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Chapter 1

Classification of units (persons, objects) into different categories is frequently

required in educational practice and research. For example, in primary edu-

cation children’s intellectual abilities are assessed to determine whether they

have special educational needs for which specific educational provisions are re-

quired. Early intervention may prevent children with intellectual disabilities

from developing severe learning deficits (Allor, Mathes, Roberts, Cheatham,

& Al Otaiba, 2014). The severity of intellectual disabilities is typically classi-

fied into categories, like none, mild, moderate, severe and profound disabilities

(Shree & Shukla, 2016). Children with mild disabilities may benefit from break-

ing up bigger tasks into smaller tasks, since with smaller tasks it is easier to

concentrate and stay focused. Children with severe intellectual disabilities are

usually referred to special education (Pijl, 2015). Whether a child is eligible

for special education mainly depends on the teachers’ judgements about the

cognitive skills (Smeets & Roeleveld, 2016). In educational research, to give

another example, it is studied whether classroom management strategies of the

teacher have an impact on students’ on-task behavior (Korpershoek, Harms,

De Boer, Van Kuijk, & Doolaard, 2016). In that case observational data are

needed to decide whether a student is on- or off-task within a certain time

interval.

Classifications into mutually exclusive categories can be either unordered

(nominal) or ordered (ordinal). With nominal ratings units are pigeonholed

into categories that are unordered. In most cases, the nominal categories are

exhaustive, that is, every unit fits into one category, but this is not always the

case. We have nominal categories if we categorize different behavioral disorders

as attention deficit hyperactivity disorder, attention deficit disorder or autism

spectrum disorder. With ordinal ratings units are classified into categories that

differ in extensity or severity of a disease or condition, for example, none, mild,

moderate or severe.

Since units are often classified by human raters, and since humans are falli-

ble, the reliability of their ratings is an important issue. Ratings are considered

reliable if units are assigned to the same categories under similar conditions.

A typical procedure to assess the reliability of ratings is to ask at least two

raters to classify the same set of units independently, and then examine the

agreement between the ratings. This agreement is then a measure of reliability

of the ratings. The reliability of ratings is also a prerequisite of validity. If

the validity is sufficient, raters classify units accurately. The reliability and

10
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General Introduction

validity of ratings may be at risk if the scoring criteria are not clear or if the

definitions of the categories are ambiguous.

A statistical concept for examining the degree of reliability of ratings is

inter-rater agreement. Inter-rater agreement refers to the degree of agreement

between ratings of different raters on the same variables (Einfeld et al., 2007;

Mathuszak & Piasecki, 2012; McHugh, 2012). High agreement between the rat-

ings provides evidence that the ratings are to some extent reliable and accurate,

and that the ratings can be considered interchangeable (Blackman & Koval,

2000; McHugh, 2012; Shiloach et al., 2010; Wing, Leekam, Libby, Gould, &

Larcombe, 2002). If the agreement is poor, possible ways to improve the level

of agreement are providing (extra) rater-training and more precise definitions

of the categories (Warrens, 2010).

A popular tool for measuring agreement between nominal ratings of two

raters is Cohen’s unweighted kappa (Andrés & Marzo, 2004; Cohen, 1960;

Conger, 2017). Assessing agreement between ordinal ratings of two raters is

commonly done using Cohen’s weighted kappa (Cohen, 1968; Crewson, 2005;

Vanbelle, 2016). Cohen’s unweighted kappa differentiates only between agree-

ments and disagreements, while weighted kappa takes into account that some

disagreements are more serious than others (Cohen, 1968). For example, when

assessing intellectual disabilities, a disagreement on being mildly disabled and

profoundly disabled is more serious than between mildly disabled and moder-

ately disabled.

Missing data (or missing values) are a common problem in many fields of

science. In agreement studies, missing data may occur due to missed appoint-

ments or dropout of units. However, missing data may also be the result of

rater performance. If a particular category is missing, or if a category is not

fully understood, a rater may choose not to rate the unit (De Raadt et al.,

2019; Warrens, 2015). Furthermore, if missing data are not handled properly

it may cause biased estimates. How missing data may affect the quantification

of inter-rater agreement has not been studied comprehensively.

To get an indication of how often missing data occurs in studies that use

kappa statistics, we searched relevant articles using the search terms “missing

data” together with “kappa” and “agreement” in Google Scholar. For a selec-

tion of the first 56 articles we inspected whether or not the missing data was on

the rater variables and what method was used to deal with the missing data.

In 20 articles (36%) missing data were located on the rater variables. In the

11
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Chapter 1

other articles missing data were located elsewhere or the location was unclear.

In 14 of the 20 articles (70%) missing data were removed using listwise dele-

tion before the degree of inter-rater agreement was determined (Ampt, Ford,

Taylor, & Roberts, 2013; Chimukangara et al., 2017; Geisler et al., 2019; Gov-

atsmark, Sneeggen, Karlsaune, Slordahl, & Bonaa, 2016; Hill-Westmoreland &

Gruber-Baldini, 2005; Korten, Jorm, Henderson, McCusker, & Creasy, 1992;

Law et al., 1996; Loria, Whelton, Caulfield, Szklo, & Klag, 1998; Odding,

Valkenburg, Stam, & Hofman, 2000; Osteras et al., 2007; Taylor, Sutter, On-

tai, Nishina, & Zidenberg-Cherr, 2018; Van der Meer, Dixon, & Rose, 2008;

Vereecken & Vandegehuchte, 2003; West, Sweeting, & Speed, 2001). List-

wise deletion implies that, if a unit has missing data, all available data of this

unit are deleted. None of the authors specified why they used this particular

method.

Four of the 20 studies (20%) examined how well missing data were recovered

by different multiple imputation methods. In all the studies missing data were

generated using simulations. Furthermore, kappa was used to measure the

agreement between the ‘true’ values and the imputed values (Glance, Osler,

Mukamel, Meredith, & Dick, 2009; Ma, Akhtar-Danesh, Dolovich, Thabane,

& the CHAT investigators, 2011; Montealegre, Zhou, Amirian, & Schreurer,

2015; Shrive, Stuart, Quan, & Ghali, 2006). Furthermore, in 2 of the 20 studies

(10%) the specific situation of the relation between missing data and the degree

of inter-rater agreement was examined. Both studies handled missing data by

treating them as disagreements, which led to substantially decreased kappa

values (Adejumo, 2005; Banes et al., 2005).

The effect of listwise deletion and (multiple) imputation on the degree of

agreement is at present not clear. This is perhaps not surprising given that the

effect of missing data has not been studied comprehensively for the particular

case of quantifying agreement between two categorical variables. This makes it

difficult for researchers to make educated choices on how to deal with missing

data in agreement studies. For this reason, a major part of this dissertation

will focus on the impact of missing data on the values of kappa coefficients.

This will increase our understanding of effective strategies to deal with missing

data in the context of inter-rater agreement.

A minor part of this dissertation focuses on relations among various agree-

ment coefficients (kappa coefficients and correlations). Weighted kappa and

correlations are commonly used to measure agreement on ordinal and inter-

12
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General Introduction

val scales, respectively. A major issue in the application of weighted kappa is

the arbitrary way of assigning weights to disagreements. This can be circum-

vented by the use of correlations. It is examined to what extent the different

coefficients produce similar values for ordinal ratings. If the coefficients obtain

similar results, one may consider correlations instead of kappa coefficients. Fur-

thermore, if this is the case we may consider imputation strategies which were

originally proposed for interval ratings on the ordinal ratings in this disserta-

tion.

Aims and outline of this dissertation

The main aim of this dissertation is to examine and compare strategies to deal

with missing data in the context of inter-rater agreement. In Chapters 2, 3

and 5 the impact of missing data on Cohen’s unweighted and weighted kappa

coefficient is studied. The second aim is to find out how different agreement

coefficients are related on ordinal ratings. This study is presented in Chapter

4.

Chapter 2 presents three different kappa variants that can be used with

missing data. One variant uses partly missing data for a more precise esti-

mation of the expected agreement, whereas the second variant treats missing

data as disagreements. A third variant based on listwise deletion ignores units

with missing data and calculates Cohen’s unweighted kappa coefficient on the

complete data. By means of simulations we study the performances of the

three kappa variants under two missing data mechanisms.

In Chapter 3 the performance of three multiple imputation methods that

are suitable for nominal ratings are compared in the context of quantifying

agreement between two variables using Cohen’s unweighted kappa. By means

of simulations we assess the accuracy of the multiple imputation methods and

listwise deletion under three missing data mechanisms.

In Chapter 4 kappa variants and correlation variants are compared on

ordinal ratings. It is studied under which conditions a particular kappa variant

and two correlation coefficients produce similar values. The differences between

some of the coefficients can be expressed in terms of rater means and variances.

Furthermore, it is investigated to what extent we reach the same decision if

different kappa variants and correlation variants were used. Moreover, we

investigate the extent to which the coefficients measure agreement in similar

ways.

13
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Chapter 1

In Chapter 5 it is examined how well four missing data methods that can

handle ordinal missing data estimate agreement between two variables using

Cohen’s weighted kappa. We investigate the impact of a multiple and single

imputation method, a variant of kappa that can deal with missing data, and

listwise deletion. As in the third chapter, by means of simulations we study the

performances of the different methods under three missing data mechanisms.

Finally, Chapter 6 presents an overview of the most important results of

this dissertation. Furthermore, limitations and suggestions for further research

are given.

14
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2
Kappa coefficients

for missing data

This chapter is published as De Raadt, A., Warrens, M. J., Bosker, R. J., &

Kiers, H. A. L. (2019). Kappa coefficients for missing data. Educational and

Psychological Measurement, 79, 558-576.
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Chapter 2

Abstract

Cohen’s kappa coefficient is commonly used for assessing agreement between

classifications of two raters on a nominal scale. Three variants of Cohen’s kappa

that can handle missing data are presented. Data are considered missing if one

or both ratings of a unit are missing. We study how well the variants estimate

the kappa value for complete data under two missing data mechanisms, namely

missingness completely at random and a form of missingness not at random.

The kappa coefficient considered in Gwet (2014) and the kappa coefficient based

on listwise deletion of units with missing ratings were found to have virtually no

bias and mean squared error if missingness is completely at random, and small

bias and mean squared error if missingness is not at random. Furthermore, the

kappa coefficient that treats missing ratings as a regular category appears to be

rather heavily biased and has a substantial mean squared error in many of the

simulations. Because it performs well and is easy to compute, we recommend to

use the kappa coefficient that is based on listwise deletion of missing ratings if

it can be assumed that missingness is completely at random or not at random.

18
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Kappa coefficients for missing data

2.1 Introduction

In various research domains and applications the classification of units (persons,

individuals, objects) into nominal categories is frequently required. Examples

are, the assignment of people with mental health problems to classes of men-

tal disorders by a psychologist, the classification of assignments of students to

assess their proficiency by their teachers, the allocation of elderly people to

classes representing different types of dementia by neurologists, and the clas-

sification of fractures from scans. In the first example, persons who have a

depressed mood and a decreased interest or pleasure may be diagnosed with

a Major Depressive Disorder (American Psychiatric Association, 2013). A di-

agnosis may provide a person more insight into his or her problems, which

is often a prerequisite for finding the right treatment. Classification of per-

sons into categories may also be useful for research purposes. Groupings that

were obtained using rater classification can be compared on various outcome

variables.

A nominal rating instrument has high reliability if units obtain the same

classification under similar conditions. The reliability of ratings may be poor

if, for example, the definition of categories is ambiguous, or if instructions are

not clear. In the latter case a rater may not fully understand what he or she

is asked to interpret, which may lead to a poor diagnosis. To study whether

ratings are correct and of high reliability researchers typically ask two raters

to judge the same group of units. The agreement between ratings is then used

as an indication of the reliability of the classifications of the raters (Blackman

& Koval, 2000; McHugh, 2012; Shiloach et al., 2010; Wing, Leekam, Libby,

Gould, & Larcombe, 2002).

A coefficient that is commonly used for measuring the degree of agreement

between two raters on a nominal scale is Cohen’s kappa (Andrés & Marzo,

2004; Cohen, 1960; Conger, 2017; Maclure & Willett, 1987; Schouten, 1986;

Vanbelle & Albert, 2009; Viera & Garrett, 2005; Warrens, 2015). The coeffi-

cient is a standard tool for assessing agreement between nominal classifications

in behavioral, social and medical sciences (Banerjee, 1990; De Vet, Mokkink,

Terwee, Hoekstra & Knol, 2013; Sim & Wright, 2005). A major advantage of

kappa over the raw observed percent agreement is that the coefficient controls

for agreement due to chance (Cohen, 1960). Kappa has value 1 if there is per-

fect agreement between the raters and value 0 if observed percent agreement

19
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Chapter 2

is equal to the agreement due to chance.

Missing data are quite common in research and can have a notable effect

on the conclusions that can be drawn from the data (Baraldi & Enders, 2010;

Enders, 2010; Peugh & Enders, 2004). In this manuscript data are considered

missing if one or both ratings of a unit are missing. Missing data may have

various causes, such as dropout during a clinical trial (Myers, 2000) or non-

response on an appointment (Raghunathan, 2004). Furthermore, missing data

may be the result of the coding procedure. For instance, in content analysis one

rater may break up a text in more parts than another rater. Data are missing

since the second rater does not classify some of the units that are classified by

the first rater (Simon, 2006; Strijbos & Stahl, 2007).

Several variants of Cohen’s kappa for dealing with missing data have been

proposed in the literature (Gwet, 2012, 2014; Simon, 2006; Strijbos & Stahl,

2007). The kappas are based on two different approaches. In the first approach

units with one or two missing ratings are classified into a separate “missing”

category. This first approach is also known as an available-case analysis. The

second approach is simply to delete (or ignore) all units with no or only one

rating available and apply the ordinary Cohen’s kappa. This latter approach

is known as listwise or pairwise deletion in the statistical literature (with two

raters listwise deletion is equal to pairwise deletion) and is probably the most

commonly used approach (Peugh & Enders, 2004). This second approach is

also known as a complete-case analysis.

At present, it is unclear how the different kappa coefficients for missing data

are related and what the impact of the degree and nature of the missingness is

on the degree of reliability. Strijbos and Stahl (2007) presented examples that

show that different kappa coefficients may produce quite different values for

the same data. Thus, different conclusions about the reliability of a nominal

rating instrument may be reached depending on which kappa coefficient is used.

Furthermore, it is also unclear which kappa coefficient should be preferred in

a particular research context. New insights into the properties of the kappa

coefficients for missing data are therefore welcomed.

In this manuscript we study how the three above mentioned kappa coef-

ficients are affected by different degrees of missing data. The new insights

presented in this manuscript may help researchers choose the most appropri-

ate kappa coefficient. It should be noted that the kappa coefficients are based

on what are referred to in the literature as traditional methods. For other

20
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Kappa coefficients for missing data

data-analytic applications it has been shown that listwise and pairwise dele-

tion methods have certain limitations (cf. Baraldi & Enders, 2010; Enders,

2010; Peugh et al., 2004). The deletion methods may perform well if it can

be assumed that missingness is completely at random (MCAR). However, if

MCAR cannot be assumed, deletion methods may provide distorted parame-

ter estimates. A more modern approach for handling missingness is based on

multiple imputation methods (Baraldi & Enders, 2010; Enders, 2010; Peugh

& Enders, 2004).

The chapter is structured as follows. Cohen’s kappa is defined in the next

section. The three kappa coefficients for dealing with missing data are defined

in Section 2.3. We are interested in how well the three kappa coefficients

estimate the kappa value for complete data in light of missing data. In Section

2.4, we use simulated data to get an idea of the extent of the bias and the

mean squared error (MSE) if the missingness is completely at random or if the

missingness is not at random. Finally, Section 2.5 contains a discussion.

2.2 Cohen’s kappa

In this section we consider Cohen’s original kappa coefficient (Cohen, 1960).

Suppose we have two raters, A and B, who have classified independently the

same group of N units into one of k categories that were defined in advance.

Suppose the data are summarized in the square contingency table P = {pij},
where pij denotes the relative frequency (proportion) of units that were classi-

fied into category i ∈ {1, 2, . . . , k} by rater A and into category j ∈ {1, 2, . . . , k}
by rater B. Table 2.1 is an example of P for three categories. The diagonal

cells p11, p22 and p33 reflect the agreement between the raters, while the off-

diagonal cells reflect the disagreement between the raters. The marginal totals

or base rates pi+ and p+i for i ∈ {1, 2, . . . , k} reflect how often the categories

were used by the raters.

The kappa coefficient is a function of two quantities: the observed percent

agreement

Po =

k∑
i=1

pii, (2.1)
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Table 2.1: Pairwise classifications of units into three categories.

Rater A Rater B

Category 1 Category 2 Category 3 Total

Category 1 p11 p12 p13 p1+

Category 2 p21 p22 p23 p2+

Category 3 p31 p32 p33 p3+

Total p+1 p+2 p+3 1

which is the proportion of units on which both raters agree, and the expected

percent agreement

Pe =
k∑

i=1

pi+p+i, (2.2)

which is the value of the observed percent agreement under statistical inde-

pendence of the classifications. The observed percent agreement is generally

considered artificially high. It is often assumed that it overestimates the actual

agreement since some agreement may simply occur due to chance (Bennett,

Alpert, & Goldstein, 1954; Cohen, 1960). The kappa coefficient is given by

κ =
Po − Pe

1− Pe
. (2.3)

Coefficient (2.3) corrects for agreement due to chance by subtracting (2.2) from

(2.1). To ensure that the maximum value of the coefficient is 1, the difference

Po−Pe is divided by its maximum value 1−Pe. Thus, Cohen’s kappa is defined

as a measure of agreement beyond chance compared to the maximum possible

beyond chance agreement (Andrés & Marzo, 2004; Conger, 2017). The value of

kappa usually lies between 0 and 1. It has value 1 if there is perfect agreement

between the raters (i.e. Po = 1) and value 0 if the observed percent agreement

is equal to the expected percent agreement (i.e. Po = Pe).

Landis and Koch (1977) proposed the following guidelines for the inter-

pretation of the kappa value: 0.0 − 0.2 = slight agreement, 0.2 − 0.4 = fair

agreement, 0.4 − 0.6 = moderate agreement, 0.6 − 0.8 = substantial agree-

ment and 0.8− 1.0 = almost perfect agreement. It should be noted that these

guidelines, and any other set of guidelines, are generally considered arbitrary.

Except perhaps for 0 and 1, no value of kappa can have the same meaning in

all application domains.
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Various authors have reported difficulties with kappa’s interpretation. Kappa

values depend on the base rates (through Pe), and kappa values corresponding

to tables with different base rates are generally not comparable (Brennan &

Prediger, 1981; Byrt, Bishop, & Carlin, 1993; Conger, 2017; Feinstein & Cic-

chetti, 1990; Lantz & Nebenzahl, 1996; Maclure & Willet, 1987; Sim & Wright,

2005; Thompson & Walter, 1988; Warrens, 2010b).

An overview of the different forms of marginal dependency and associated

properties of Cohen’s kappa can be found in Warrens (2014a). Despite the diffi-

culties with its interpretation, the kappa coefficient continues to be a standard

tool for assessing agreement between two raters (Hsu & Field, 2003; McHugh,

2012).

2.3 Kappas for missing data

In an ideal situation all units would be rated by both raters. Unfortunately, in

real life missing data can occur. In this manuscript we consider data missing

if a unit was not classified by both raters or by one rater only. In this section

we consider three variants of Cohen’s kappa that can handle missing data.

Missing data in a separate category

Table 2.2 is an extended version of Table 2.1 that includes an extra missing

category. This category is denoted by the subscript m. The cells pmi for

i ∈ {1, 2, . . . , k} reflect the proportion of units that where classified into, re-

spectively, category i by rater B but are missing a classification by rater A. The

cells pim for i ∈ {1, 2, . . . , k} are the proportions of units that where classified

into category i by rater A but are missing a classification by rater B. Cell pmm

is the proportion of units with two missing ratings. Furthermore, the marginal

total pm+ reflects how many units were rated by rater B but not by rater A.

Vice versa, the marginal total p+m reflects how many units were rated by rater

A but have no rating by rater B.
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Table 2.2: Pairwise classifications of units into three general categories

and one category for missing ratings.

Rater A Rater B

Category 1 Category 2 Category 3 Missing Total

Category 1 p11 p12 p13 p1m p1+

Category 2 p21 p22 p23 p2m p2+

Category 3 p31 p32 p33 p3m p3+

Missing pm1 pm2 pm3 pmm pm+

Total p+1 p+2 p+3 p+m 1

Gwet’s kappa

Gwet (2014) proposed a kappa variant that can be explained by means of Table

2.2. In Gwet’s formulation, only units with 2 reported ratings are included

in the calculation of the observed percent agreement. But units with one

reported rating and one missing rating are used in the computation of the

expected percent agreement. Units with 2 missing ratings are excluded from

the calculation altogether. The missing data are used to obtain a more precise

estimation of the expected percent agreement. The observed percent agreement

is defined as

Pog =

∑k
i=1 pii∑k

i=1

∑k
j=1 pij

. (2.4)

In contrast to the observed percent agreement, the expected percent agreement

below takes into account (almost) all units in the sample. As illustrated in Ta-

ble 2.2, the row totals pi+ and the column totals p+i are defined such that they

also include units that have missing ratings. The expected percent agreement

is defined as

Peg =

∑k
i=1 pi+p+i

(1− pm+)(1− p+m)
. (2.5)

The product in the denominator in (2.5) only include units that were classified

by rater A and rater B, respectively. It is important to note that formula (2.5) is

different from the expected percent agreement presented in Gwet (2012, 2014).

Formula (2.5) can be found on the erratum webpage of the book published in

2014 (www.agreestat.com/book4/errors 4ed.html).

Using (2.4) and (2.5), Gwet’s kappa coefficient is given by

κg =
Pog − Peg

1− Peg
. (2.6)
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In Gwet’s view missing ratings by both raters on the same unit do not add to

the overall agreement. For this reason all units associated with the cell pmm

are excluded from the analysis in Gwet’s formulation. Formulas (2.4), (2.5)

and (2.6) are applied to Table 2.2 with pmm = 0.

Regular category kappa

Another way to deal with missing data is to consider the missing category

as a regular category (Strijbos & Stahl, 2007). In this case, units with only

one missing rating are considered and treated as disagreements, whereas units

with two missing ratings are treated as agreements. In this case the observed

percent agreement is defined as

Por =
k∑

i=1

pii + pmm, (2.7)

while the expected percent agreement is defined as

Per =
k∑

i=1

pi+p+i + pm+p+m. (2.8)

The so-called Regular category kappa is then given by

κr =
Por − Per

1− Per
. (2.9)

Alternatively, one could define κr as the ordinary kappa applied to ratings

into k + 1 categories, where “missing” is considered as the (k + 1)th category

(Strijbos & Stahl, 2007).

Listwise deletion kappa

A third way to deal with missing data is simply to delete (or ignore) all units

that were not classified by both raters and apply the ordinary Cohen’s kappa to

the units with two ratings (Strijbos & Stahl, 2007). In statistics, this approach

is also known as listwise deletion or a complete-case analysis (Baraldi & Enders,

2010; Enders, 2010; Peugh & Enders, 2004). Therefore, the kappa variant that

is based on this approach will be referred to as Listwise deletion kappa, and will

be denoted by κl. The formulas for Cohen’s kappa were presented in Section

2.2.
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2.4 Simulations

We used simulated data to study how close the values of Gwet’s kappa, Regular

category kappa and Listwise deletion kappa are to the kappa value for complete

data. The latter value will be denoted by κT . How we generated the data will

be described first.

Procedure and design

We carried out a number of simulations under different conditions, according

to the following procedure. We started with an initial agreement table with

complete data for N = 100 units. To create missing data, we modified a rating

as missing when a random draw from the uniform [0, 1] distribution exceeded

a particular threshold. This threshold was varied such that the expected per-

centage of modifications was 5%, 10%, 15%, 20%, 25% and 30% per rater.

For instance, if the expected percentage of modifications was 30% per rater,

then each rater had approximately 30 missing ratings. In total there are ap-

proximately 60 missing ratings and 200 observations, thus approximately 30%

ratings missing. Next, the values of the three kappa coefficients were deter-

mined.

The above steps were repeated 10,000 times. Across the thus constructed

10,000 data sets, we determined for each type of kappa coefficient, the bias

bias =
1

10, 000

10,000∑
i=1

(κi − κT ). (2.10)

and the mean squared error (MSE)

MSE =
1

10, 000

10,000∑
i=1

(κi − κT )2. (2.11)

Furthermore, the standard errors of the bias and MSE were also included, to

get an impression of the fluctuation of bias and MSE across possible repetitions

of the simulation.

For the simulations, we differentiated between eight initial tables with com-

plete data, four of size 2× 2 and four of size 3× 3. The proportions and corre-

sponding kappa values of the four tables of size 2×2 are presented in Table 2.3.

The analogous statistics for the four tables of size 3× 3 are presented in Table

2.4. Each set of four tables consists of two symmetric and two asymmetric
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tables, and two tables with a high kappa value (≈ .80) and a medium kappa

value (≈ .40). The tables were chosen such that they cover a wide range of

possible real-life situations.

Table 2.3: Proportions and kappa values of

the four initial tables of size 2× 2.

Initial table

Element 2.3.1 2.3.2 2.3.3 2.3.4

p11 .45 .35 .51 .40

p12 .05 .15 .10 .33

p21 .05 .15 .00 .00

p22 .45 .35 .39 .27

κT .80 .40 .80 .40

Symmetric? yes yes no no

Table 2.4: Proportions and kappa values of

the four initial tables of size 3× 3.

Initial table

Element 2.4.1 2.4.2 2.4.3 2.4.4

p11 .28 .20 .35 .28

p12 .04 .10 .09 .15

p13 .02 .05 .02 .06

p21 .04 .10 .00 .00

p22 .28 .20 .24 .21

p23 .01 .05 .02 .20

p31 .02 .05 .00 .00

p32 .01 .05 .00 .00

p33 .30 .20 .28 .10

κT .79 .40 .80 .40

Symmetric? yes yes no no
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We used two different missing data mechanisms, namely missingness com-

pletely at random (MCAR) and a form of missingness not at random (MNAR).

With MCAR, each rating has an equal chance to be re-labeled as missing,

whereas with MNAR, we allowed only ratings associated with the first cate-

gory to become missing, and each of these has a chance to be re-labeled as

missing equal to the set modification percentage. So one can expect approx-

imately this percentage of missing within the first category ratings, and no

missings elsewhere.

In addition to the two missing data mechanisms, we differentiated between

two situations. In the first situation both raters have missing ratings and each

rater had an equal chance that ratings can be re-labeled as missing. In the

second situation only rater A had missing ratings.

In summary, the simulation study design consists of eight initial tables of

two different sizes (2 × 2 and 3 × 3), two missing data mechanisms (MCAR

and MNAR), two rater conditions (missing ratings for both raters, or only for

rater A) and six missing percentages (5%− 30%). For each case of the design

we generated 10,000 data sets, and for each data set we determined the values

of the three kappa coefficients, and the associated bias and MSE.

Results for 2 × 2 tables

The results for the initial tables of size 2 × 2 are presented in Tables 2.5, 2.6,

2.7 and 2.8. In each table, the first column (IT) gives the initial table from

Table 2.3 used to simulate the data, while the second column (%M) gives the

percentage of missing data. Furthermore, the values of the bias are in the

third, fourth and fifth column, whereas the values of the MSE are in the sixth,

seventh and eight column. The corresponding standard errors are presented

behind each value between brackets. Tables 2.5 and 2.7 present the results for

the case of MCAR, and Tables 2.6 and 2.8 for the case of MNAR. Moreover,

Tables 2.5 and 2.6 presents the results for the case of missing ratings for both

raters, and Tables 2.7 and 2.8 the case of missing ratings for only rater A.

It turns out that Regular category kappa is biased downward in all cases

of Tables 2.5 to 2.8, and that the bias increases with the missingness. Fur-

thermore, the bias of Regular category kappa is in almost all simulated cases

the most extreme, in the absolute sense, of the three kappa coefficients. If we

compare the kappa values of the initial 2 × 2 tables and keep everything else

constant, then, in all cases, the bias is more substantial if the kappa value is
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high (≈ .80) than if it is low (≈ .40). The simulations show that we have some

sort of floor effect for the bias if the original kappa value is already low. The

bias of Regular category kappa is already quite substantial in most cases when

only 10% of the ratings are missing. Moreover, in all simulated cases the bias

is often more than -.20 if 30% of the ratings are missing.

In virtually all simulated cases Regular category kappa has the highest MSE

of the three kappa coefficients. If we compare the kappa values of the initial

2× 2 tables and keep everything else constant, then, in all cases, the MSE is,

similar as for the bias, more substantial if the kappa value is high than if it is

low.

In Tables 2.5 to 2.8 we see that the results for Gwet’s kappa and Listwise

deletion kappa are very similar. Both kappa coefficients are virtually unbiased

in case of MCAR, and only slightly biased in case of MNAR. Furthermore, the

associated MSE values are generally very small, i.e. ≤ .009 for all simulations

in Tables 2.5 to 2.8. In terms of bias and MSE, Gwet’s kappa and Listwise

deletion kappa clearly outperform Regular category kappa in all simulated

cases.

Finally, there are only slight differences between the symmetric and asym-

metric cases, whether only one rater or both raters had missing ratings, and

between the two missing data mechanisms. An exception is that Regular cate-

gory kappa is more biased in the case of MCAR compared to MNAR. Moreover,

all standard errors are smaller than .002, which suggests that the bias and MSE

estimates in these simulations have a high degree of accuracy.
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Kappa coefficients for missing data
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Chapter 2

Results for 3 × 3 tables

The results for the initial tables of size 3 × 3 are presented in Tables 2.9,

2.10, 2.11 and 2.12. In each table, the first column (IT) gives the initial table

from Table 2.4 used to simulate the data, while the second column (%M) gives

the degree of missing data. Furthermore, the values of the bias are in the

third, fourth and fifth column, whereas the values of the MSE are in the sixth,

seventh and eight column. The corresponding standard errors are presented

behind each value between brackets. Tables 2.9 and 2.11 presents the results

for the case of MCAR, and Tables 2.10 and 2.12 for the case of MNAR.

The results in Tables 2.9 to 2.12 for the 3 × 3 initial tables are in many

respects comparable to the results in Tables 2.5 to 2.8 for the 2 × 2 initial

tables. We found only more extreme results in the situation of MNAR and for

missings for only one rater for the 2 × 2 initial tables compared to the 3 × 3

initial tables.

Regular category kappa is again biased downward in all cases, and the

bias increases with the missingness. Furthermore, the bias and MSE are more

substantial if the kappa value is high (≈ .80) than if it is low (≈ .40) (possible

floor effect). In many of the simulated cases the bias is more extreme than .10,

and the MSE is often comparatively high too.

In terms of bias and MSE, both Gwet’s kappa and Listwise deletion kappa

perform quite well in many simulated cases. Both kappa coefficients are virtu-

ally unbiased in case of MCAR. However, there is some bias in case of MNAR

(see Table 2.10 and 2.12). In general, the MSE value are again very small, i.e.

≤ .006 for all tables.
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Kappa coefficients for missing data

2.5 Discussion

In this manuscript we considered and compared three kappa coefficients for

nominal scales that can handle missing data. We referred to these kappas

as Gwet’s kappa (Gwet, 2014), Regular category kappa and Listwise deletion

kappa (Strijbos & Stahl, 2007). Data are considered missing if one or both

ratings of a person or object are missing. In Gwet’s kappa formulation the

missing data are used in the computation of the expected percent agreement

to obtain more precise estimates of the marginal totals. Regular category kappa

treats the missing category as a regular category. Listwise deletion kappa is

only applied to units with two ratings (complete-case analysis).

In this study we found that both Gwet’s kappa and Listwise deletion kappa

outperform Regular category kappa in all simulated cases, in terms of bias and

MSE. Overall, both kappa coefficients are virtually unbiased in case of MCAR,

and only slightly biased in case of MNAR. Furthermore, the MSE of Gwet’s

kappa and Listwise deletion kappa is generally very small. Therefore, if one

of the two missing data models studied in this paper can be assumed to hold,

both kappa coefficients can be used.

If we have to pick one, we recommend to use Listwise deletion kappa,

because its value is easier to compute. Listwise deletion kappa can be obtained

by performing a complete case analysis with Cohen’s ordinary kappa. Thus,

this kappa coefficient for missing data can be computed with any software

program that has implemented a routine for Cohen’s kappa. We generally

advise against the use of Regular category kappa, since the coefficient has

unacceptable bias in just too many different situations.

We want to warn readers that they do not use the version of the expected

percent agreement of Gwet’s kappa printed in Gwet (2012) and Gwet (2014),

but instead use the version presented in this manuscript (formula (2.5)) which

is the one that can be found on the erratum webpage of the book published

in 2014 (www.agreestat.com/book4/errors 4ed.html). In unreported simu-

lation studies, we found that using the kappa as printed in Gwet (2012) and

Gwet (2014) leads to a substantial upward bias in many of the simulated cases.

These results are available upon request.

This research was limited to two general-purpose missing data mechanisms.

Furthermore, the research was limited to complete data tables that have two

or three categories. It may be the case that the kappa coefficients perform
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differently under other missing data mechanisms or for higher numbers of cat-

egories. This is a topic for future research. However, we believe that it is likely

that the results found in this paper also apply to cases with higher numbers

of categories, because the pattern of results did not change much when going

from two to three categories.

The research presented in this manuscript was limited to three kappa co-

efficients that have been proposed in the literature for handling missing data

(Gwet, 2012; Simon, 2006; Strijbos et al., 2007). The coefficients are based on

approaches that are considered traditional methods in the missing data analy-

sis literature (Baraldi & Enders, 2010; Enders, 2010; Peugh & Enders, 2004).

A more modern approach to missing data is multiple imputation (see, for ex-

ample, Lang & Wu, 2017). Applying the modern methods to the context of

assessing interrater agreement is an important topic for future research.
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Abstract

Cohen’s kappa coefficient is a standard tool for assessing agreement between

two raters on a nominal scale. Like in many real-world applications, miss-

ing data may also occur in studies where kappa is used. We investigated the

performance of three multiple imputation methods for missing data, namely,

imputation based on multinomial logistic regression and two versions of multi-

ple hot deck imputation, in the context of quantifying agreement between two

nominal variables using Cohen’s kappa. We compared the multiple imputation

methods to the method of listwise deletion in a simulation study, using different

number of categories, different values of Cohen’s kappa, and different missing

data mechanisms. The results show that multiple imputation based on multi-

nomial logistic regression and listwise deletion perform similarly. Furthermore,

the two methods outperform both versions of multiple hot deck imputation in

the case of missingness at random.
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Cohen’s kappa, missing data and MI methods

3.1 Introduction

Quantifying agreement

In research applications in the social, behavioral and educational sciences, the

classification of units (e.g., patients, pupils) by a human rater into nominal

categories is frequently required (Breitholtz, Johansson, & Ost; 1999; Einfeld

et al., 2007; Lee, Low, Yeung, & Jin, 2018). Examples of applications are, the

classification of children’s reactions to distress in other children (Dunfield &

Kuhlmeier, 2013), the classification of reasons for children being off-task in class

(e.g., self-distraction, peer distraction, environmental distraction, or walking;

Godwin et al., 2016), and the classification of persons with autism spectrum

into subtypes (e.g., autistic, Asperger’s, or PDD-NOS; Li et al., 2018). On the

level of the individual, a reliable and valid classification is needed so that indi-

viduals may receive proper treatment or training (e.g. individualized treatment

for children with autism).

Units are typically classified by human observers using a rating instrument

or scale. A nominal rating instrument has high reliability if units are assigned

to the same categories under similar conditions. The reliability of a rating

instrument may be at risk if the definition of the categories is ambigious or if

it is not clear to a rater how to use the instrument. A frequently used method

to assess the reliability of a rating instrument is to ask two raters to classify

the same group of units using the instrument, and then assess the agreement

between the two raters. High agreement between the ratings provides evidence

that the ratings are to some extent reliable and accurate, and that the classifi-

cations can be considered interchangeable (Blackman & Koval, 2000; McHugh,

2012; Shiloach et al., 2010; Wing et al., 2002).

A coefficient that is commonly used for quantifying nominal agreement

between two raters is Cohen’s kappa (Cohen, 1960; Conger, 2017; De Raadt,

Warrens, Bosker & Kiers, 2019; Maclure et al., 1987; Schouten, 1986; Vanbelle

& Albert, 2009; Viera & Garret, 2005; Warrens, 2015). The coefficient is

a standard tool in behavioral, social and medical sciences (Banerjee, 1990;

De Vet et al., 2013; Sim & Wright, 2005; Warrens, 2017b). Alternatively,

one could use, for example, the percentage of agreement to quantify nominal

agreement between two raters. However, many researchers prefer the former

over the latter, because Cohen’s kappa takes into account agreement occuring

by chance, whereas the percentage of agreement does not. The percentage
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of agreement is considered by many artificially high (Bennett et al., 1954;

Crewson, 2005; McHugh, 2012; Warrens, 2010c).

Missing data

Missing data are a common problem in many research applications. In agree-

ment studies, missing ratings may be the result of dropout or non-response on

an appointment, or they may occur if a rater does not fully understand what

a particular category means and chooses not to classify the unit (De Raadt et

al., 2019; Warrens, 2015). In statistics, there are different ways for handling

missing data. If not handled properly, missing data may cause incorrect con-

clusions (Jakobsen, Gluud, Wetterslev, & Winkel, 2017; Kang, 2013). Possible

consequences are biased estimates and a reduction of the representativeness of

the sample (Kang, 2013).

In the theory of missing data, mechanisms underlying missing data are usu-

ally divided into three mechanisms (Cheng, Chan, & Sheu, 2019; Gustavson,

Roysamb, & Borren, 2019; Pedersen et al., 2017), namely, missingness com-

pletely at random (MCAR), missingness at random (MAR) and missingness

not at random (MNAR). We will describe the three mechanisms in our context

of interest, that is, quantifying agreement between two nominal variables.

Data are considered MCAR if each rating has an equal chance to become

missing. That is, there is no systematic underlying process, except for ran-

dom variation, as to why ratings are missing for one of the nominal variables.

Furthermore, data are considered MAR if the probability of a rating to be-

come missing depends on the value of another (set of) observed variables.

Finally, data are considered MNAR if they are neither MCAR or MAR. In this

manuscript we consider the MNAR situation where the probability of a rating

to become missing is associated with the values of the nominal variable itself.

That is, the pattern of missing data on one of the nominal variables is MNAR

if units choose not to respond because of their true value on the variable.

Methods for handling missing data

There are a variety of different methods for dealing with missing data. Some

methods have been customized to specific data-analytic situations, while oth-

ers can be used in many different circumstances (Allison, 2015; Van Buuren &

Groothuis-Oudshoorn, 2011; Vink, Frank, Pannekoek, & Van Buuren, 2014).

General purpose methods are usually divided into traditional and modern
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methods for handling missing data (Baraldi et al., 2010; Enders, 2010; Peugh

et al., 2004). Examples of traditional methods are listwise deletion (LD), also

known as complete-case analysis, and pairwise deletion (PD), also known as

available-case analysis (Shylaja & Saravana Kumar, 2018). In this study we

are interested in the case of two nominal variables and quantifying agreement

between the variables using Cohen’s kappa. If there are only two variables LD

and PD coincide.

Listwise deletion excludes all units with one or two missing ratings from the

data. An advantage of LD compared to other missing data methods is that it

is easy to apply: 1) removing the units with missing ratings is straightforward,

and 2) researchers can use their standard analysis of choice on the remaining

(and complete) data. In agreement studies, it is straightforward to delete or

ignore the units with missing ratings and apply Cohen’s kappa on the complete

data. If the data are MCAR, LD is likely to produce unbiased estimates of

Cohen’s kappa since the missing ratings are a random sample of the complete

data (Dong, 2013). However, MCAR is usually considered unrealistic in many

practical situations. Modern methods, like multiple imputation, assume miss-

ingness to be at least MAR (Van Buuren, 2012). If MAR holds, LD is likely to

produce biased estimates, since the information about the cause of the miss-

ingness will be ignored. While the pitfalls of LD have long been established in

statistical research papers (e.g., Kang, 2013; Myers, 2011), it is still a popular

method for dealing with missing data (Eekhout, De Boer, Twisk, De Vet, &

Heymans, 2012; Klebanoff & Cole, 2008).

A modern method for handling missing data is multiple imputation (MI)

(see e.g., Harel, & Zhou, 2007; Hayati Rezvan, Lee, & Simpson, 2015; Horton &

Kleinman, 2007; Huque, Carlin, Simpson, & Lee, 2018; Jakobsen et al., 2017;

Little, & Rubin, 1987; White, Royston, & Wood, 2011). Especially MI has

become a popular method for dealing with missing values (e.g., Schomaker &

Heumann, 2014; White, Daniel, & Royston, 2010; White et al., 2011). In MI

missing values are imputed multiple times, say 5 or 10, resulting in multiple

imputed data sets. The imputed data sets have identical observed values and

differ only in their imputed values. The differences among the imputed values

reflect the uncertainty about the true value. After generating the imputed data

sets, the next MI step is to calculate the statistic of interest for all imputed

data sets, followed by calculating the mean and variance on the statistic values

(Van Buuren, 2012).
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One reason for the popularity of MI is that it allows researchers to use

their standard analysis on the imputed data. MI replaces plausible values at

least once, since the true value is unknown. The way in which MI deals with

the uncertainty about the true value makes this method unique (Van Buuren,

2012). An advantage of MI over LD is that you usually end up with a larger

sample.

Cohen’s kappa and missing data

In this paper we consider the case of two nominal variables, corresponding to

nominal classifications by two observers of the same group of units. Further-

more, we are interested in quantifying agreement between the nominal variables

using Cohen’s kappa. With agreement data we have missing data if one or both

ratings of a unit are missing.

The impact of missing data on Cohen’s kappa has only been studied by a few

authors. Simon (2006) and Strijbos and Stahl (2007) studied the performances

of several variants of kappa for handling missing data, including one based

on LD, and one that treats missing ratings as disagreements. The variant

based on LD produced substantially higher values compared to the variant that

handles missing ratings as disagreements. De Raadt et al. (2019) compared

the two variants considered in Simon (2006) and Strijbos and Stahl (2007) to a

third variant proposed by Gwet (2014), and investigated how well the variants

estimate the kappa value for complete data under MCAR and MNAR. The

kappa coefficient considered by Gwet (2014) and the variant based on LD

performed quite well. Both kappa variants outperformed the kappa coefficient

that treats missing ratings as disagreements.

The present study

The variants of Cohen’s kappa for missing data considered in De Raadt et al.

(2019) are based on approaches that are considered traditional methods in the

missing data analysis literature (Baraldi & Enders, 2010; Enders, 2010; Peugh

& Enders, 2004). Multiple imputation methods have not been studied in the

context of quantifying agreement between two nominal variables using Cohen’s

kappa. Since we might get better results if we would use a more modern

approach like MI it seems useful to study the performance of MI methods in

the context of assessing agreement.

It is presently unclear which MI methods are best suited for dealing with

missing data in the context of quantifying agreement between two nominal
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variables. Studies that compare MI methods usually assume that a lot more

than two variables are involved. Furthermore, many methods require that

the variables have a continuous, or at least an ordinal, level of measurement.

For example, several authors have studied the performance of missing data

methods for correlation coefficients (Chan & Dunn, 1972; Chan, Gilman, &

Dunn, 1976; Honaker, King, & Blackwell, 2012; Raymond & Roberts, 1987).

Apart from LD, the methods used in these studies are only suitable for contin-

uous variables. Moreover, the popular MI method predictive mean matching

(De Silva, Moreno-Betancur, De Livera, Lee, & Simpson, 2019; Kaplan & Su,

2016; Morris, White, & Royston, 2014; Peeters, Zondervan-Zwijnenburg, Vink,

& Van der Schoot, 2015) is not suitable for nominal data.

For nominal variables, MI based on multinomial logistic regression (MLR)

has performed quite well in various comparison studies. In a design with five

binary variables, Stravseth, Clausen and Roislien (2019) compared the perfor-

mance of MLR to several other MI methods, including MI based on multiple

correspondence analysis, latent class analysis, and random forests, as well as

listwise deletion. All methods provided accurate results if 5% of the data were

missing. If 20% or 40% of the data were missing, LD and MI based on la-

tent class analysis or random forests gave substantially biased results. Overall

MLR together with MI based on multiple correspondence analysis performed

quite well. In a design with two binary and one continuous predictor and a

nominal outcome variable with three categories, Mungúıa and Armando (2014)

compared the performance of MLR, LD, multiple hot deck imputation (HD),

MI based on random forests and two single imputation methods. All methods

worked well if missing data was limited to 15%. Overall MLR and HD per-

formed best. Furthermore, in studies by Eisemann, Waldmann and Katalinic

(2011) and Lang & Wu (2017), MLR produced more reliable estimates than MI

based on random forests or classification trees. For more details on MI based

on random forest or classification trees, see Doove, Van Buuren and Dusseldorp

(2014).

In this manuscript we compare LD and two MI methods, namely MLR and

HD in the context of quantifying agreement between two nominal variables

using Cohen’s kappa, using a simulation study. Listwise deletion is included

because the method performed quite well in De Raadt et al. (2019). MLR

is included because it outperformed various methods in multiple comparison

studies (Eisemann et al., 2011; Lang & Wu, 2017; Mungúıa & Armando, 2014;
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Stravseth et al., 2019). We also include HD since it performed just as well

as MLR in the study by Mugia and Armando (2014). MI based on multiple

correspondence analysis is not included, since this method is especially useful

and has been proposed for data with a large number of variables (Audigier,

Husson, & Josse, 2017), which is not the case in our study. MLR and HD

are suitable for our context but have not yet been studied in this context.

Furthermore, we have found no evidence in favor or against the methods in the

particular case of two or three nominal variables.

The paper is organized as follows. In Section 3.2, our statistic of interest,

Cohen’s kappa, is defined, and the MI methods and the particular versions

of the missing data mechanisms used in this simulation study are described.

This section is also used to describe the procedure and design of the simulation

study. The results of the simulation study are presented in Section 3.3. Section

3.4 contains a discussion.

3.2 Method

Cohen’s kappa

Suppose two raters classify independently the same set of N units (persons,

objects) using the same set of k unordered (nominal) categories that are defined

in advance. Thus, the data consist of two nominal variables that have the

same categories. The agreement between the variables can be summarized in

a contingency table of size k × k with elements pij , where pij indicates the

proportion of units classified by the first rater in category i and by the second

rater in category j, where i, j ∈ {1, . . . , k}.
Table 3.1 is a cross-classification of two nominal variables with the same

three categories. Both raters have classified the units in one of the three cat-

egories. The diagonal cells, p11, p22 and p33 are the proportions of units on

which the raters agree. The off-diagonal cells reflect the units on which the

raters disagreed. The row and column totals reflect the number of times the

categories were used by the raters.

The kappa coefficient (Cohen, 1960) consists of two quantities. The first

one is the observed agreement, also called the percentage of agreement, given

by

Po =

k∑
i=1

pii. (3.1)
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Table 3.1: Pairwise classifications of units into three categories.

Rater A Rater B

Category 1 Category 2 Category 3 Total

Category 1 p11 p12 p13 p1+

Category 2 p21 p22 p23 p2+

Category 3 p31 p32 p33 p3+

Total p+1 p+2 p+3 1

Quantity (3.1) is the proportion of units on which the raters came to the

same conclusion. It is usually assumed that the observed agreement in (3.1)

overestimates the actual agreement level since some agreement may simply be

attained due to chance (Bennett et al., 1954; Cohen, 1960; Crewson, 2005;

McHugh, 2012).

A second quantity is the expected agreement given by

Pe =

k∑
i=1

pi+p+i. (3.2)

Quantity (3.2) is the value of the observed agreement under statistical inde-

pendence of the ratings. Cohen’s kappa coefficient is now defined as

κ =
Po − Pe

1− Pe
. (3.3)

Coefficient (3.3) corrects for chance expected agreement by subtracting (3.2)

from (3.1) in the numerator. By dividing the difference Po−Pe by its maximum

value 1− Pe, the maximum of kappa in (3.3) is set to 1. Thus, Cohen’s kappa

can be interpreted as a measure of agreement beyond chance compared to the

maximum possible beyond chance agreement (Andrés & Marzo, 2004; Conger,

2017; De Raadt et al., 2019). In real-world applications the value of kappa

usually lies between 0 and 1. If the raters are in perfect agreement (i.e. Po = 1)

its value is 1. If the observed agreement is the same as the expected agreement

(i.e. Po = Pe) its value is 0.
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Multiple imputation methods

Multiple imputation (Rubin, 1987) is a commonly used approach for dealing

with missing data (Enders, 2010; Peugh et al., 2004). The general procedure

consists of the following steps. In the first step each missing value is imputed

m > 1 times using a MI method (e.g., MLR or HD), which results in m

complete data sets (Rubin, Witkiewitz, Andre, & Reilly, 2007). Next, the

statistic of interest is calculated for each of the imputed data sets. In this

study the statistic of interest is Cohen’s kappa. Finally, the m statistic values

(i.e. the m kappa values) are pooled into one mean value and variance value

(Van Buuren, Boshuizen, & Knook, 1999).

Multinomial logistic regression

In this study data imputation in the first MI step will be performed with MLR

and HD. We used the software environment R to perform all the computations

(R Core Team, 2019). To apply MLR we used the R package mice (Van Buuren

& Groothuis-Oudshoorn, 2011), which performs MLR as follows. To impute

the missing ratings of a variable, the method first estimates a multinomial

logistic regression model on all observed values using all available predictors.

If a predictor is a nominal variable with three or more categories, the nominal

variable is first transformed into several dummy variables and the dummy

variables are used as predictors. Let the estimated coefficients of the MLR

model be denoted by b. Next, m sets of regression coefficients, denoted by

b∗, are sampled from a multivariate normal distribution with means b and the

estimated covariance matrix of b. The b∗ are then used in a multinomial logistic

regression model to generate m predicted values for all units of the outcome

variable. The predicted probabilities of a missing rating are used to determine

the category probabilities of a multinomial distribution. In the final step a

value is drawn from this distribution and the drawn value is imputed (Van

Buuren, 2012). This final step together with the random draw of regression

coefficients, introduces the random variation in the imputation process.

Multiple hot deck imputation

To apply HD we used the R package hot.deck (Cranmer, Gill, Jackson, Murr,

& Armstrong, 2016), which performs HD as follows. To have multiple imputed

data sets, the data set with missing data is copied m times. The missing

ratings of all m data sets are then imputed one by one. A missing rating of a
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unit is replaced by the observed rating of a unit with complete data, as will be

desribed later. In HD the former unit is usually called the recipient and the

latter unit is called the donor unit. The donor unit is drawn randomly from a

selection of units with complete data. This can be done in two ways: using 1)

the best cell approach, or 2) the probabilistic draw approach (Cranmer & Gill,

2012).

The best cell approach involves finding all units that have the same values

as the recipient on the variables for which values are not being imputed. From

this selection the donor unit is drawn randomly and its value on the nominal

variable for which values are being imputed is used to impute the missing

rating. This process is done separately for each unit with a missing rating

(Cranmer et al., 2012).

The probabilistic draw approach involves all units with complete ratings.

The similarity between the units with complete data and the recipient is quan-

tified with a distance measure, a so-called affinity score in HD terminology

(Cranmer et al., 2012). There is a perfect match (maximum affinity score)

if a unit and the recipient have the same observed values. Using the affinity

scores as weights, a selection of potential donor units is made. Donors with

the highest affinity scores are more likely to be selected. From this selection of

units a donor unit is drawn randomly and its observed value is used to impute

the missing rating. This procedure is repeated until all missing ratings are

imputed (Cranmer & Gill, 2012).

It should be noted that HD cannot impute missing ratings of units that

have missing scores on all variables, because some observed scores are needed to

find a donor unit for a recipient (Cranmer & Gill, 2012). Therefore, units with

missing scores on all variables were automatically removed from the analysis

by the routines implemented in the R package hot.deck.

In this study we applied both the best cell and probabilistic draw approach,

because there are no clear guidelines yet available on which approach is to be

preferred in our context. HD based on the best cell approach will be denoted

by HDB, whereas HD using the probabilistic draw approach will be denoted

by HDP.

Design of the simulation study

We used simulated data to study how well the MI methods and LD estimate

the kappa value for complete data. In this paragraph we describe how the data
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was generated. We performed 5000 simulations for various different conditions,

according to the following procedure.

We started with an initial agreement table with complete data for N = 100

units. We used eight initial tables with complete data, four of size 2 × 2 and

four of size 3× 3. Table 3.2 presents the proportions and corresponding kappa

values for the tables with two categories. Table 3.3 presents the analogous

statistics for the tables with three categories. Each table either has a high

kappa value (≈ .80) or a low kappa value (≈ .40). These values are presented

in the second to last column of Tables 3.2 and 3.3. In addition, the last column

of Tables 3.2 and 3.3 indicates whether the agreement tables are symmetric or

not. In both the 2 × 2 and the 3 × 3 case two tables are symmetric and two

are asymmetric. The eight initial tables in Tables 3.2 and 3.3 are identical

to the tables used in De Raadt et al. (2019). Furthermore, in this study we

consider MCAR and apply the same version of MNAR as used in De Raadt et

al. (2019).

The two kappa values of the initial tables (≈ .40 and ≈ .80) were cho-

sen for the following reasons. Although all guidelines may be arbitrary and

uncritical use of guidelines may lead to incorrect conclusions, in agreement

studies, a value of .80 is generally considered to reflect sufficient agreement.

This guideline can be traced back to Landis and Koch (1977), who consider

values between .80 and 1 indicating almost perfect agreement. The value of

.80 is included since we want to assess how well this particular value is recov-

ered. In addition, we have included initial tables with a relatively low kappa

value (≈ .40). For these cases we wanted to find out if the kappa value is per-

haps severely overestimated by any of the methods for missing data. If a low

kappa value is overestimated, one may conclude that the degree of inter-rater

agreement is sufficient, while it is in fact strongly biased upward.

The missing data were generated as follows. First, a random value for

each rating was drawn from the uniform [0, 1] distribution. If the drawn value

exceeded a particular threshold, a rating became missing. This threshold was

varied such that the expected percentage of modifications was 10%, 20% or

30% per rater. For example, if the expected percentage of modifications was

30% per rater, then each rater had approximately 30 missing ratings, since

each initial table consisted of N = 100 units.

We used three different mechanisms for generating the missing data, namely,

MCAR, MNAR and MAR. In the case of MCAR each rating of either rater had
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an equal chance to be relabeled as missing. In the case of MNAR we allowed

only ratings associated with the first category to become missing. Since only

ratings associated with the first category could become missing in the MNAR

situation, the number of missing ratings for each rater in a simulation was a

bit lower than could be expected based on the expected percentage of modifi-

cations per rater. Furthermore, the actual number of missing ratings depended

on the particular initial table used.

Table 3.2: Proportions and kappa values of

the four initial tables of size 2× 2.

IT Proportions κT Symmetric

3.2.1 .45 .05 .80 yes

.05 .45

3.2.2 .35 .15 .40 yes

.15 .35

3.2.3 .51 .10 .80 no

.00 .39

3.2.4 .40 .33 .40 no

.00 .27

Table 3.3: Proportions and kappa values of the

four initial tables of size 3× 3.

IT Proportions κT Symmetric

3.3.1 .28 .04 .02 .79 yes

.04 .28 .01

.02 .01 .30

3.3.2 .20 .10 .05 .40 yes

.10 .20 .05

.05 .05 .20

3.3.3 .35 .09 .02 .80 no

.00 .24 .02

.00 .00 .28

3.3.4 .28 .15 .06 .40 no

.00 .21 .20

.00 .00 .10
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In the case of MAR we generated an additional binary variable with cate-

gories A and B. In the context of an agreement study this additional variable

could for example be interpreted as the gender of the units. Next, each initial

table in Tables 3.2 and 3.3 was decomposed into two new tables: one with

proportions based on n = 50 units associated with category A and a relatively

high kappa value, and one with proportions based on n = 50 units associated

with category B and a moderate kappa value. The decompositions of the eight

initial tables with complete data are presented in Tables 3.4 (size 2 × 2) and

Table 3.5 (size 3× 3).

Initial tables with a high kappa value (≈ .80) were decomposed into a table

A with kappa value 1.0 and a table B with kappa value ≈ .60. Furthermore,

initial tables with a low kappa value (≈ .40) were decomposed into a table A

with kappa value ≈ .60 and a table B with kappa value ≈ .20. We used these

kappa values for the decomposition tables so that kappa values associated with

categories A and B were clearly distinguishable. Moreover, we used different

expected percentages of modifications for the two categories: 5%, 10%, and

15% missing ratings for units associated with category A and 15%, 30%, and

45% missing ratings for units associated with category B. Thus, units associ-

ated with a relatively low kappa value had a higher expected probability to get

missing ratings. Finally, the additional variable was used as a predictor in the

MI methods.
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For the MI methods, the missing data of each simulation were imputed

m = 5 times with each method, which resulted in five imputed data sets per

MI method. Cohen’s kappa value was determined for each of the imputed data

sets, followed by the calculation of the mean kappa value. To determine in each

simulation the value of Cohen’s kappa with LD, we just removed the units with

missing ratings and calculated Cohen’s kappa on the remaining units.

Let κT denote the original kappa value for the complete data. The above

steps were repeated 5000 times for each condition of the design. Across the

thus constructed 5000 data sets, we determined the mean squared error (MSE)

MSE =
1

5000

5000∑
i=1

(κi − κT )2, (3.4)

and the bias

bias =
1

5000

5000∑
i=1

(κi − κT ). (3.5)

In addition to the MSE and bias, we computed standard errors for the MSE

and bias.

Because the values of the MSE represent squared deviations we have chosen

to report the values of the root MSE (RMSE) instead of the MSE. Thus, the

RMSE can be interpreted as a representative degree of deviation between the

original kappa value and estimated kappa value. Furthermore, we used the

bias to assess whether the estimated kappa value either underestimates or

overestimates the original kappa value.

To summarize the results, we performed a repeated measures analysis of

variance (RM-ANOVA) on the RMSE values using the various conditions of

the simulation study as factors. The method for handling missing data (MLR,

HDB, HDP, LD) is a within factor, whereas the percentage of missing data (3

levels), the table size (2 sizes), the missing data mechanism (3 mechanisms),

whether an initial table is symmetric or not (2 options), and the initial kappa

value (2 values) are between factors. Furthermore, the RM-ANOVA model

consisted of all main effects and all possible two- and three-way interaction

effects between, on the one hand, the missing data method, and on the other

hand all between factors. Moreover, we used partial eta squared (denoted by

η2p) as an effect size to evaluate the importance of the RM-ANOVA components.
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3.3 Results

Tables 3.6, 3.7 and 3.8 present the results for, respectively, MCAR, MNAR and

MAR. In each table, the first column (IT) refers to the initial table presented in

Tables 3.2 and 3.3. The second column (%M) indicates the amount of missing

data. Columns 3-6 of Tables 3.6, 3.7 and 3.8 contain the values for the RMSE,

whereas columns 7-10 contain the bias values.

The standard errors associated with the values of the MSE and bias cor-

responding to Tables 3.6, 3.7 and 3.8 were all equal to or smaller than .001,

which suggest that the MSE and bias estimates in these simulations have a

high degree of accuracy. Because their values are so small, the standard errors

are not presented in the tables.
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Table 3.6: RMSE and bias for 5000 simulations for MCAR.

IT %M RMSE Bias

MLR HDB HDP LD MLR HDB HDP LD

3.2.1 10 .033 .040 .031 .030 -.004 -.004 .001 -.001

20 .051 .063 .048 .047 -.011 -.006 .001 -.002

30 .077 .086 .065 .063 -.022 -.008 .003 -.001

3.2.2 10 .050 .050 .048 .045 -.003 -.002 .001 -.000

20 .076 .077 .075 .069 -.005 -.003 .001 -.003

30 .103 .101 .101 .096 -.009 -.002 .003 -.004

3.2.3 10 .031 .029 .029 .029 -.006 .000 .006 -.001

20 .051 .045 .043 .045 -.015 .000 .010 -.001

30 .075 .060 .057 .061 -.027 .000 .014 -.002

3.2.4 10 .033 .031 .044 .034 -.005 .001 .030 .000

20 .050 .046 .073 .052 -.011 .001 .057 -.001

30 .068 .061 .100 .073 -.017 .003 .080 .000

3.3.1 10 .028 .028 .028 .026 -.001 .000 .001 .000

20 .044 .042 .041 .040 -.002 -.001 .001 -.002

30 .060 .057 .056 .053 -.004 .000 .003 -.001

3.3.2 10 .039 .040 .040 .036 .000 .000 .001 .000

20 .061 .058 .058 .056 .000 .000 .002 -.001

30 .084 .082 .083 .079 -.002 .001 .006 -.004

3.3.3 10 .025 .025 .025 .025 -.001 .000 .005 -.001

20 .038 .038 .037 .038 -.003 .000 .009 .000

30 .053 .051 .049 .053 -.004 .000 .013 -.001

3.3.4 10 .032 .031 .038 .032 .000 .000 .022 -.001

20 .048 .046 .062 .050 -.002 .001 .041 -.001

30 .064 .063 .085 .068 -.001 .000 .056 -.002
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Table 3.7: RMSE and bias for 5000 simulations for MNAR.

IT %M RMSE Bias

MLR HDB HDP LD MLR HDB HDP LD

3.2.1 10 .022 .017 .022 .021 -.002 .006 .001 -.001

20 .032 .029 .032 .033 -.002 .002 .004 -.005

30 .042 .044 .042 .044 -.002 -.005 .007 -.010

3.2.2 10 .033 .033 .034 .031 -.001 .002 .002 -.002

20 .050 .052 .049 .049 -.002 -.003 .005 -.006

30 .065 .070 .064 .068 -.006 -.009 .007 -.013

3.2.3 10 .021 .021 .021 .019 -.002 .000 .002 .000

20 .030 .031 .030 .030 -.004 -.001 .005 .000

30 .040 .041 .038 .041 -.005 -.003 .009 -.004

3.2.4 10 .021 .021 .030 .023 -.002 .001 .018 .003

20 .032 .031 .048 .035 -.002 .002 .035 .003

30 .041 .041 .066 .047 -.005 .005 .051 .001

3.3.1 10 .018 .022 .024 .016 .001 .005 .002 .004

20 .026 .025 .026 .024 .003 -.003 .005 .008

30 .034 .034 .034 .030 .007 .001 .010 .014

3.3.2 10 .023 .024 .025 .021 .002 .003 .002 .005

20 .034 .034 .034 .031 .004 .004 .006 .009

30 .043 .043 .042 .038 .011 .007 .013 .016

3.3.3 10 .016 .016 .017 .015 .001 .000 .002 .003

20 .023 .023 .024 .022 .002 .001 .006 .007

30 .029 .031 .030 .029 .004 .001 .010 .011

3.3.4 10 .017 .017 .017 .021 -.002 -.002 .005 -.011

20 .025 .025 .025 .036 -.004 -.005 .008 -.025

30 .032 .033 .031 .053 -.007 -.008 .011 -.041
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Table 3.8: RMSE and bias for 5000 simulations for MAR.

IT %M RMSE Bias

MLR HDB HDP LD MLR HDB HDP LD

3.2.1 10 .039 .051 .077 .040 .015 -.033 -.067 .023

20 .049 .121 .174 .053 .009 -.109 -.166 .024

30 .064 .226 .279 .066 .003 -.217 -.272 .028

3.2.2 10 .053 .050 .051 .051 .019 -.013 -.024 .024

20 .076 .081 .095 .074 .019 -.049 -.074 .024

30 .103 .126 .144 .097 .017 -.101 -.126 .028

3.2.3 10 .035 .049 .076 .041 -.004 -.034 -.066 .024

20 .050 .122 .173 .053 -.013 -.111 -.166 .025

30 .068 .228 .279 .066 -.027 -.219 -.272 .030

3.2.4 10 .031 .035 .037 .042 .000 -.016 -.013 .024

20 .047 .070 .076 .060 -.004 -.054 -.057 .027

30 .063 .122 .125 .077 -.007 -.109 -.109 .030

3.3.1 10 .037 .052 .085 .037 .022 -.040 -.078 .023

20 .049 .139 .193 .048 .024 -.130 -.187 .025

30 .061 .253 .301 .060 .023 -.246 -.296 .028

3.3.2 10 .046 .040 .048 .041 .023 -.017 -.032 .020

20 .066 .080 .100 .060 .024 -.062 -.088 .022

30 .087 .133 .153 .078 .028 -.120 -.143 .022

3.3.3 10 .029 .053 .084 .035 .002 -.042 -.077 .022

20 .041 .139 .188 .047 .002 -.130 -.182 .024

30 .054 .248 .292 .056 .001 -.242 -.287 .025

3.3.4 10 .030 .038 .038 .040 -.001 -.020 -.020 .024

20 .045 .083 .083 .056 -.001 -.071 -.071 .026

30 .062 .135 .135 .074 -.001 -.124 -.124 .028
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Table 3.9 presents a selection of the effects and effects sizes of the RM-

ANOVA on the RMSE values. The table is limited to effects with η2p values

≥ .10. The two between factors that have the greatest impact on the RMSE

values are the missing data mechanism (η2p = .94) and the percentage of miss-

ing data (η2p = .92). Inspection of Tables 3.6, 3.7 and 3.8 shows that, on

average, higher RMSE values are associated with MAR compared to MCAR

and MNAR. Furthermore, if the number of missing values increases the RMSE

values tend to increase as well.

Table 3.9: RM-ANOVA results: effects and effect sizes on RMSE values.

Effect η2p
Between Missing data mechanism .94

Percentage missing data .92

Symmetry .31

Table size .21

Within Method (for handling missing data) .79

Method * Missing data mechanism .87

Method * Missing data mechanism * Initial kappa value .75

Method * Missing data mechanism * Percentage .75

Method * Initial kappa value .54

Method * Percentage * Initial kappa value .27

The other two between factors symmetry (η2p = .31) and table size (η2p =

.21) have also some impact on the RMSE values. Inspection of Tables 3.6, 3.7

and 3.8 shows that, on average, symmetric tables have higher RMSE values

than asymmetric tables. Furthermore, RMSE values are, on average, lower in

tables with three categories.

The main effect associated with the missing data method has a substantial

effect size (η2p = .79). Inspection of Tables 3.6, 3.7 and 3.8 shows that, on

average, MLR and LD have lower associated RMSE values than the two HD

methods. For each of the Tables 3.6, 3.7 and 3.8 it holds that there is no single

method that performs best in all cases associated with the table. However, the

substantial main effect indicates that, on average, MLR and LD outperform

the two HD methods. In terms of bias the two HD methods performed worse

with high negative bias values.

All interactions with η2p ≥ .10 involve the factors missing data mechanism,

percentage missing and initial kappa value. In order to inspect these carefully,

in Figures 3.1, 3.2 and 3.3, we plotted mean RMSE’s for all different com-

64



547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt
Processed on: 28-8-2020Processed on: 28-8-2020Processed on: 28-8-2020Processed on: 28-8-2020 PDF page: 65PDF page: 65PDF page: 65PDF page: 65

Cohen’s kappa, missing data and MI methods

binations of the above three between factors with separate lines for the four

methods.

The first interaction effect is between the missing data method, the missing

data mechanism and the initial kappa value (η2p = .75). Figure 3.1 presents

the corresponding estimated marginal means. Both panels show that all four

methods performed similarly well in the cases of MCAR and MNAR. In the

case of MAR, MLR and LD performed similarly well to the cases of MCAR

and MNAR, while both HD methods performed clearly less well. HDP has,

on average, higher RMSE values than HDB if the initial kappa value is high.

Furthermore, both HD methods have, on average, higher RMSE values if the

initial kappa value is high than if it is low. This finding describes the two-way

interaction between the missing data method and initial kappa value (η2p = .54).

Likewise, we see that there are small differences between methods for MCAR

and MNAR, while for MAR bigger differences are found. This describes the

two-way interaction of the missing data method and missing data mechanism

(η2p = .87).

The second three-way interaction effect is between missing data method,

missing data mechanism and missing data percentage (η2p = .75). Figure 3.2

presents the corresponding estimated marginal means. In the case of MCAR

and MNAR all four methods obtain similar results. In the case of MAR, MLR

and LD perform similarly well and their RMSE values increase, on average,

slowly if the missing data percentage grows. This is in contrast with the results

for both HD methods. HDP and HDB performed significantly weaker with, on

average, large RMSE values that rise much faster if the amount of missingness

increases.

The third three-way interaction effect is between missing data method,

missing data percentage and initial kappa value (η2p = .27). Figure 3.3 presents

the corresponding estimated marginal means for different missingness percent-

ages. Both panels show that MLR and LD performed similarly. Furthermore,

MLR and LD have, on average, lower RMSE values, and they rise slower if the

amount of missingness increases compared to both HD methods. The perfor-

mances of MLR and LD differ slightly between the initial kappa values. This

is in contrast with the results for both HD methods. Both HD methods have

clearly higher RMSE values and the RMSE values rise faster if the percentage

of missing ratings increases if the initial kappa value is high than if it is low.
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Figure 3.1: Relationships between missing data method, missing data

mechanism and initial kappa value.

Figure 3.2: Relationships between missing data method, missing data

percentage and missing data mechanism.
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Figure 3.3: Relationships between missing data method, missing data

percentage and initial kappa value.

Finally, we consider the direction of the bias. All methods can be biased

both upward and downward, depending on the missing data mechanism. The

most striking finding is the extreme negative bias for both HD methods in the

case of MAR.
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3.4 Discussion

In this study we compared four methods for handling missing data in the con-

text of quantifying agreement between two nominal variables using Cohen’s

kappa coefficient. The methods were multiple imputation based on multino-

mial logistic regression (MLR; e.g., Lang & Wu, 2017; Stravseth et al., 2019)

multiple hot deck imputation (HD; Cranmer & Gill, 2012) and listwise dele-

tion (LD). We included two variants of multiple hot deck imputation, namely,

the best cell approach (HDB) and the probabilistic draw approach (HDP).

We compared the various methods in a simulation study using three different

missing data mechanisms, namely, MCAR, MNAR and MAR, and initial ta-

bles with different properties and various sizes (two and three categories). We

performed a repeated measures ANOVA to examine which factors explain the

differences in RMSE values between the methods.

None of the methods outperformed all other methods in all simulated condi-

tions. However, clear differences in average performance were found. Overall,

we have two winners: MLR and LD. On average, all four methods perform

similarly well in the case of MCAR and MNAR. However, in the case of MAR,

MLR and LD clearly outperformed HDB and HDP. On the basis of this study

we conclude that, if the version of MAR used in this study can be assumed,

one should definitely not use one of the HD methods, since the methods ex-

hibit substantial values of RMSE and negative bias for many of the simulated

cases. If it is not possible to justify any assumption about what missing data

mechanism may be at work, one might prefer MLR, which performs slightly

better than LD in the case of MAR and MNAR, but LD would be fine too.

De Raadt et al. (2019) showed that the variant of Cohen’s kappa for han-

dling missing data proposed by Gwet (2012, 2014) performed similarly to LD

in that study. Thus, if MCAR or MNAR can be assumed one could also use the

kappa variant proposed in Gwet (2012, 2014). One should not use the version

of the expected agreement of this kappa coefficient printed in Gwet (2012) and

Gwet (2014), but use the version that can be found on the erratum webpage of

the book published in 2014 (www.agreestat.com/book4/errors_4ed.html).

This study has several limitations. First of all, we considered only one form

of MAR and only one form of MNAR. It may be the case that different results

are obtained if other forms of MAR and MNAR are implemented, which is a

topic for further research. Another form of MAR may be to include more addi-
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tional variables. Furthermore, we only examined the performances of missing

data methods on tables consisting of two and three categories. It may be the

case that the methods perform differently for higher numbers of categories.

This is also a topic for future research. However, we believe that it is likely

that the results found in this study also apply to cases with higher numbers

of categories, because the pattern of results did not change much when going

from two to three categories. Thirdly, we only considered initial tables with

two different kappa values. It may be the case that different results are ob-

tained if other kappa values are investigated. However, using interpolation we

think it is quite likely that the results found in this article also apply to kappa

values between .40 and .80, since the pattern of results did not differ much

between these values.

Similar to De Raadt et al. (2019), we found that in this study LD performs

quite well. This result is at odds with much of the missing data literature

(Baraldi & Enders, 2010; Enders, 2010; Peugh & Enders, 2004). One expla-

nation may be that our situation of interest, which is quantifying agreement

between two nominal variables using Cohen’s kappa, is also an oddity with

regard to the literature, since in many applications and simulation studies the

number of variables is higher. Furthermore, the results of LD for our version of

MAR are somewhat surprising. In case of MAR usually multiple imputation

methods are indicated. Nevertheless, LD performs similarly to MLR and out-

performs the two HD methods in our case of MAR. Although using LD does

not lead to substantial RMSE or bias in this study, in practice the use of LD

will decrease the sample size which usually gives inflated standard errors and

confidence intervals.
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Abstract

Agreement assessment is of concern for both categorical as well as interval rat-

ings. Kappa coefficients are commonly used for assessing agreement on a cat-

egorical scale, whereas correlation coefficients are commonly applied to assess

agreement on an interval scale. In this study we compare different agreement

coefficients for categorical and interval ratings, using analytic methods and

simulated and empirical data. We study similarities between the various ways

of measuring agreement and we study how often we may reach similar decisions

with different coefficients with regard to agreement assessment. Many authors

have criticized the use of weighted kappa, a popular coefficient for ordinal rat-

ings. We present conditions under which the quadratically weighted kappa and

several correlation coefficients produce similar values.
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4.1 Introduction

Assessing agreement

In various fields of science it is frequently required that units (persons, individ-

uals, objects) are rated on a scale by human observers. Examples are teachers

that rate assignments completed by pupils to assess their proficiency, neurol-

ogists that rate the severity of patients’ symptoms to determine the stage of

Alzheimer’s disease, psychologists that classify patients’ mental health prob-

lems and biologists that examine features of animals in order to find similarities

between them, which enables the classification of newly discovered species.

To study whether ratings are reliable, a standard procedure is to ask two

raters to judge independently the same group of units. The agreement between

the ratings can then be used as an indication of the reliability of the classifica-

tions by the raters (Blackman & Koval, 2000; McHugh, 2012; Shiloach et al.,

2010; Wing et al., 2002). Requirements for obtaining reliable ratings are, e.g.,

clear definitions of the categories and the use of clear scoring criteria. A suffi-

cient level of agreement ensures interchangeability of the ratings and consensus

in decisions (Warrens, 2015).

Assessing agreement is of concern for both categorical as well as inter-

val ratings. For categorical ratings, kappa coefficients are commonly used.

For example, Cohen’s kappa coefficient (Cohen, 1960) is commonly used to

quantify the extent to which two raters agree on a nominal (unordered) scale

(De Raadt et al., 2019; Graham & Jackson, 1993; Maclure & Willet, 1987;

Muñoz, & Bangdiwala, 1997; Schouten, 1986; Viera & Garret, 2005) while

the weighted kappa coefficient (Cohen, 1968) is widely used for quantifying

agreement between ratings on an ordinal scale (Cohen, 1968; Crewson, 2005;

Moradzadeh, Ganjali, & Baghfalaki, 2017; Vanbelle & Albert, 2009; Vanbelle,

2016; Warrens, 2012b, 2013, 2014b). Both Cohen’s kappa and weighted kappa

are standard tools for assessing agreement in behavioural, social and medical

sciences (Banerjee, 1990; De Vet et al., 2013; Sim & Wright, 2005).

Whereas kappa coefficients are widely used for assessing agreement on a

categorical scale, the Pearson correlation and intraclass correlation coefficients

are widely used for measuring agreement when ratings are on an interval scale

(McGraw & Wong, 1996; Shrout & Fleiss, 1979). Shrout and Fleiss (1979) dis-

cuss six intraclass correlation coefficients. Different intraclass correlations are

appropriate in different situations (McGraw & Wong, 1996; Warrens, 2017a).
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Arbitrariness of weights

Cohen’s kappa differentiates only between agreements and disagreements. In

contrast, the weighted kappa coefficient allows that some disagreements may

be considered of greater gravity than others (Cohen, 1968). For example, dis-

agreement on categories that are adjacent in an ordinal scale can be considered

less serious than disagreement on categories that are further apart. With the

weighted kappa coefficient proposed by Cohen (1968) the seriousness of dis-

agreements can be modeled using weights. The weighted kappa coefficient

presents the degree of weighted agreement corrected for chance agreement in

a situation with varying disagreement weights.

The flexibility provided by weights to deal with the different degrees of

disagreement could be considered a strength of the weighted kappa coefficient.

However, the arbitrariness of the choice of weights is generally considered a

weakness of the coefficient (Crewson, 2005; Maclure & Willet, 1987; Vanbelle

& Albert, 2009; Vanbelle, 2016; Warrens, 2012, 2013, 2014).

The assignment of weights can be very subjective and studies in which

different weighting schemes were used are generally not comparable (Kundel

& Polansky, 2003). Because of such perceived limitations of weighted kappa,

Tinsley and Weiss (2000) have recommended against the use of weighted kappa.

Soeken and Prescott (1986, p. 736) also recommend against the use of weighted

kappa: “because nonarbitrary assignment of weighting schemes is often very

difficult to achieve, some psychometricians advocate avoiding such systems in

absence of well-established theoretical criteria, due to the serious distortions

they can create”.

Connections between agreement coefficients

Various authors have found connections between the kappa coefficients for

categorical scales and the correlation coefficients for interval scales (Schus-

ter & Smith, 2005; Warrens, 2014b). It turns out that weighted kappa with

quadratic weights, or quadratic kappa for short, is a key coefficient in this re-

spect. Quadratic kappa may be interpreted as a proportion of variance (Fleiss

& Cohen, 1973; Schuster, 2004; Schuster & Smith, 2005). If the raters have

identical mean ratings, quadratic kappa is equivalent to intraclass correlation

ICC(3,1) from Shrout & Fleiss (1979). If rater means differ, quadratic kappa

has a lower value than the intraclass correlation. If the rater variances also vary,

the intraclass correlation has a lower value than the Pearson correlation as well.
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In the case of equal rater means and variances, the values of quadratic kappa,

the intraclass correlation and the Pearson correlation are identical (Schuster,

2004).

A different type of result was presented in Warrens (2014b). The latter

author showed that intraclass correlation ICC(3,1), the Pearson correlation

and the Spearman correlation are in fact special cases of the weighted kappa

coefficient, since the coefficients produce equal values if particular weighting

schemes are used. The details of these particular weighting schemes can be

found in Warrens (2014b).

Replace weighted kappa with a correlation coefficient

Since many weighting schemes for weighted kappa are essentially arbitrary,

and since intraclass correlation ICC(3,1) from Shrout and Fleiss (1979) and

the Pearson correlation are special cases of weighted kappa, Warrens (2014b)

suggested that for rating systems with ordered categories we may abandon

weighted kappa altogether and replace it with a correlation coefficient. Intra-

class correlations are commonly used in agreement studies with interval ratings.

Furthermore, the Pearson correlation is already commonly used in statistics,

and its use is basically unchallenged (Rodgers & Nicewander, 1988). More-

over, in factor analysis the Pearson correlation is commonly used to quantify

association between ordinal scales, in many cases 4-point or 5-point Likert-

type scales. The Likert-type scale is the most widely used approach to scaling

responses in survey research. Assuming that ratings have an interval level of

measurement (instead of only an ordinal level) allows the use of more powerful

statistical methods.

Replacing weighted kappa with a correlation coefficient may be considered

too drastic a measure by many people, since at present it is unknown whether

we may reach the same or similar decisions with different agreement coeffi-

cients. It is also unknown whether the coefficients measure agreement in a

similar way. Schuster (2004) showed that the values of various agreement coef-

ficients are influenced by differences between rater means and variances, which

may be important in the context of assessing agreement. However, it is un-

known to what extent differences between rater means and variances affect the

coefficient values, theoretically or in practice. The aim of this study is therefore

to compare various agreement coefficients analytically and by using simulated

and empirical data.
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Research questions and present study

In this study we compare, using ordinal rating data, the following six agree-

ment coefficients: Cohen’s unweighted kappa, weighted kappa with linear and

quadratic weights, intraclass correlation ICC(3,1) (Shrout & Fleiss, 1979), and

Pearson’s and Spearman’s correlations. We have the following three research

questions: 1) under what conditions do quadratic kappa and the Pearson and

intraclass correlations produce similar values?, 2) to what extent do we reach

the same decision if different coefficients are used?, and 3) to what extent do the

coefficients measure agreement in similar ways? To approach these questions

we will compare the coefficients analytically and by using simulated and em-

pirical data. For the empirical comparison we will use two different real-world

data sets.

We hypothesize that the values of the Pearson and Spearman correlations

are very similar (De Winter, Gosling, & Potter, 2016; Hauke & Kossowski,

2011; Mukaka, 2012). Furthermore, intraclass correlation ICC(3,1) will pro-

duce similar values as the Pearson correlation if rater variances are similar,

and similar values as quadratic kappa if the rater means are similar (Schuster,

2004). Moreover, we hypothesize that the values of the three kappa coeffi-

cients can be quite different (Warrens, 2013). How the other coefficients are

related, and under what conditions we may reach similar decisions has yet to

be investigated.

The paper is organized as follows. The six agreement coefficients are de-

fined in the next section. In the third section three coefficients that can be

expressed in terms of the rater means, variances and covariance (quadratic

kappa, intraclass correlation ICC(3,1) and the Pearson correlation) are com-

pared analytically. In the fourth section we compare all six coefficients in a

simulation study. This is followed by a comparison of all six agreement coef-

ficients using two real-world data sets in the fifth section. The final section

contains a discussion.

4.2 Agreement coefficients

Kappa coefficients

In this subsection we define various kappa coefficients. Suppose that two raters

classified independently n units (individuals, objects, products) into one of

k ≥ 3 ordered categories that were defined in advance. Let pij denote the
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proportion of units that were assigned to category i by the first rater and to

category j by the second rater. Table 4.1 is an example of an agreement table

with elements pij for k = 4. The table presents pairwise classifications of a

sample of units into four categories. The diagonal cells p11, p22, p33 and p44

are the proportion of units on which the raters agree. The off-diagonal cells

consist of units on which the raters have not reached agreement. The marginal

totals or base rates pi+ and p+j reflect how often a category is used by a rater.

Table 4.1: Pairwise classifications of units into four categories.

First rater Second rater

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Total

Category 1 p11 p12 p13 p14 p1+

Category 2 p21 p22 p23 p24 p2+

Category 3 p31 p32 p33 p34 p3+

Category 4 p41 p42 p43 p44 p4+

Total p+1 p+2 p+3 p+4 1

Table 4.2: Pairwise classifications of two observers who rated teacher 7 on 35

ICALT items (Van der Scheer et al., 2017).

First rater Second rater

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Total

1 = Predominantly weak .03 0 0 0 .03

2 = More weaknesses than strengths 0 .14 0 0 .14

3 = More strengths than weaknesses 0 .03 .49 0 .52

4 = Predominantly strong 0 0 .20 .11 .31

Total .03 .17 .69 .11 1.00

Table 4.2 is an example of an agreement table with real-world numbers.

Table 4.2 contains the pairwise classifications of two observers who each rated

the same teacher on 35 items of the International Comparative Analysis of

Learning and Teaching (ICALT) observation instrument (Van de Grift, 2007).

The agreement table is part of the data used in Van der Scheer et al. (2017).

The Van der Scheer data are further discussed in the fifth section.

The weighted kappa coefficient can be defined as a similarity coefficient

or as a dissimilarity coefficient. In the dissimilarity coefficient definition, it

is usual to assign a weight of zero to full agreements and to allocate to dis-
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agreements a positive weight whose magnitude increases proportionally to their

seriousness (Gwet, 2012). Each of the k2 cells of the agreement table has its

own disagreement weight, denoted by wij , where wij ≥ 0 for all i and j. Fur-

thermore, wij = 0 if i = j. Cohen’s weighted kappa (Cohen, 1968) is then

defined as

κw = 1−

k∑
i=1

k∑
j=1

wijpij

k∑
i=1

k∑
j=1

wijpi+p+j

. (4.1)

Weighted kappa in (4.1) consists of two quantities: the proportion weighted

observed disagreement in the numerator of the fraction, and the proportion

expected weighted disagreement in the denominator. The value of weighted

kappa is not affected when all weights are multiplied by a positive number.

Using wij = 1 if i 6= j and wii = 0 in (1) we obtain Cohen’s kappa or

unweighted kappa

κ =
Po − Pe

1− Pe
=

k∑
i=1

(pii − pi+p+i)

1−
k∑

i=1
pi+p+i

, (4.2)

where Po =
∑k

i=1 pii is the proportion observed agreement, i.e. the proportion

of units on which the raters agree, and Pe =
∑k

i=1 pi+p+i is the proportion

expected agreement. Unweighted kappa is commonly used when ratings are

on a nominal (unordered) scale, but it can be applied to scales with ordered

categories as well.

For ordinal scales, frequently used disagreement weights are the linear

weights and the quadratic weights (Schuster, 2004; Vanbelle & Albert, 2009;

Vanbelle, 2016; Warrens, 2012). The linear weights are given by wij = |i− j|.
The linearly weighted kappa, or linear kappa for short, is given by

κl = 1−

k∑
i=1

k∑
j=1
|i− j|pij

k∑
i=1

k∑
j=1
|i− j|pi+p+j

. (4.3)

With linear weights the categories are assumed to be equally spaced (Brenner

& Kliebsch, 1996). For many real-world data linear kappa gives a higher value

than unweighted kappa (Warrens, 2013). For example, for the data in Table
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4.2 we have κ = .61 and κl = .68. Furthermore, the quadratic weights are

given by wij = (i− j)2, and quadratic kappa is given by

κq = 1−

k∑
i=1

k∑
j=1

(i− j)2pij

k∑
i=1

k∑
j=1

(i− j)2pi+p+j

. (4.4)

For many real-world data quadratic kappa produces higher values than linear

kappa (Warrens, 2013). For example, for the data in Table 4.2 we have κl = .68

and κq = .77.

Correlation coefficients

Correlation coefficients are popular statistics for measuring agreement, or more

generally association, on an interval scale. Many of these coefficients can be

defined using the rater means and variances, denoted by m1 and s21 for the

first rater, and m2 and s22 for the second rater, respectively, and the covariance

between the raters, denoted by s12. To calculate these statistics one could use

a unit by rater table of size n × 2 associated with agreement Tables 4.1 and

4.2, where an entry of the n× 2 table indicates to which of the k categories a

unit (row) was assigned by the first and second rater (first and second column,

respectively). We will use consecutive integer values for coding the categories,

i.e. the first category is coded as 1, the second category is coded as 2, and so

on.

The Pearson correlation is given by

r =
s12
s1s2

. (4.5)

The correlation in (4.5) is commonly used in statistics and data-analysis, and

is the most popular coefficient for quantifying linear association between two

variables.

The Spearman correlation is a nonparametric version of the Pearson corre-

lation. We will denote the Spearman correlation by ρ. It measures the strength

and direction of a monotonic relationship between the numbers. The value of

the Spearman correlation can be obtained by replacing the observed scores by

rank scores and then using (4.5). The values of the Pearson and Spearman

correlations are often quite close (De Winter et al., 2016; Hauke & Kossowski,

2011; Mukaka, 2012).
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A third correlation coefficient is intraclass correlation ICC(3,1) from Shrout

et al. (1979). This particular intraclass correlation is given by

R = ICC(3,1) =
2s12
s21 + s22

. (4.6)

The correlations in (4.5) and (4.6) are identical if the raters have the same

variance (i.e. s21 = s22). If the rater variances differ the Pearson correlation

produces a higher value than the intraclass correlation (i.e. r > R). For

example, for the data in Table 4.2 we have R = .81 and r = .83.

Finally, quadratic kappa can also be expressed in terms of rater means, vari-

ances and the covariance between the raters. If the ratings (scores) are labeled

as 1, 2, 3, and so on, quadratic kappa is given by (Schuster, 2004)

κq =
2s12

s21 + s22 + n
n−1(m1 −m2)2

. (4.7)

Coefficients (4.6) and (4.7) are identical if the rater means are equal (i.e. m1 =

m2). If the rater means differ the intraclass correlation produces a higher value

than quadratic kappa (i.e. R > κq). For example, for the data in Table 4.2

we have κq = .77 and R = .81. Furthermore, if both rater means and rater

variances are equal (i.e. m1 = m2 and s21 = s22) the coefficients in (4.5), (4.6)

and (4.7) coincide.

4.3 Analytical comparison of correlation coefficients1

The Pearson and Spearman correlations have been compared analytically by

various authors (De Winter et al., 2016; Hauke & Kossowski, 2011; Mukaka,

2012). Furthermore, the three kappa coefficients have been compared analyti-

cally and empirically (Warrens, 2011, 2013). For many real-world data we can

expect to observe the double inequality κ < κl < κq, i.e. quadratic kappa tends

to produce a higher value than linear kappa, which in turn tends to produce a

higher value than the unweighted kappa coefficient (Warrens, 2011). Moreover,

the values of the three kappa coefficients tend to be quite different (Warrens,

2013).

To approach the first research question, under what conditions do quadratic

kappa and the Pearson and intraclass correlations produce similar values, we

1This section is contributed by dr. M. J. Warrens
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study, in this section, differences between the three agreement coefficients. The

relationships between these three coefficients have not been comprehensively

studied. What is known is that, in general, we have the double inequality

κq ≤ R ≤ r, i.e. quadratic kappa will never produce a higher value than the

intraclass correlation, which in turn will never produce a higher value than the

Pearson correlation (Schuster, 2004). This inequality between the coefficients

can be used to study the positive differences r −R, R− κq and r − κq.
We first consider the difference between the Pearson and intraclass cor-

relation. The positive difference between the two coefficients can be written

as

r −R =
r(s1 − s2)2

s21 + s22
. (4.8)

The right-hand side of (4.8) consists of three quantities. We loose one param-

eter if we consider the ratio between the standard deviations

c =
max(s1, s2)

min(s1, s2)
, (4.9)

instead of the standard deviations separately. Using (4.9) we may write differ-

ence (4.8) as

r −R =
r(1− c)2

1 + c2
. (4.10)

The first derivative of f(c) = (1− c)2/(1 + c2) with respect to c is presented in

Appendix 1. Since this derivative is strictly positive for c > 1, formula (4.10)

shows that difference r − R is strictly increasing in both r and c. In other

words, the difference between the Pearson and intraclass correlations increases

1) if agreement in terms of r increases, and 2) if the ratio between the standard

deviations increases.

Table 4.3: Values of difference r −R for different values of r and ratio (4.9).

Pearson correlation r

Ratio (4.9) .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

1.20 .00 .00 .00 .01 .01 .01 .01 .01 .01 .02

1.40 .01 .01 .02 .02 .03 .03 .04 .04 .05 .05

1.60 .01 .02 .03 .04 .05 .06 .07 .08 .09 .10

1.80 .02 .03 .05 .06 .08 .09 .11 .12 .14 .15

2.00 .02 .04 .06 .08 .10 .12 .14 .16 .18 .20
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Table 4.3 gives the values of difference r−R for different values of r and ratio

(4.9). The table shows that the difference between the Pearson and intraclass

correlations is very small (≤ .05) if the ratio between the standard deviations

is ≤ 1.40, and is small (≤ .10) if the ratio between the standard deviations is

≤ 1.60 or if r ≤ .50.

Next, we consider the difference between the intraclass correlation and

quadratic kappa. The positive difference between the two coefficients can be

written as

R− κq =
R

g(·) + 1
, (4.11)

where the function g(·) is given by

g(n,m1,m2, s1, s2) =
n− 1

n
· s21 + s22

(m1 −m2)2
. (4.12)

A derivation of (4.11) and (4.12) is presented in Appendix 2. The right-hand

side of (4.11) shows that difference (4.11) is increasing in R and is decreasing in

the function g(·). Hence, the difference between the intraclass correlation and

quadratic kappa increases if agreement in terms of R increases. Since the ratio

(n−1)/n is close to unity for moderate to large sample sizes, quantity (4.12) is

approximately equal to the ratio of the sum of the two variances (i.e. s21 + s22)

to the squared difference between the rater means (i.e. (m1−m2)
2). Quantity

(4.12) increases if one of the rater variances becomes larger, and decreases if

the difference between the rater means increases.

Table 4.4: Values of difference R− κq for different values of R and

|m1 −m2|, and s21 + s22 = 1.

Intraclass correlation R

Difference |m1 −m2| .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

.10 .00 .00 .00 .00 .01 .01 .01 .01 .01 .01

.20 .00 .01 .01 .02 .02 .02 .03 .03 .03 .04

.30 .01 .02 .03 .03 .04 .05 .06 .07 .08 .08

.40 .01 .03 .04 .06 .07 .08 .10 .11 .13 .14

.50 .02 .04 .06 .08 .10 .12 .14 .16 .18 .20
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Table 4.5: Values of difference R− κq for different values of R and

|m1 −m2|, and s21 + s22 = 2.

Intraclass correlation R

Difference |m1 −m2| .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

.10 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01

.20 .00 .00 .01 .01 .01 .01 .01 .02 .02 .02

.30 .00 .01 .01 .02 .02 .03 .03 .03 .04 .04

.40 .01 .01 .02 .03 .04 .04 .05 .06 .07 .07

.50 .01 .02 .03 .04 .06 .07 .08 .09 .10 .11

Tables 4.4 and 4.5 give the values of difference R − κq for different values of

intraclass correlation R and mean difference |m1 − m2|, and for s21 + s22 and

n = 100. Table 4.4 contains the values of R − κq when the sum of the rater

variances is equal to unity (i.e. s21 + s22 = 1). Table 4.5 presents the values of

the difference when s21 + s22 = 2.

Tables 4.4 and 4.5 show that the difference between the intraclass correla-

tion and quadratic kappa is very small (≤ .04) if s21+s22 = 1 and |m1−m2| ≤ .20

or R ≤ .20, or if s21 + s22 = 2 and |m1 −m2| ≤ .30 or R ≤ .40. Furthermore,

the difference between the coefficients is small (≤ .10) if s21 + s22 = 1 and

|m1 −m2| ≤ .30 or R ≤ .50, or if s21 + s22 = 2 and |m1 −m2| ≤ .40 or R ≤ .90.

Finally, we consider the difference between the Pearson correlation and

quadratic kappa. The positive difference between the two coefficients can be

written as

r − κq = r · h(·), (4.13)

where the function h(·) is given by

h(n,m1,m2, s1, s2) =
(s1 − s2)2 + n

n−1(m1 −m2)
2

s21 + s22 + n
n−1(m1 −m2)2

. (4.14)

The right-hand side of (4.13) shows that difference (4.13) is increasing in r

and in the function h(·). Hence, the difference between the Pearson correlation

and quadratic kappa increases if agreement in terms of r increases. Quantity

(4.14) is a rather complex function that involves rater means as well as rater

variances. Since the inequality (s1 − s2)2 ≤ s21 + s22 holds, quantity (4.14) and

difference (4.13) increase if the difference between the rater means increases.

To understand the difference r−κq in more detail, it is insightful to consider

two special cases. If the rater means are equal (i.e. m1 = m2) the intraclass
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correlation coincides with quadratic kappa (i.e. R = κq) and difference r − κq
is equal to difference r−R. Thus, in the special case that the rater means are

equal, all conditions discussed above for difference r−R also apply to difference

r− κq. Furthermore, if the rater variances are equal (i.e. s21 = s22) the Pearson

and intraclass correlations coincide (i.e. r = R) and difference r−κq is equal to

difference R− κq. If we set s = s1 = s2 and use 2s2 instead of s21 + s22, then all

conditions discussed above for difference R−κq also apply to difference r−κq.
Difference (4.13) is equal to the sum of differences (4.8) and (4.11), i.e.

r − κq = r −R+R− κq =
r(1− c)2

1 + c2
+

R

g(·) + 1
, (4.15)

where quantity c is given in (4.9) and function g(·) in (4.12). Identity (4.15)

shows that to understand difference (4.13) it suffices to understand the differ-

ences r −R and R − κq. Apart from the overall level of agreement, difference

r − R depends on the rater variances, whereas difference R − κq depends pri-

marily on the rater means.

Identity (4.15) also shows that we may also combine the various conditions

that hold for differences (4.8) and (4.11) to obtain new conditions for difference

(4.13). For example, combining the numbers in Tables 4.3, 4.4 and 4.5 we

find that difference (4.13) is small (≤ .09) if the ratio between the standard

deviations is ≤ 1.40, and in addition, if s21 + s22 = 1 and |m1 −m2| ≤ .20 or

R ≤ .20, or if s21 + s22 = 2 and |m1 −m2| ≤ .30 or R ≤ .40.
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4.4 A simulation study

Data generation

In this section, we compare all six agreement coefficients using simulated or-

dinal rating data. We carried out a number of simulations under different

conditions, according to the following procedure. In each scenario we sampled

scores for 200 units from a bivariate normal distribution, using the mvrnorm

function in R. The two variables correspond to the two raters. To obtain cate-

gorical agreement data we discretized the variables into five categories: values

< −1.0 were coded 1, values ≥ −1.0 and < −.4 were coded as 2, values ≥ −.4
and < .4 were coded as 3, values ≥ .4 and < 1.0 were coded as 4, and val-

ues ≥ 1.0 were coded as 5. For a standardized variable this coding scheme

corresponds to a unimodal and symmetric distribution with probabilities .16,

.18, .32, .18 and .16 for categories 1, 2, 3, 4 and 5, respectively. Thus, the

middle category is a bit more popular in the case of a standardized variable.

Finally, the values of the six agreement coefficients were calculated using the

discretized data. The above steps were repeated 10,000 times, denoted by 10K

for short, in each condition.

For the simulations, we differentiated between various conditions. The

mvrnorm function in R allows the user to specify the means and covariance

matrix of the bivariate normal distribution. We generated data with either a

high (.80) or medium (.40) value of the Pearson correlation (i.e. high or medium

agreement). Furthermore, we varied the rater means and the rater variances.

Either both rater means were set to 0 (i.e. equal rater means), or we set one

mean value to 0 and one to .5 (i.e. unequal rater means). Moreover, we either

set both rater variances to 1 (i.e. equal rater variances), or we set the variances

to .69 and 1.44 (i.e. unequal rater variances). Fully crossed, the simulation

design consists of 8 (= 2×2×2) conditions. These eight conditions were chosen

to illustrate some of the findings from the previous section. Notice that with

both variances equal to 1, ratio (4.9) is also equal to 1. If the variances are

equal to .69 and 1.44, ratio (4.9) is equal to 1.44.

85



547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt
Processed on: 28-8-2020Processed on: 28-8-2020Processed on: 28-8-2020Processed on: 28-8-2020 PDF page: 86PDF page: 86PDF page: 86PDF page: 86

Chapter 4

Comparison criteria

To answer the second research question, to what extent we will reach the same

decision if different agreement coefficients are used, we will compare the values

of the coefficients in an absolute sense. If the differences between the values

(of one replication of the simulation study) are small (≤ .10) we will conclude

that the coefficients lead to the same decision in practice. Of course the value

.10 is somewhat arbitrary, but we think this is a useful criterion for many

real-world applications. We will use ratios of the numbers of simulations in

which the values lead to the same decision (maximum difference between the

values is ≤ .10) and the total numbers of simulations (= 10K), to quantify how

often we will reach the same decision. To answer the third research question,

to what extent the coefficients measure agreement in a similar way, Pearson

correlations between the coefficient values will be used to assess how similar

the coefficients measure agreement in this simulation study.

Results of the simulation study

Tables 4.6 and 4.7 give two statistics that we will use to assess the similarity

between the coefficients for the simulated data. Both tables consist of four

subtables. Each subtable is associated with one of the simulated conditions.

Table 4.6 contains four subtables associated with the high agreement condi-

tion, whereas Table 4.7 contains four subtables associated with the medium

agreement condition. The upper panel of each subtable of Tables 4.6 and 4.7

gives the Pearson correlations between the coefficient values of all 10,000 simu-

lations. The lower panel of each subtable contains the ratios of the numbers of

simulations in which the values lead to the same decision (maximum difference

between the values is ≤ .10) and the total numbers of simulations (= 10K).

Consider the lower panels of the subtables of Tables 4.6 and 4.7 first. In all

cases we will come to the same conclusion with the three correlation coefficients

(10K/10K). Hence, for these simulated data it does not really matter which

correlation coefficient is used. If rater means are equal (the two top subtables of

Tables 4.6 and 4.7) the quadratic kappa, intraclass correlation and the Pearson

correlation coincide (see previous section), and we will come to the same con-

clusion with quadratic kappa and the three correlation coefficients (10K/10K).

If rater means are unequal (the two bottom subtables of Tables 4.6 and 4.7)

the quadratic kappa is not identical to the intraclass and Pearson correlation,

but we will still reach the same conclusion in many cases with quadratic kappa
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and the three correlation coefficients.

The differences in the values of unweighted kappa and linear kappa com-

pared to quadratic kappa and the three correlation coefficients are striking. If

there is high agreement (Table 4.6) we will never come to the same conclusion

with unweighted kappa and linear kappa. Furthermore, if there is high agree-

ment (Table 4.6) we will never reach the same decision with unweighted kappa

and linear kappa on the one hand, and quadratic kappa and the correlation

coefficients on the other hand. If there is medium agreement (Table 4.7), the

values of the six agreement coefficients tend to be a bit closer to one another,

and we will come to the same conclusion in only relatively few replications.

Next, consider the upper panels of the subtables of Tables 4.6 and 4.7. In

all subtables, all coefficients have the highest correlations with the coefficients

adjacent to them in the ordering of the table, which shows that adjacent co-

efficients measure agreement in a similar way. Moving away from the main

diagonal the correlations decrease which shows that the coefficients adjacent

in the ordering measure agreement more similarly than coefficients that are

further apart in the ordering.

The correlations between the intraclass, Pearson and Spearman correlations

are usually perfect or almost perfect (≥ .95). The correlations are a bit lower

only in case of unequal rater variances. The correlations between quadratic

kappa and the correlation coefficients are very high (≥ .96) in the case of

medium agreement, or if high agreement is combined with equal rater means.

In the case of high agreement and unequal rater means the values drop a bit

(.86− .92). All in all, it seems that quadratic kappa measures agreement in a

very similar way as the correlation coefficients, for these simulated data. All

other correlations are substantially lower.
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Table 4.6: Correlations and number of times the same decision

will be reached for the values of the agreement coefficients for

the simulated data, for the high agreement condition.

κ κl κq R r ρ

1. Equal rater means and variances

κ .89 .68 .68 .67 .64

κl 0/10K .94 .94 .93 .91

κq 0/10K 0/10K 1.00 1.00 .98

R 0/10K 0/10K 10K/10K 1.00 .98

r 0/10K 0/10K 10K/10K 10K/10K .98

ρ 0/10K 0/10K 10K/10K 10K/10K 10K/10K

2. Equal rater means, unequal rater variances

κ .88 .66 .66 .64 .59

κl 0/10K .94 .94 .92 .88

κq 0/10K 0/10K 1.00 .99 .96

R 0/10K 0/10K 10K/10K .99 .96

r 0/10K 0/10K 10K/10K 10K/10K .98

ρ 0/10K 0/10K 10K/10K 10K/10K 10K/10K

3. Unequal rater means, equal rater variances

κ .86 .61 .48 .47 .42

κl 0/10K .93 .81 .80 .75

κq 0/10K 0/10K .91 .91 .86

R 0/10K 0/10K 9306/10K 1.00 .97

r 0/10K 0/10K 9135/10K 10K/10K .97

ρ 0/10K 0/10K 8643/10K 10K/10K 10K/10K

4. Unequal rater means and variances

κ .85 .63 .53 .52 .43

κl 0/10K .94 .84 .83 .77

κq 0/10K 0/10K .92 .92 .88

R 0/10K 0/10K 9884/10K .99 .95

r 0/10K 0/10K 9609/10K 10K/10K .96

ρ 0/10K 0/10K 9202/10K 10K/10K 10K/10K
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Table 4.7: Correlations and number of times the same decision will

be reached for the values of the agreement coefficients for the

simulated data, for the medium agreement condition.

κ κl κq R r ρ

5. Equal rater means and variances

κ .78 .53 .53 .53 .51

κl 1258/10K .93 .93 .93 .92

κq 27/10K 1406/10K 1.00 1.00 .99

R 27/10K 1310/10K 10K/10K 1.00 .99

r 27/10K 1284/10K 10K/10K 10K/10K .99

ρ 38/10K 1732/10K 10K/10K 10K/10K 10K/10K

6. Equal rater means, unequal rater variances

κ .78 .52 .52 .52 .50

κl 1363/10K .93 .93 .93 .92

κq 12/10K 1489/10K 1.00 1.00 .99

R 12/10K 1411/10K 10K/10K 1.00 .99

r 9/10K 940/10K 10K/10K 10K/10K .99

ρ 17/10K 1334/10K 10K/10K 10K/10K 10K/10K

7. Unequal rater means, equal rater variances

κ .77 .49 .48 .48 .45

κl 2598/10K .92 .90 .90 .87

κq 72/10K 3088/10K .98 .98 .96

R 21/10K 556/10K 10K/10K 1.00 .98

r 19/10K 530/10K 10K/10K 10K/10K .98

ρ 33/10K 775/10K 9997/10K 10K/10K 10K/10K

8. Unequal rater means and variances

κ .77 .49 .48 .47 .43

κl 2246/10K .92 .90 .90 .87

κq 44/10K 2604/10K .98 .98 .96

R 14/10K 551/10K 10K/10K 1.00 .98

r 13/10K 434/10K 10K/10K 10K/10K .98

ρ 20/10K 711/10K 9997/10K 10K/10K 10K/10K
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4.5 Empirical comparison of agreement coefficients

Data sets

In this section we compare all six agreement coefficients using empirical data.

Two different real-world data sets will be used to compare the values of the

various agreement coefficients. For both data sets all ratings are on what are

essentially ordinal scales. One data set is from medical research and one data

set from educational research.

Holmquist, McMahan and Williams (1967) examined the variability in the

histological classification of carcinoma in situ and related lesions of the uterine

cervix. 118 biopsies of the uterine cervix were classified independently by seven

pathologists into five categories. The raters were involved in the diagnosis of

surgical pathologic specimens. The categories were defined as 1 = Negative,

2 = Atypical squamous hyperplasia (anaplasia or dysplasia), 3 = Carcinoma

in situ, 4 = Squamous carcinoma with early stromal invasion (microinvasion)

and 5 = Invasive carcinoma. With 7 raters there are 21 rater pairs. We will

examine the values of the coefficients for these 21 different rater pairs.

Van der Scheer et al. (2017) evaluated whether 4th grade teachers’ in-

structional skills changed after joining an intensive data-based decision mak-

ing intervention. Teachers’ instructional skills were measured using the ICALT

observation instrument (Van de Grift, 2007). The instrument includes 35 four-

point Likert scale items, where 1 = Predominantly weak, 2 = More weaknesses

than strengths, 3 = More strengths than weaknesses and 4 = Predominantly

strong. Example items are “The teacher ensures a relaxed atmosphere” and

“The teacher gives clear instructions and explanations”. In total 31 teachers

were assessed by two raters on all 35 items on three different time points. The

complete data consist of 3×31 = 93 agreement tables. We only use a selection

of the available agreement tables. More precisely, we systematically included

the data on one time point for each teacher (see Table 4.10 below). Hence, we

will examine the values of the coefficients for 31 agreement tables.
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Comparison criteria

To compare the coefficient values we will use the same comparison criteria as

we used for the simulated data in the previous section. To answer the second

research question, to what extent we will reach the same decision if different

agreement coefficients are used, we will use ratios of the numbers of tables in

which the values lead to the same decision (maximum difference between the

values is ≤ .10) and the total numbers of tables, to quantify how often we

will reach the same decision. To answer the third research question, to what

extent the coefficients measure agreement in a similar way, Pearson correlations

between the coefficient values will be used to assess how similar the coefficients

measure agreement empirically, for these data sets.

Results for the Holmquist data

Table 4.8 presents the values of the agreement measures for all 21 rater pairs

of the Holmquist data (Holmquist et al., 1967) together with the rater means

and standard deviations. If we consider the three kappa coefficients, we may

observe that their values are quite different. We may also observe that for each

row the commonly observed double inequality κ < κl < κq holds. Furthermore,

if we consider quadratic kappa and the intraclass and Pearson correlations, we

find for each row the double inequality κq ≤ R ≤ r (Schuster, 2004). The

values of the intraclass and Pearson correlations are almost identical for all 21

rater pairs. The maximum difference is .02. Furthermore, the values of the

intraclass, Pearson and Spearman correlations are very similar for all 21 rater

pairs. The maximum difference between the three correlations is .05.
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Table 4.8: Coefficient values, rater means and standard deviations for the

Holmquist data.

Coefficient values Means SD’s

Rater pair κ κl κq R r ρ m1 m2 s1 s2

(1, 2) .50 .65 .78 .78 .79 .78 2.63 2.55 1.17 .99

(1, 3) .38 .56 .68 .73 .75 .76 2.63 2.20 1.17 .95

(1, 4) .33 .49 .62 .72 .74 .77 2.63 2.03 1.17 .93

(1, 5) .39 .58 .75 .75 .76 .76 2.63 2.65 1.17 .97

(1, 6) .18 .37 .50 .66 .67 .67 2.63 1.76 1.17 .99

(1, 7) .47 .64 .78 .81 .82 .82 2.63 2.35 1.17 .96

(2, 3) .36 .51 .63 .67 .67 .67 2.55 2.20 .99 .95

(2, 4) .29 .45 .61 .70 .70 .71 2.55 2.03 .99 .93

(2, 5) .50 .67 .82 .83 .83 .82 2.55 2.65 .99 .97

(2, 6) .20 .34 .45 .61 .61 .60 2.55 1.76 .99 .99

(2, 7) .63 .75 .84 .86 .86 .83 2.55 2.35 .99 .96

(3, 4) .42 .54 .65 .66 .66 .69 2.20 2.03 .95 .93

(3, 5) .32 .48 .62 .69 .69 .70 2.20 2.65 .95 .97

(3, 6) .30 .44 .56 .61 .62 .64 2.20 1.76 .95 .99

(3, 7) .51 .63 .75 .75 .75 .75 2.20 2.35 .95 .96

(4, 5) .21 .38 .55 .66 .66 .69 2.03 2.65 .93 .97

(4, 6) .34 .51 .68 .71 .71 .70 2.03 1.76 .93 .99

(4, 7) .44 .62 .78 .82 .82 .85 2.03 2.35 .93 .96

(5, 6) .13 .29 .40 .57 .57 .58 2.65 1.76 .97 .99

(5, 7) .47 .63 .77 .81 .81 .82 2.65 2.35 .97 .96

(6, 7) .31 .45 .57 .68 .68 .69 1.76 2.35 .99 .96
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We may consider some of the analytical results from the third section for

these data. Note that the ratio of the standard deviations is smaller than 1.26

for each row of Table 4.8 (i.e. c < 1.26). It then follows from formula (4.10) that

the maximum difference between the Pearson and intraclass correlations is less

than .026 (i.e. r−R < .026), which is indeed the case for all rows. Furthermore,

for these data the rater variances are very similar. Thus, if we compare the

Pearson and intraclass correlations on the one hand, and quadratic kappa on

the other hand, we see that differences between the coefficients depend to a

large extent on the rater means: larger differences between coefficients if larger

differences between rater means.

Table 4.9 gives two additional statistics that we will use to assess the simi-

larity between the coefficients for the data in Table 4.8. The upper panel gives

the Pearson correlations between the coefficient values in Table 4.8. The lower

panel contains the ratios of the numbers of tables in which the values lead to

the same decision (maximum difference between the values is ≤ .10) and the

total numbers of tables.

Consider the lower panel of Table 4.9 first. In all cases we will come to

the same conclusion with the three correlation coefficients (21/21). Hence, for

these data it does not really matter which correlation coefficient is used. Fur-

thermore, if quadratic kappa is compared to the three correlation coefficients,

we will reach the same decision in at least 15 of the 21 cases. These numbers

indicate that the values are very similar for these data. In the cases where

we found different values for quadratic kappa on the one hand and the three

correlation coefficients on the other hand, the rater means tend to be more

different.

The differences in the values of unweighted kappa and linear kappa com-

pared to quadratic kappa and the three correlation coefficients are striking.

With unweighted kappa we will never reach an identical decision as with any

of the other coefficients. With linear kappa we will come to the same conclusion

as with the Spearman correlation in only one case and never with any other

coefficient.

Next, consider the upper panel of Table 4.9. All coefficients have the highest

correlations with the coefficients adjacent to them in the ordering of the table,

which shows that adjacent coefficients measure agreement in a similar way.

Moving away from the main diagonal the correlations decrease which shows

that the coefficients adjacent in the ordering measure agreement more similarly
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than coefficients that are further apart in the ordering.

We may observe very high correlations between the three kappa coefficients.

The correlation between unweighted kappa and linear kappa is almost perfect.

The unweighted kappa and weighted kappas appear to measure agreement in

a similar way (high correlation) but to a different extent (values can be far

apart) for these data. The correlations between the intraclass, Pearson and

Spearman correlations are almost perfect. Table 4.9 also shows that linear

kappa has correlations of at least .90 with the three correlation coefficients.

The correlations between quadratic kappa and the correlation coefficients are

.93, .94, .95. It seems that quadratic kappa measures agreement in a very

similar way as the correlation coefficients, for these data.

Table 4.9: Correlations and number of times the

same decision will be reached for the values of the

agreement coefficients in Table 4.8.

κ κl κq R r ρ

κ .99 .95 .88 .86 .84

κl 0/21 .98 .93 .92 .90

κq 0/21 0/21 .95 .94 .93

R 0/21 0/21 16/21 1.00 .98

r 0/21 0/21 15/21 21/21 .98

ρ 0/21 1/21 15/21 21/21 21/21

Results for the Van der Scheer data

Table 4.10 presents the values of the coefficients for the Van der Scheer data

(Van der Scheer et al., 2017). Table 4.11 gives the two statistics that we use

to assess the similarity between the coefficients for the data in Table 4.10.

Consider the lower panel of Table 4.11 first. In contrast to the Holmquist

data, the ratios show that, in a few cases, the three correlation coefficients do

not lead to the same decision for these data (30/31 for R vs. r; 30/31 for r

vs. ρ). However, since the numbers are still quite high we still expect similar

conclusions from the correlation coefficients.
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Table 4.10: Coefficient values, rater means and standard deviations for the

Van der Scheer data.

Teacher Time Coefficient values Means SD’s

point κ κl κq R r ρ m1 m2 s1 s2

1 1 .06 .09 .14 .23 .26 .21 2.11 1.60 .32 .55

2 2 .02 .12 .27 .29 .30 .29 2.43 2.17 .50 .66

3 3 .39 .49 .61 .65 .66 .63 2.14 2.37 .65 .77

4 1 .41 .52 .64 .67 .70 .66 2.51 2.77 .66 .84

5 2 .36 .52 .69 .70 .73 .72 2.94 2.83 .68 .92

6 3 .21 .34 .50 .50 .70 .56 2.97 2.97 .30 .71

7 1 .61 .68 .77 .81 .83 .78 3.11 2.89 .76 .63

8 2 .30 .38 .50 .54 .57 .57 3.09 2.83 .56 .79

9 3 .28 .29 .32 .34 .36 .42 2.34 2.57 .54 .78

10 1 .50 .57 .66 .66 .68 .75 2.52 2.49 .57 .71

11 2 .16 .34 .54 .54 .56 .54 2.54 2.63 .66 .88

12 3 .26 .38 .52 .58 .67 .66 2.86 2.51 .49 .85

13 1 .15 .20 .26 .39 .40 .37 3.25 2.75 .61 .44

14 2 .02 .11 .26 .27 .29 .30 1.94 2.14 .48 .69

15 3 .08 .15 .26 .27 .27 .27 2.43 2.26 .61 .56

16 1 1.00 1.00 1.00 1.00 1.00 1.00 2.86 2.86 .73 .73

17 2 .00 .22 .45 .45 .47 .48 2.80 2.77 .72 .91

18 3 .36 .33 .30 .37 .37 .35 2.31 2.77 .63 .69

19 1 -.07 .08 .29 .29 .31 .29 2.80 2.91 .53 .78

20 2 .16 .22 .31 .32 .32 .36 2.46 2.29 .61 .67

21 3 .13 .21 .32 .36 .37 .37 2.83 3.06 .45 .59

22 1 .06 .12 .23 .23 .23 .22 2.89 2.97 .47 .51

23 2 .33 .44 .58 .67 .67 .69 2.51 2.14 .66 .69

24 3 .33 .37 .44 .45 .46 .49 2.20 2.31 .53 .58

25 1 .29 .37 .48 .58 .58 .61 3.20 2.80 .68 .63

26 2 .21 .33 .48 .49 .52 .54 2.20 2.09 .58 .82

27 3 .55 .59 .66 .66 .66 .63 3.07 3.10 .57 .60

28 1 .26 .34 .46 .46 .49 .47 2.57 2.46 .50 .70

29 2 .18 .26 .36 .47 .49 .49 1.71 2.17 .52 66

30 3 .25 .35 .48 .55 .57 .56 2.31 2.00 .53 .69

31 1 .11 .22 .39 .48 .48 .49 3.34 2.94 .59 .59
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The lower panel of Table 4.11 also shows that the values of the three kappa

coefficients and the correlation coefficients lead to the same decision more often

for these data compared to the Holmquist data. In fact, quadratic kappa and

the three correlation coefficients almost always led to the same decision. Similar

to the Holmquist data the values of quadratic kappa are closer to the values

of the three correlation coefficients than the values of unweighted kappa and

linear kappa.

If we look at the numbers in Table 4.10 and consider the ordering of the

coefficient values, we observe the quadruple inequality κ < κl ≤ κq ≤ R ≤ r

for most rows, except for teacher 18. In this row we observed the reversed

inequality κ > κl ≥ κq.
Finally, consider the upper panel of Table 4.11. Again, all coefficients have

the highest correlations with the coefficients adjacent to them in the ordering

of the table, which shows that adjacent coefficients measure agreement in a

similar way empirically. Moving away from the main diagonal the correlations

tend to decrease, which shows that the coefficients adjacent in the ordering

usually measure agreement in a more similar way than coefficients that are

further apart in the ordering. Furthermore, the correlations between the three

correlation coefficients are again very high. Moreover, for these data the corre-

lations between quadratic kappa and the correlation coefficients are very high

as well.

Table 4.11: Correlations and number of times the

same decision will be reached for the values of the

agreement coefficients in Table 4.10.

κ κl κq R r ρ

κ .97 .86 .87 .83 .85

κl 21/31 .96 .95 .92 .94

κq 4/31 11/31 .98 .96 .97

R 3/31 7/31 29/31 .98 .98

r 3/31 6/31 27/31 30/31 .98

ρ 3/31 5/31 27/31 31/31 30/31
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4.6 Discussion

In this study we compared six agreement coefficients for categorical and inter-

val ratings, using analytic methods, and simulated and empirical data. The

agreement coefficients are unweighted kappa, linear kappa, quadratic kappa,

intraclass correlation ICC(3,1) (Shrout et al., 1979), the Pearson correlation

and the Spearman correlation.

The first research question was: under what conditions do quadratic kappa

and the Pearson and intraclass correlations produce similar values? To ap-

proach this question we studied differences between the three agreement coeffi-

cients. The differences can be expressed in terms of the rater means, covariance

and variances. Our analyses showed that, in general, the differences between

the three coefficients increase if agreement becomes larger. In addition, we

presented various conditions in terms of the rater means and variances under

which the differences between the three coefficients are very small (≤ .05) and

small (≤ .10).

The difference between the Pearson and intraclass correlations depends

on the ratio of the rater standard deviations. The difference between the

intraclass correlation and quadratic kappa appears to depend to a large extent

on the difference between the rater means. The difference between the Pearson

correlation and quadratic kappa is the sum of the other two differences, and

thus depends on both rater means as well as rater variances.

The second research question was: to what extent do we reach the same

decision if different coefficients are used? As a criterion for reaching a similar

decision we used that differences between the values of the coefficients were

≤ .10. For the data used in this manuscript we came to the same decision in

virtually all cases with any of the three correlation coefficients. Hence, it does

not really matter which correlation coefficient is used with ordinal agreement

data.

Using quadratic kappa we may reach a similar decision as with any correla-

tion coefficient a great number of times. For the empirical data, we reached on

average the same decision in 79% of the cases (71% and 87%, respectively, for

data sets 1 and 2). This similarity increases if we limit ourselves to the com-

parison between quadratic kappa and the intraclass correlation. In this case we

reached the same decision in 85% of the cases (76% and 94%). Although the

value of quadratic kappa is slightly lower than that of the correlation coeffi-
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cients, the empirical numbers presented in this manuscript show that it may be

expected to be rather close in many cases. This conjecture is supported by the

numbers of the simulation study. Moreover, the number of times we reached a

similar decision with unweighted kappa and any other agreement coefficient or

with linear kappa and any other agreement coefficient is very low, and in some

cases even zero.

The third research question was: to what extent do the coefficients measure

agreement in similar ways? For many rows of the coefficient tables considered

in this manuscript we observed the ordering unweighted kappa ≤ linear kappa

≤ quadratic kappa ≤ intraclass correlation ≤ Pearson correlation. In addition,

the value of the Spearman correlation is generally very close to the value of

the Pearson correlation. Furthermore, correlations between the values of the

agreement coefficients are highest (and close to unity) for pairs of coefficients

that are adjacent in the above ordering. Correlations become lower (yet re-

main substantial) for pairs of coefficients that are further apart in the ordering.

These patterns suggest that the six coefficients assess agreement in quite a sim-

ilar way empirically. The similarity is higher for coefficients that are adjacent

in the ordering.

The three correlation coefficients are highly correlated (≥ .98 in all cases)

and for the empirical data rarely differ more than .03. Hence, for the ordinal

agreement data considered in this manuscript the measures do not make much

difference from a practical point of view. Furthermore, quadratic kappa is

highly correlated with all three correlation coefficients. All correlations are at

least .86 or higher. These findings support earlier observations that quadratic

kappa tends to behave as a correlation coefficient (Graham & Jackson, 1993),

although it should be noted that it sometimes gives considerably lower values

than the correlation coefficients do.

Replace weighted kappa with a correlation coefficient

The use of weighted kappa has been criticized by various authors (e.g., Maclure

& Willet, 1987; Soeken & Prescott, 1986; Tinsley & Weiss, 2000). Therefore,

we end with a few words on whether the weighted kappa coefficient can be

replaced by either the intraclass correlation or the Pearson correlation. All

six agreement coefficients studied in this manuscript can be considered special

cases of weighted kappa (Warrens, 2014b). However, the previously mentioned

criticism has been aimed at linear and quadratic kappa in particular, since
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unweighted kappa is commonly applied to nominal ratings and the correlation

coefficients are commonly applied to interval ratings. Of the two, quadratic

kappa has been applied most extensively by far (Graham & Jackson, 1993;

Vanbelle, 2016; Warrens, 2012b).

A pro of using quadratic kappa is that it may be interpreted as a pro-

portion of variance, which also takes into account mean differences between

ratings. Despite taking rater means into account, empirically quadratic kappa

acts more like a correlation coefficient, that is, it is more an agreement coef-

ficient for interval ratings than for ordinal ratings. For the ordinal agreement

data considered in this manuscript we found that we reached a similar agree-

ment decision with a correlation coefficient and quadratic kappa in many cases.

Furthermore, the definitions underlying quadratic kappa and the Pearson and

intraclass correlations turn out to be very similar empirically.

If quadratic kappa would be replaced by a correlation coefficient, then it is

likely that in many cases similar agreement decisions will be reached. In many

cases the value of the correlation coefficient is slightly higher than the value of

quadratic kappa.
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Abstract

The weighted kappa coefficient is commonly used for assessing agreement be-

tween two raters on an ordinal scale. This study assessed the impact of missing

data on weighted kappa. We compared four methods for handling missing data

in a simulation study: predictive mean matching, median imputation, listwise

deletion and a weighted version of Gwet’s kappa. We compared their perfor-

mances under three missing data mechanisms, using agreement tables with

various numbers of categories and different values of weighted kappa. Median

imputation performed very poorly, whereas the other three methods performed

quite well. Predictive mean matching and the weighted version of Gwet’s kappa

performed slightly better than listwise deletion.
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5.1 Introduction

Quantifying agreement

In social, behavioral and medical sciences it is frequently required that units

(persons, individuals) are classified into predefined ordinal categories by hu-

man observers (e.g., Church et al., 2017; Ekberg et al., 2015; Eskelinen et al.,

2015). Examples in educational sciences are, the assessment of the quality

of teacher-child interactions (Cash et al., 2012), the assessment of the degree

of students’ off-task or on-task behavior in class (Mavilidi et al., 2019), and

the classification of teachers’ instruction skills (Van der Scheer et al., 2017).

In psychology, classification allows clinicians to differentiate between clients

based on their functional problems. For example, Bastiaansen et al. (2001)

classified the degree of speech ability of persons with autism and related dis-

orders. Other examples are the determination of the degree of chronic stress

in mothers (Phillips et al., 2004) and the stability of depressive episodes over

a two year period in persons with bipolar disorder (Perlis et al., 2009).

Since the classifications are made by humans, and since humans are falli-

ble, it is important to assess the reliability or accuracy of ratings in research

applications and diagnosis. This is typically done by asking two observers to

judge independently the same group of units and then quantify the agreement

between the classifications. Ratings are considered reliable if the observers

reach a sufficient level of agreement. (Blackman & Koval, 2000; McHugh 2012;

Shiloach et al., 2010; Wing et al., 2002). If agreement is poor, one may consider

(additional) training for the raters, redefining the content of the categories or

combining categories (Warrens, 2010a).

Cohen’s weighted kappa is a popular coefficient for measuring agreement

between two raters on an ordinal scale (Cohen, 1968; Cohen & Fleiss 1973;

Fleiss, Cohen, & Everitt 1969; Graham & Jackson, 1993; Schuster, 2004; Van-

belle 2016; Warrens, 2012a). The coefficient allows the user to differentiate

between the seriousness of disagreements. This is useful since disagreement

on some categories may be more serious than the disagreement on other cat-

egories. For example, when assessing students’ off-task or on-task behavior,

a disagreement on being off-task and actively engaged is more serious than

between passively and actively engaged. In the first case the raters disagree on

whether there is engagement, whereas in the second case they disagree on the

degree of engagement. The seriousness of disagreements can be modeled using
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weights (Warrens, 2012a). In this manuscript the version of weighted kappa

we will consider is the weighted kappa with quadratic weights. This version

of weighted kappa is by far the most popular variant of weighted kappa used

in applications (Graham & Jackson, 1993; Maclure & Willet, 1987; Warrens,

2012b).

Missing data

Missing data or missing values occur in many research applications (Berchtold,

2019; Bounthavong, Watanabe, & Sullivan 2015; Ibrahim, Chu, & Chen 2012).

In the context of inter-rater agreement, data can be missing due to the fact

that a person has moved or dropout during a diagnostic process. In our study,

missing data occur if one or two ratings of a unit are absent. It is important

that missing data are handled in an adequate way since they may influence

the outcomes of the data analysis (Graham, 2009; Jakobsen et al., 2017; Kang,

2013). A well-known issue related to missing data is a possible reduction of

the sample size and thus a reduction of the representativeness of the sample

(Kang, 2013).

In the literature, three mechanisms for missing data are distinguished (Dong

& Peng 2013; Poleto, Singer, & Paulino 2011; Rubin, 1976). We describe

the mechanisms in our context of quantifying agreement between two ordinal

variables using weighted kappa. The first mechanism is called missingness

completely at random (MCAR), which is the case if the probability of a rating

to become missing is unrelated to other values in the data set. More specifically,

each rating has an equal chance to be relabeled as missing and only random

variation causes missingness on one or both ordinal variables. The second

mechanism is called missingness at random (MAR), which is the case if the

probability of a rating of the target variable to be relabeled depends on the

values of other observed variables. The third mechanism is called missingness

not at random (MNAR), which is the case if the data are not MCAR or MAR.

For example, the data are MNAR if the probability of a rating to be relabeled

as missing depends on the values of the target variable itself.

Missing data methods

There are many different methods available that can be used to handle missing

data (Baraldi & Enders, 2010; Enders, 2010; Peugh & Enders, 2004). In the

literature, methods for missing data are usually divide into traditional methods

104



547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt
Processed on: 28-8-2020Processed on: 28-8-2020Processed on: 28-8-2020Processed on: 28-8-2020 PDF page: 105PDF page: 105PDF page: 105PDF page: 105

Weighted kappa and missing data

(Shylaja & Saravana Kumar, 2018), e.g., deletion methods and single imputa-

tion methods (Jadhav, Pramod, & Ramanathan 2019), and modern methods,

based on multiple imputation (Harel & Zhou, 2007; Hayati et al., 2015; Horton

& Kleinman, 2007; Huque, Carlin, Simpson, & Lee, 2018; Jakobsen et al., 2017;

Little & Rubin, 1987; White et al., 2011). Well-known deletion based methods

are listwise deletion (LD) and pairwise deletion (PD). When one applies LD,

one excludes all units with missing data and calculates the statistic of interest

on the units with complete data. In the case of two variables the results of LD

and PD are identical. Single imputation methods replace the missing values

with one value, e.g., the mean or median, and calculate the statistic of interest

(Van Buuren, 2012).

Although its drawbacks have been well documented, LD is a method that is

still commonly applied (Kang, 2013; Myers, 2011). One reason for its popular-

ity may be that its application is straightforward. LD tends to perform well if

the data are MCAR. A possible explanation is that, if each rating has an equal

probability to become missing, the sample of units with complete data are

likely to form a representative subsample of the true (unknown) complete data

set without missing ratings. However, if the data are not MCAR, it is com-

mon practice not to use LD, since it may be biased and more modern methods

usually provide more reliable estimates. For example, modern methods often

assume missingness to be MAR (Van Buuren 2012).

Multiple imputation is nowadays the most popular modern method to han-

dle missingness (Schomaker & Heumann, 2014; White et al., 2010; White et

al., 2011). The MI-approach originates with Rubin (1987). The main idea of

MI is to impute different possible values to represent the true (unkown) value.

The method can be described in several steps. In the first step each missing

value is replaced multiple times with plausible values, resulting in multiple

complete data sets (Rubin et al., 2007). After the imputation step, the statis-

tic of interest is calculated for all the imputed data sets. In the last step of MI

the multiple statistic values are pooled into one mean value and variance value

(Van Buuren et al., 1999).

The present study

In this study, we consider the case of two variables with the same ordered

categories, corresponding to ordinal ratings by two observers of the same group

of units. Furthermore, we are quantifying agreement between the variables
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using weighted kappa. How to handle missing data in agreement studies that

use weighted kappa has not been studied previously. It is not immediately

clear what missing data methods are best suited in our context. In addition

to methods for handling missing data for ordinal variables, we may use certain

methods for continuous variables as well. Furthermore, studies that compare

missing data methods usually assume that there are more than two variables

involved.

Some ideas for how to handle missing data in the context of quantifying

agreement between two ordinal variables with weighted kappa can come from

studies that have studied Cohen’s unweighted kappa coefficient (Cohen, 1960)

in the context of missing data. Unweighted kappa is commonly used for quan-

tifying agreement between two nominal variables (with unordered categories).

Several authors have studied the performance of variants of Cohen’s kappa

for handling missing data, including one based on listwise deletion, a variant

proposed in Gwet (2012, 2014) that uses the missing ratings for a better es-

timation of the expected agreement, and one that treats missing ratings as

disagreements (De Raadt et al., 2019; Simon 2006; Strijbos & Stahl, 2007).

De Raadt et al. (2019) studied how the variants estimate the kappa value for

complete data under MCAR and MNAR. The coefficient based on LD and

Gwet’s kappa (Gwet 2012, 2014) outperformed the kappa that treats missing

ratings as disagreements.

Other ideas for handling missing data in applications of weighted kappa can

be obtained from the close connections between weighted kappa and the Pear-

son correlation (Schuster 2004). If the rater means and variances are equal,

the values of weighted kappa and the Pearson correlation coincide. Further-

more, the Pearson correlation can be interpreted as a weighted kappa since they

produce similar values if particular weights are used (Warrens 2014b). Given

these connections it makes sense to consider methods for missing data that

have been successfully applied with the Pearson correlation. Several studies

showed that the single imputation method called mean imputation performed

better in preserving correlations between variables than LD (Chan & Dunn,

1972; Raymond & Roberts, 1987). With ordinal variables median imputation

(MD) is considered a better option than mean imputation, because kappa needs

scores in concrete categories, and a mean value usually does not correspond

to a category. More recently, Kaplan and Su (2016) studied correlation coef-

ficients and missing data with multiple imputation methods. These authors
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found that predictive mean matching (PMM) outperformed proportional odds

logistic regression and Bayesian linear regression in maintaining the correlation

structure between variables.

In this study, we compare four missing data methods in the context of quan-

tifying agreement between two ordinal variables, using simulations. The four

methods are PMM, MD, LD and a weighted version of Gwet’s kappa. PMM is

studied because it outperformed various other methods in the study by Kaplan

and Su (2016). Median imputation is considered because mean imputation has

performed well in the past for the correlation coefficient. Of course, there is

ample evidence that multiple imputation is to be preferred over single impu-

tation in many cases (Kang, 2013; Li, Stuart, & Allison 2015; Pedersen et al.,

2017; Van der Heijden et al., 2006). However, the two approaches have not

been compared in the context of quantifying agreement between two ordinal

variables using weighted kappa. Finally, LD and a weighted version of Gwet’s

kappa are studied because LD and Gwet’s original kappa for missing data both

performed well in De Raadt et al. (2019). None of the four methods considered

in this study have been studied previously in our context of interest.

This paper is organized as follows. In the next section, we define the

weighted kappa coefficient and we present variants of weighted kappa for han-

dling missing data. PMM and MD are discussed in Section 5.3. Furthermore,

we describe the missing data mechanisms and the procedure and the design

of our simulation study in Section 5.4. Section 5.5 presents the results of the

simulations. Finally, Section 5.6 contains a discussion.

5.2 Kappa coefficients

Cohen’s weighted kappa

In this section we define the weighted kappa coefficient with quadratic weights.

Suppose that two raters classified independently the same set of N units (in-

dividuals, persons) into one of k ≥ 3 ordered categories that were defined

in advance. The classifications of the raters are commonly summarized in a

contingency table {pij} where pij denotes the proportion of units that were

assigned to category i by the first rater and to category j by the second rater,

with i, j ∈ {1, 2, . . . , k}. How many times a category was used by a rater is

reflected by the marginal totals, denoted by pi+ and p+j .

Table 5.1 is an example of the contingency table {pij} with four categories.
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The rows of Table 5.1 reflect the classifications by the first rater, while the

classifications by the second rater are associated with the columns. Since the

row and column categories are in the same order the proportion of units who

received the same rating by both raters are in the diagonal cells p11 to p44.

The cells that are not on the diagonal contain proportions of units on which

the raters disagreed.

Table 5.1: Pairwise classifications of units into four categories.

First rater Second rater

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Total

Category 1 p11 p12 p13 p14 p1+

Category 2 p21 p22 p23 p24 p2+

Category 3 p31 p32 p33 p34 p3+

Category 4 p41 p42 p43 p44 p4+

Total p+1 p+2 p+3 p+4 1

Since the categories are ordered, one may expect that there is more disagree-

ment between categories that are adjacent in the ordering than on categories

that are further apart. To model the agreement and disagreement between the

categories of the agreement table with elements {pij} and the corresponding

contingency table of expected agreement with elements {pi+p+j}, we will use

the quadratic weights (Schuster, 2004; Vanbelle, 2016; Warrens, 2012b) given

by

wij = 1−
(
i− j
k − 1

)2

. (5.1)

Using (5.1) the diagonal cells (i.e. i = j) receive weight unity because these are

full agreements. Furthermore, moving away from the diagonal, cells receive a

smaller weight if we use (5.1). In the case of k = 3 categories we have wij = .75

for |i− j| = 1 and wij = 0 for |i− j| = 2. Furthermore, for tables with k = 4

categories we have wij = .89 for |i−j| = 1, wij = .56 for |i−j| = 2 and wij = 0

for |i− j| = 3.

The weighted kappa coefficient is based on two quantities. The first quan-

tity is the weighted observed agreement. Using the weights in (5.1) this quan-

tity is given by

Po =

k∑
i=1

k∑
j=1

[
1−

(
i− j
k − 1

)2
]
pij . (5.2)
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The second quantity is the weighted expected agreement. Using the weights in

(5.1) this quantity is given

Pe =
k∑

i=1

k∑
j=1

[
1−

(
i− j
k − 1

)2
]
pi+p+j . (5.3)

Quantity (5.3) is the value of the weighted observed agreement under statistical

independence of the ratings. The weighted kappa coefficient with quadratic

weights is then defined as

κw =
Po − Pe

1− Pe
. (5.4)

The coefficient in (5.4) corrects for chance expected agreement by subtracting

(5.3) from (5.2) in the numerator. The maximum of (5.4) is set to unity by

dividing the difference Po − Pe by its maximum value 1− Pe.

It is possible to work with other weights than the ones presented in (5.1), for

example, linear weights (Vanbelle, 2016; Warrens, 2012a), and thus other ver-

sions of weighted kappa. Our motivation for considering the weighting scheme

in (5.1) is that this is by far the most popular weighting scheme used in appli-

cations of weighted kappa (Schuster, 2004; Vanbelle & Albert, 2009; Vanbelle,

2016; Warrens 2011, 2012a).

Weighted kappas for missing data

De Raadt et al. (2019) compared three variants of Cohen’s kappa that can

be used in the case of missing ratings in the context of quantifying agreement

between two nominal variables. The coefficient based on LD and a coeffi-

cient proposed in Gwet (2012, 2014) both performed quite well in their study.

Therefore, we will consider two extensions of these coefficients for the case of

quantifying agreement between two ordinal variables with identical categories.

The application of LD to our context is straightforward. We simply ignore

all units that were not classified by both raters and apply weighted kappa to

the units with two ratings, using formulas (5.2), (5.3) and (5.4).

Gwet (2012, 2014) proposed a kappa coefficient that can handle missingness

in agreement studies with nominal data. The coefficient ignores the missing

ratings in the calculation of the observed agreement, but uses the missing rat-

ings in the marginal totals to get a better estimation of the expected agreement.

We will extend these ideas to our context of quantifying agreement between two

ordinal variables using weighted kappa, and we will refer to the new coefficient

as Gwet’s weighted kappa.

109



547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt
Processed on: 28-8-2020Processed on: 28-8-2020Processed on: 28-8-2020Processed on: 28-8-2020 PDF page: 110PDF page: 110PDF page: 110PDF page: 110

Chapter 5

Gwet’s weighted kappa can be defined using Table 5.2. Table 5.2 is an ex-

tended version of Table 5.1 that includes an extra missing category, in addition

to the k = 4 categories. The missing category is denoted by the subscript m.

The missing category is placed in Table 5.2 as the last category of the table

for convenience. The position is unrelated to the ordering of the four (or k)

categories, and it can also be placed in other positions. The cells pm1 to pm4

reflect the proportion of units that were classified by the second rater, while

they have not been observed by the first rater. The cells p1m to p4m reflect the

proportion of units that were only classified by the first rater and not by the

second rater. The cell pmm includes the proportion of units that have not been

rated by any rater. The marginal totals pm+ and p+m reflect the proportion of

units that have a missing rating by the second and the first rater, respectively.

Table 5.2: Pairwise classifications of units into four general

categories and one category for missing ratings.

First rater Second rater

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Missing Total

Category 1 p11 p12 p13 p14 p1m p1+

Category 2 p21 p22 p23 p24 p2m p2+

Category 3 p31 p32 p33 p34 p3m p3+

Category 3 p41 p42 p43 p44 p4m p4+

Missing pm1 pm2 pm3 pm4 pmm pm+

Total p+1 p+2 p+3 p+4 p+m 1

Similar to the weighted kappa coefficient, Gwet’s weighted kappa consists of two

quantities. The weighted observed agreement associated with this coefficient

is given by

Pog =
Po

k∑
i=1

k∑
j=1

pij

=

k∑
i=1

k∑
j=1

[
1−

(
i− j
k − 1

)2
]
pij

k∑
i=1

k∑
j=1

pij

. (5.5)

Note that all summations in (5.5) run over the regular categories 1 to k. Hence,

the quantity in (5.5) only considers units that have no missing ratings. The
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second quantity associated with Gwet’s weighted kappa is given by

Peg =
Pe

(1− pm+)(1− p+m)
=

k∑
i=1

k∑
j=1

[
1−

(
i− j
k − 1

)2
]
pi+p+j

(1− pm+)(1− p+m)
. (5.6)

In contrast to the agreement quantity in (5.5), the expected agreement in (5.6)

takes into account (almost) all units in the sample. As illustrated in Table 5.2,

the row totals pi+ and the column totals p+j are defined such that they also

include units that have missing ratings. Combining (5.5) and (5.6), Gwet’s

weighted kappa for quantifying agreement between two ordinal variables is

given by

κwg =
Pog − Peg

1− Peg
. (5.7)

Note that the units with two missing ratings are not part of the above defi-

nitions. According to Gwet (2012, 2014) the agreement on these units has no

impact on the degree of agreement.

5.3 Imputation methods

In this section we discuss two statistical methods that can be used to impute

missing data. We first consider predictive mean matching. PMM is a MI

method that has been applied successfully in various research disciplines (De

Silva et al., 2019; Peeters et al., 2015; White et al., 2011). In this study we used

PMM as implemented in the software environment R (R Core Team 2019),

more precisely the R package mice (Van Buuren & Groothuis-Oudshoorn,

2011).

Our particular implementation of PMM works as follows. To impute the

missing ratings of an ordinal target variable, the method first estimates a linear

regression model on all observed values using all available predictors. Thus,

the ordinal target variables are treated as if they have an interval level of

measurement. Let the estimated coefficients of the linear model be denoted

by b. Next, m sets of regression coefficients, denoted by b∗, are sampled from

a multivariate normal distribution with means b and the estimated covariance

matrix of b. The b∗ are then used in a linear regression model to generate

m predicted values for all units of the target variable, both units with missing

ratings on the target variable and those with data present. Finally, for each unit
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with a missing rating on the target variable, a set of units is selected that have

an observed rating on the target variable and whose predicted values are close

to the predicted value of the unit with missing data. From among those close

units, one is randomly drawn and its observed value is used as substitute for

the missing value. For the computational details and how closeness is defined,

see Van Buuren (2012).

In this study, the missing data of each simulation were imputed m = 5

times using PMM, resulting in five imputed data sets per simulation. Several

studies have shown that this number is sufficiently high, because the results

are usually very similar if higher numbers of imputations are used (Kleinke,

2018; Van Buuren, 2012). The weighted kappa value was determined for each

of the imputed data sets, followed by the calculation of the mean kappa value.

The second statistical imputation method we used was MD. The application

of MD to our context is straightforward. For each ordinal target variable, we

simply ignored all units with a missing rating, and calculated the median value

of all other units. If the number of units without a missing rating was even, we

did not calculate the mean of the two middle values, but we randomly picked

one of the two middle values. Finally, the median value was used as substitute

for all missing values of the target variable.

5.4 Design of the simulation study

We performed a simulation study to examine the accuracy of PMM, MD, LD

and Gwet’s weighted kappa in estimating the original kappa value for com-

plete data. We first describe the way in which the data were generated. We

performed 5000 simulations for various different conditions, according to the

following procedure.

In the first step we generated eight different initial agreement tables includ-

ing N = 100 units with complete data. Four of the initial tables have three

categories (3×3 tables), whereas the other four consists of four categories (4×4

tables). Tables 5.3 and 5.4 present the proportions and corresponding kappa

values for complete data for the tables with three and four categories, respec-

tively. In Tables 5.3 and 5.4 each table has either a high kappa value (.80) or

a moderate kappa value (.60). These values are presented in the second to last

column of Tables 5.3 and 5.4. In addition, the last column of Tables 5.3 and

5.4 indicates whether the agreement tables are symmetric or not. The first two
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tables are symmetric and the other two are asymmetric.

Table 5.3: Proportions and kappa values of the

four initial tables of size 3× 3.

IT Proportions κT Symmetric

5.3.1 .30 .08 .00 .80 yes

.08 .26 .04

.00 .04 .20

5.3.2 .20 .12 .00 .60 yes

.12 .22 .10

.00 .10 .14

5.3.3 .30 .20 .00 .80 no

.00 .26 .04

.00 .00 .20

5.3.4 .25 .12 .09 .60 no

.00 .18 .12

.00 .00 .24
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Table 5.4: Proportions and kappa values of the four

initial tables of size 4× 4.

IT Proportions κT Symmetric

5.4.1 .32 .04 .02 .00 .80 yes

.04 .20 .02 .02

.02 .02 .12 .02

.00 .02 .02 .12

5.4.2 .20 .04 .04 .02 .60 yes

.04 .13 .04 .02

.04 .04 .14 .02

.02 .02 .02 .17

5.4.3 .26 .06 .04 .00 .80 no

.04 .20 .05 .04

.00 .00 .18 .04

.00 .00 .00 .13

5.4.4 .20 .10 .04 .04 .60 no

.00 .15 .08 .06

.00 .00 .17 .06

.00 .00 .00 .10

The reason to include a kappa value of .80 is that this value is generally

considered as a sufficient level of agreement. This practice can be traced back

to Landis and Koch (1977) who suggested that a value between .80 and 1

indicates almost perfect agreement. We also included a moderate value of .60

(Landis & Koch, 1977) because we wanted to study if this value is seriously

overestimated or underestimated by the missing data methods. In the case of

overestimation, one may conclude that the degree of agreement is sufficient,

while the actual value is only moderate.

In the second step, the missing data were generated according to the fol-

lowing procedure. We started with drawing a random value for each rating

from the uniform [0, 1] distribution. If the drawn value exceeded a particular

threshold, a rating was relabeled as missing. We used different tresholds in

such a way that the expected percentage of modifications was 10%, 20% or

30% per rater. According to these thresholds, if the expected percentage of

modifications was 20% per rater, then there were approximately 20 missing
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ratings per rater.

The missing data were generated using three different mechanisms, namely,

MCAR, MNAR and MAR. In the case of MCAR each rating in the data set

had an equal chance to become a missing value. In our version of MNAR only

ratings in the first category can be relabeled as missing. Since only a certain

group of ratings can become missing, the percentage of missing ratings for

each rater in a simulation was a bit lower than could be expected based on the

expected percentage of modifications per rater. Furthermore, the number of

ratings that can become missing depends on the initial table that is used.

In the case of MAR we generated an additional binary variable with cate-

gories A and B. In the context of an agreement study this additional variable

could for example be interpreted as the gender of the units. Next, each initial

table in Tables 5.3 and 5.4 was decomposed into two new tables: one with

proportions based on n = 50 units associated with category A and a relatively

high kappa value, and one with proportions based on n = 50 units associated

with category B and a moderate kappa value. The decompositions of the eight

initial tables with complete data are presented in Table 5.5 (size 3 × 3) and

Table 5.6 (size 4× 4). The initial tables in Tables 5.3 and 5.4 can be obtained

by the proportions in Tables 5.5 and 5.6 if the proportions in A and B are

summed and divided by two. Initial tables with a high kappa value of .80 were

decomposed into a table A with kappa value 1.0 and a table B with kappa

value .60. Furthermore, initial tables with a moderate kappa value of .60 were

decomposed into a table A with kappa value ≈ .80 and a table B with kappa

value .40. We used these kappa values for the decomposition tables so that

kappa values associated with categories A and B were clearly distinguishable.

Moreover, we used different expected percentages of modifications for the two

categories: 5%, 10%, and 15% missing ratings for units associated with cat-

egory A and 15%, 30%, and 45% missing ratings for units associated with

category B. Thus, units associated with a moderate kappa value had a higher

expected probability to get missing ratings. Finally, the additional variable

was used as a predictor in the linear regression model of PMM.
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Table 5.5: Proportions and kappa values of eight

tables of size 3× 3 that are decompositions of the

initial tables in Table 5.3.

IT Proportions κT Symmetric?

5.3.1A .28 .00 .00 1.0 yes

.00 .44 .00

.00 .00 .28

5.3.2A .24 .08 .00 .79 yes

.08 .30 .04

.00 .04 .22

5.3.3A .38 .00 .00 1.0 no

.00 .36 .00

.00 .00 .26

5.3.4A .30 .16 .00 .79 no

.00 .10 .16

.00 .00 .28

5.3.1B .32 .16 .00 .60 yes

.16 .08 .08

.00 .08 .12

5.3.2B .16 .16 .00 .40 yes

.16 .14 .16

.00 .16 .06

5.3.3B .22 .40 .00 .60 no

.00 .16 .08

.00 .00 .14

5.3.4B .20 .08 .18 .40 no

.00 .26 .08

.00 .00 .20
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Table 5.6: Proportions and kappa values of eight tables

of size 4× 4 that are decompositions of the initial tables

in Table 5.4.

IT Proportions κT Symmetric

5.4.1A .48 .00 .00 .00 1.0 yes

.00 .28 .00 .00

.00 .00 .12 .00

.00 .00 .00 .12

5.4.2A .08 .06 .02 .00 .80 yes

.06 .20 .04 .00

.02 .04 .16 .04

.00 .00 .04 .24

5.4.3A .04 .00 .00 .00 1.0 no

.00 .38 .00 .00

.00 .00 .34 .00

.00 .00 .00 .24

5.4.4A .22 .10 .02 .00 .80 no

.00 .14 .08 .04

.00 .00 .18 .08

.00 .00 .00 .14

5.4.1B .16 .08 .04 .00 .60 yes

.08 .12 .04 .04

.04 .04 .12 .04

.00 .04 .04 .12

5.4.2B .32 .02 .06 .04 .40 yes

.02 .06 .04 .04

.06 .04 .12 .00

.04 .04 .00 .10

5.4.3B .48 .12 .08 .00 .60 no

.00 .02 .10 .08

.00 .00 .02 .08

.00 .00 .00 .02

5.4.4B .18 .10 .06 .08 .40 no

.00 .16 .08 .08

.00 .00 .16 .04

.00 .00 .00 .06
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Let κT denote the original kappa value for the complete data. The above

steps were repeated 5000 times for each condition of the design. Across the

thus constructed 5000 data sets, we determined the mean squared error (MSE)

MSE =
1

5000

5000∑
i=1

(κi − κT )2, (5.8)

and the bias

bias =
1

5000

5000∑
i=1

(κi − κT ). (5.9)

In addition to the MSE and bias, we computed standard errors for the MSE

and bias.

Because the values of the MSE present the squared deviations we have

chosen to report the values of the root MSE (RMSE) instead of the MSE. Thus

the RMSE can be interpreted as a representative degree of deviation between

the original kappa value and the estimated kappa value. Furthermore, we used

the bias to assess whether the estimated kappa value either underestimates or

overestimates the original kappa value.

To summarize the results, we performed a repeated measures analysis of

variance (RM-ANOVA) on the RMSE values using the various conditions of

the simulation study as factors. The method for handling missing data (PMM,

LD, Gwet) is a within factor, whereas the percentage of missing data, the table

size, the missing data mechanism, whether an initial table is symmetric or not,

and the initial kappa value are between factors. MD is not included in the

analyses since the method performed exceedingly poorly and would dominate

the outcomes, thus causing that more relevant differences or similarities would

be obscured. Furthermore, the RM-ANOVA model consisted of all main effects

and all possible two- and three-way interaction effects between, on the one

hand, the missing data method, and on the other hand, all other main effects

and all two-way interaction effects, respectively. Moreover, we used partial eta

squared (denoted by η2p) as an effect size to evaluate the importance of the

RM-ANOVA components.

5.5 Results

Tables 5.7, 5.8 and 5.9 present the results for, respectively, MCAR, MNAR and

MAR. In each table, the first column (IT) refers to the initial table presented in
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Table 5.3 or 5.4 and the second column (%M) indicates the amount of missing

data. Columns 3-6 of Tables 5.7, 5.8 and 5.9 contain the values for the RMSE,

whereas columns 7-10 contain the bias values. The standard errors associated

with the values of the MSE and bias corresponding to Tables 5.7, 5.8 and 5.9

were all equal to or smaller than .001, which suggest that the MSE and bias

estimates in these simulations have a high degree of accuracy. Because their

values are so small, the standard errors are not presented in the tables.

Table 5.7: RMSE and bias for 5000 simulations for MCAR.

IT %M RMSE Bias

PMM LD Gwet MD PMM LD Gwet MD

5.3.1 10 .020 .021 .019 .142 .000 -.001 .000 -.126

20 .030 .032 .029 .260 .000 -.002 -.001 -.244

30 .042 .044 .039 .368 .000 -.003 .000 -.351

5.3.2 10 .027 .027 .024 .098 -.001 -.001 .000 -.078

20 .043 .042 .037 .171 -.003 -.003 .000 -.152

30 .061 .060 .052 .238 -.007 -.006 -.001 -.221

5.3.3 10 .017 .020 .018 .141 .000 -.001 .000 -.125

20 .026 .031 .028 .259 .001 -.001 .000 -.242

30 .035 .043 .038 .369 .000 -.003 .000 -.351

5.3.4 10 .034 .035 .037 .094 .001 .000 .000 -.087

20 .051 .054 .057 .172 .001 -.001 .000 -.166

30 .071 .075 .078 .244 .000 -.001 .002 -.239

5.4.1 10 .026 .025 .024 .090 .000 .000 .000 -.081

20 .040 .037 .035 .172 .000 -.002 -.001 -.162

30 .056 .052 .048 .257 .000 -.004 -.001 -.246

5.4.2 10 .045 .039 .038 .086 -.002 .001 .000 -.072

20 .071 .063 .062 .158 -.005 -.002 .000 -.145

30 .101 .087 .083 .232 -.013 -.005 -.001 -.219

5.4.3 10 .023 .023 .023 .102 .000 -.001 -.001 -.093

20 .036 .037 .036 .198 .000 -.001 .000 -.189

30 .049 .050 .048 .292 -.002 -.003 .000 -.282

5.4.4 10 .036 .036 .038 .091 .001 .000 .000 -.083

20 .056 .056 .059 .169 -.002 -.001 .000 -.161

30 .076 .079 .083 .244 -.002 -.001 .001 -.235
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Table 5.8: RMSE and bias for 5000 simulations for MNAR.

IT %M RMSE Bias

PMM LD Gwet MD PMM LD Gwet MD

5.3.1 10 .011 .012 .010 .000 -.004 -.004 -.004 .000

20 .018 .020 .016 .016 -.009 -.011 -.007 -.001

30 .024 .029 .021 .152 -.013 -.019 -.011 -.106

5.3.2 10 .017 .020 .016 .036 -.011 -.012 -.011 -.022

20 .031 .036 .029 .055 -.024 -.027 -.024 -.040

30 .047 .055 .043 .069 -.039 -.046 -.038 -.055

5.3.3 10 .010 .012 .010 .000 -.003 .000 .000 .000

20 .016 .017 .015 .064 -.005 -.001 .000 -.028

30 .021 .021 .018 .183 -.007 -.002 .002 -.167

5.3.4 10 .023 .024 .024 .017 .002 -.005 -.002 -.014

20 .033 .038 .035 .032 .002 -.012 -.003 -.029

30 .041 .051 .044 .058 .004 -.020 -.002 -.051

5.4.1 10 .012 .014 .013 .029 -.003 -.006 -.006 -.025

20 .018 .023 .020 .051 -.006 -.014 -.012 -.048

30 .024 .033 .027 .070 -.009 -.025 -.019 -.067

5.4.2 10 .028 .025 .024 .046 -.002 -.004 -.001 -.025

20 .041 .038 .034 .104 -.006 -.009 .000 -.086

30 .052 .049 .042 .140 -.008 -.014 .001 -.127

5.4.3 10 .011 .014 .012 .056 -.001 -.008 -.006 -.046

20 .016 .024 .019 .106 -.002 -.017 -.012 -.100

30 .021 .036 .026 .148 -.004 -.028 -.018 -.142

5.4.4 10 .022 .023 .023 .045 .000 -.008 -.005 -.037

20 .030 .036 .034 .077 .001 -.016 -.009 -.069

30 .039 .050 .044 .108 .003 -.027 -.013 -.101
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Table 5.9: RMSE and bias for 5000 simulations for MAR.

IT %M RMSE Bias

PMM LD Gwet MD PMM LD Gwet MD

5.3.1 10 .026 .030 .030 .071 .014 .022 .022 -.064

20 .035 .039 .038 .156 .015 .023 .025 -.148

30 .045 .048 .047 .238 .015 .026 .028 -.230

5.3.2 10 .031 .034 .032 .049 .014 .022 .022 -.038

20 .045 .047 .043 .111 .012 .022 .023 -.100

30 .062 .061 .056 .171 .008 .024 .025 -.161

5.3.3 10 .017 .031 .030 .096 .000 .022 .023 -.080

20 .025 .040 .039 .203 .000 .024 .025 -.186

30 .032 .049 .047 .303 -.002 .027 .029 -.285

5.3.4 10 .041 .045 .046 .059 .008 .024 .024 -.038

20 .058 .060 .063 .140 .006 .025 .025 -.116

30 .077 .076 .079 .227 .004 .028 .029 -.203

5.4.1 10 .034 .034 .033 .075 .014 .021 .022 -.064

20 .046 .045 .045 .155 .013 .023 .025 -.145

30 .062 .057 .056 .243 .011 .025 .028 -.231

5.4.2 10 .050 .048 .049 .071 .009 .022 .025 -.052

20 .073 .067 .067 .144 .004 .022 .027 -.128

30 .101 .086 .086 .215 .001 .024 .030 -.202

5.4.3 10 .024 .032 .033 .097 .002 .018 .021 -.083

20 .034 .043 .043 .194 .001 .019 .023 -.182

30 .045 .055 .055 .293 .004 .021 .026 -.281

5.4.4 10 .040 .045 .047 .073 .006 .022 .022 -.064

20 .059 .062 .065 .152 .006 .024 .026 -.143

30 .077 .081 .085 .225 .004 .027 .028 -.216
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We found that MD performed very poorly, especially in the case of MCAR

and MAR, producing high RMSE and bias values in all simulated cases. In the

case of MNAR median imputation functioned weaker than the other methods

in most simulated cases. In the case of MCAR, the values amply exceeded all

other results. Incorporating these results would not only give more analyses

and figures, but would also obscure the differences in outcomes from other

methods. Therefore, we decided not to include the method into the analyses.

Table 5.10 presents a selection of the effects and effects sizes of the RM-

ANOVA on the RMSE values. The table is limited to effects with η2p values

≥ .20. The three between factors that have the greatest impact on the RMSE

values are the percentage of missing data (η2p = .92), the missing data mecha-

nism (η2p = .91), and the initial kappa value (η2p = .91). Inspection of Tables

5.7, 5.8 and 5.9 shows that if the percentage of missing values increases the

RMSE values tend to increase as well. Furthermore, on average, higher RMSE

values are associated with MAR compared to MCAR and MNAR. In addition,

the factor table size has a moderate impact on the RMSE values (η2p = .61): on

average, higher RMSE values are associated with tables with four categories.

Table 5.10: Effects and effect sizes of RM-ANOVA on RMSE values.

Effect η2p
Between Percentage missing data .92

Missing data mechanism .91

Initial kappa value .91

Table size .61

Within Method (for handling missing data) .44

Method * Symmetry .68

Method * Missing data mechanism .47

Method * Initial kappa value .30

Method * Missing data mechanism * Symmetry .24

Method * Missing data mechanism * Percentage .22

Method * Table size .22

Method * Percentage * Symmetry .21

The main within effect associated with the missing data method has a

moderate impact (η2p = .44). On average, PMM and Gwet’s weighted kappa

produce lower RMSE values than LD. In terms of RMSE, for each of the Tables

5.7, 5.8 and 5.9 it holds that there is no single method that performs best in

all cases associated with the table. In terms of bias PMM outperformed the
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other methods in the case of MAR.

There are four two-way interaction effects that involve the (within) factor

missing data method that have an η2p value of at least .20. Two two-way inter-

action effects, between the missing data method and symmetry, and between

the missing data method and missing data mechanism, involve all factors that

are also involved in three-way interactions. We discuss the remaining two-way

interaction effects first.

The interactions between missing data method and initial kappa value (η2p =

.30), and between missing data method table size (η2p = .22) are minor. Figure

5.1 presents the corresponding estimated marginal means for the high and the

low initial kappa value. The figure shows that all three missing data methods

performed similarly well. Furthermore, if the initial kappa value is high, all

three missing data methods have, on average, lower RMSE values than if the

initial kappa value is low. Moreover, if the initial kappa value is high, LD has,

on average, slightly higher RMSE values than the other methods.

Figure 5.2 presents the corresponding estimated marginal means for tables

with three and four categories. The figure shows that, on average, tables with

four categories have higher RMSE values. Furthermore, with three categories,

LD has, on average, slightly higher RMSE values than the other methods.
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Figure 5.1: Estimated marginal mean RMSE for different missing data

methods and initial kappa values.

Figure 5.2: Estimated marginal mean RMSE for different missing data

methods and different table sizes.
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Next, we consider the three-way interaction effects. All three-way inter-

actions with η2p ≥ .20 involve the factors missing data mechanism, symmetry

of the initial table and missing data percentage. To find out what the dif-

ferences between these factors are, we plotted mean RMSE’s for all different

combinations of the three factors with separate lines for the three methods.

The first interaction effect is between the missing data method, missing

data mechanism and symmetry (η2p = .24). Figure 5.3 presents the corre-

sponding estimated marginal means using separate panels for the symmetric

and asymmetric initial tables. The differences between the methods are small.

On average, Gwet’s weighted kappa performed slightly better with symmetric

tables, whereas PMM performed slightly better when the initial tables were

asymmetric.

The second three-way interaction effect is between missing data method,

missing data mechanism and missing data percentage (η2p = .22). Figure 5.4

presents the corresponding estimated marginal means using separate panels

for MCAR, MNAR and MAR, respectively. First of all, all three methods

performed quite similarly. The results for MCAR and MAR are approximately

identical. The RMSE values of all three methods are slightly lower in the case

of MNAR. In case of MNAR the RMSE values for LD increase relatively much

between 20% and 30% missing ratings.

The third three-way interaction effect is between missing data method,

missing data percentage, and symmetry of the initial table (η2p = .21). Figure

5.5 presents the corresponding estimated marginal means using separate panels

for symmetric and asymmetric tables. The methods obtained similar RMSE

values in both symmetric and asymmetric tables.

Finally, we consider the direction of the bias. All methods can be biased

both upward and downward, depending on the missing data mechanism. The

most striking finding is the fact that PMM clearly outperformed LD and Gwet’s

weighted kappa in the case of MAR.

5.6 Discussion

In this article we compared four methods that can deal with missing data in the

context of quantifying agreement between two ordinal variables using weighted

kappa. The methods were the multiple imputation method predictive mean

matching (PMM; De Silva et al., 2019), the single imputation method median
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Figure 5.3: Estimated marginal mean RMSE for different missing data

methods, missing data mechanisms and symmetry of the initial tables.

Figure 5.4: Estimated marginal mean RMSE for different missing data

methods, missing data percentages and missing data mechanisms.
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Figure 5.5: Estimated marginal mean RMSE for different missing data

methods, missing data percentages and symmetry of the initial tables.

imputation (Jadhav et al., 2019), listwise deletion (LD) and a weighted version

of Gwet’s kappa, an extension of the unweighted kappa proposed in Gwet

(2012, 2014). We compared the various methods in a simulation study using

three different missing data mechanisms, namely, MCAR, MNAR and MAR,

and initial tables with different properties and various sizes (three and four

categories). A repeated measures ANOVA was performed to examine which

factors explain the differences in RMSE values between three of the methods.

The results showed that median imputation performed poorly. This result is

in line with other evidence in the literature that multiple imputation methods

are often superior to single imputation methods. Furthermore, LD, PMM

and Gwet’s weighted kappa performed all well since the RMSE values were

small. Moreover, none of the methods outperformed the other methods in

all simulated cases. In general, PMM and Gwet’s weighted kappa obtained

similar results, and outperformed LD in almost all simulated cases. However,

there are only small differences between the methods in most simulated cases.

Furthermore, the RMSE values are, on average, lower in the case of MNAR.

This finding can be explained by the fact that the missing percentage is a bit

lower in this case. On the basis of this study, if the version of MAR used in this

127



547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt
Processed on: 28-8-2020Processed on: 28-8-2020Processed on: 28-8-2020Processed on: 28-8-2020 PDF page: 128PDF page: 128PDF page: 128PDF page: 128

Chapter 5

study can be assumed to hold, one should use PMM, since it outperformed the

other methods in most simulated cases in terms of RMSE and all cases in terms

of bias. If it is not possible to make justifiable assumptions about what missing

data mechanism may be at work, one should use PMM or Gwet’s weighted

kappa, which performed slightly better than LD in the case of MCAR and

MNAR in almost all simulated cases.

This study has several limitations. The first limitation has to do with

the missing data mechanism. In this study, we formulated only one form of

MAR and MNAR. Other forms of MAR and MNAR may give different results.

For example, our form of MAR can be extended by including more additional

variables. It would be interesting to study other forms of MAR and MNAR

in further research. Secondly, we limited ourselves to examine tables with

three and four categories. Again, it is possible that the results change if tables

with more categories are included. However, we think that the results will not

change significantly since we found no big differences between the two table

sizes. Thirdly, we only considered initial tables with two different kappa values.

It may be the case that different results are obtained if other kappa values are

investigated. However, using interpolation we think it is quite likely that the

results found in this article also apply to kappa values between .60 and .80,

since the pattern of results did not differ much between these values.
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Main aim of the dissertation

The main aim of this dissertation was to examine methods that can handle

missing inter-rater agreement data. The second aim was to study relation-

ships among a number of agreement coefficients. For our first aim, we used

simulations to investigate the impact of missing data on the values of Cohen’s

unweighted kappa and weighted kappa. In Chapters 2, 3 and 5 we compared

different missing data methods (kappa variants, listwise deletion and multi-

ple imputation methods) in the context of nominal and ordinal ratings. For

our second aim, we studied how different agreement coefficients are related by

comparing formulas and using simulated and real-world data (Chapter 4).

Summary of the main findings

Chapter 2 presented and compared three different kappa coefficients that can

handle missing data. The results showed that Gwet’s kappa (2012, 2014) and

listwise deletion clearly outperformed the kappa coefficient that treated missing

ratings as disagreements. Both Gwet’s kappa and listwise deletion led to results

with little bias and low RMSE values in all simulated cases. The coefficient that

treated missing ratings as disagreements led to substantially biased results and

high RMSE values in most simulated cases. Gwet’s kappa and listwise deletion

are both good options to handle nominal missing agreement data in the case

of MCAR and MNAR.

In Chapter 3 four methods to deal with missing data in the context of quan-

tifying agreement between two nominal variables using Cohen’s unweighted

kappa coefficient were compared. The methods were multiple imputation based

on multinomial logistic regression, two variants of multiple hot deck imputation

and listwise deletion. Simulations revealed that all four methods performed,

on average, similarly well in the case of MCAR and MNAR. However, multiple

imputation based on multinomial logistic regression and listwise deletion led to

better results than both variants of hot deck imputation in the case of MAR.

In Chapter 4 we compared six agreement coefficients for categorical and

interval data using analytic methods, and simulated and empirical data. The

agreement coefficients studied were unweighted kappa, linear kappa, quadratic

kappa, the intraclass correlation, the Pearson correlation and the Spearman

correlation. Firstly, it was studied under which conditions the quadratic kappa

and the intraclass correlation and Pearson correlation obtained similar values.

The differences between some of the coefficients can be expressed in terms of
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rater means and variances. It turned out that differences between the coef-

ficients increase if agreement becomes larger. Secondly, we investigated the

extent to which we reached similar decisions if different coefficients were used.

The results showed that the quadratic kappa and the correlation coefficients led

to similar decisions a great number of times. Lastly, we examined to what ex-

tent the coefficients measured agreement in similar ways. Correlations between

the values of quadratic kappa and the three correlation coefficients revealed

that their values were highly correlated in most cases.

Chapter 5 compared four methods to handle missing data in the con-

text of quantifying agreement between two ordinal variables using Cohen’s

weighted kappa with quadratic weights. This particular version of weighted

kappa is most commonly used. The methods for missing data studied were the

multiple imputation method predictive mean matching, the single imputation

method median imputation, listwise deletion and a weighted version of Gwet’s

kappa, an extension of the unweighted kappa proposed in Gwet (2012, 2014).

The results revealed that median imputation performed very poorly. Further-

more, imputation based on predictive mean matching and a weighted version

of Gwet’s kappa obtained similar results and performed slightly better than

listwise deletion in most cases, although the differences were small.

Strengths, limitations and further directions

Our research in this dissertation yielded new insights into methods to deal

with missing agreement data, and into relations between various agreement

coefficients. In the context of missing agreement data, it was studied which

coefficient may be preferred when dealing with missing ratings. Furthermore,

various connections between kappa coefficients and correlations were demon-

strated.

Of course, our studies were limited in various respects. A first choice was

that in our studies the percentage of missing data was limited to 30%. The

rationale behind this choice was that the amount of missing data probably

does not exceed 30% in most education-related studies. Nevertheless, from a

theoretical point of view, it would be interesting to see whether the results

change if the amount of missing data is higher. On the basis of our results, we

expect higher RMSE and bias values since the methods performed weaker as

the amount of missing data increased.

Secondly, we have chosen to examine only tables consisting of two, three
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and four categories. In many agreement studies, scales do not have more than

four categories. To what extent the results will change in the context of more

categories is a topic for further research. However, on the basis of our results,

we think it is quite likely that our findings also apply to agreement tables with

a few more categories, since the results for tables with two, three and four

categories do not differ substantially (Chapters 2, 3 and 5).

Thirdly, in our studies, we have used particular values for the kappa co-

efficients: a relatively low value (≈ .40 and ≈ .60) and a high kappa value

(≈ .80). The low values were used to study whether a relatively low value was

severely overestimated in the presence of missing data. In the case of a high

kappa value, we were interested in whether the methods were able to recover

a value that is generally considered indicating a sufficient level of inter-rater

agreement. On the basis of our results, we think that it is quite likely that our

results also apply to agreement tables with kappa values between .40/.60 and

.80. It would be interesting to see if the results change with higher or lower

initial kappa values, which is a topic for further research.

Fourthly, another possible limitation is that we investigated only one form

of MNAR and one form of MAR. Furthermore, in our form of MAR we gener-

ated one additional binary variable which predicted the missing data. In our

form of MAR, one half of the sample had a high kappa value and the other

half had a relatively low kappa value. Moreover, units with a relatively low

kappa value received more missing data. We have chosen this form since it is

not clear which additional information on for example person characteristics is

used during the process of classification. It would be interesting to see what

results are obtained if more variables are considered. This is a topic for further

research.

Lastly, in this dissertation we only examined the degree of agreement be-

tween two raters. A topic for further research is the investigation of the impact

of missing data on the agreement between more than two raters, which can be

determined by e.g. Conger’s (1980) kappa, Hubert’s (1977) kappa or Light’s

(1971) kappa.

Conclusion

This dissertation suggests that nominal missing agreement data can be han-

dled sufficiently using listwise deletion and Gwet’s kappa (2012, 2014) in the

cases of MCAR and MNAR studied. Furthermore, in line with the findings
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of Strijbos and Stahl (2017) the kappa coefficient that used listwise deletion

performed better than the kappa coefficient that treated missing data as dis-

agreements. Moreover, in the case of MAR considered, multiple imputation

based on multinomial logistic regression obtained, on average, slightly better

results than listwise deletion.

A possible explanation for the small differences between the multiple impu-

tation methods and listwise deletion may be the fact that in our MAR mecha-

nism the missing ratings depend on only one variable, which is a simple model.

In this case, there is relatively little information on the missing ratings avail-

able than if there are many variables that predict missing ratings. The more

information there is available on the missing data, the better the multiple

imputation methods will perform. For this reason, it is expected that the mul-

tiple imputation methods outperform listwise deletion in a situation with more

variables.

Furthermore, a possible explanation for the good performance of listwise

deletion is the amount of missing ratings. Listwise deletion may perform poorly

if 40%, 50% or even 60% of the ratings are missing.

Moreover, in our research we did not estimate the variance of Cohen’s kappa

and Cohen’s weighted kappa. Instead, we focused on the point estimates of

the kappa coefficients. Our results showed that listwise deletion estimated

the kappa values sufficiently well. It is obvious that listwise deletion performs

poorly in estimating the variance of the kappa values, since the standard errors

increase if the sample size decreases.

It was also shown that listwise deletion, a weighted version of Gwet’s kappa

and the multiple imputation method predictive mean matching obtain accurate

results in dealing with ordinal missing ratings. The differences were small, but

a weighted version of Gwet’s kappa and predictive mean matching performed

slightly better than listwise deletion in the cases of MCAR, MAR and MNAR

studied.

Altogether the good performance of listwise deletion in our studies is quite

surprising since many authors advise against this method if MCAR cannot be

assumed (e.g., Enders, 2010; King, Honaker, Joseph, & Scheve, 2001). Our

results suggest that this method seems to yield relatively good results in the

cases of MCAR, MAR and MNAR studied.
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Introductie

In de klas en binnen onderzoek worden kinderen geregeld geclassificeerd in

verschillende categorieën. Een voorbeeld hiervan is het vaststellen van de cog-

nitieve vaardigheden in de onderbouw van de basisschool. Dit is van belang

om na te gaan of en welke extra ondersteuningsbehoeften een kind nodig heeft.

Wanneer blijkt dat een kind zich minder goed ontwikkelt, kunnen er vroegtijdig

interventies worden ingezet met als doel om leerachterstanden tegen te gaan

(Allor et al., 2014). De ernst van de ontwikkelingsachterstand kan bijvoorbeeld

worden geclassificeerd als afwezig, licht, matig, ernstig of zeer ernstig (Shree &

Shukla, 2016).

Classificatie wordt ook gebruikt binnen onderzoek. Onderzoek binnen de

psychiatrie kan zich bijvoorbeeld richten op het vergelijken van meetinstru-

menten die de ernst van een depressie kunnen vaststellen. De ernst van de

klachten kunnen worden geclassificeerd als afwezig, mild, matig of ernstig

(Poole, White, Blake, Murphy, & Bramwell, 2009). Een ander voorbeeld is de

classificatie van huidtypen door dermatologen. De huidtypen worden bepaald

volgens de Fitzpatrick classificatie, waarbij zes verschillende huidtypen onder-

scheiden worden (Fitzpatrick, 1975).

Het classificeren kan met zowel ongeordende (nominale) als geordende (or-

dinale) categorieën worden gedaan. Hierbij is het gebruikelijk dat een persoon

binnen één categorie valt. Een voorbeeld van een schaal met nominale cate-

gorieën komt voor bij het classificeren van psychische stoornissen in een van de

volgende categorieën: depressie, borderline of bipolair. De categorieën van een

ordinale schaal zijn geordend en geven gebruikelijk de sterkte van een bepaalde

eigenschap aan. Dit kan bijvoorbeeld geclassificeerd worden als afwezig, mild

of ernstig.

Classificeren wordt vaak gedaan door minimaal twee beoordelaars die on-

afhankelijk van elkaar dezelfde mensen in gelijke omstandigheden classificeren

in vooraf opgestelde categorieën. Daarna kan de mate van overeenstemming

tussen de classificaties worden bestudeerd. De mate van overeenstemming

wordt gebruikt als indicatie van de betrouwbaarheid van de classificaties. De

betrouwbaarheid van de classificaties is ook een voorwaarde voor de validiteit.

Wanneer de classificaties valide zijn, betekent dit dat de beoordelaars beoorde-

len wat onderzoekers bedoeld hebben. Een factor die de betrouwbaarheid en
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validiteit negatief kan bëınvloeden is onduidelijke definities van categorieën.

Een veelgebruikte maat om de overeenstemming vast te stellen tussen nom-

inale classificaties is Cohen’s kappa. Voor overeenstemming tussen ordinale

classificaties wordt bijvoorbeeld Cohen’s gewogen kappa gebruikt. Cohen’s

kappa maakt alleen onderscheid tussen wanneer beoordelaars het met elkaar

eens of oneens zijn. Cohen’s gewogen kappa kan onderscheid maken tussen de

verschillen in classificaties als beoordelaars het oneens zijn. Wanneer bijvoor-

beeld

ontwikkelingsachterstanden worden geclassificeerd, kan een verschil tussen ern-

stig en zeer ernstig minder zwaar gewogen worden dan een verschil tussen matig

en zeer ernstig.

Ontbrekende data komen voor in veel onderzoeksgebieden. Binnen onder-

zoek waarin overeenstemmingsdata worden gebruikt kunnen data ontbreken

omdat bijvoorbeeld personen niet op komen dagen bij afspraken. Verder kan

het zijn dat de oorzaak van de ontbrekende data bij de beoordelaar ligt: als een

persoon niet in een van de categorieën past, of als de categorieën niet volledig

worden begrepen dan kan het zijn dat een beoordelaar er voor kiest om een

persoon niet te classificeren (De Raadt et al., 2019; Warrens, 2015). Wanneer

er onzorgvuldig met ontbrekende data wordt omgegaan kan de kappa-waarde

mogelijk onder- of overschat worden. De precieze invloed van ontbrekende data

op kappa-waarden is niet uitgebreid bestudeerd.

Methoden om met ontbrekende data om te gaan worden onderverdeeld in

traditionele strategieën en moderne strategieën. Een bekend voorbeeld van

een traditionele methode is listwise deletion. Wanneer er voor een persoon

data ontbreken, verwijdert listwise deletion alle beschikbare data voor deze

persoon. Een groot voordeel van deze methode is dat hij relatief makkelijk

toepasbaar is. Een nadeel van het gebruik van deze methode is dat er data

weggegooid worden. Hierdoor kan het zijn dat de overgebleven groep personen

geen goede representatie is van de gehele groep. Een moderne strategie om

met ontbrekende data om te gaan is multipele imputatie. Multipele imputatie

houdt in dat voor elke beoordeling die ontbreekt, een mogelijke nieuwe waarde

ingevuld wordt. Dit wordt meerdere keren herhaald waarmee men tracht de

‘originele’ waarde weer te geven. Als een waarde immers één keer gëımputeerd

zou worden (eenmalige imputatie) betekent dit eigenlijk dat er verondersteld

wordt dat dit de werkelijke waarde is. De werkelijke waarde is onbekend en

daarom wordt multipele imputatie gezien als een betere optie. Verder heeft
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multipele imputatie als voordeel ten opzichte van listwise deletion dat er geen

data verloren gaan.

De invloed van ontbrekende data en de verschillende methoden om hiermee

om te gaan op de mate van overeenstemming is tot op heden niet systematisch

bestudeerd. Dit maakt het voor onderzoekers lastig om bewuste keuzes te

maken met betrekking tot hoe om te gaan met ontbrekende data. Daarom

gaat een groot gedeelte van dit proefschrift over het effect van ontbrekende

data op kappa-waarden. Een hoofddoel van dit onderzoek was om meer kennis

te krijgen over effectieve strategieën waarmee men met ontbrekende data om

kan gaan.

Een klein gedeelte van dit proefschrift focust op de relaties tussen ver-

schillende overeenstemmingsmaten. Cohen’s gewogen kappa en correlaties zijn

voorgesteld om overeenstemming te meten op respectievelijk ordinale en in-

terval data. In dit proefschrift wordt onderzocht in hoeverre de verschillende

overeenstemmingsmaten dezelfde waarden geven wanneer ze worden toegepast

op ordinale data. Wanneer de waarden op elkaar lijken, kan een correlatie

mogelijk succesvol worden ingezet op ordinale data. Daarnaast kunnen we

dan overwegen om imputatiemethoden, die oorspronkelijk bedacht zijn voor

interval data, te gebruiken op ordinale data.

Doel van het proefschrift

Het hoofddoel van dit proefschrift was het onderzoeken van methoden die met

ontbrekende overeenstemmingsdata om kunnen gaan. Het tweede doel was het

bestuderen van relaties tussen verschillende overeenstemmingsmaten. Voor

het hoofddoel werd onderzocht welke invloed ontbrekende overeenstemmings-

data op de waarden van Cohen’s ongewogen kappa en Cohen’s gewogen kappa

hebben door middel van simulaties. In de hoofdstukken 2, 3 en 5 hebben we

verschillende methoden die met ontbrekende data om kunnen gaan vergeleken

op nominale en ordinale data. Voor ons tweede doel hebben we de relaties

tussen verschillende overeenstemmingsmaten onderzocht door het vergelijken

van zowel formules als de toepassing van deze overeenstemmingsmaten op ges-

imuleerde data en data uit de praktijk (Hoofdstuk 4).

Samenvatting van de belangrijkste bevindingen

Hoofdstuk 2 beschrijft en vergelijkt drie verschillende kappa coëfficiënten die

om kunnen gaan met ontbrekende nominale overeenstemmingsdata. De resul-

taten tonen aan dat Gwet’s kappa (2012, 2014) en listwise deletion duidelijk

140



547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt547134-L-sub01-bw-Raadt
Processed on: 28-8-2020Processed on: 28-8-2020Processed on: 28-8-2020Processed on: 28-8-2020 PDF page: 141PDF page: 141PDF page: 141PDF page: 141

Samenvatting

beter presteren dan de kappa coëfficiënt waarbij ontbrekende data beschouwd

worden als classificaties waar de beoordelaars het oneens over zijn. Deze laatste

kappa coëfficiënt presteert in bijna alle gesimuleerde gevallen inaccuraat.

In Hoofdstuk 3 wordt onderzocht hoe vier verschillende methoden die met

ontbrekende data om kunnen gaan de waarden van de ongewogen kappa bëınvlo-

eden. De methoden zijn een variant van multipele imputatie gebaseerd op

multinomiale logistische regressie, twee verschillende varianten van hot deck

imputatie en listwise deletion. Simulaties tonen aan dat multipele imputatie

gebaseerd op multinomiale logistische regressie en listwise deletion over het al-

gemeen goed werken. Gemiddeld genomen presteren alle methoden even goed,

alleen de twee varianten van hot deck werken slecht wanneer de kans op ont-

brekende data afhangt van een andere variabele.

In Hoofdstuk 4 worden zes verschillende overeenstemmingsmaten voor met

name ordinale classificatie vergeleken. Dit is gedaan door het vergelijken van de

verschillende formules en de toepassing van de maten op gesimuleerde data en

data uit de praktijk. De volgende overeenstemmingsmaten worden bestudeerd:

ongewogen kappa, lineaire kappa, kwadratische kappa, intraclass correlatie,

Pearson correlatie en Spearman correlatie. Ten eerste wordt onderzocht on-

der welke voorwaarden de kwadratische kappa, de intraclass correlatie en de

Pearson correlatie dezelfde waarden geven. Verder onderzoeken we hoe ver-

schillen tussen de maten afhangen van beoordelaar-gemiddelden en varianties.

Ten tweede onderzoeken we in hoeverre we tot (praktisch) dezelfde beslissin-

gen komen wanneer we verschillende maten gebruiken. De resultaten tonen aan

dat we met de kwadratische kappa en de correlatie coëfficiënten zeer vaak tot

dezelfde beslissingen komen. Als laatst bestuderen we in hoeverre de verschil-

lende maten overeenstemming op dezelfde manier vaststellen. In de meeste

gevallen vinden we hoge correlaties tussen de waarden van de kwadratische

kappa en de correlatie coëfficiënten.

In Hoofdstuk 5 worden de effecten van vier verschillende methoden die met

ontbrekende ordinale data om kunnen gaan vergeleken. In deze studie is voor

de kwadratische kappa gekozen omdat deze variant van gewogen kappa binnen

onderzoek het meest gebruikt wordt. De methoden die we bestuderen zijn: de

multipele imputatie methode predictive mean matching, mediaan-imputatie,

listwise deletion en een gewogen versie van Gwet’s kappa, welke een variant

is van de ongewogen kappa in Gwet (2012, 2014). De resultaten laten zien

dat mediaan imputatie slecht presteert. Verder tonen we aan dat de multipele
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imputatie methode predictive mean matching en de gewogen versie van Gwet’s

kappa het iets beter doen dan listwise deletion.

Sterke punten en aanbevelingen voor vervolgonderzoek

Het onderzoek in dit proefschrift heeft op het gebied van methoden om met

ontbrekende data bij overeenstemmingsmaten om te gaan tot enkele nieuwe

inzichten geleid. Verder zijn er connecties tussen verschillende overeenstem-

mingsmaten aangetoond.

Natuurlijk hebben de studies in dit proefschrift enige beperkingen. In

onze studies hebben we maximaal 30% ontbrekende data gehad. In de meeste

onderwijs-gerelateerde studies ontbreekt niet meer dan 30% van de data. Uit

theoretisch oogpunt is het interessant om te kijken in hoeverre onze resultaten

veranderen als er meer data ontbreken. We verwachten, op basis van de re-

sultaten in onze studies, dat de methoden minder accuraat gaan werken naar

mate de hoeveelheid data die ontbreken toeneemt.

Ten tweede hebben we ervoor gekozen om alleen classificaties te bestuderen

met twee, drie of vier categorieën. In veel onderzoek naar overeenstemming

tussen beoordelaars worden maximaal vier categorieën gebruikt. Op basis van

onze resultaten verwachten we dat ongeveer dezelfde patronen gelden voor

vijf of meer categorieën. In onze studies vonden we geen grote verschillen

tussen situaties met twee, drie en vier categorieën (Hoofdstukken 2, 3 en 5).

Een onderwerp voor een vervolgstudie kan zijn in hoeverre onze resultaten

veranderen wanneer er (veel) meer categorieën zijn.

Ten derde hebben we ervoor gekozen om enkele specifieke kappa-waarden

te bestuderen. Naar onze mening is het relevant om te onderzoeken in hoev-

erre een relatief lage waarde (ernstig) overschat kan worden wanneer er data

ontbreken. Bij een hoge waarde waren we gëınteresseerd in hoeverre deze

teruggevonden zou worden. Deze hoge waarde wordt vaak als ruim voldoende

overeenstemming aangemerkt. Op basis van onze resultaten verwachten we

dat de resultaten ook gelden voor overeenstemmingstabellen met een kappa

waarde tussen de door ons bestudeerde waarden. Extremere waarden kunnen

eventueel bestudeerd worden in vervolgonderzoek.

Ten vierde hebben we alleen één vorm van een oorzaak voor ontbreken van

data bestudeerd. Deze vorm bestaat uit een additionele binaire variabele die de

ontbrekende data op de twee beoordelaar-variabelen bëınvloedt. We hebben

voor één additionele variabele gekozen omdat we niet weten hoeveel achter-
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grondinformatie beoordelaars gebruiken wanneer ze beoordelen. Het is interes-

sant om in vervolgonderzoek na te gaan in hoeverre onze resultaten veranderen

wanneer er meer additionele variabelen in het model worden opgenomen.

Als laatste hebben we alleen de mate van overeenstemming tussen twee beo-

ordelaars bestudeerd. Een onderwerp voor vervolgonderzoek zou de overeen-

stemming tussen meer dan twee beoordelaars kunnen zijn. Dit kan bijvoorbeeld

gedaan worden met Conger’s (1980) kappa, Hubert’s (1977) kappa of Light’s

(1971) kappa.

Conclusie

Dit proefschrift suggereert dat nominale ontbrekende data in veel gevallen het

beste behandeld kunnen worden door listwise deletion en Gwet’s kappa (2012,

2014). In een bepaald geval doet multipele imputatie gebaseerd op multinomi-

ale logistische regressie het iets beter dan listwise deletion.

Een mogelijke verklaring voor de kleine verschillen tussen de imputatiemeth-

oden en listwise deletion kan zijn dat in een bepaald geval de kans op ontbrek-

ende data afhangt van maar één andere variabele. Dit is een simpel model. In

deze situatie is er relatief weinig informatie over de ontbrekende data beschik-

baar en zou er meer informatie zijn wanneer de kans op ontbrekende data van

meerdere variabelen afhangt. Hoe meer informatie er over de ontbrekende data

beschikbaar is, hoe beter de multipele imputatiemethoden zullen presteren. Er

wordt daarom verwacht, wanneer er meer variabelen zijn, dat de multipele

imputatiemethoden duidelijk beter presteren dan listwise deletion.

Daarnaast is de hoeveelheid ontbrekende data een mogelijke verklaring

waarom listwise deletion goed presteert. Het is mogelijk het geval dat list-

wise deletion slecht presteert wanneer de percentages ontbrekende data 40%,

50% of 60% zijn.

Een ander punt is de schatting van de variantie van de parameters. In dit

proefschrift hebben we ons niet gefocust op het schatten van de variantie van

Cohen’s kappa en Cohen’s gewogen kappa, maar zijn alleen de schattingen van

de paremeters zelf onderzocht. Onze resultaten laten zien dat listwise deletion

goed in staat is om de kappa waarden te schatten. Het is duidelijk dat listwise

deletion slecht zal presteren wanneer het gaat om variantieschattingen, gezien

de standaardfout groter wordt naarmate de steekproef kleiner wordt.

Een gewogen versie van Gwet’s kappa, de multipele imputatie methode

predictive mean matching en listwise deletion presteren accuraat bij ordinale
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data. De verschillen tussen de methoden zijn klein, maar een gewogen versie

van Gwet’s kappa en de multipele imputatie methode predictive mean matching

presteren iets beter dan listwise deletion bij onze vormen van oorzaken voor

het ontbreken van data.

Al met al is het opvallend dat listwise deletion zo accuraat presteert, zeker

gezien het feit dat vele auteurs het gebruik van de methode afraden (e.g., En-

ders, 2010; King, Honaker, Joseph, & Scheve, 2001). In het speciale geval van

overeenstemming tussen twee variabelen lijkt listwise deletion zelfs prima te

presteren.
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Appendices belonging to Chapter 4

Appendix 1: The derivative of f(c) = (1− c)2/(1 + c2) with respect to c in (4.9)

Let c ≥ 1 be a positive real number equal to or greater than 1. Consider the

function

f(c) =
(1− c)2

1 + c2
.

Using the quotient rule, the first derivative of the function f(c) with respect

to c is given by

f ′(c) =
−2(1− c)(1 + c2)− 2c(1− c)2

(1 + c2)2
,

which is equivalent to

f ′(c) =
2(c2 − 1)

(1 + c2)2
.

The derivative f ′(c) is strictly positive for c > 1, which implies that the original

function f(c) is strictly increasing in c.

Appendix 2: The derivatives of (4.11) and (4.12)

The difference R− κq is given by

R− κq =
2s12
s21 + s22

− 2s12
s21 + s22 + n

n−1(m1 −m2)2
.

If we make the denominators on the right-hand side the same, we can write

the difference as

R− κq =
2s12 · n

n−1(m1 −m2)
2

(s21 + s22)(s
2
1 + s22 + n

n−1(m1 −m2)2)
,

which is equivalent to

R− κq =
R · n

n−1(m1 −m2)
2

s21 + s22 + n
n−1(m1 −m2)2

.

Finally, dividing all terms on the right-hand side by (n/(n − 1))(m1 − m2)
2

yields formulas (4.11) and (4.12).
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Dankwoord

Ruim vier jaar geleden verhuisde ik naar Groningen om aan mijn promotietra-

ject te beginnen. Ik zag deze kans als een grote uitdaging. Nu, een aantal

jaar later, is mijn proefschrift klaar! Gedurende deze periode heb ik me sterk

gerealiseerd hoe belangrijk het is om de juiste mensen om je heen te hebben.

Graag wil ik een aantal mensen in het bijzonder bedanken.

Roel, jij wist altijd de relevantie van mijn onderzoek voor de praktijk in

gedachten te houden. Ik vond het fijn om met je samen te werken, er hing altijd

een goede sfeer tijdens onze besprekingen. Bedankt voor je input en kritische

vragen.

Henk, wat ben ik blij dat je na ruim een jaar bij het team gekomen bent.

Mede door jouw ideeën zijn de onderzoeken in dit proefschrift beter geworden.

Je hebt me veel geleerd over simulatiestudies en vooral het belang van de

(R)MSE hierbij benadrukt. Ik weet nu dat dit een veel belangrijkere maat is

dan de bias. Dit zal ik mijn leven lang niet vergeten. Verder wist je de feedback

altijd constructief te brengen. Heel erg bedankt voor de fijne samenwerking!

Matthijs, we zijn samen dit avontuur in Groningen aangegaan. Zonder

jou was dit proefschrift er nooit geweest. Ik zou een hele pagina vol kunnen

schrijven over hoe veel ik van je geleerd heb over kappa coëfficiënten, R codes,

papers schrijven en het leven. Wat ik ook heel tof vind is dat de onderzoeken

voor het proefschrift nog niet geheel vaststonden. Hierdoor heb je me de vri-

jheid gegeven om zelf onderwerpen aan te dragen die ik interessant vind. Ik

kon altijd even bij je binnen lopen, geen vraag was te gek. We hebben zoveel

gelachen samen, ik heb ontzettend genoten van al onze gesprekken.

Mijn lieve collega’s van het GION. Marij en Mariëtte, het was gezellig om

even bij jullie binnen te lopen en te praten over alles wat er op dat moment

belangrijk was. Ik ben ook blij dat ik jullie (extra) heb kunnen motiveren met

de uitspraak ‘elke zin is er weer een!’. Marlies, ik vond het fijn om met jou

een kamer te delen en jouw reflecties op zaken te horen. Marinda, je bent

heerlijk nuchter en rustig. We hebben veel gelachen samen. Edwin, ik vond

het ontspannend om bij te kletsen met je. Onze conversaties zorgden er voor

dat ik met nieuwe energie aan het werk ging.

Anne, we hebben heel onze promotietijd samen op kantoor gezeten. Ik had

me geen betere kamergenoot kunnen wensen. Om even terug te komen op de

tekst uit jouw dankwoord: ik heb inderdaad wel geleden onder al je geklaag
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Dankwoord

over daadwerkelijk alles. Haha, het valt best mee hoor, ik herinner me vooral

het lachen en onze gesprekken over mannen en daten. Je was een bron van

ontspanning tussen al het R-en door, gezellig samen naar Bad Nieuweschans of

Liefmansjes drinken. Binnenkort moeten we Thermen Soesterberg maar eens

gaan verkennen.

Jeanette, jij kunt zeker niet ontbreken in dit dankwoord. Jouw persoonli-

jkheid, vertrouwen en kennis betekenen veel voor mij. Ik heb ontzettend veel

aan onze gesprekken en kan me dan ook geen betere sparringspartner wensen.

Bedankt voor alle inzichten. Ik denk vaak terug aan de momenten waarop

kwartjes vielen. Jij doet gewoon waar je ontzettend goed in bent en dat vind

ik super inspirerend. Je bent een mooi mens!

Cynthia, we hebben elkaar ontmoet tijdens het jaarprogramma van 365 met

als doel te gaan ‘huddelen’. Dit bleek een schot in de roos. Wat hebben we in

het begin gelachen (en doen we nu nog) over het zweverige gedoe van David.

Hoe zweverig het ook kon zijn, wij waren realistisch. Dat is denk ik ook de

kracht van ons contact. Ik ben heel blij dat je altijd naast me staat en dat we

naar elkaars avonturen luisteren.

Marjolein, het maakt niet uit wat we ondernemen samen, ik kom met zere

buikspieren thuis. Of dat we het nu over uilen, paarden of de ribbroek hebben,

we hebben plezier. Een van de hoogtepunten is ons paardentrainingskamp

samen met Tessa en Ronja. Wat hebben we daar veel gelachen. De paar-

den stonden nog op de trailer en wij lagen al in een deuk. Wat het dan nog

grappiger maakte was dat de anderen geen idee hadden waar we om moesten

lachen. Naast alle lol hebben we ook serieuze gesprekken. Ik haal veel uit onze

conversaties over paardenwelzijn en gezond plantaardig eten (zonder sinaasap-

pelsap). Je weet me altijd weer aan het denken te zetten, dank je wel daarvoor!

Ik hoop dat we elkaar snel treffen in Soest.

Florien, jij bent mede verantwoordelijk voor ultieme ontspanning naast het

proefschrift. Op het paard voel ik mij heel relaxed en vrij. We trainen nu al

weer vier jaar regelmatig samen. Elke les zorgt ervoor dat ik nog enthousiaster

wordt om mijn rijkunst te verbeteren. Paardrijden zorgt voor veel ruimte in

mijn hoofd en jij weet hier goed op in te spelen. Als ik zeg dat ik iets nieuws wil

leren heb je wel een troef achter de hand. Je hebt zoveel gevoel voor rijkunst

en lesgeven. Jouw kennis en kunde zijn buitenaards. Je hebt ook altijd gelijk

(al geef ik dat pas een aantal dagen na de les toe). Als ik van iemand heb

leren paardrijden ben jij het. Lieve Florien, ik wens dat we nog jaren zo door
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kunnen gaan, want elke training is een feest. Al voelt het een dag erna niet zo

als ik amper mijn bed uit kom van de spierpijn, haha.

Sanne, jij bent iemand waarvan ik zeg: iedereen heeft een Sanne in zijn

of haar leven nodig. Je bent heel wijs en rustig. Ik hoor je nu al denken als

je deze zin hebt gelezen. Als ik het even niet meer weet, heb jij de gave om

met een simpele overdenking de kern helder te krijgen. Door onze avonturen

tijdens het jaarprogramma zijn we dichter naar elkaar toegegroeid. Ik kan nog

steeds in een deuk liggen als ik terugdenk aan jouw kritische vragen rondom

het thema overvloed. Het is leuk om met iemand te kunnen praten in ‘365

termen’ over belangrijke thema’s in het leven. Ik hoop dat we nog veel mooie

momenten mee mogen maken samen!

Mijn lieve ouders. Vanaf de eerste dag in mijn leven hebben jullie mij

volledig gesteund. Mede hierdoor is het mij gelukt een zo normaal mogelijk

leven te leiden, waar ik dankbaar voor ben. Ik heb alle kansen gekregen om

mezelf te ontwikkelen. Jullie stonden achter mijn ‘emigratie’ naar Groningen

waar ik samen met Zoë (poes) en Presco (paard), die van onschatbare waarde

zijn, een fijn leven heb opgebouwd. Mama, ik wil nog even expliciet benoemen

dat als wij niet samen nog extra voor rekenen en wiskunde geoefend hadden,

dat ik überhaupt geen statistische master en dus ook geen PhD gedaan zou
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