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Abstract
Objectives To assess the complementary value of human epidermal growth factor receptor 2 (HER2)-related biological tumormarkers
to clinico-radiomic models in predicting complete response to neoadjuvant chemoradiotherapy (NCRT) in esophageal cancer patients.
Methods Expression of HER2 was assessed by immunohistochemistry in pre-treatment tumor biopsies of 96 patients with locally
advanced esophageal cancer. Five other potentially activeHER2-related biological tumormarkers in esophageal cancer were examined
in a sub-analysis on 43 patients. Patients received at least four of the five cycles of chemotherapy and full radiotherapy regimen
followed by esophagectomy. Three reference clinico-radiomic models based on 18F-FDG PET were constructed to predict pathologic
response, which was categorized into complete versus incomplete (Mandard tumor regression grade 1 vs. 2–5). The complementary
value of the biological tumor markers was evaluated by internal validation through bootstrapping.
Results Pathologic examination revealed 21 (22%) complete and 75 (78%) incomplete responders. HER2 and cluster of differ-
entiation 44 (CD44), analyzed in the sub-analysis, were univariably associated with pathologic response. Incorporation of HER2
and CD44 into the reference models improved the overall performance (R2s of 0.221, 0.270, and 0.225) and discrimination AUCs
of 0.759, 0.857, and 0.816. All models exhibited moderate to good calibration. The remaining studied biological tumor markers
did not yield model improvement.
Conclusions Incorporation of HER2 and CD44 into clinico-radiomic prediction models improved NCRT response prediction in
esophageal cancer. These biological tumor markers are promising in initial response evaluation.
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Key Points
• A multimodality approach, integrating independent genomic and radiomic information, is promising to improve prediction of
γpCR in patients with esophageal cancer.

• HER2 and CD44 are potential biological tumor markers in the initial work-up of patients with esophageal cancer.
• Prediction models combining 18F-FDG PET radiomic features with HER2 and CD44 may be useful in the decision to omit
surgery after neoadjuvant chemoradiotherapy in patients with esophageal cancer.

Keywords Positron emission tomography . Radiomics . Oncogene protein HER-2 . CD44 antigen . Esophageal cancer

Abbreviations
18F-FDG PET 18F-Fluorodeoxyglucose positron

emission tomography
CD44 Cluster of differentiation 44
CROSS Chemoradiotherapy for Oesophageal

Cancer followed by Surgery Study
CT Computed tomography
CXCR4 C-X-C chemokine receptor type 4
HER2 Human epidermal growth factor receptor 2
HIF1α Hypoxia-inducible factor 1-alpha
LRT Likelihood-ratio test
NCRT Neoadjuvant chemoradiotherapy
PTCH1 Protein patched homolog 1
SHH Sonic Hedgehog
TRG Tumor regression grade

Introduction

Neoadjuvant chemoradiotherapy (NCRT) followed by
surgery is the preferred treatment for locally advanced
(T1/N1–3/M0; T2–4a/N0–3/M0) curative-intended resectable
esophageal cancer. Pathologic complete response to
NCRT (γpCR) is achieved in approximately 29% of
these patients [1]. For complete responders, a “wait-
and-see” policy instead of esophagectomy may lead to
equivalent results and avoids surgical morbidity and
mortality. In evaluating tumor response, clinicians usu-
ally report features extracted from pre- and posttreat-
ment imaging such as overall tumor volume measured
on computed tomography (CT) and maximum standard-
ized uptake value measured on 18F-fluorodeoxyglucose
positron emission tomography (18F-FDG PET).
However, these features have relatively unsatisfactory
predictive values; and hence, no clinical relevant con-
clusions can be drawn from these features only [2].

These features neglect spatial information, while
intratumoral heterogeneity is associated with higher
levels of tumor aggressiveness and impaired response
to NCRT. Spatial variation in either gene expression
profiles or environmental stressors leads to multiple dis-
tinct subclonal populations with different patterns of ox-
ygen consumption and glucose metabolism [3–5].

Intratumoral heterogeneity can be quantified using a so-
phisticated method called radiomics, which extracts a
large number of quantitative imaging features from
medical images to capture the tumor phenotype and its
microenvironment. These features quantify image inten-
sity, shape, and texture and may be of added value to
traditionally clinico-pathological reports. Numerous re-
cent studies have demonstrated that CT and/or 18F-
FDG PET radiomics can outperform conventional radio-
logical measurements in the prediction of γpCR in
esophageal cancer patients [6–15]. Nevertheless, the
use of radiomic features as quantitative image bio-
markers requires further optimization and improvement
in order to achieve routine clinical application.

To improve radiomics-based prediction models, incor-
poration of molecular targets involved in treatment re-
sistance mechanisms is promising [16]. Studies on mo-
lecular targets are usually based on a single biopsy;
therefore, they do not fully capture the spectrum of
resistance clones within the individual patients’ specific
tumor. Imaging features may therefore be complementa-
ry as they capture independent information from the
entire tumor burden [17–19]. An important biological
tumor marker which has gained predictive characteristics
in esophageal cancer is human epidermal growth factor
receptor 2 (HER2) [20, 21]. Activation of the HER2
proto-oncogene initiates signaling pathways leading to
proliferation, inhibition of apoptosis, and tumor progres-
sion [22, 23]. Other potentially active biological tumor
markers predicting resistance to NCRT are cluster of
differentiation 44 (CD44) and the Hedgehog pathway
markers receptor protein patched homolog 1 (PTCH1)
and ligand Sonic Hedgehog (SHH) [24]. Moreover,
transcription factor hypoxia-inducible factor 1-alpha
(HIF1α) and the biological interaction between HER2
and CD44 may lead to upregulation of C-X-C chemo-
kine receptor type 4 (CXCR4), which promotes tumor
progression and NCRT resistance in gastroesophageal
cancer [25, 26].

The aim of this study was to assess the complementary
value of HER2 and its associated biological tumor markers
to 18F-FDG PET–based clinico-radiomic prediction models to
predict γpCR in esophageal cancer patients.
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Patients and methods

Patients

This retrospective study was granted by the Local Institutional
Review Board and obtaining informed consent was waived
according to the legal regulations of our University Hospital.
Patients were eligible for inclusion if they had histologically
confirmed locally advanced (T1/N1–3/M0; T2–4a/N0–3/M0)
esophageal cancer (according to the seventh tumor–node–me-
tastasis classification system) and if sufficient amounts of pre-
treatment biopsy material were available [27]. Moreover, pa-
tients were only included if they had a baseline 18F-FDG PET/
CT scan to perform the radiomics analysis and received at
least four of the five cycles of chemotherapy and full concom-
itant radiotherapy, followed by esophagectomy with curative
intent in our hospital. The enrolled 96 patients were treated
between March 2010 and June 2018 (group 1). In only 43 of
these 96 patients (group 2) the additional required pre-
treatment biopsy material was available to perform analyses
of CD44, HIF1α, PTCH1, and SHH (Fig. 1).

Treatment and pathology

NCRT was given according to the Chemoradiotherapy for
Oesophageal Cancer followed by Surgery Study (CROSS)
regimen, including carboplatin (AUC of 2 mg min mL−1)
and paclitaxel (50 mg/m2) with concurrent radiotherapy

(41.4 Gy in 23 fractions) [1]. A curative intended transthoracic
open or minimal invasive esophagectomy with mediastinal
and upper abdominal lymphadenectomy was performed 6–8
weeks after completion of NCRT. The primary outcome was
pathologic response according to the Mandard tumor regres-
sion grade (TRG) [28]. This grading system classifies the ratio
of residual vital tumor cells and the degree of NCRT-induced
fibrosis and defines γpCR; γpT0N0 (Mandard TRG 1) as no
residual vital tumor cells and non-γpCR (Mandard TRG 5) as
no tumor regression at all.

18F-FDG PET/CT

Pre-treatment 18F-FDG PET/CT (Biograph mCT-64 PET/CT;
Siemens) scans were acquired in radiation treatment planning
position. Patients were instructed to fast except for the con-
sumption of water for at least 6 h before scanning. Images
were acquired 60 min after the intravenous injection of 3
MBq/kg 18F-FDG. 18F-FDG PET images were obtained with-
in 2–3 min per bed position in three-dimensional setting.
Images were reconstructed using a time-of-flight iterative re-
construction method (three iterations; 21 subsets) with point-
spread-function correction [29]. Images were corrected for
random coincidences, scatter, and attenuation (CT-based),
and were smoothed with a Gaussian filter of 6.5 mm in full-
width at half-maximum.

Radiomic feature extraction

Tumor volume was delineated manually after reaching con-
sensus between 3 collaborating researchers (RTxWorkstation
1.0; Mirada Medical). In-house software was developed with
Matlab 2018a (MathWorks) to process baseline 18F-FDGPET
images and to extract 101 radiomic features [30].
Quantification of 18F-FDG PET offers spatial information on
the rate of metabolism, which is affected by well-known risk
factors for tumor NCRT resistance such as hypoxia, necrosis,
and cellular proliferation. As image texture depends on image
quality, the low-dose CT images were not analyzed. The ex-
tracted radiomic features consisted of 19morphologic features
(including the conventional metrics volume and total lesion
glycolysis), two local intensity features, 18 statistical features
(including the conventional metrics SUVmax, SUVpeak, and
SUVmean), 25 gray-level co-occurrence–based features, 16
gray-level run-length–based features, 16 gray-level size-
zone–based features, and five neighborhood gray-tone
difference–based features. The extracted radiomic features
were all listed in the IBSI reference manual and matched the
IBSI benchmark values [30]. The Supplemental Method pro-
vides a more detailed description regarding the radiomic fea-
ture extraction process.

Group 2 (n = 43)
Staining on:
 - HER2
 - HIF1anucleus

 - HIF1acytosol

 - PTCH1
 - CD44
 - SHH

Group 1 (n = 96)
Staining on:
 - HER2

Fig. 1 Illustration of patient groups. HER2 analysis was performed in 96
patients (group 1). In 43 of these 96 patients, sufficient pre-treatment
biopsy was available to perform additional analyses (group 2)
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Immunohistochemistry and scoring of biological
tumor markers

Immunohistochemistry staining was performed on 5-μm tis-
sue sections from archival biopsies using primary antibodies
against HER2 (1:100, Fremont), CD44 (1:100, Biolegend),
HIF1α (1:100, ABCAM), PTCH1 (1:100, ABCAM), and
SHH (1:100, ABCAM). De-paraffinized tissue sections were
immersed in PBS 2% hydrogen peroxidase to block endoge-
nous peroxidase activity. Antigen retrieval was performed and
the sections were incubated overnight at 4 °C with primary
antibodies. Tissue sections were then incubated with biotinyl-
ated secondary antibodies at 1:300 dilutions for 1 h. The ABC
complex was formed using the Vectastain Elite ABC HRP kit
(Vector Laboratories). This complex was visualized with
SIGMA FAST 3,3’-diaminobenzidine tablets (Sigma-
Aldrich). Finally, sections were counterstained with hematox-
ylin and scored.

Scoring was blinded and carried out by two researchers
independently. Discordant cases and random slides of each
marker were validated by a pathologist specializing in upper
gastrointestinal cancer. If at least 5 clustered tumor cells were
stained, HER2 was scored according to standardized methods
in a discrete scale of 0, 1+, 2+, and 3+ [22, 31]. Following the
guidelines in the immunohistochemical evaluation of HER2,
this scale was dichotomized. Tumors with score 0 were con-
sidered negative while tumors with score 3+ were considered
positive. As tumors with 1+ represent the majority of false-
negative results and tumors with 2+ represent the majority of
false-positive results, these cases were subjected to fluores-
cence in situ hybridization to confirm the HER2 status [22,
23, 32]. HIF1α was scored separately as it is expressed either
in the cytosol (normoxia) or in the nucleus (hypoxia). CD44,
HIF1αcytosol, and PTCH1 were scored using the 15-point
immuno-reactivity score as described in the Supplemental
Methods. HIF1αnucleus and SHH intensity were categorized
as either present or absent [33].

Statistical analysis

Statistical analysis was performed with R 3.5.3 open-source
software using the regression modeling strategies package
(version 5.1-3), available from the Comprehensive R
Archive Network (http://www.r-project.org). The outcome
variable, categorized as γpCR versus non-γpCR (Mandard
TRG 1 vs. 2–5), was modeled using logistic regression.
Biological tumor markers with a likelihood-ratio test (LRT)
p value < 0.2 in univariable logistic regression analysis were
preselected and entered separately to three reference models.
The reference models were constructed based on clinical fea-
tures as listed in Table 1 (model 1), radiomic features (model
2), and both clinical and radiomic features (model 3). Prior to
the final selection of radiomic features, the feature space was

reduced by agglomerative hierarchical clustering with average
linkage to group both radiomic features and patients in clus-
ters based on their Spearman rank correlation coefficient.
Clusters were formed when groups of nodes in the dendro-
gramwere < 60% of the maximum linkage. From each feature
cluster, a representative radiomic feature was selected based
on the lowest univariable LRT p value per cluster. Only rep-
resentative radiomic features with LRT p < 0.2 were subjected
to the final feature selection process based on least absolute
shrinkage and selection operator, a technique for L1-norm
regularization.

The performance of the constructed models was assessed
using overall performance, discrimination, and calibration
measures. Discrimination describes the ability to discriminate
between γpCR and non-γpCR and was measured using the
AUC and the discrimination slope. Calibration refers to the
agreement between observed outcomes and predictions, and
was evaluated with calibration plots. Measures of overall per-
formance are composed of discrimination and calibration
characteristics of the model and include the Nagelkerke R2

and the Brier score [34]. All measures were corrected for
model optimism by internal validation with bootstrapping
(20,000 repetitions).

Results

Patient characteristics

Table 1 displays the patient and tumor characteristics.
Seventy-eight patients (81%) in group 1 and 33 patients
(77%) in group 2 received all 5 cycles of chemotherapy, while
18 patients (19%) in group 1 and 10 patients (23%) in group 2
received 4 cycles of chemotherapy. In group 1, 21 patients
(22%) and 75 patients (78%) were scored as γpCR and
non-γpCR, compared to respectively 9 patients (21%) and
34 patients (79%) in group 2.

Immunohistochemistry scores

HER2 amplification could not be established in two patients
in group 1 and one patient in group 2 and was therefore scored
as missing. Immunohistochemical staining for all remaining
samples was successfully performed. The distributions of the
immunohistochemical scores of the six analyzed biological
tumor markers are provided in Table 2. HER2 and CD44 were
the only significant biological tumor markers at univariable
logistic regression analysis (LRT p value = 0.043 and LRT p
value = 0.051) and were therefore considered for further anal-
ysis. HIF1αnucleus, HIF1αcytosol, PTCH1, and SHH were not
found to be significant (LRT p values of 0.847, 0.367, 0.443,
and 0.236 respectively).
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High HER2 expression was found to be more prevalent in
impaired responders. To be more specific, 17 of the 18 HER2-
positive patients developed non-γpCR (negative predictive
value of 94%) and HER2 was negative in 19 of the 20 patients
with γpCR (sensitivity of 95%). Moreover, 18 of the 18
(100%) HER2-positive patients had a clinical T3–4a tumor
and 11 of the 76 (14%) HER2-negative patients had a clinical
T1–2 tumor (p value = 0.12, Fisher’s exact test). Supplemental
Figure 1 demonstrates representative pictures of low (0) and
high (3+) HER2 expression patterns. CD44 amplification was
found more frequently in complete responders than in incom-
plete responders. From 16 CD44-negative patients, 15 devel-
oped a non-γpCR (positive predictive value of 94%), while 8
of the 9 patients with γpCR were CD44-positive (sensitivity
of 89%). Only 1 of the 16 (6%) CD44-negative patients had a
T1–2 tumor, while 22 of the 27 (81%) CD44-positive patients
had a T3–4a tumor (p value = 0.35, Fisher’s exact test). In
group 2, all 6 patients who were both HER2-positive and
CD44-positive developed a non-γpCR.

Reference model construction

Hierarchical clustering revealed 7 groups of correlated fea-
tures (Fig. 2). The representative features corresponding to
these feature clusters (in Fig. 2, from top to bottom in the
tree) were inverse variance, coarseness, Moran’s I index, sec-
ondmeasure of information correlation, elongation, Geary’s C
measure, and long-run low gray-level emphasis. The con-
ventional metrics (volume, total lesion glycolysis,
SUVmax, SUVpeak, and SUVmean) were not selected as
representative features. Model 1 was constructed based
on histology and clinical T-stage, while Geary’s C mea-
sure and long-run low gray-level emphasis were selected
from the representative features for model 2. Geary’s C
measure is an indicator of spatial autocorrelation for find-
ing repeating metabolic patterns. Long-run low gray-level
emphasis is dependent on long sets of aligned voxels with
low metabolic activity. Model 3 was the full model incor-
porating all variables of models 1 and 2.

Table 1 Patient and tumor
characteristics Group 1 Group 2

Characteristics γpCR

(n = 21)

Non-γpCR

(n = 75)

γpCR

(n = 9)

Non-γpCR

(n = 34)

Sex

Male 14 (18%) 64 (82%) 7 (19%) 29 (81%)

Female 7 (39%) 11 (61%) 2 (29%) 5 (71%)

Age (median (IQR)) (years) 65 (7) 63 (10) 65 (6) 63 (10)

Histology

Adenocarcinoma 16 (18%) 72 (82%) 8 (%) 34 (81%)

Squamous cell carcinoma 5 (62%) 3 (38%) 1 (100%) 0 (0%)

Tumor location

Distal esophagus/GEJ 21 (22%) 75 (78%) 9 (21%) 34 (79%)

Tumor length (median (IQR)) (cm) 5.0 (5.3) 6.0 (4.0) 3.0 (6.5) 6.0 (4.0)

Clinical T-stage

T1 and T2 6 (55%) 5 (45%) 3 (50%) 3 (50%)

T3 and T4a 15 (18%) 70 (82%) 6 (16%) 31 (84%)

Clinical N-stage

N0 and N1 19 (28%) 49 (72%) 8 (27%) 22 (73%)

N2 and N3 2 (7%) 26 (93%) 1 (8%) 12 (92%)

Number of chemotherapy cycles

4 4 (22%) 14 (78%) 2 (20%) 8 (80%)

5 17 (22%) 61 (78%) 7 (21%) 26 (79%)

Mandard tumor regression grade

1 21 (100%) 0 (0%) 9 (100%) 0 (0%)

2 0 (0%) 24 (100%) 0 (0%) 12 (100%)

3 0 (0%) 33 (100%) 0 (0%) 17 (100%)

4 0 (0%) 16 (100%) 0 (0%) 4 (100%)

5 0 (0%) 2 (100%) 0 (0%) 1 (100%)

Abbreviations: γpCR, pathologic complete response; IQR, interquartile range; GEJ, gastroesophageal junction
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Complementary value of the biological tumor
markers

As no associations were found between the patient clusters and
histology, clinical T-stage, clinical N-stage, HER2, and CD44
(χ2 test; Fig. 2), we assumed that there was no connection be-
tween gene expression profiles and imaging phenotypes. HER2
and CD44 were separately added to the abovementioned refer-
ence models to evaluate their complementary value. The perfor-
mance measures of all constructed models are depicted in
Table 3. The reference models had the following performance
measures: overall model performance (R2M1 = 0.140, R2M2 =
0.103, and R2M3 = 0.173), discrimination (AUCM1 = 0.657,
AUCM2 = 0.654, and AUCM3 = 0.685), and calibration
(InterceptM1 = 0.086 and SlopeM1 = 0.817; InterceptM2 = 0.047
and SlopeM2 = 0.826; and InterceptM3 = 0.035 and SlopeM3 =
0.895). Although separate incorporation of HER2 or CD44 into
the reference models did not improve model performance, incor-
porating HER2 and CD44 simultaneously yielded substantially
improved overall performance (R2M10 = 0.221, R2M11 = 0.270,
and R2

M12 = 0.225) and discrimination (AUCM10 = 0.759,
AUCM11 = 0.857, and AUCM12 = 0.816). However, the

calibration plots (Fig. 3) show that model 10 underestimated
the probability of achieving a γpCR in low-risk patients, while
models 10–12 slightly overestimated the probability in high-risk
patients.

Discussion

The value of this study is the combination of biological tumor
markers from pre-treatment tumor biopsies and intratumoral
18F-FDG spatial distribution capturing information from the
entire tumor burden. The improvement of the reference pre-
diction models by the simultaneous addition of HER2 and
CD44 demonstrates the value of this concept. Prediction mod-
el 11, composed of 18F-FDG PET–based radiomic features
(Geary’s C measure and long-run low gray-level emphasis)
and biological tumor markers (HER2 and CD44), was the
preferred prediction model as it showed the highest observed
level of overall performance and discrimination. The model
had good ability to differentiate between γpCR and

Patients

R
ad

io
m

ic
 fe

at
ur

es

2

0

-2

Z-score

Histology
cT stage
cN stage

HER2
CD44

Fig. 2 Heatmap for radiomic feature expression with a Z-score.
Hierarchical clustering revealed 7 radiomic feature clusters (different
tree colors along the y-axis) and 6 patient clusters (different tree colors
along the x-axis) with similar radiomic feature expression patterns.
Representative radiomic features corresponding to the feature clusters
(from top to bottom in the tree) were inverse variance, coarseness,
Moran’s I index, second measure of information correlation, elongation,
Geary’s C measure, and long-run low gray-level emphasis. We tested
whether clinico-pathological features (histology, clinical T-stage, and
clinical N-stage) and biological expression (HER2 and CD44) are distrib-
uted equally across different patient clusters. The fact that no association
was found suggests independent information of thesemultimodal features

Table 2 The distribution of the immunohistochemistry scores

Group 1 Group 2

Tumor markers γpCR
(n = 21)

Non-γpCR
(n = 75)

γpCR
(n = 9)

Non-γpCR
(n = 34)

HER2

Negative 19 (90%) 57 (76%) 8 (89%) 26 (76%)

Positive 1 (5%) 17 (23%) 0 (0%) 8 (24%)

Missing 1 (5%) 1 (1%) 1 (11%) 0 (0%)

HIF1αnucleus

Negative 8 (89%) 31 (91%)

Positive 1 (11%) 3 (9%)

HIF1αcytosol

Negative 2 (22%) 13 (38%)

Positive 7 (78%) 21 (62%)

PTCH1

Negative 2 (22%) 4 (12%)

Positive 7 (78%) 30 (88%)

CD44

Negative 1 (11%) 15 (44%)

Positive 8 (89%) 19 (56%)

SHH

Negative 0 (0%) 3 (9%)

Positive 9 (100%) 31 (91%)

Abbreviations: γpCR, pathologic complete response; HER2, human epi-
dermal growth factor receptor 2; CD44, cluster of differentiation 44;
HIF1α, hypoxia-inducible factor alpha; PTCH1, protein patched homo-
log 1; SHH, Sonic Hedgehog
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non-γpCR, but in some cases it was less useful to predict the
actual probability of γpCR due to its fairly well calibration.

We found that HER2 activation was associated with a low-
er probability of achieving a γpCR. This is consistent with
studies which showed the association between overexpression
of HER2with poor survival and therapy response [17, 20, 23].
Another study showed that enrichment of postoperative HER2
levels in surgical resection material compared to pre-treatment
biopsies was associated with poor pathologic response [35]. In
our study, immunohistochemical activation of CD44 was re-
lated to a higher probability of achieving γpCR. CD44 is a
cell-surface transmembrane glycoprotein that has been ob-
served to be present in cancer stem cells of esophageal cancer,
a subpopulation of cells with the capacity of self-renewal.
In vitro, the combination of CD44+/CD24− subpopulation of
esophageal cancer cells has shown to be more resistant to
NCRT [36]. Although the reference prediction models showed

similar performance when HER2 and CD44 were added sepa-
rately, adding both variables simultaneously yielded improved
performances. This might be explained by the biological interac-
tion between HER2 and CD44, which leads to upregulation of
CXCR4 in gastroesophageal cancer and may enhance NCRT
resistance [25, 26]. Contradictory results have been reported re-
garding the association of HER2 and CD44 expression and T-
stage [37, 38]. In this study, we did not observe any association;
and therefore, these variables may contribute to the prediction
model as independent variables. This was confirmed by the fact
that model performance improved when HER2 (model 4) and
CD44 (model 7) were separately added to the clinical reference
model (model 1), which was constructed based on histology and
clinical T-stage. According to the general guidelines, HER2 sta-
tus should only be verified in patients with advanced esophageal
adenocarcinoma who are potential candidates for HER2-
targeting [22]. HER2 and CD44 status assessment is currently

Table 3 Performance of
prediction models with and
without biological tumor markers

Model AIC R2 Brier AUC DS Int Slope

M1 94.7 0.140 0.158 0.657 0.083 0.086 0.817

M2 97.4 0.103 0.163 0.654 0.058 0.047 0.826

M3 92.3 0.173 0.151 0.685 0.105 0.035 0.895

M4 = M1 + HER2 90.9 0.133 0.153 0.700 0.075 0.041 0.894

M5 = M2 + HER2 92.3 0.115 0.155 0.694 0.063 0.033 0.880

M6 = M3 + HER2 89.1 0.162 0.147 0.700 0.094 0.030 0.894

M7 = M1 + CD44 45.1 0.127 0.163 0.739 0.046 0.072 0.758

M8 = M2 + CD44 47.3 0.087 0.174 0.748 0.017 0.064 0.701

M9 = M3 + CD44 46.5 0.114 0.175 0.737 0.016 0.080 0.643

M10 = M1 + HER2 + CD44 40.5 0.221 0.146 0.759 0.106 0.069 0.763

M11 = M2 + HER2 + CD44 41.2 0.270 0.135 0.857 0.134 0.036 0.834

M12 = M3 + HER2 + CD44 42.0 0.225 0.150 0.816 0.073 0.060 0.724

Abbreviations: M1, clinical reference model; M2, radiomic reference model; M3, clinico-radiomic reference
model; HER2, human epidermal growth factor receptor 2; CD44, cluster of differentiation 44; AIC, Akaike
Information Criterion; R2 , Nagelkerke R2 ; Brier, Brier score; AUC, area under the receiver operating character-
istic; DS, discrimination slope; Int, intercept
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Fig. 3 Calibration plots of
reference prediction models 1, 2,
and 3, without (a) and with (b)
HER2 and CD44 incorporated
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not part of the pre-treatment staging. However, the findings of
this study supported by literature suggest a potential value of
adding pre-treatment HER2 and CD44 status in NCRT response
prediction in locally advanced esophageal cancer.

Although adding HER2 and CD44 complements our refer-
ence prediction models, it should be noted that some of the
constructed models were based on a relatively small number of
patients (n = 43), which increases the risk of model overfitting.
The reference prediction models were slightly better calibrated
than the preferred prediction model, but had substantially lower
overall performance and discrimination. However, well-
calibrated models which have poor discrimination do not have
any clinical value. Vice versa, the usability of the model is only
limited if the model is poorly calibrated at the clinically chosen
threshold to omit surgery. To prevent optimistic performance
estimates, all measures were corrected for optimism by internal
validation. However, as even internal validation may not be in-
dicative of the final model’s performance in future settings, the
model should be validated in an independent validation cohort.
Moreover, the reproducibility of immunohistochemical evalua-
tion and radiomic feature extraction should be established before
it can be safely implemented and generalized in a clinical setting.
Immunohistochemical protocols may differ among institutes and
results depend on the level of experience of the researcher. In this
study, inter-rater variation was minimized by the independent
evaluation of two researchers. Discordant cases were validated
by an experienced pathologist. Moreover, only a few studies
have reported on measurement errors (i.e., reliability, reproduc-
ibility, or repeatability) of radiomics [39–41]. Although further
research is warranted, initial results show that most radiomic
features are sensitive to numerous confounding factors including
image acquisition, reconstruction protocols, or delineation
methods. Standardization in the radiomics extraction workflow
therefore remains essential to achieve routine clinical adoption.

This study indicates that HER2 and CD44 in the initial work-
up could be useful biological tumor markers in predicting γpCR
to NCRT in esophageal cancer. As genomic and 18F-FDG PET–
based radiomic features may yield independent complementary
information, integration of these multimodal features may im-
prove the performance of prediction models.
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