTERIM WORKING PAPER
ON REAL-TIME FLOCD FORECASTING
FOR THE INDUS BASIN

RESPONSES TO COMMENTS

The Interim Working Paper on RTFF for the Phase II Study was
submitted to DSD and circulated to various Government departments for their
comments via Binnie-Maunsell Consultants’ letter reference NRT/0617/0/930

dated 1st July 1991. Comments on the report were received from the following
Government departments:

A. Drainage Services Department, Sewage Treatment Division

B. Civil Engineering Services Department, Civil Engineering Office

C. Water Supplies Department, Planning Division

D. Drainage Services Department, Electrical and Mechanical Projects
o Civil Engineering Services Department, Geotechnical Contrel Office
F. Drainage Services Department, Mainland Nerth Division

G. Drainage Services Department, Design Division

H. The Royal Observatory, Hong Kong
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A Drainage Services Department, Sewage Treatment Division
Comments from Chief Engineer/Sewage Treatment, Drainage Services
Department in letter reference DSD/ST/G08/01 dated 8th July 1991
Comment s Responses
Al 1 refer to your letter dated lst July 1991
on the captioned subject,
Please be advlsed that 1 have no comments -
en your Interim Working Paper on RTFF,
B. Civil Enginearing Services Department, Civil Enginearing Office
Comments from Chief Engineer, Port Works, Civil Engineering Office,
Civil Engineering Services Department in letter reference (21) in PWO
6/1905/88 VI dated 11lth July 1991
Commert s Responses
Bl Referring to the Interim Working Paper on -
"Real-Time Flood Forecasiing for the Indus
Basln" whlch accorpanied your letier dated
lst July 199, please be advised that this
Division kas no comment on this Paper,
C. Water Supplies Department, Planning Division
Comments from Chief Fngineer/Planning, Water Supplies Departrent in
letter reference (23) in WWO 4/137/1382/88 III dated !“th July 1991
Comments Responses
cl : have the following comrerts on the
captioned working paper:
Cl. Sections 2.6 - 2.8
Use of catchmen: lag as an indicator of We would agree that catchment lagq
forecast lead time for smail or upland aloene Is a poer indicator of possible
catchments 1s generally Irpracticable. forecast lead times and have tried to
Perhaps, it may be applicable o large or make this point clear 1n cur Interim
lowland catchments particularly for s: ort Working Paper. The point is dlscussed
duration storm rainfalls, in more detail in para 3.11 of the
i final Working Paper.
€1.2  Sectlon 3.7
Is PMD alsc a parametric model (i.e. a set The PDM mode! is a parametric model
of parameters}! such as DISPRIN model? The lixe the DISPRIN model. PDM has been
latter was used in River Dee regulation developed in recent years specifically
erploying IUH for convolution operazion, for real time fleod forecastlng
cascade of equal and unequal llnear appllcations and is we believe the
reservoirs for flow routirg and non-lirear most suitable model for the small
process for moisture accounting, and has mixed land-use catchments found in
been proved quite good for apolication in Hong Kong. Mr Moore of IH is fully
Hong Kong. 1t seems that unlike DISPRIN, famillar wicth DISPRIN having worked on
PMD has omitted the cuick return flow from it with its origlnator whilst both
subsurface storage, were at the Water Rescarch Centre, and
havirg applled this model to early
phases of the River Dee RTFF system in
Wales.
lreport\ib0461] 2




Comments

Responses

cl.2

cl.3

Section 3.7 {cont’'d)

Section 7.9

The error term in real-time flood
forecastirg has two sources, one being the
discrepancy attributable to the
forecasting model in converting rainfall
to runoff, the other belng attributabl- to
the uncertalinty of future rainfall.

Little is known about :he errors
introduced by !nadequate knowledge of
future rainfall amounts. In view of the
above, it would be practicable for some
cases Lo use real-time rainfall data for
flood forecasting. Its advantage is to
give a nearly-actual forecast fiood peak
at the time when most intense rainfall has
falien. If fcrecast rainfall is L
considered necessary and practicable,
depth and duration of rainstorm and its
profile would te important. I would
suggest the following criteria bpe
considered:

i) [f a long duraticr storm :is cxpecred,
forecas. rainfal. may be used fcor
flood forecastin A storm pa:itern
{say at 5 min. intervals) for
forecast rainfall :s desirable and
hence a real-time rainfali foreccast
model may be contemplated.

®
o
DISPRIN is a complex mode! with from
11 te 23 parameters depending upon hLow
it 1s confiqured to any particular
basin. Parameters must be fitted
subjectlvely, which Is not a good
practice, and the model requires good
quallty data from a we!l gauged
catchkment, a situvation that
unfortunately does not exist on the
Indus basin. POM is a simpler model
whose parameters may be fitted by
objective means and is better suited
to data scarce situations such as the
Shenzhen basin. We have expanded upon
our reasons for preferring the PDM in
para 3.10 of our final Working Paper.

We agrec with the sentiments expressed
here and hoped that the explanation of
the value of rainfall forecasts given
in Sections 7.9 to 7.12 and
illustrated in Figure 8 would be
helpful teo recaders. The commenter is
right in saying that the use of "real-
time (i.e. mcasured} rainfall ... will
give a nearly-actual forecast Fflood
peak at the time when most intense
rainfall has fallen". As shown in
para 3.:1 of the Flnal Working Paper,
the flood peak will result frém a
brief period of high~intensity
rainfall within thne body of-the sterm,
and the flood peak may occur before
the end of the ra‘nfall.

However, during the early s:ages of a
storn, ¢ne carnot use only measured
rainfall or the forecast peak may be
Underestimated. If rain continues o
fall, and {f the RO and DSD expect the
rain to continue, it is unwise to base
flood forecasts on telemetered rain up
1o "tine-now" alone; some sort of
future rainfall scenario or forecast
is required. Whilst the problems of
deriving such rainfall forecasts are
recognized, it has always been
important with operational RTFF
systems Lo glve users the opportunity
Lo corsider "what-i{f" scepnarios

associated with various rainfall

forecasts. Further discussion is
glven in para 3.25 of the Final

Working Paper, )

[report\ib0461) . 3
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Responses
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ilt if the storm duratlon i{s relatively
short and the forecast lead time is
large erough to give flood
forecasting and warning, then real-
time rainfall data could be used for
flood pecak prediction.

Generally flrm warnings to the publlic
of imminent flooding would not be
issued on the basis of such rainfall
forecasts; warnings would only be
needed at a later stage of the event
once the main high intensity ralnfall
had occurred as the commenter rightly
states, However, the rainfall
forecast can significantly increase
the lead time of potential flooding
which would be used to place the
various Government and private
agencles on standby., It is not
intended that the public should be
issued with flood warnings based upon
inherently imprecise rainfall
forecasts, but such early indicatlions
of a developling potentfal flood should
be of conslderable valuve in initlating
the process of setting up the official
response mechanisms for.-the various
agencles to be inveolved in flood
warning dissemination and damage
mitigation. Glven the very short firm
lead times pessible for much of the
Indus basin, it is vital to begin the
mobilization of the various agencles
as early as possible and this is where
the value of rainfall forecasts will
be felt. It is suggested that whilst
there will inevitably be some false
alarms from such a procedure, provided
only the staff of Government and
private agencles are put con standby
"unnecssarily™, there (s no danger of
the public loosing confidence in the
preocess of RTEF.

D. Drainage Services Department, Electrical and Mechanical Projects
Comrents from Chief Engineer/Electrical and Mechanical Projects,
Drainage Services Department in letter reference (36) in DSD/EM/P129
dated 15th July 19%1

Comment s Responses
D1 I refer to your letter dated lst July 1991
on the captioned subject.
Please be informed that I have no comments -
on the Working Paper.
[report\ib0461) 4




Civil Engineering Services Department, Geotechnical Control Office

Comments from Principal Government Geotechnical Engineer, Geotechnical
Control Cffice, Civil Engineering Services Department in letter
reference (10) in GCP 1/10/434 VIII dated 19th July 1991

Comments

Responses

El

Thank you for circulating this interlm
working paper, which allows us to follow
your thoughts on this subject, prior to
the formal submission of the completed
worklng paper.

I have only minor comments on this report:

a) In paragraph 6.1, the second "PDM"
should read "BMP",

b) Paragraphs 6.3 and 6.4 refer to
problems which may arise from placing
the lower boundary of the catchment
at Lo Wu. I consider that this is
more promlsing than is Indicated in
the report, provided that reasonably
accurate boundary conditions can be
established from semi-empirical
relationships, taking into account
all relevant inputs in the area, as
well as tide gauge readings from Tsim
Bel Tsui. ! look forward to seeling
the results of the pilot study in
which these problems will be more
fully addressed,

As a general comrent on the accuracy of

terrain data used in the real time flood

forecasting, a careful balance nceds to be
applied belwcen the high levels of
accuracy required 10 mcdel flows across
floodplains which contain many almost flat
areas separated by small steep slopes, and
the lncreased processing time required for
more complex terrain models. 1 would like

Lo see the terrain models once digitized,

Lo see the complexity which has been

achieved during data capture, and to see

how this affects the speed of computation
of the real time fiood model,

Text amended,

Noted,

Sections 3.15 to 3.19 of the final
working paper.

Noted.

MIKE 11 is primarily a one-dimensiconal
hydraulic model. Psuedo 2-d flow is
simuiated across flocdplains. The
accuracy of the mathematical model is
compatible with the terrain data.

The terrian models will be avallable
for demonstration once digitized.

Further comments on this point are
presented in Section 1.14 of the Final
Working Paper.

This topic is to be covered in

[ —
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F. Drainage Services Department, Mainland North Division
Comments from Chief Engineer/Mainland North, Drainage Services
Department in letter reference MN 5/21/1 dated 26th July 1991
Comments Responses
Fi GENERAL COMMENTS

We wish to pay our compliment to the Comment apprecliated,

Institure of Hydrology for preducing this

concise and yet easily comprehensible

working paper on a relatively Innovative

subject, RTFF. Having sald that, it may

be appropriate at the outset for us to

give a few general comments on matters, we

feel, should be given more emphasis in the

final version of the Working Paper, The

Brief calls for a report on the technical

viabillty and cost-effectiveness of RTFF

in the Indus 3asin before Government makes

the decision on whether to go ahead with

pllot testing on thls ron-structural

measure. So It is natural to divide our

general comments into the same two

headings.

Fl. 1. Technical Viability

a) The Lnterim Working Paper is rather This point has been exp=-Jed upon in
"low-key" in treating the sea level Sections 3.15 o 3.19 ¢. -~e Final
influence on the RTFF. (This subiject Working Paper.
is only mentioned briefly at Para 6.4
and at some lengths at Appendix A - We do not wholly agree that
Para A.40 - A.46). Inevitably, hydrologists cannot provide storm
hydrologists are untikely to be as surge forecasts. As such quantitative
famillar with storm surge forecasts forecasts are not currently avallable
as they are with forecasting fluvial froem other sources, it seems necessary
processes {(WMO No, 7C4*). The lower for the cecnsultarts to address this
Indus is t:dai ever under ordinary problem as they have done in the UX.
asironomical tides, and the tidal
wave infiuence may extend further
upstream should a storm surge happen
in Deep Bay during the passage of a
tropical cycleore, which unhappily -ay
also produce fliuviai (heavy rainfc..
induced) flioods. Historicaily, it
seems that in Hong Kong sca flooding
is more catastrophic than fluvial
flooding (for instance, in 1937,
11,000 people were killed when some
lowlying villages along the coast of
Tolo Harbour were inundated by a
storm surce caused by a typhoon).

[report\ib0461) 6
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Comments

Responses

o o @

Fl.2 b) The Interim Working Paper ai:.. secms
' to have underestimated the

hydrological complexities of the
Irdus Basin. Flrstly, at the hcad of
the Indus Basin there are a number of
Water Supply/Irrigation Resecrvoirs
and other structures, whose
operations can have significant
effects on flows in the Lower Indus
Basin. Secondly, the behaviour of
the Lower Indus Basin depends on the
hydrolegical conditions of the
Shenzhen River with 60% of its
catchment lying on the PRC side. For
instance, a spillage from the
Shenzhen Reservolr may have an effect
on floeding £~~-srios In the Lower
Indus. In th. _ase, we feel that a
river gauge along Shenzhen River at
Muk Wu is probably required to
monitor flood waves arising from such
spillage. On the otherhand, ratnfall
falling on the PRC side of the
Shenzhen Basin would have to be
somehow generated from measured
rainfalls at the Hong Kong rairgauges
using a suitable extrapolation
functlon and dally exchanged data
from the Bai On Weather Station.
Also, the nydrological
characteristics of the PRC side of
the Shenzhen Basin necd to ke studlied
with reference to Maps and LANSAT
‘Imageries (e.g. from the Frerch SPOT
or the U.S. EOSAT). We have provided
you with a list of contacts in this
regard at the fee negetiaticn stage.

Fl1.3 2. Cost-Zffectiveness

No particular mention has been made
of costs of the RTFF, nor its
benefits. We appreclate that cost-
benefit analysis for any project is
not easy and the subject 1s by no
means an exact sclence. Moreover,
the costs and benefits of a flood
warning scheme is particularly
difficult to evaluate. Nevertheless,
some attempt must be made 1f the
expenditure on the RTFF |s to be
justified. For the benefits, please
also mention the intangible ones.
Moreover, we are wondering if the
scheme needs to be extended Lo other
Hong Kong Sub-Basins of the Shenzhen
River so as to enhance the cost-
effectiveness of the Scheme. Also a
mention of the up-dated costs of
pllot testing would be very
appropriate.

34 SPECIFIC COMMENTS

F2.1 Summary, Para 5.1

Insert ‘cost-’ before ‘effectiveness’ at
the last sentence.

We agrece that the Interim Working
Paper may have over simplified the
hydrological complexities of the
Shenzhen Basin, but do not belleve
that the Indus Basin ltself poses any
major insurmountable problems,

Para 3.20 to 3.22 of the Final Working
Paper have addressed this problem in
more detall. The effects of the
upstream reservolrs on flows in the
lower Indus can be accommodated
wlthout major problems as can the
effects of other minor structures.

The large proportion of the Shenzhen
Bas:~ which has no gauged ralnfall or
fl- .ta 1s of course a major

pro. -m.  However, we would even
expect to be able to estimate rainfall
inputs over this catchment using a
combination of weather radar and data
from the Bai On weather statfon. Such
estimates may well be of low
rellability as will estimates of
runoff from the PRC part of the basin,
However, this does not scem to
preclude the attempts being made to
develop an operational RTFF system for
the Indus Basin. We believe that one
of the main benefits of the pilot
studies will be to investigate the
effects of these and other problems on
forecast flows on the lower Indus,.

There seems to be a real neced for DSD
to have the technical means of
estimating fliood levels in real tire
from the extenslve network of existing
and proposed telemetering rainfall and
river level sites. Major investmer-
has been made in data acqulisition asd
it would be a pity not to rake
advaniage ¢i this valuable real-time
database,

We have addressed the cost-
effectiveness of the pilot study RTcF
scheme in Chapter 5 of our Final
Working Paper.

Agreed.

(report\ib0461) 7
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Comments

Responses

Agreed. Sece paras 3.25 ard 3.26 of
the Final Working Paper.

The system will have facilities to
cope with missing data. The rmost
likely form of system fallure will be
that of the data link to the RO
computer, or the RO computer itself.
I[f there ls no in-coming telemetry, it
wiil be difficult to produce sensible
forncasts through nomographs or any

L £ method. As the SPARC
workstaticns will be linked by the
local area network, fatlure of the
machine dedicated to RTFF can be
covered by having a backup syszem on
one of the other SPARCs. Thus
provided at least some of the
“eiemetry data is working, a
‘easonable degree of safety agalnst
fallure can be built into the preoposed
system,

Catchment lag is essentially a post
event measure; it ls the time delay
between centroid of ralnfall and fleood
peak. During an event one does not
know when the centroid of rainfall has
been attained.

See resporse to Para §.7.

We have comrented in para 3.3 of the
Final Working Paper.

Full detalls of the PDM are given in

Moore 1984, a copy of which wil! be
provided.5

We have “'ready spoken to RO about the
avallab: . .ty of evaporation data, both
histor! - ily for model calibration,
and in ::al time through telemetry of

RO automatlc weather stations.

S 00 0-0-0.0-0 0.0 0.0.90 00 0.0 .0 ¢ 00 0 0000000009000

F2.2 Summary, Para $.7, line 11
“what Lf?" scenarioc testing !s also
required for sca level predicilons, anrd
hydraulic structure operation modes.

F2.3 Para 1.8
Attention should be given to automatic
generation of missing data (possibly from
previous data and real time data from
nelghbouring gauges). More drastlically,
shouid the RTFF system fall during an
event, some standby nomographs should be
avallable to the forecaster so that he can
stlll make use of available data to glve
some scrvice, though curtailed,

£2.4 Para 2.6
Please explain the last sertence in
greater details.

£2.% Para 2.8
Same commertis as Para $.7 :in Sumrmary.

F2.6 Para 3.4
This states that NAM is a daily mode. and
only works irn discrete time steps. We
doubt whetrer this is true, In W? No. 40,
NWNT Base Strategy Studies, Appendix 7
gives a detallec description of the
Hydroiogic Mcdel in S11 (a former main
frame version of NAM), the soil moisture
accounting processes were given as
continuous furctions or differential
equations. Discrete time-s:ieps are only
used as a nurerical solution technigue.
Also according to August 1986 lssye of
"World Water" the NAM/S11 have worked .n
Real-Time Flcod Forecasting ‘r Irdia with
time steps of 1 nour or .ess.

F2.7 Para 3.7 - 3.9
These together with Figqure A-2 are a
litcle toc brief. Please let us have more
detalls about the Probability-distributed
Model {(PDM) for the rainfall-runoff
process in RTFT,

F2.8 Para 3.11
Plecase check the evaporatior data
avallability wlth RO/WSED.

[report\ib0461) 8




comments

Responses

F2.9

Para 4.3

Please clarify whether the real-tire
correction (in terms of amplitude and
phasc corrections) applies to forecas:
water levels as well as to forecast flcws,
I1f this is so, the cc =2ction algoritnm
has also to be built . o the hydraulic
routing model MIKE 11-HD,

F2.10 Para 5.1

2,11

If we are going for a hybrid model such as
PDM/MIKE 11-HD for RTFF, close co-
ordination between the two speciallst
organizatlons (IH/DHI) is a pre-requisite
for the success of such a model,
irrespective of which option (A or B} is
going to be adopted. Do you have any
preliminary discusslon with DHI about such
co-ordination? We are alsoc concerned
about the future support of such a hybrid
model.

Fara 5.3

We are interested In the case history cof
previous linkxing cf the DM with a
hydrodynamics model similar zc MIKE 11.
Piecase give more details.

We have replied in paras 3.23 and 3.24
of the Final Working Paper,

The original intentlon was to link the
PDM rainfall-runcff model with the
hydrodyramic routing modelling
component of MIKE 11. This 1s the
approach adopted for cur flood
forecasting system for the City of
Lincoln, where we have linked PDM to
the LORIS hydrodynamic model of
Hydraullcs Research Limited. The
Informatlon Control Algorithm (ICA}
containred with our RFFS software
permits any suitable hydrodynamic
model to be configured as part of the
overall mode!. For the Yorkshire KRA
system, an adapted US National Weather
Service routing modei has been
utilized in the same way. However, as
discassed ip the Firal Working Paper,
we now believe that a RTFF model
containing a mixture of IH and DHI
software may not be an optimal
solutlor, and we preopoe-that the -
cntire RTFF software system be
provided by H based on their RFFS
software.,

See respocnse to Para 5.1,

50 00 00 U oo 000

F2.12 Para 6.1
In line 10, should °‘PDM’ be replaced by Agreed.
‘BMP’ ?
F2.13 Para 6.5
We have made a visit to the Hox Tau Stream The reason for telemetering this
Gauge and found that it is too remote to station is that it would act as an
be telemetered. Further, thls gauge analogue of all small upland
upstream of Hok Tau Reservelr may not be catchments within the Indus. Because
representative of the flows in downstream it is upstream of the reservolr,
Tan Shan He (River Jhelum) because of the little flood flow is likely to be
- _inflows/cutflows at Hok._Tau Reservolr. - | generated which would contribute te — -
the Lower Indus. This gauge provides
the only possible flow gauglng point
within the Indus without constructing
a new gauging station, The cost of
telemetry may be hlgh, but without an
upland gauge somewhere within the
basin RTFF will be difficult,
F2.14 Para 7.4
Same comments as Para $.7 in Summary, Agreed,
(report\ib0461] 9
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Conments

Responses

Fe2.15

F2.16

Chapter 8

Your paper is Strong or ldeas as to how to
gather enough information to determine a
flood warning shouid be issved. tliowever
in Chapter 8 there are less strong ideas
on dissemination. Reliance on UK, USA, or
Australian systens may not be acceptable
to NT villagers who are already less than
enthusiastic on Flood Sirens. We neced to
gauge how NT villagers would react to
receiving flood warnings otherwise the
technically sound forecasting system may
be doomed to failure. We need to know
this before we embark on pllot testing.
Perhaps DO/N can assist in gauging local
Yeactlons, and opinions.

Para 9.3

A flood warning based on RTFF disseminated
independently with she heavy rain oriented

flood warning may cause confusion to the
public.

We will be adding to flood
dissemination propoesals in Chapter 4
in our Final Working Paper. We would
be delighted if DO/N could provide
some assistanace on the acceptability
of flood warnings to the public.

Provided a clear warning disseminazion
procedure can be established by the
Consultants in collaboration with DSD
and RO, there need be no confusion,
What is required is a local floed
warning dissemination system
speclfically for the Indus basin. e
agree that the public must be clear of
what they are belng warned and Lo what
area and period of time such warnings
related. The dissemination system
will have %o involve a rajor programme
of public education.

A copy of this report together with
other key papers can be cblained frem
3MC.

A copy of the paper referenced is
available from BMC,

We will forward the time series data
through BMC as requested.

Noted. See paras 3.18 and 3.19 cf the
Final Working Paper,

F2.17 Reference
A copy of Reed (198¢} for our information
would ke appreciatecd.

F3 APFENDIX A

£3.1 Para A.38
A full zitie of Mcore et al (19%90) does
not appear in the list of references.

£3.2 Para A.43, Sertence ?
Can we see these ~ime series so as to
share th.s suggestion with you?

F3.3 Para A.43, Las:t Senteace
The explaratory variables should aiso
include wind direction, atrmecspheric
Pressure at sea level,

[report\ib0461) 10




Comment s Responses
Fl.4 Other Comments

Ideally, according to WMO-No. 704, to We believe that the WMO comments

forecast the marine and freshwater relate primarily to the deslgn flood

influences deterministically in tidal case, not that of RTFF. Because of

rivers, the interactive coupling of an the short lead times involved on the

open sea hydrodynamic surge model, a Indus Basin, there is a need to

bay/estuary model, a nydrodynamic river forecast storm surges during some

model and a hydrologic model is required, flood events only for socme 4 to

You are now concentrating on the last two 6 hours ahead. It is nelther

types of models. We are aware that RO has necessary nor feasible to use a full

a nested storm surge model comprising an deterministic model for this purpose

open coastal model whose outputs will be in the case of an RTFF system. An

fed Into a single layer vertically ARMAX time serles model provides

integracted bay model. You may like to suitable accurate surqe forecasts for

consider usling this deterministic model to short lead times and we belleve this

generate sea levels at Tsim Bel Tsuli. option should be adopted for the pilot
study RTFF system, RO have emphasised
to us the problem of modelling storm
surges deterministically, hence the
suggestion that we use an ARMAX model,

G. Drainage Services Department, Design Division

Comments from Chief Engineer/Design, Drainage Services Department in
letter reference (15) in SP 1/4/151 dated 22nd July 1931

—— —— Cxxs oo il h—r

Comment s Responses
Gl With reference to your letter reference
NRT/0617/0/930 cated lst July 1991, 1 have
the following comments on your “lnterim
Wo:king Paper or Real-Time Flood
Forecasting for the Indus Basin®:
Gl.1 Para 6.1 - Prooosed Model Configuration
In the 10th line, “The design models Corrected.
proposed for the PDM" should read as "The
design models proposed for the BMP",
Gl.2 Para 7.3 - The User Interface
The users will most likely be in trouble An adequate manual and training would
if they have to operate the system for the be provided.
first time without a comprehensive manual. -
Therefore the recommendation of a fairly
brief user manual is not supported.
[report\ib0461) 11



n

.

®_o

5 e 0..0.9. 0. 9 @ 0 9.

H.

The Royal Observatory, Hong Kong

Comments from Director of the Royal Observatory, The Royal Cbservatory
in letter reference ROG 7/89 dated 5th ARugust 1991

Comment s

Responses

H1

HY.

I refer to your letter dated lst July
1891. A number of points are offered for

your conslderation.

Because they have

been discussed at the meeting held at DSD
on 2nd August 1991, this brief list serves
more as an aide memoirs than as a deralled
exposition.-

Input to RTFF Model

2.

3.

The fallure of individual rain-gauges
or river stage gauges should be
allowed for,

Simple schemes to gencrate "forecast"
rainfall might be offered as a
default before RO forecasts become
avallable {(para 7.4 and 7.7
relevant),

The need to obtain rainfall data
north of Shenzhen River for RTFF
deserves further examination.

Operational Consideration

S,

7.

Para 7.9 - 7.1i and Flgure 8
illustrate very well the hour-to-hour
changes ir the situaticn very
commonly found in the operation of
warrings., Procedures wiil have to be
developed to avoid confusing the
public by flip-flops in warning
infermation.

On the disseminazion of warning, a
target audience will have to be
clearly identified and a matching
dissemlnatlon network, probably
hlerarchical in structire llke those
already ir place for typhoon
warnings, etc, set up.

Thoughts should be given to the issue
of whether the Governmer. 3ecretariat
Emergency Coordination Centre should
be involved.

In the interest of publiic safety, the
Royal Observatory will give support
to RTFF to the extent its resocurces
allow. We have an open ~!nd about
the mode of operation of the warning
service. Thls is a subject which
DSD, RO ard yourself could explore
further.

Agrced and taken inio account. See
para 2.5 of the Final Working Paper,

Noted and takxen into account. See
paras 3.25 and 3.26 of the Final
Working Paper.

Agreed and will be highlighted.

Noted and taker into account. See
Chapter 4 of the Final Working Paper.

Noted and taken into account. See
Chapter 4 of the Final Working Paper,

Norted and would be addressed at pilot
testing stage.

Noted and would be addressed at pilot
testing stage.

[teport\ib0461] 12
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