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Optimal time-domain moment matching

with partial placement of poles and zeros

T. C. Ionescu, O. V. Iftime and I. Necoara

Abstract— In this paper we consider a minimal, linear, time-
invariant (LTI) system of order n, large. Our goal is to compute
an approximation of order ν < n that simultaneously matches
ν moments, has ℓ poles and k zeros fixed, with ℓ + k < ν,
and achieves minimal H2 norm of the approximation error.
For this, in the family of ν order parametrized models that
match ν moments we impose ℓ + k linear constraints yielding
a subfamily of models with ℓ poles and k zeros imposed. Then,
in the subfamily of ν order models matching ν moments,
with ℓ poles and k zeros imposed we propose an optimization
problem that provides the model yielding the minimal H2-
norm of the approximation error. We analyze the first-order
optimality conditions of this optimization problem and compute
explicitly the gradient of the objective function in terms of
the controllability and the observability Gramians of the error
system. We then propose a gradient method that finds the
(optimal) stable model, with fixed ℓ poles and k zeros.

I. INTRODUCTION

In moment matching-based model reduction techniques, the

approximation is yielded by constructing a lower degree

rational function that approximates the original transfer func-

tion of high dimension, see e.g. [1]. The low degree rational

function matches a number of terms of the series expansion

of the original transfer function at various complex points. It

has also been shown that properties of the original transfer

function are preserved/inherited if the matching points are

chosen in a certain way. For instance, in Antoulas [2]

and Sorensen [3] the problem of moment matching with

preservation of physical properties such as passivity/positive

realness has been tackled. Also, in [4], [5] the problem

of the moment matching-based approximation yielding the

lowest H2 norm of the approximation error has been solved

resulting in a numerically efficient algorithm called Iterative

Rational Krylov Approximation (IRKA).

Recently, for linear, time-invariant (LTI) systems, a system

theoretic, Sylvester equation (time-domain) approach to mo-

ment matching has been taken in [6], [7]. In short, the
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notion of moment of an LTI minimal system has been related

to the unique solution of a Sylvester equation, see also,

e.g., [8], [9], for earlier results. Used for model reduction,

the Sylvester equation approach yields simple and direct

characterizations of all parameterized, reduced order models

that match a prescribed set of moments of a given system

at a set of finite interpolation points. The free parameters

can be selected to identify the models that meet additional

requirements or constraints. Hence, the resulting families

of models of order ν that match ν moments of the given

n-th order system contain subfamilies of ν order models

that satisfy desired systemic properties. For instance, in [6]

the ν free parameters a selected such stability and relative

degree are preserved, in [10] the ν parameters are chosen to

preserve the port-Hamiltonian physical structure in [7] the

ν parameters are selected to find the lowest order minimal

model and in [11] the ν parameters are computed to find

the model that matches 2ν moments as well as the model

that matches ν moments of te given system and ν moments

of its first order derivative. Recently, in [12], [13] the ν
parameters are computed, using gradient-based optimization

algorithms, to find the model that achieves the lowest H2

norm of the approximation error. Note that all the above

mentioned models are computed irrespective of the choice of

interpolation points, but using all the ν degrees of freedom

available.

The resulting ν order models matching ν moments may sat-

isfy additional properties using all the ν degrees of freedom.

In control there exist algorithm to place a number of µ < ν
poles with a ν order controller, see [14]. To the best of our

knowledge there are no results providing ν order models

that match ν moments of the given system and satisfy more

additional physical properties at once. In detail, one may seek

a ν order approximation which is stable and, e.g., decreases

the H2 norm of the error simultaneously. Furthermore,

preservation of ν poles (modes) of the original system may

not be enough to capture the input-output behaviour of the

given system. The zeros of the approximations may differ

significantly from those of the original system. In particular,

assuming the original system to be of minimum phase, right

half-plane zeros, which are not present in the original system,

may appear in the approximation altering the desired input-

output behaviour. First steps have been made in simulation

in [15] where a number of ν poles and zeros have been

preserved simultaneously. Furthermore, one may impose on

the approximation ℓ fixed poles and k fixed zeros (possibly of

the given system) and use the rest of the degrees of freedom

to solve an optimal H2 error norm problem.
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We consider a single input-single output, linear, time-

invariant (LTI) stable, minimal n-th order system and the

family of ν order models that match ν moments of the given

system. First we provide the explicit linear constraints such

that ℓ ≤ ν poles and k ≤ ν are imposed. We then formulate

an optimisation problem to find the (unique) model of order

ν that matches ν moments of the given system, has ℓ poles

and k zeros fixed, with ℓ+ k < ν, and achieves the optimal

H2 error norm, simultaneously. The problem is solved and

the solution is found in the subfamily of models employing

a partial minimization approach and then using a gradient

method-based optimization algorithm.

In detail, for a fixed set of interpolation points and a set

of ℓ + k < ν linear constraints (through fixing poles and

zeros) the proposed procedure is seeking the approximation

yielding the minimal H2-norm of the approximation error.

We analyze the (necessary) first-order optimality conditions

and compute explicitly the gradient of the objective function

in terms of the controllability and the observability Gramians

of a minimal realization of the error system. Based on the

gradient expression for the objective function we propose a

gradient method to find the free parameters that yield the

minimum approximation error, and the reduce model stable,

with ℓ fixed poles and k fixed zeros.

Content: The paper is organized as follows. In Section II

we briefly recall the Sylvester equation moment matching

and the computation of the family of ν order models that

match ν moments of the given system. In Section III, we

give the set of linear constraints such that the ν order models

matching ν moments have ℓ poles fixed (Section III-A) and

k zeros fixed (Section III-B). In Section IV, we formulate

the optimal H2-norm model reduction problem, recast it as

an optimization problem with a Gramian-based written cost

function, and derive the corresponding first-order optimality

conditions. We further compute an (optimal) solution to the

optimization problem using a gradient method. In Section V

we illustrate the theory on a benchmark test case. The paper

ends with Conclusions.

II. PRELIMINARIES

In this section we briefly review the computation of the

family of ν order models matching ν moments of a stable

LTI system. For more details see e.g., [6], [7].

A. Linear systems

Consider a single input-single output (SISO) linear time-

invariant (LTI) minimal system:

Σ : ẋ = Ax+Bu, y = Cx, (1)

with the state x ∈ Rn, the input u ∈ R and the output y ∈ R.

The transfer function of (1) is:

K(s) = C(sI −A)−1B, K : C → C. (2)

Throughout the rest of the paper we assume that the system

(1) is stable, that is σ(A) ⊂ C−. For the sake of clarity we

consider the SISO case. However the results can be extended

to the multiple input-multiple output case.

B. Sylvester equation-based time-domain moment matching

Assume that (1) is a minimal realization of the transfer

function K(s). The moments of (2) are defined as follows.

Definition 1. [1], [6] The k-moment of system (1), with

the transfer function K(s) described by (2), at s1 ∈ R is

ηk(s1) = [(−1)k/k!] ·
[
dkK(s)/dsk

]
s=s1

∈ R.

Pick suitable points s1, . . . , sν ∈ R and let the matrices S ∈
Rν×ν , with the spectrum σ(S) = {s1, . . . , sν}, and L =
[1 1 . . . 1] ∈ R1×ν , such that the pair (L, S) is observable.

Let Π ∈ Rn×ν be the solution of the Sylvester equation:

AΠ+BL = ΠS. (3)

Furthermore, since the system is minimal, assuming that

σ(A) ∩ σ(S) = ∅, then Π is the unique solution of the

equation (3) and rank Π = ν, see e.g. [16]. Then, the

moments of (1) are characterised as follows:

Proposition 1. [6] The moments of system (1) at the in-

terpolation points {s1, s2, ..., sℓ} = σ(S) are in one-to-one

relation1 with the elements of the matrix CΠ.

The following proposition gives necessary and sufficient con-

ditions for a low-order system to achieve moment matching:

Proposition 2. [6] Consider the LTI system:

ξ̇ = Fξ +Gu, ψ = Hξ, (4)

with F ∈ Rν×ν , G ∈ Rν and H ∈ Rp×ν , and the

corresponding transfer function:

KG(s) = H(sI − F )−1G. (5)

Fix S ∈ Rν×ν and L ∈ R1×ν , such that the pair (L, S)
is observable and σ(S) ∩ σ(A) = ∅. Furthermore, assume

that σ(F ) ∩ σ(S) = ∅. The reduced system (4) matches the

moments of (1) at σ(S) if and only if:

HP = CΠ, (6)

where the invertible matrix P ∈ R
ν×ν is the unique solution

of the Sylvester equation FP +GL = PS.

We are now ready to present a family of ν reduced order

models parameterized in G that match ν moments of the

given system (1). The reduced system:

ΣG : ξ̇ = (S −GL)ξ +Gu, ψ = CΠξ, (7)

with the transfer function

KG(s) = CΠ(sI − S +GL)−1G, (8)

describes a family of ν order models that achieve moment

matching at σ(S) fixed satisfying the following properties

and constraints:

1) ΣG is parameterized in G ∈ Rν ,

2) σ(S −GL) ∩ σ(S) = ∅.

1By one-to-one relation between a set of moments and the elements of a
matrix, we mean that the moments are uniquely determined by the elements
of the matrix.
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C. Time-domain moment matching for MIMO systems

The results can be directly extended to the MIMO case, see,

e.g., [7] for more details. Consider a MIMO system (1), with

input u(t) ∈ Rm, output y(t) ∈ Rp and the transfer function

K(s) ∈ Cp×m. Let S ∈ Cν×ν and L = [l1 l2 ... lν ] ∈
Cm×ν , li ∈ Cm, i = 1, ..., ν, be such that the pair (L, S)
is observable. Let Π ∈ Cn×ν be the unique solution of the

Sylvester equation (3). Then the moments η(si) = K(si)li,
η(si) ∈ Cp, i = 1, ..., ν of at {s1, ..., sν} = σ(S) are in

one-to-one relation with CΠ. The model reduction problem

for MIMO systems boils down to finding a ν-th order model

described by the equations (4), with the transfer function

KG as in (5), G ∈ Rν×m which satisfies the right tangetial

interpolation conditions [17]

K(si)li = K̂(si)li, i = 1, ..., ν. (9)

It immediately follows that the solution to this problem is

provided by a direct application of Proposition 2, i.e., a class

of reduced order MIMO models that achieve moment match-

ing in the sense of satisfying the tangential interpolation

conditions (9) is given by ΣG = (S − GL,G,CΠ) as in

(7). Hence, without loss of generality, throughout the rest of

the paper we discuss the SISO case, i.e., m = p = 1, the

results being easily extended to tangential interpolation for

MIMO systems.

III. PARTIAL POLE AND ZERO PLACEMENT AS

CONSTRAINTS

In this section we derive linear relations parametrized in G
yielding the subfamily of ν order models that preserve ℓ
poles and k zeros of the given system.

A. Pole placement constraints

In this section, we place ℓ poles of the reduced order, for

example in some of the poles of the original system, by

properly selecting G. Consider an LTI system (1) and the

class of reduced ν order models ΣG from (7) that match

ν moments of (1) at σ(S). Let λi ∈ C, i = 1, ..., ℓ,
ℓ ≤ ν be such that λi /∈ σ(S). Then λi are poles of ΣG if

det(λiI−S+GL) = 0, i = 1 : ℓ. To this end, let Q ∈ Rℓ×ℓ

be a matrix such that σ(Q) = {λ1, . . . , λℓ}. Furthermore,

consider C̃ ∈ R1×n such that C̃Π = 0, where Π solves (3),

and let Υ ∈ Cℓ×n be the unique solution of the Sylvester

equation

QΥ = ΥA+RC̃, (10)

with R ∈ Rℓ any matrix such that the pair (Q,R) is con-

trollable. The next result gives G such that {λ1, . . . , λℓ} =
σ(Q) ⊆ σ(S −GL).

Proposition 3. Let ΣG from (7) be a ν order model that

matches the moments of (1) at σ(S), with the transfer

function KG(s) as in (8). Furthermore, let Q ∈ Rℓ×ℓ be

a matrix such that σ(Q) = {λ1, . . . , λℓ} and R ∈ Rℓ any

matrix such that the pair (Q,R) is controllable. If G is a

solution of the matrix equation

ΥΠG = ΥB, (11)

with Υ ∈ C
ℓ×n, the unique solution of (10), then KG(s) has

ℓ poles at {λ1, . . . , λℓ} = σ(Q).

Remark 1. Note that if ℓ = ν, then all ν poles of KG(s)
are placed at {λ1, . . . , λν} = σ(Q), by

G = (ΥΠ)−1ΥB. (12)

Choosing Q = diag{λ1, . . . , λν} and S = diag{s1, . . . , sν},

then Υ and Π are the left and the right Krylov projections,

respectively, and the result in [18, Lemma 2.1] is a particular

case of Proposition 3.

Explicit algebraic constraints for poles:: Let S =
diag{s1, . . . , sν} and L = [1 . . . 1] ∈ R1×ν . Then

{λ1, . . . , λℓ} are poles of KG(s) if and only if G satisfies

the equation

1 + LD−1
k G = 0, ∀k = 1 : ℓ. (13)

Stable approximations: Consider the families of approxima-

tions ΣG described by the equations (7) and the problem of

finding G such that the reduced order system is asymptoti-

cally stable. The goal is achieved by selecting G such that

σ(S −GL) ∩ σ(A) = ∅ and σ(S −GL) = {λ1, . . . , λν} ⊂
C−. Note that, by the observability of the pair (L, S), there

exists a unique matrix G such that this condition holds, see

[6] for more details.

B. Zero placement constraints

Consider a system (1) and the family of ν order models

ΣG that approximate (1) by matching ν moments. Let

z1, ..., zk ∈ C, k ≤ ν. By, e.g., [6], [19], [15], there exists

a subfamily of models ΣG, with the property that the set of

zeros of each model contains z1, ..., zk. Equivalently, there

exists G such that

det

[
ziI − S G
CΠ 0

]
= 0, i = 1 : k. (14)

Now, let G = [g1 g2 . . . gν ]
T ∈ Rν . Directly following

arguments from the proof of [6, Theorem 3], condition (14)

is equivalent to a system of k equations with ν unknowns

g1, . . . , gν , given by

(−1)ν [−g1ζ1(z1) + g2ζ2(z1) + · · ·+ (−1)νgνζν(z1)] = 0,

(−1)ν [−g1ζ1(z2) + g2ζ2(z2) + · · ·+ (−1)νgνζν(z2)] = 0,

...

(15)

(−1)ν [−g1ζ1(zk) + g2ζ2(zk) + · · ·+ (−1)νgνζν(zk)] = 0,

with ζj(s) polynomials of degree ν − 1, j = 1 : ν.

Explicit algebraic constraints for zeros:: Let S =
diag{s1, . . . , sν}, L = [1 . . . 1] ∈ R1×ν and explicitly

write CΠ = [η1 η2 η3 . . . ην ]. Then {z1, . . . , zk} are poles
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of KG(s) if and only if (14) is satisfied, i.e.,
∣∣∣∣∣∣∣∣∣∣∣

γj1 0 0 . . . 0 g1
0 γj2 0 . . . 0 g2
...

...
. . .

...
...

...

0 0 0 . . . γjν gν
η1 η2 η3 . . . ην 0

∣∣∣∣∣∣∣∣∣∣∣

= 0,

γji = zj − si, i = 1 : ν, j = 1 : k.

(16)

First, note that γji 6= 0 for all i, j. Successively decomposing

the determinant in (16) by the last column and computing

the resulting minors performing row decomposition yields

ν∑

i=1

ηigi
∏

l=1:ν,l 6=i

γjl = 0, j = 1 : k. (17)

Then, dividing (17) by
∏

l=1:ν γjl 6= 0 leads to the following

linear equations in G:

ν∑

i=1

ηi
γji

gi = 0, j = 1 : k. (18)

IV. OPTIMAL H2 MODEL REDUCTION WITH POLES AND

ZEROS CONSTRAINTS–AN OPTIMIZATION APPROACH

Problem 1. Consider a SISO LTI system (1) of order n ∈ N,

with the transfer function K(s) as in (2). Let ν < n, ν ∈ N,

S ∈ Rν×ν with the spectrum σ(S) = {s1, . . . , sν} and L ∈
R1×ν be such that the pair (L, S) is observable. Let Π be the

(unique) solution of the Sylvester equation (3). Furthermore,

consider the family of parametrized ν order models ΣG from

(7), with the transfer function KG(s) as in (8) that match ν
moments CΠ of (1) at σ(S), for all G ∈ R

ν , such that

σ(S) ∩ σ(S −GL) = ∅. (19)

Let ℓ, k ∈ N such that ℓ+k < ν. Find G = [g1 g2 . . . gν ]
T ∈

R
ν such that the following constrains are satisfied simulta-

neously:

i) ΣG has ℓ prescribed poles, i.e., {λ1, . . . , λℓ} ⊆ σ(S−
GL) or, equivalently, equation (11) holds;

ii) ΣG has k prescribed zeros, i.e., {z1, . . . , zk} such

that det

[
ziI − S G
CΠ 0

]
= 0, i = 1 : k or, equivalently,

equation (15) holds;

iii) ‖K −KG‖2 is minimal;

iv) condition (19) holds.

We now discuss each of the conditions i)–iv) separately.

Conditions i) and ii) are solved employing relations (11) and

(15), respectively. Regarding condition iii), Problem 1 can be

recast in terms of the computation of the H2-norm using the

Gramians of the realization of the error system

K = K −KG,

with KG from (8) parameterized in G. Let (A,B,C) be a

state-space realization of the error transfer function K

K(s) = C(sI −A)−1
B,

where

A =

[
A 0
0 S −GL

]
, B =

[
B
G

]
, C = C

[
I −Π

]
. (20)

Denote the controllability and the observability Gramians of

(20) by W and M, respectively. Then, they are solutions of

the Lyapunov equations

AW +WA
T +BB

T = 0, (21a)

A
T
M+MA+C

T
C = 0, (21b)

Let us also partition the controllability and observability

Gramians W,M as in matrix A

W =

[
W11 W12

WT
12 W22

]
, M =

[
M11 M12

MT
12 M22

]
. (22)

By [4], condition iii) can be written explicitly as

min
G,M

Trace(BT
MB).

Constraint iv) can be easily satisfied by properly choosing

the matrix pair (L, S) with σ(S) ⊂ C+ ∪C0 and by finding

G such that the resulting approximation ΣG is stable. For

instance, we can pick S = diag(s1, s2, . . . , sν) and L =
[1 1 . . . 1], with si ∈ C+∪C0 such that condition iv) holds.

Equivalent formulation of Problem 1. It can be written as

the nonconvex optimization problem:

min
G,M

Trace(BT
MB) (23)

s.t. : σ(S −GL)⊂C
−, AT

M+MA+C
T
C=0,

G satisfies the linear systems (11) and (15). (24)

For simplicity, to emphasize the dependency on G, let

A(G) :=

[
A 0
0 S −GL

]
, B(G) :=

[
B
G

] [
B
G

]T
.

Equivalently, the problem (23) can be rewritten as

min
G

Trace(M(G)B(G)) (25)

s.t. : σ(S −GL)⊂C
−, (26)

A(G)TM(G) +M(G)A(G) +C
T
C=0,

G satisfies the linear systems (11) and (15). (27)

A. Gradient method for solving Problem 1

Let R = {G : σ(S − GL) ⊂ C−, (11) and (15) hold}.
Consider the following partial minimization for (23):

(23) =min
G∈R

(
min

M:ATM+MA+CTC=0
Trace(BT

MB))

)
.

If S − GL and A are stable, then it follows from basic

results for Lyapunov equations that there exists unique M =
M(G) � 0 solution of:

A
T
M+MA+C

T
C = 0.

Hence, for any G stabilizable, the partial minimization in M

leads to an optimal value:
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f(G) = Trace

([
B
G

]T
M(G)

[
B
G

])
,

where M(G) is unique solution of Lyapunov equation:

[
A 0
0 S −GL

]T
M+M

[
A 0
0 S −GL

]
+C

T
C = 0, (28)

with CV = CΠ = CV T . Explicitly, in terms of G, we have:

min
G
f(G)

(
= Trace

([
B
G

]T
M(G)

[
B
G

]))
(29)

s.t. : σ(S −GL) ⊂ C
−, (11), (15) and (30) hold,

where M(G) is the solution of the Lyapunov equation:

[
A 0
0 S −GL

]T
M(G)+M(G)

[
A 0
0 S −GL

]
+C

T
C=0. (30)

For solving the equivalent non-convex optimization problem

(29) we can apply any first- or second-order optimization

method. For this type of optimization scheme we need to

compute the gradient and even the Hessian of the objective

function f . Below we provide the expression of the gradient

of the objective function of (29):

f(G) = Trace (M(G)B(G)) .

Theorem 1. The objective function f of (29) is differentiable

on the set of stable matrices D(SL) and the gradient of f at

any G ∈ D(SL) is given by

∇f(G) = 2(−MT
12(G)W12(G)L

T −M22(G)W22(G)L
T

+MT
12(G)B +M22(G)G), (31)

where M(G) solves the Lyapunov equation (30) and W(G)
solves the Lyapunov equation

[
A 0
0 S−GL

]
W(G)+W(G)

[
A 0
0 S−GL

]T
+B(G)=0. (32)

The proof of this theorem follows arguments similar to [12],

[13]. The result of Theorem 1 yields the necessary first-

order optimality condition for the model reduction Problem

1 expressed in terms of the optimization problem (29).

Lemma 1. If G ∈ R solves the optimization problem (29)

corresponding to the model reduction Problem 1, then

MT
12(G)W12(G)L

T +M22(G)W22(G)L
T

=MT
12(G)B +M22(G)G,

where M(G) solves the Lyapunov equation (30) and W(G)
solves the Lyapunov equation (32).

We can replace the set R with any sublevel set:

NG0

(SL) = {G ∈ R : f(G) ≤ f(G0)},

where G0 ∈ R is any initial stable reduced order system

matrix. Using similar arguments as in [20] we can show that

NG0

(SL) is a compact set. Then, the theorem of Weierstrass

implies that for any given matrix G0 ∈ R, the model

reduction Problem 1 given by optimization formulation (23)

or equivalently (29) has a global minimum in the sublevel

set NG0

(SL). We can also show that the gradient ∇f(G) is

Lipschitz continuous on the compact sublevel set NG0

(SL). Let

us briefly sketch the proof of this statement. First we observe

that M(G) and W(G) are continuous functions. Moreover,

there exists finite ℓM > 0 such that:

‖M(G)−M(Ḡ)‖ ≤ ℓM‖G− Ḡ‖ ∀G, Ḡ ∈ NG0

(SL).

Then, using the expression of ∇f(G), compactness of

NG0

(SL), continuity of M(G) and W(G), and previous re-

lation we conclude that there exists finite ℓf > 0 such that:

‖∇f(G)−∇f(Ḡ)‖ ≤ ℓf‖G− Ḡ‖ ∀G, Ḡ ∈ NG0

(SL).

This property of the gradient is useful when analyzing

the convergence behavior of gradient-based algorithms. We

propose to apply the gradient method for solving the smooth

optimization problem (29), having the following iteration:

Gk+1 = Π
R̂
(Gk − αk∇f(Gk)), αk > 0, (33)

where the linear subspace R̂ = {G : (11) and (15) hold},

Π
R̂
(·) denotes the ortogonal projection onto the linear sub-

space R̂ and the stepsize αk can be chosen using a line

search procedure or constant in the interval (0, 2/ℓf). It is

easy to see that if Gk is stabilizing, it follows that also the

new iterate Gk+1 has the same property provided that αk is

sufficiently small. Moreover, since ∇f(G) is Lipschitz, from

standard optimization theory it follows that we have sublinear

convergence rate of order O(1/k), see [21] for more details.

V. ILLUSTRATIVE NUMERICAL EXAMPLE

Consider the cart system controlled by a double-pendulum

controller, with 6 states, with the matrices A ∈ R6×6, B ∈
R6×1 and C ∈ R1×6, see [11] for the explicit matrices.

The poles and the zeros of the system are {−1.6 +
6.63j,−1.6− 6.63j,−0.74+3.48j,−0.74− 3.48j,−0.16+
0.55j,−0.16 − 0.55j} and {−1.28 + 5.63j,−1.28 −
5.63j,−0.22 + 2.39j,−0.22− 2.39j}, respectively, i.e., the

system is stable and of minimum phase. Let

S = diag(0, 1/4, 1/2), and L =
[
1 1 1

]
.

Note that the pair (L, S) is observable. A family of third

order models is described by ΣG as in (7) with:

F =



−g1 −g1 −g1
−g2 0.5− g2 −g2
−g3 −g3 0.25− g3


 , G =



g1
g2
g3


 (34)

and H = CΠ = [1 0.69 0.45].
Using the gradient method proposed in Section IV to solve

Problem 1, with constraints given by fixing a pole at −1.6
and a zero at −1.28, yields a third order model ΣG with:

F =



−3.95 −3.95 −3.95
13.64 13.89 13.64
−12.39 −12.39 −11.89


 , G =



−1.6
−0.18
−0.18


 ,

H = [1 0.69 0.45].

(35)
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The H2 norm of the approximation error achieved by

(35) is 8.7 · 10−3. The poles of (35) are {−1.6,−0.18 +
0.53j,−0.18 − 0.53j} and the zeros are {−1.28,−45.92},

i.e., a stable and minimum phase third order approximation.

We compare approximation (35) with a third order model

ΣG with G given by (12), such that three poles are fixed at

{−1.6,−0.16− 0.55j,−0.16+ 0.55j}. Note that two of the

poles are chosen from the poles of the given system. The

resulting approximation is a model ΣG as in (34) with:

F =



−39.84 −39.84 −39.84
116.11 116.36 116.11
−92.65 −92.65 −92.15


 , G =




39.84
−116.11
92.65


 ,

H = [1 0.69 0.45].

(36)

The H2 norm of the approximation error achieved by (36)

is 1.02 · 10−2. The poles of the system (36) are indeed

{−1.6,−0.16 − 0.55j,−0.16 + 0.55j}, as prescribed. The

zeros are {−0.17 + 3.14j,−0.17− 3.14j}. Hence (36) is a

stable and minimum phase third order approximation.

We compare approximation (35) with a third order model

ΣG with G the solution of a square third order linear system

yielded by (13) and (18), such that two poles and one zero

are fixed, at {−1.6,−0.16} and −1.28, respectively. The

resulting approximation is a model ΣG as in (34) with:

F =



−0.03 −0.03 −0.03
3.21 3.4563 3.2063
−5.7 −5.7 −5.2


 , G =




0.03
−3.21
5.7


 ,

H = [1 0.69 0.45].

(37)

The H2 norm of the approximation error achieved by

(37) is 2.8 · 10−1. The poles of the system (37) are

{−1.6,−0.02,−0.16} and the zeros are {−1.28,−0.01}.

Hence (37) is a stable and minimum phase third order

approximation.

Table V shows that the (35) yielded by solving Problem 1

yields the best approximation error. Models (36) and (37)

preserve desired poles and zeros, but with higher error.

Furthermore, without optimization one must carefully select

the desired constraints to achieve good results.

Third order model
H2-norm of

the error

Model (35), with a pole at −1.6 and a

zero at −1.28, solution of Problem 1
8.7 · 10−3

Model (36), with poles at

{−1.6,−0.16− 0.55j,−0.16 + 0.55j}
1.02 · 10−2

Model (37) with two poles at

{−1.6,−0.16} and a zero at −1.28
2.8 · 10−1

TABLE I

H2-NORMS OF THE APPROXIMATION ERRORS FOR DIFFERENT

SCENARIOS.

VI. CONCLUSIONS

In this paper we have formulated an optimization problem

with respect to H2-norm minimal error approximation in a

family of reduced order models that match a set of fixed ν
moments. For this optimization problem we have derived

first-order optimality conditions and a solution has been

developed in terms of the gradient method. Using the cart

controlled by a double pendulum benchmark example, we

have shown the efficiency of our results.
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