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Abstract
Purpose  To identify optimal classification methods for computed tomography (CT) radiomics-based preoperative prediction 
of clear cell renal cell carcinoma (ccRCC) grade.
Materials and methods  Seventy-one ccRCC patients (31 low grade and 40 high grade) were included in this study. Tumors 
were manually segmented on CT images followed by the application of three image preprocessing techniques (Laplacian of 
Gaussian, wavelet filter, and discretization of the intensity values) on delineated tumor volumes. Overall, 2530 radiomics 
features (tumor shape and size, intensity statistics, and texture) were extracted from each segmented tumor volume. Univariate 
analysis was performed to assess the association between each feature and the histological condition. Multivariate analysis 
involved the use of machine learning (ML) algorithms and the following three feature selection algorithms: the least absolute 
shrinkage and selection operator, Student’s t test, and minimum Redundancy Maximum Relevance. These selected features 
were then used to construct three classification models (SVM, random forest, and logistic regression) to discriminate high 
from low-grade ccRCC at nephrectomy. Lastly, multivariate model performance was evaluated on the bootstrapped valida-
tion cohort using the area under the receiver operating characteristic curve (AUC) metric.
Results  The univariate analysis demonstrated that among the different image sets, 128 bin-discretized images have statisti-
cally significant different texture parameters with a mean AUC of 0.74 ± 3 (q value < 0.05). The three ML-based classifiers 
showed proficient discrimination between high and low-grade ccRCC. The AUC was 0.78 for logistic regression, 0.62 for 
random forest, and 0.83 for the SVM model, respectively.
Conclusion  CT radiomic features can be considered as a useful and promising noninvasive methodology for preoperative 
evaluation of ccRCC Fuhrman grades.

Keywords  Computed tomography (CT) · Radiomics · Machine learning · Renal cell carcinoma · Fuhrman grading

 *	 Isaac Shiri 
	 Isaac.Shiri@etu.unige.ch

 *	 Mohammad Reza Deevband 
	 mdeevband@sbmu.ac.ir

1	 Department of Biomedical Engineering and Medical 
Physics, School of Medicine, Shahid Beheshti University 
of Medical Sciences, Tehran, Iran

2	 Division of Nuclear Medicine and Molecular Imaging, 
Geneva University Hospital, CH‑1211 Geneva 4, Switzerland

3	 Rajaie Cardiovascular Medical and Research Center, Iran 
University of Medical Science, Tehran, Iran

4	 School of Population and Public Health, The University 
of British Columbia, Vancouver, BC V6T 1Z4, Canada

5	 Department of Radiologic Sciences and Medical Physics, 
Faculty of Allied Medicine, Kerman University, Kerman, 
Iran

6	 Department of Computer Science, University of British 
Columbia, Vancouver, BC, Canada

7	 Geneva University Neurocenter, Geneva University, Geneva, 
Switzerland

8	 Department of Nuclear Medicine and Molecular Imaging, 
University of Groningen, University Medical Center 
Groningen, Groningen, Netherlands

9	 Department of Nuclear Medicine, University of Southern 
Denmark, Odense, Denmark

http://crossmark.crossref.org/dialog/?doi=10.1007/s11547-020-01169-z&domain=pdf


755La radiologia medica (2020) 125:754–762	

1 3

Introduction

Renal cell carcinoma (RCC) is the seventh most common 
cancer worldwide, with a mortality rate of 140,000 per 
year [1]. The most common types of renal cancer cells 
are clear cells RCC (ccRCC), papillary RCC (pRCC), and 
chromophobe RCC (chRCC) [2, 3]. Approximately 70% 
of kidney cancers are made up of ccRCC, pRCC accounts 
for 10–15% of kidney cancers, whereas chRCC is the least 
common type with only 5% of kidney cancer cases [4]. 
ccRCC has a survival rate of less than 5 years and a higher 
risk of metastasis compared to pRCC and chRCC [5].

One of the most important tasks in cancer diagnosis and 
treatment is tumor staging and grading. Tumor grading 
defines the differentiation of tumor tissue cells relative 
to normal tissue cells. It is an indicator of how quickly 
a tumor is expected to grow and spread. The Fuhrman 
grading system is widely recognized among the clinical 
oncology community [6]. It is based on the assessment 
of the following cell nucleus characteristics: nuclear size, 
nuclear shape, and nucleolar prominence. Based on these 
assessments, the tumor will be classified into one of four 
different grades (I–IV). Grades I and II are considered as 
low-grade tumors with a favorable prognosis, while grades 
III and IV account for high-grade tumors commonly hav-
ing unfavorable prognosis [7].

Currently, fine-needle aspiration (FNA) and imaging-
guided biopsies are the gold-standard methods for preop-
erative kidney tumor grading. However, these techniques 
have some drawbacks including infection, bleeding, tumor 
cells spreading, and provide limited information regarding 
the whole tumor due to tumor heterogeneity. Because of 
intra-tumoral heterogeneity in ccRCC [8], biopsy underes-
timated the Fuhrman grade in 55% of the cases [9].

A number of noninvasive therapeutic strategies for RCC 
have been devised during the last decade, including radi-
ofrequency ablation, cryoablation, and active surveillance 
[10, 11]. However, a proper criterion for patient management 
using these noninvasive/minimally invasive treatment meth-
ods is still lacking, as most patients are often treated surgi-
cally post-diagnosis [12, 13]. Therefore, it is desirable to 
recommend individualized treatment strategies, where radi-
cal approaches (e.g., surgery) are kept only for aggressive 
or high-grade ccRCC tumors (III, IV), whereas conservative 
management (e.g., active surveillance) is applied for low-
grade (I and II) lesions [14]. To guide the decision-making 
process, an accurate noninvasive method for preoperative 
Fuhrman grading of renal cell carcinoma tumors is desirable. 
To this end, two promising approaches have been adopted in 
clinical settings, namely MRI-guided derivation of apparent 
diffusion coefficient (ADC) values [15] and CT-based semi-
quantitative and quantitative techniques [16, 17].

Radiomics serve as the bridge between medical imaging 
and personalized medicine [18] and refers to the compre-
hensive quantification of tumor phenotype to uncover dis-
ease characteristics that fail to be revealed by the naked eye 
[19–21]. In fact, radiomics is a new era of science which 
faces many challenges, including image acquisition [22], 
reconstruction and processing [23, 24], and model devel-
opment to provide robust and reproducible representations. 
Previous studies have shown that the radiomics signature is 
valuable for differentiating high-/low-grade ccRCC tumors 
[25–27]. This study aims to construct a radiomics feature-
based machine learning model to predict the Fuhrman grade 
of ccRCC patients preoperatively.

Materials and methods

Figure 1 presents the workflow followed in the current study.

Patient population

Two hundred and twenty-two clinical studies from the can-
cer image archive database [28] were included in the study 
protocol. The inclusion and exclusion criteria included 
simultaneous availability of CT images and pathological 
information, good CT image quality, and tumor visibility 
on CT images. This results in the inclusion of 71 patients in 
the current study. Table 1 provides the demographics of the 
patient population.

CT scanning protocol

All patients underwent a three-phase CT scan, including (1) 
a routine unenhanced CT scan, (2) a corticomedullary phase 
(CMP) contrast-enhanced scan starting 40 s after injection 
of the contrast material, and (3) a nephrographic phase (NP) 
contrast-enhanced scan performed 70–90 s after intravenous 
injection of iodinated contrast material. The iodine content 
(300 mg/mL) was infused at an infusion rate of 3 mL/s at an 
infusion dose of 80–100 mL. All subjects were scanned on 
GE Healthcare and Siemens Healthineers CT scanners with 
a tube voltage of 120 kVp and a tube current of 150–300 mA 
using daily clinical reconstruction parameters.

Tumor segmentation

In this study, manual volume of interest (VOI) segmentation 
was performed and verified by an experienced radiologist 
using the 3D slicer software package [29].
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Image preprocessing

Prior to feature extraction, the voxel size resampling method 
was applied on the images to create an isotropic dataset. 
This allowed comparisons between image data from differ-
ent samples and scanners [30]. Laplacian of Gaussian (LoG), 
wavelet decomposition (WAV), and discretization into 32, 
64, and 128 bins preprocessing were performed to generate 
a different set of features. For the LoG filter, different sigma 
values were used to extract fine, medium, and coarse fea-
tures. Wavelet filtering yields 8 decompositions per level: all 
possible combinations of applying either high- (H) or a low 
(L)-pass filtering in each of the three dimensions, includ-
ing HHH, HHL, HLH, HLL, LHH, LHL, LLH, and LLL. 
The preprocessing steps (including discretization, LOG, and 
wavelet) were also performed on all intensity, histogram, and 
textural features.

Feature extraction

Radiomic features were extracted using the PyRadiomics 
open-source python library [31]. The extracted features 
were then categorized into the following subgroups. Firstly, 
shape features depict the shape of the tumor volume and 
geometric properties, such as volume, maximum surface, 
tumor compactness, and sphericity. Furthermore, first-order 
statistic features describe the distribution of voxel intensities 
within tumor volumes, including mean, median, maximum, 
and minimum values of the voxel intensities. Second- and 
higher-order statistic features (known as textural features) 
are used to measure inter-relationships between voxel distri-
butions within tumor volumes, reflecting changes in image 
space gray levels. These features include gray-level co-
occurrence matrix (GLCM), gray-level run length matrix 
(GLRLM), gray-level size-zone matrix (GLSZM), and gray-
level dependence matrix (GLDM) features. Table 2 provides 
detailed information about the extracted features.

Univariate analysis

For univariate analysis, early correlation tests between 
features were used to eliminate highly correlated features. 
Student’s t tests were then used for comparisons between 
groups. To control the false discovery rate (FDR) in mul-
tiple hypothesis testing, the Benjamini–Hochberg (FDR) 
correction method was applied on the resulting p values to 
ultimately report q-values [32].

Fig. 1   Workflow adopted in the study protocol

Table 1   Clinical characteristics of the patient population presenting 
with clear cell renal cell carcinoma

Characteristics

Number of patients 71
Male 51 (71%)
Female 20 (29%)
Age (years) 60.3 ± 11.7
Low grade (I, II) 31
High grade (III, IV) 40
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Feature set preprocessing

Due to the different range of the various radiomic fea-
tures, without feature normalization, some features might 
exhibit a larger weight, while others might exhibit a lower 
weight. This depends on the distribution of feature values. 

To overcome this issue, z-score normalization was applied 
to the feature values [33].

Feature selection

Three different feature selections methods were imple-
mented in this framework (Table  3), namely enhanced 

Table 2   Summary of radiomic features used in this work

First-order statistics (FOS) Gray-level co-occurrence matrix (GLCM) Gray-level run length matrix (GLRLM)

Energy
Total energy
Entropy
Minimum
10th percentile
90th percentile
Maximum
Mean
Median
Interquartile range
Range
Mean absolute deviation (MAD)
Robust mean absolute deviation (rMAD)
Root-mean-squared (RMS)
SD
Skewness
Kurtosis
Variance
19. Uniformity

Autocorrelation
Joint average
Cluster prominence
Cluster shade
Cluster tendency
Contrast
Correlation
Difference average
Difference entropy
Difference variance
Joint energy
Joint entropy
Informal measure of correlation (IMC) 1
Informal measure of correlation (IMC) 2
Inverse difference moment (IDM)
Inverse difference moment normalized (IDMN)
Inverse difference (ID)
Inverse difference normalized (IDN)
Inverse variance
Maximum probability
Sum average
Sum entropy
23. Sum of squares

Short-run emphasis (SRE)
Long-run emphasis (LRE)
Gray-level non-uniformity (GLN)
Gray-level non-uniformity normalized (GLNN)
Run length non-uniformity (RLN)
Run length non-uniformity normalized (RLNN)
Run percentage (RP)
Gray-level variance (GLV)
Run variance (RV)
Run entropy (RE)
Low gray-level run emphasis (LGLRE)
High gray-level run emphasis (HGLRE)
Short-run low gray-level emphasis (SRLGLE)
Short-run high gray-level emphasis (SRHGLE)
Long-run low gray-level emphasis (LRLGLE)
16. Long-run high gray-level emphasis (LRHGLE)
Gray-level dependence matrix (GLDM)
Small dependence emphasis (SDE)
Large dependence emphasis (LDE)
Gray-level non-uniformity (GLN)
Dependence non-uniformity (DN)
Dependence non-uniformity normalized (DNN)
Gray-level variance (GLV)
Dependence variance (DV)
Dependence entropy (DE)
Low gray-level emphasis (LGLE)
High gray-level emphasis (HGLE)
Small dependence low gray-level emphasis (SDL-

GLE)
Small dependence high gray-level emphasis (SDH-

GLE)
Large dependence low gray-level emphasis (LDL-

GLE)
14. Large dependence high gray-level emphasis 

(LDHGLE)

Shape features Gray-level size-zone matrix (GLSZM)
Volume
Surface area
Surface area to volume ratio
Sphericity
Spherical disproportion
Maximum 3D diameter
Maximum 2D diameter (slice)
Maximum 2D diameter (column)
Maximum 2D diameter (row)
Major axis
Minor axis
Least axis
Elongation
Flatness

Small area emphasis (SAE)
Large area emphasis (LAE)
Gray-level non-uniformity (GLN)
Gray-level non-uniformity normalized (GLNN)
Size-zone non-uniformity (SZN)
Size-zone non-uniformity normalized (SZNN)
Zone percentage (ZP)
Gray-level variance (GLV)
Zone variance (ZV)
Zone entropy (ZE)
Low gray-level zone emphasis (LGLZE)
High gray-level zone emphasis (HGLZE)
Small area low gray-level emphasis (SALGLE)
Small area high gray-level emphasis (SAHGLE)
Large area low gray-level emphasis (LALGLE)
16. Large area high gray-level emphasis (LAH-

GLE)

Neighboring gray tone difference matrix (NGTDM)
1. Coarseness
2. Contrast
3. Busyness
4. Complexity
5. Strength

Table 3   Feature selection and 
classification methods

Feature selection methods Abbreviation Classification methods Abbreviation

Student t test Logistic regression LR
Minimum redundancy maximum relevance MRMR Random forest RF
Least absolute shrinkage and selection operator LASSO Support vector machine SVM
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variable selection algorithms based on the least absolute 
shrinkage and selection operator methods [34], Student’s 
t test, and the minimum redundancy maximum relevance 
(MRMR) algorithm.

Multivariate machine learning classifier

The following three classifiers were implemented and com-
pared (Table 3): logistic regression, random forest, and sup-
port vector machines (SVM).

Model evaluation

The cross-validation (CV) technique was applied to tune 
the model parameters. Furthermore, bootstrapped datasets 
were used for model evaluation. The predictive power of all 
models was investigated using the area under the receiver 
operator characteristic (ROC) curve (AUC). All analyses and 
evaluations were performed using the R software for statisti-
cal computing (version 3.5.2).1

Results

Considering the inclusion/exclusion criteria, 71 (31 low 
grade and 40 high grade) patients were enrolled in the study 
protocol. The mean age of low- and high-grade groups was 
60.05 and 60.08 years, respectively. Overall, there were 51 
male and 20 female subjects.

Univariate analysis demonstrated that among filtered 
and non-filtered images, only 128 bin-discretized images 
had a statistically significant difference in texture param-
eters with a mean AUC of 0.74 ± 3 (q value < 0.05). These 
features include Long-Run High Gray-Level Emphasis from 
GLRLM (AUC = 77, q value < 0.0005), Cluster Tendency 
from GLCM (AUC = 72, q value < 0.002), Contrast from 
NGTDM (AUC = 74, q value < 0.05), and Dependence Non-
Uniformity from GLDM (AUC = 72, q value < 0.05 (Fig. 2).

Table 4 shows the AUC (95% CI) of three different ML-
based classifiers. As shown in the table, there is a wide 
performance range, ranging from 0.5 to 0.86. Three dif-
ferent feature selection methods were applied prior to the 
implementation of each ML-based classifier to determine 
the best technique for this specific model. The results dem-
onstrated that the LASSO method performed the best for 
logistic regression. Furthermore, Student’s t test proved to 
be the best for random forest and SVM classifier models. 
The results of logistic regression suggested that 128 bin-
discretized images and fine LoG features had the highest 
performance with a mean of AUC of 0.75. According to 

the results, the predictive performance of the random forest 
model had a range of 0.48 to 0.67. Among these, wavelet-
filtered images showed the lowest performance, whereas 
128 bin-discretized images showed the highest performance. 
Among the three classifiers, SVM with Student’s t test fea-
ture selection presented the best predictive performance. 
SVM with coarse LoG features demonstrated a mean AUC 
of 0.83 (Fig. 2).

Discussion

There is a significant association between Fuhrman grade 
and patient’s prognosis [35, 36]. Among the different thera-
peutic strategies, radical surgery remains the main and most 
effective treatment approach to cure RCC patients. Radiofre-
quency ablation and active surveillance could be considered 
alternative treatment options for small renal masses and low 
risk small renal mass [37, 38]. Therefore, the preoperative 
assessment of RCC tumor aggressiveness plays a key role 
in optimal treatment planning and selection of appropriate 
follow-up regimens [11]. Various strategies were proposed 
for preoperative noninvasive prediction of ccRCC Fuhrman 
grade. MRI-derived ADC values are known to be an indi-
cator of tumor activity. Several studies have assessed the 
utility of ADC in distinguishing low- and high-grade clear 
cell RCC [15, 39]. These studies showed that MRI has an 
acceptable predictive accuracy in the preoperative detection 
of high-grade RCC (AUC = 0.80) [40]. However, MRI is 
not as widely available as CT and a wide range of ADC 
values for ccRCC have been reported in the literature [41, 
42]. Therefore, their robustness and repeatability need to 
be further validated. Conversely, CT-based semiquantitative 
and quantitative studies have attempted to classify low- and 
high-grade ccRCC [16, 17]. These studies showed that CT 
is a promising method for classification of low- and high-
grade ccRCC.

The radiomics approach converts medical images into 
quantitative, high-dimensional, and mineable features ena-
bling to predict tumor status. However, the abundance of 
predictive modeling techniques implies a selection process 
to choose the most appropriate one for predicting tumor sta-
tus. Given that a number of previous radiomic studies [17, 
25] for Fuhrman grade prediction did not include shape fea-
tures in their analyses, this study combined shape features 
and texture features to differentiate low and high grades 
of ccRCC. It was observed that shape features cannot be 
ignored from multivariate machine learning models.

Univariate analysis of the extracted radiomic features 
demonstrated that among filtered and non-filtered images, 
only the 128 bin-discretized images showed statistically 
significant texture parameters. In a similar univariate 
analysis, Feng et al. [26] analyzed CT texture parameters 1  https​://www.r-proje​ct.org.

https://www.r-project.org


759La radiologia medica (2020) 125:754–762	

1 3

and found effective quantitative parameters to evaluate the 
heterogeneity of ccRCC. After applying the LoG filter, 
they reported that only entropy had a statistically signifi-
cant difference after FDR correction in all image phases. 
In this work, four features showed statistically significant 
differences between two groups. These features include 
Long-Run High Gray-level Emphasis from GLRLM, 
cluster tendency from GLCM, Contrast from NGTDM, 
and Dependence Non-Uniformity from GLDM matrix. 
Among these features, the Long-Run High Gray-level 
Emphasis demonstrated the highest AUC (AUC = 77, q 
value < 0.0005).

The first machine learning model applied in this study 
was logistic regression. This is a machine learning clas-
sification algorithm used to predict the class probability 
of a categorical dependent variable. It was observed that 
among the three different feature selection methods, the 
best results for the logistic regression model was obtained 
when using the LASSO algorithm. These results suggest 
that the AUC logistic regression model is approximately 
similar to results obtained in previous studies. Ding et al. 
[17] used a texture-score-based logistic regression model 
on a training cohort resulting in an AUC of 0.878. When 
predictive models were applied on the validation cohort, 

Fig. 2   Area under receiver operating characteristic curve for discrimi-
nation between high- and low-grade ccRCC. a Univariate analysis of 
best predictor, b LR model with 128 bin discretization, c SVM model 

with coarse LoG filter, d RF model with wavelet filter. AUC: area 
under receiver operating characteristic curve, LR: logistic regression, 
SVM: support vector machine, RF: random forest
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good results were still obtained (AUC > 0.670). Shu et al. 
[43] extracted radiomic features from corticomedullary 
(CMP) and nephrographic phases (NP) of CT images of 
161 and 99 patients diagnosed with low- and high-grade 
ccRCCs. They constructed logistic regression classifica-
tion models to discriminate between high- and low-grade 
ccRCC. Application of the model on CMP and NP showed 
an AUC of 0.766 (95% CI 0.709–0.816) and 0.818 (95% 
CI 0.765–0.838), respectively. Random forest, an ensemble 
learning method consisting of a collection of decision trees, 
was an alternative machine learning model investigated in 
this work. It uses a weighted average of these trees for the 
final decision [44], commonly resulting in a good outcome 
for a large range of data, but is susceptible to overfitting. In 
this work, applying the random forest model on the dataset 
yielded unsatisfactory results (Table 4). SVM, which creates 
a decision boundary between two classes to enable the pre-
diction of labels from one or more feature vectors, was the 
best-performing classifier. After applying the SVM model on 
filtered and unfiltered images, the best classification result 
was obtained when coarse LoG features were used with a 
mean AUC of 0.81. LoG filtering is an advanced image fil-
tering technique combining Laplacian filtering and Gaussian 

filtering. In a similar single-center retrospective study [25], 
the performance of quantitative CT texture analysis com-
bined with different ML-based classifiers was evaluated for 
discriminating low- and high-grade ccRCC. Despite differ-
ences in the procedure followed, they also determined that 
the highest predictive performance is achieved by an SVM 
classifier. In summary, both studies support each other with 
a common conclusion that CT texture analysis is a useful 
and promising noninvasive method to predict the Fuhrman 
grades of ccRCCs preoperatively. In the current study, we 
applied machine learning algorithms on CT radiomic fea-
tures to predict noninvasively Fuhrman grades of ccRCCs, 
demonstrating promising results. The noninvasive identifi-
cation of ccRCC grading could help in defining appropriate 
treatments, especially for patients with small mass and could 
potentially serve as an alternative for FNA in renal cancer.

This work bears a number of limitations. (1) This was a 
retrospective study using a small sample size with no exter-
nal validation data. As such, we used the bootstrap technique 
(estimate statistics on a population by sampling a dataset 
with replacement) to evaluate our models. Future studies 
exploiting the current model could involve a large size of 
external validation set emanating from a multicenter study 
protocol. (2) Since the tumor boundary was drawn manu-
ally, interference of the volume effect cannot be completely 
avoided. Yet, the current study involved image segmenta-
tion performed and evaluated by one human observer. Future 
studies should consider the effect of volume segmentation to 
provide a repeatable study for clinical multicentric studies.

Conclusion

The results of this study show that CT-based SVM classifier 
with t test features selection could be a useful and prom-
ising noninvasive approach for the prediction of low and 
high Fuhrman nuclear-grade ccRCCs. Moreover, the results 
demonstrated that 128 bin-discretized preprocessing is an 
effective method under these conditions.
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 LoG_sigma.1.5 0.65 ± 0.09 0.56 ± 0.02 0.72 ± 0.07
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 Wav_LLL 0.62 ± 0.06 0.55 ± 0.08 0.75 ± 0.10
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(TCIA), an open-access database of medical images for cancer 
research. The site is funded by the National Cancer Institute’s Can-
cer Imaging Program, and the contract operated by the University of 
Arkansas for Medical Sciences.
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