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Abstract—We study theoretically the nonlinear optical response of a monolayer of regularly arranged three-
level identical quantum emitters with a doublet in the excited state to the action of a monochromatic electro-
magnetic field quasi-resonant to optical transitions in the emitter. The total retarded dipole–dipole interac-
tion of the emitters is accounted for in the mean-field approximation. This interaction plays the role of a pos-
itive feedback, which (in combination with the immanent nonlinearity of emitters themselves) leads to mul-
tistability of the monolayer response. The stability of different response branches is analyzed using the
Lyapunov exponents method. It is found that the instability type depends on the doublet splitting and changes
from self-oscillations to chaos upon increasing the splitting. Another important property of the monolayer is
its high (almost 100%) reflectance in a certain frequency range; i.e., within this range, the monolayer operates
as a perfect nanometer mirror; moreover, reflection can be switched to transmission changing slightly the
incident field amplitude (bistability). The possibility of application of the above mentioned monolayer opti-
cal properties in nanophotonics is discussed.

DOI: 10.1134/S1063776120060011

1. INTRODUCTION

The methods of modern micro- and nanotechnol-
ogies make it possible to obtain objects with unusual
electromagnetic properties (so-called metamaterials
[1–3]), among which 2D supercrystals (SCs) of semi-
conducting quantum dots (QDs) [4–6] and organic
polymers [7] are of special interest. The SC optical
properties depend on the size of QDs, their shape,
chemical composition, and lattice geometry and can
be purposefully controlled (see [8] and the literature
cited therein). So far, the energy structure [9–11] and
linear optical properties [12, 13] of 2D SCs of semi-
conducting QDs have been investigated. In these pub-
lications, large-scale capabilities of controlling the lin-
ear response of a 2D SC have been demonstrated, that
provides a basis for application of such objects in
nanophotonics.

However, nonlinear optical properties of 2D SCs
have been investigated to a far lesser extent. It was
shown in recent publications [14–17] that the nonlin-
ear response of a SC of quantum emitters (QEs) with
a ladder scheme [14–16] and Λ scheme of optical tran-
sitions [17] exhibits multistability, self-oscillations,
and dynamic chaos. In addition, in a certain frequency
range, the SC almost totally reflects the incident field,

i.e., operates as an ideal nanometer-thick mirror,
which, in addition, exhibits bistability. In other words,
the SC reflectance can be switched from a value close
to unity to almost zero and back upon minor change in
the amplitude of the external or controlling field. As a
result, ref lectance of the monolayer forms an optical
hysteresis loop when scanning back and forth of the
external field amplitude.

In this study, we analyze theoretically the nonlinear
optical response of a monolayer consisting of regularly
spaced QEs with a doublet in the excited state
(V-QEs). The role of such an emitter can be played,
for example, by semiconductor QDs with a degenerate
valence band in a magnetic field [18]. Because of high
density of V-QEs and their large oscillator strength of
transitions, the dipole–dipole interaction of V-QEs
plays a crucial role in the optical response of the
monolayer. Since the quantum-mechanical mean
dipole moment of a V-QE depends on the current
quantum state of the latter, the QE–QE interaction is
also a function of this state. This ensures the positive
feedback which, in combination with the immanent
nonlinearity of the V-QE itself, leads to multistability
of the monolayer response, self-oscillations, dynamic
chaos, and a high reflectance in a certain frequency
range, similar to the case of a monolayer of QEs with
244



NONLINEAR OPTICAL DYNAMICS AND HIGH REFLECTANCE 245

Fig. 1. Energy level diagram for an isolated V-QE, includ-
ing the ground state |1 and a doublet |2 and |3 in the
excited state: ε1 = ω1 = 0, ε2 = ω2, and ε3 = ω3 are the
energies of these states. Double-headed solid arrows mark
the allowed optical transitions characterized by the transi-
tion dipole moments d21 and d31. Wavy arrows indicate
radiative decay of the states |2 and |3 with rates γ21 and γ31
respectively. Dashed arrow denotes nonradiative relax-
ation of the upper state of the doublet with rate γ32.
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γ32

γ31 γ21d31 d21
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the ladder [14–16] and Λ schemes of optical transi-
tions [17]. It should be noted in this connection that in
spite of the global similarity of responses of the above-
mentioned systems of three-level QEs, the physics of
the optical response formation of a V-QE monolayer
differs significantly from the other two analogs. In the
case of a V-QE, optical transitions in it are initially
coupled by the dipole–dipole interaction of the emit-
ters, thus forming a collective system with eigenfre-
quencies and eigenstates deviating significantly from
their initial counterparts. This fact is the main reason
for differences between the optical response of a V-QE
monolayer and those with other schemes of optical
transitions.

The above properties of a V-QE monolayer makes
this system promising for various applications in
nanophotonics. Preliminary results have been
reported in brief communication [19]. It should also
be noted that some aspects of unstable behavior of the
optical response of a thin layer with a high V-QE con-
centration have been considered in [20, 21].

Out approach to the description of the optical
response of the monolayer of regularly spaced V-QEs
is based on the system of equations for the 3 × 3 den-
sity matrix of an individual V-QE and the Maxwell
equations for the field. The retarded dipole–dipole
interactions of V-QEs is accounted for in the mean-
field approximation, in which the parts of QE–QE
interaction in the far and near zones are responsible
for the collective shift of levels and collective radiative
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
relaxation of states, respectively, both depending on
the population difference of the V-QE levels.

The article is organized as follows. In Section 2, we
present our model of the monolayer and the mathe-
matical formalism for describing its optical response.
In Section 3, we consider the steady-state solutions of
master equations and analyze their stability (Section 3.1).
This section also contains our results of analysis of the
nature of instabilities of the monolayer optical
response (Section 3.2) and a qualitative discussion of
the reasons for emerging instabilities (Section 3.3). In
Section 4, we consider the peculiarities of reflection of
the incident field from the monolayer. In Section 5,
we summarize the results and analyze the possibilities
of observing the features of the V-QE monolayer opti-
cal response found for parameters of real systems.

2. MODEL AND FORMALISM
We consider a monolayer of regularly spaced iden-

tical V-QEs. The scheme of energy levels and transi-
tions in an isolated V-QE is shown in Fig. 1, where |1
is the ground state with energy ε1 = 0, |2 and |3 are the
states of the doublet with energies ε2 = ω2 and ε3 =

ω3, respectively. Optically allowed transitions are
|1 ↔ |2 and |1 ↔ |3, which are characterized by the
transition dipole moments d21 and d31 (we assume for
simplicity that both are real-valued and have the same
direction). The states |2 and |3 of the doublet decay
spontaneously to the ground state |1 with rates γ21 and
γ31, respectively. Nonradiative relaxation in the dou-
blet is taken into account by constant γ32.

We assume that a plane wave (t) = E0cos(ω0t)
with frequency ω0, which is quasi-resonant to optical
transitions in the V-QE, is incident on the monolayer.
We restrict our analysis to the normal incidence geom-
etry and the condition of collinearity of the external
field and the V-QE transition dipole moments (which
is not of principal importance). In this case, all vecto-
rial quantities can be treated as scalars.

We describe the monolayer optical response in the
mean-field approximation, i.e., we assume that all
dynamic variables of the V-QE and of the field are inde-
pendent of the position in the monolayer. Strictly
speaking, this approximation is justified only for a
monolayer of infinite size. However, analysis of a finite-
size system encounters serious calculation problems
associated with integration of a system of nonlinear dif-
ferential equations of a huge rank. As will be shown
below, the solution of the nonlinear problem even in the
simplest case (mean field) requires a certain carefulness
in view of a possible unstable behavior of the response.
Therefore, an analysis of the already nontrivial “zeroth”
approximation (mean field) makes a certain sense.

The optical dynamics of V-QEs in a monolayer is
governed by the master equation for the density oper-
ator ρ(t) [22, 23]; in the frame of reference rotating

�

�
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with frequency ω0 of the external field, this equation
has the form

(1)

(2)

(3)

(4)

where HRW A is the V-QE Hamiltonian in the rotating
frame of reference, [A, B] is the commutator, and  is
the Lindblad relaxation operator [22, 23] defined by
Eq. (3). In Eq. (2), Δ21 = ω2 – ω0 and Δ31 = ω3 – ω0 are
the detunings of the external field frequency from the
frequencies of the 2 ↔ 1 and 3 ↔ 1 transitions. Fur-
ther, Ω31(t) = d31E(t)/  = Ω(t) and Ω21(t) = d21E(t)/  =
μΩ(t) (μ = d21/d31) are the Rabi amplitudes of the field
acting on the V-QE, which correspond to the 3 ↔ 1
and 2 ↔ 1 transitions. The Rabi amplitude Ω(t) is the
sum of the Rabi amplitudes Ω0 = d31E0/  of the exter-
nal field and of the field produced by other V-QEs in
place of the given V-QE. In the mean-field approxi-
mation, Ω(t) is given by the following equation [16]
(here and in what follows, we suppress the time depen-
dence of all variables):

(5)
The expressions for constants γR and ΔL depend on

the relationship between the lateral lattice size Na
(N is the lateral number of sites and a is the lattice con-
stant) and radiation wavelength λ = 2πc/ω0, c being
the speed of light. For a simple square lattice with lat-
eral size Na ≪ λ (pointlike system), the quantities γR

and ΔL are given by [16]

(6)

(7)

where  = λ/2π. In the opposite case of Na ≫ λ
(extended system), we have [16]

(8)

(9)

As follows from Eqs. (6) and (8), the constant γR for
a pointlike system depends on the total number N2 of

ρ = − ρ + ρ�
�
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V-QEs in the lattice, while the value of γR for an
extended system is proportional to the number of
V-QEs within an area of size . Here, it is worth to
note that γR is nothing else that the Dicke superradi-
ance constant [16, 24–26] responsible for collective
relaxation of V-QEs in the monolayer. The parameter
ΔL is almost independent of the lattice size and is
nothing else that the static dipole–dipole interaction
of V-QEs. It should be emphasized that for  ≫ a
(in the case of interest for our analysis), the relation
ΔL ≫ γR, which is crucial for the optical dynamics of
the monolayer (see below), holds irrespective of the
lattice size.

Within the basis of states |1, | 2, and |3, Eq. (1)
represents the following system of equations for the
matrix elements ραβ (α, β = 1, 2, 3):

(10)

(11)

(12)

(13)

(14)

(15)

It should be noted that Eqs. (10)–(15) conserve the
total population (ρ11 + ρ22 + ρ33 = 1); i.e., we disregard
all other population relaxation channels except the
radiative channel. Dephasing of states, differing from
radiative one, is also neglected.

3. RESULTS
We performed numerical calculations of the mono-

layer optical response, choosing the constants, which
determine γR and ΔL, similar to those of 2D SCs of
semiconductor QDs [16]:  ~ 100–200 nm, a ~ 10–
20 nm, and γ31 ≈ 3 × 109 s–1. Then the typical values of
parameters γR = 100γ31 and ΔL = 1000γ31. The relax-
ation constant γ32 in the doublet was set to be fixed
(γ32 = 0.01γ31). In fact, since γ32 ≪ γ31, this constant
almost does not affect the results. The variable quan-
tities were the doublet splitting Δ32 and the detuning
from resonance Δ31. All calculations were carried out
assuming that γ21 = γ31 (μ = 1). In what follows, all fre-

�
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�
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Fig. 2. Steady-state optical response of the monolayer
under excitation of the latter into the resonance with the
transition 1 ↔ 3 (Δ31 = 0) in an isolated V-QE. Left parts
of the panels show the steady-state solution |Ω|(|Ω0|) to the
system of equations (5) and (10)–(15), which was obtained
using the parametric method (see Appendix A) for values
of the doublet splitting Δ32 = (a) 20, (b) 40, and (c) 100.
Solid (dashed) fragments of the curves correspond to sta-
ble (unstable) parts of steady-state solutions. Right parts of
the panels show the maximal Lyapunov exponent
max{Re[Λ]}. Circles in the lower panel indicate the points
of the steady-state solution, for which the optical dynamics
of the monolayer response is calculated in Section 3.2. The
remaining parameters of the monolayer are given in the
text. All quantities are given in units of γ31.
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quency dimension quantities are given in units of γ31,

while time is in units of .

3.1. Steady-State Solutions

As the first step of our analysis of the V-QE mono-
layer optical response, we consider steady-state solu-
tions to the master equations (10)–(15), formally set-
ting in them to zero the time derivatives. Here, it is
appropriate to clarify that stationarity of the solution
does not imply its stability. As will be shown below, a
steady-state solution can be either stable or unstable.

In order to find steady-state solutions, we used the
parametric method [16] described in Appendix A. The
results of calculations are shown in Figs. 2 and 3. The
result presented in Fig. 2 was obtained for excitation of
the monolayer into the resonance with the 1 ↔ 3 tran-
sition (Δ31 = 0) in an isolated V-QE, while the one in
Fig. 3 corresponds to the excitation into the center of
the doublet (Δ31 = Δ32/2). It should be noted that for a
V-QE in the mean field (“dressed” V-QE), the true res-
onance conditions are Δ31 = Δ32/2 and Δ31 = 2ΔL (see
Appendix B). Therefore, only the excitation to the center
of the doublet, being nonresonant for an isolated V-QE,
turns out to be resonant for the dressed V-QE.

The doublet splitting Δ32 was chosen as the variable
parameter. Each panel in Figs. 2 and 3 consists of two
parts. The 1eft one shows the dependence of the Rabi
magnitude |Ω| of the field in the monolayer on the Rabi
magnitude |Ω0| of the external field. The right-hand part
shows the dependence of the maximal Lyapunov expo-
nent of the solution on |Ω| (see below).

As follows from Fig. 2, the dependence of |Ω| on
|Ω0|, in a certain interval of changing |Ω0|, is multival-
ued for all values of the doublet splitting Δ32, which
means multistability of the monolayer response.
Herewith, the character of the steady-state solution
(stable/unstable) differs in its different parts: the frag-
ments depicted by solid curves are stable, while shown
by dashed curves are unstable. Stability of a given solu-
tion was analyzed using Lyapunov exponents [27, 28];
namely, we considered eigenvalues Λk (k = 1, 2, …, 8)
of the Jacobi matrix of the right-hand sides of
Eqs. (10)–(15) as a function of |Ω|. The Lyapunov expo-
nent Λk with the maximal real part max{Re[Λ]} deter-
mines whether the solution is stable: if max{Re[Λ]} < 0,
the solution is stable, and vice versa. In other words, in
the former case, small deviations from the steady-state
solution will decay, returning the system back to the
steady state, and will grow up in the latter case, taking
the system away from this state. The maximal Lyapunov
exponent max{Re[Λ]} is shown on the right-hand sides
of the panels in Figs. 2 and 3. Interestingly, not only the
branches with a negative slope are unstable (which is
usually the case), but also those with a positive slope.

It should be noted that the behavior of the steady-
state response of the monolayer under excitation into

−γ 1
31
YSICS  Vol. 131  No. 2  2020
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Fig. 3. Same as in Fig. 2, but only for the case of excitation
of the monolayer into the center of doublet splitting (Δ31 =
Δ32/2) in an isolated V-QE. Arrows in the middle panel
show the values of the Rubi magnitude |Ω0| of the external
field, for which the optical dynamics of the monolayer
response is calculated in Section 3.2.
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the doublet center (Δ31 = Δ32/2), shown in Fig. 3, dif-
fers substantially from the one under excitation into
the resonance with the 1 ↔ 3 transition (Δ31 = 0) in an
isolated V-QE. Namely, in the former case, as
opposed to the latter, the steady-state solutions do not
exhibit multivaluedness in the steady state for any dou-
blet splitting. In particular, for Δ32 = 20, 100, the
dependence of |Ω| on |Ω0| is single-valued. Moreover,
steady-state solutions are essentially unstable. The
character of instabilities of steady-state solutions will
be considered in the next section.

3.2. Dynamics

In this section, we analyze the character of instabil-
ities in the monolayer optical response for the two
types of its excitation, which were considered above: in
resonance with the 1 ↔ 3 transition in an isolated
V-QE (Δ31 = 0) and in the center of the doublet split-
ting (Δ31 = Δ32/2). For this purpose, we integrate
numerically the system of dynamic equations (5) and
(10)–(15). Here, it should be emphasized that this sys-
tem of equations involves several significantly different
time scales (  ≫  ≫ , |Ω0|–1); i.e., it belongs to
the class of so-called stiff differential equations, for
which the traditional Runge–Kutta method turns out
to be inconsistent. For their integration, we used spe-
cial codes like ODE23tb of the MATLAB package.

The initial conditions were chosen depending on
the type of monolayer excitation. In the case of exci-
tation into the resonance with the 1 ↔ 3 transition in
an isolated V-QE (Δ31 = 0), we chose as initial points
those belonging to the steady-state solution (see Fig. 2,
lower panel). It should be noted that these points are
inaccessible from the ground state of the V-QE, but they
can be reached by exciting the stable part of the upper
branch of the steady-state solution and then by sweep-
ing down adiabatically the external field Rabi magni-
tude |Ω0|. In the case of excitation into the doublet split-
ting center (Δ31 = Δ32/2), the unstable solutions of the
upper branch of the steady-state characteristic can be
reached from the ground state of the V-QE, ρ11(0) = 1.

The results of calculations are shown in Figs. 4 and
5 (excitation conditions are detailed in the figure cap-
tions). The left panels illustrate the dynamics of the
Rabi magnitude |Ω| of the field in the monolayer,
which demonstrates the same scenario irrespective of
doublet splitting Δ32 and excitation conditions: after a
certain transient stage, the signal acquires a stable
form (attractor) [29–31]. Middle panels in Figs. 4 and
5 show the Fourier spectrum of the attractor,
| (iωt)Ω(t)dt|, while right panels display the
attractor phase trajectory on the (Re[Ω], Im[Ω])
plane.

The nature of the attractor dramatically depends on
the type of excitation and initial conditions. For exam-

−γ 1
31

−γ 1
R

−Δ 1
L

 exp
JOURNAL OF EXPERIMENTAL AN
ple, in the case of monolayer excitation into the reso-
nance with the 1 ↔ 3 transition in an isolated V-QE
(Δ31 = 0) and selected initial conditions (on the upper
unstable branch of the steady-state solution; see Fig. 2,
lower panel), we observe the following. For the point
(|Ω0| = 100, |Ω| = 8.7879), the Fourier spectrum of the
attractor contains a finite number of harmonics, and
its phase trajectory is a closed curve, indicating that
D THEORETICAL PHYSICS  Vol. 131  No. 2  2020
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Fig. 4. Optical dynamics of the monolayer under its excitation into resonance with the transition 1 ↔ 3 (Δ31 = 0). Left panels
illustrate the dynamics of the field |Ω|(t) in the monolayer obtained by solving the system of equations (5) and (10)–(15) for the
points on the steady-state curve shown in Fig. 2 (lower panel): (a) |Ω0| = 100, |Ω| = 8.7879; (b) |Ω0| = 200, |Ω| = 18.9398; and (c)
|Ω0| = 330, |Ω| = 210.9087. Middle panels show the Fourier spectrum of the attractor. Right panels show the phase portrait of the
attractor on the (Re[Ω], Im[Ω]) plane. The insets show details of the main curves. The quantities with dimensions of frequency

are given in units of γ31, time is measured in units of .
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the attractor in this case is a limit cycle [29–31]. For
(|Ω0| = 2100, |Ω| = 18.9398) as the initial point, the
Fourier spectrum consists of a set of incommensurate
frequencies. Accordingly, the phase trajectory in this
case represents an open curve lying on a torus in the
8D phase space of the system considered. Finally, for
point (|Ω0| = 330, |Ω| = 210.9087), the attractor is again
in a limit cycle.

The monolayer optical dynamics under excitation
into the doublet splitting center (Δ31 = Δ32/2), pre-
sented in Fig. 3, was calculated for conditions when
the V-QE at the initial instant was in the ground state,
ρ11(0) = 1. Calculations were performed for four values
of the Rabi magnitude |Ω0| of the external field, shown
by arrows in Fig. 3 (middle panel). In this case, the fol-
lowing types of attractors are realized. For |Ω0| = 26
and |Ω0| = 100, the system evolves over time to the limit
cycle. For the other two values, |Ω0| = 50 and |Ω0| = 75,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
the attractors are of chaotic nature: their spectra are
formed by a continuous set of frequencies, and phase
trajectories densely fill a finite area on the phase plane
(Re[Ω], Im[Ω]).

Based on the above, we can conclude that the
nature of the optical dynamics of the monolayer dra-
matically depends on the initial and excitation condi-
tions. For certain values of the Rabi magnitude |Ω0| of
the external field, one dynamic regime (attractor)
changes to another. The system is said to experience
bifurcation [29–31]. In the case of excitation of the
monolayer into resonance with the 1 ↔ 3 transition in
an isolated V-QE (Δ31 = 0), we observe the Andronov–
Hopf bifurcations [29–31] limit cycle–limit cycle.
Under excitation to the doublet splitting center, limit
cycle–chaos–limit cycle bifurcations occur. The points
at which bifurcations take place are determined from
the calculation of the bifurcation diagram of the
response, which is a stand-alone problem.
YSICS  Vol. 131  No. 2  2020
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Fig. 5. Same as in Fig. 4, but only for the case of excitation of the monolayer into the doublet splitting center (Δ31 = Δ32/2) for
the Rabi magnitude |Ω0| of the external field indicated by arrows in Fig. 3 (middle panel): (a) |Ω0| = 26; (b) |Ω0| = 50; (c) |Ω0| =
75; and (d) |Ω0| = 100 for the initial condition ρ11(0) = 1.
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3.3. Qualitative Reasoning

The results considered above show that the mono-
layer optical response can be multistable as well as
unstable, demonstrating self-oscillations and dynamic
chaos. The reason for such a behavior is the (acting)
field produced by the other emitters in place of a given
one. This field depends on the current quantum state
of emitters, which provides a positive feedback ulti-
mately leading to multivaluedness and instability of
the monolayer response. Note that a thin layer of two-
level emitters does not exhibit such properties (except
bistability) [32–42].
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In this section, we consider qualitatively principal
nonlinearities responsible for extraordinary properties
of the optical response of the V-QE monolayer. This is
manifested in the most explicit form in the equations
for optical coherences ρ31 and ρ21. Substituting Eq. (5)
for Ω into Eqs. (13) and (14), we obtain

(16)

 ρ = − Δ + Δ + γ + γ − γ ρ
  

+ μ γ − Δ ρ + μ γ − Δ ρ + μρ ρ
+ Ω + μρ

�31 31 31 31 32 31 31

31 21 31 21 32

0 31 32

1( ) ( )
2

( ) ( )( )
( ),

L R

R L R L

i Z Z

i Z i

Z
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(17)

Let us consider the first terms in the right-hand
sides of Eqs. (16) and (17). Note that the terms ΔLZ31,
μ2ΔLZ21, γRZ31, and μ2γRZ21 in the square brackets,
which do not appear in equations for an isolated
V-QE, are a direct consequence of the field acting on
V-QEs in the monolayer. As is seen, this field leads,
first, to a shift of the resonance frequencies of the
V-QE by ΔLZ31 and μ2ΔLZ21 for the transitions 1 ↔ 3
and 1 ↔ 2, respectively:

and, second, to an additional (collective) broadening
of these transitions:

It should be emphasized that these shifts and
broadenings depend on the population difference of
the transitions, i.e., are of dynamic nature.

The second terms in the right-hand sides of
Eqs. (16) and (17) describe the coupling of optical
transitions 1 ↔ 3 and 1 ↔ 2 through the secondary
field and, hence, are proportional to its amplitude γR –
iΔL, as well as to the populations difference Z31 and Z21.
Because of the transition frequency shifts and transi-
tion interrelation, the eigenfrequencies of the dressed
V-QE (in the monolayer) differ significantly from the
bare values ω3 and ω2 in an isolated V-QE (see Appen-
dix B for details).

After the external field is switched on, the energy
levels of the dressed V-QE start to populate and, hence,
to shift, changing simultaneously the resonance condi-
tions and leading to a redistribution of populations. The
mutual influence of these factors is the main reason for
the complex monolayer optical dynamics.

4. REFLECTION
In our analysis of the nonlinear response of the

V-QE monolayer, we used field Ω acting on V-QEs. In
experiment, as a rule, the reflected (Ωrefl) or transmit-
ted field (Ωtr) is measured, which differs from the act-
ing field Ω. The fields Ωrefl and Ωtr are determined by
a part of Ω in the far zone and are given by (see, for
example, the literature cited in [16, 26, 36])

(18)

(19)
We are interested, in particular, in reflectance of the

monolayer or, in other words, in the reflection coeffi-
cient R of the light flux (power), which is defined as

(20)

4.1. Linear Regime

Let us first consider the linear regime of reflection
(Ω0 ≪ 1, ρ11 ≈ 1). To this end, we keep in Eqs. (13) and
(14) only the terms linear in Ω0. We also restrict our
analysis to the steady-state regime. Substituting the
linear solution to equations for ρ31 and ρ21 into
Eq. (20), we obtain the following expression for the
reflection coefficient R:

(21)

The dependence R(Δ31) in a wide range of variation of
the doublet splitting Δ32 is shown in Fig. 6. As is seen, the
monolayer reflectance has two peaks at eigenfrequencies
of the dressed V-QE. The weak reflection peak (R ≪ 1)
for Δ31 ≈ Δ32/2 originates from the antisymmetric
(“dark”) state of the dressed V-QE, while the strong peak
(R ≈ 1) at Δ31 ≈ 2ΔL = 2000 originates from the symmetric
(“bright”) state (see Appendix B).

4.2. Nonlinear Regime

Let us now consider the nonlinear ref lection
regime. Figure 7 shows the dependence of the mono-

layer reflection coefficient R on the intensity |Ω0|2 of
the external field, calculated for different values of the
detuning from resonance Δ31 in the vicinity of the total
reflection peak (R ≈ 1). The results are almost inde-
pendent of the doublet splitting Δ32. Therefore, for
illustration, we consider only the data obtained for
Δ32 = 100 (cf. Fig. 6). It follows from Fig. 7 that in the
detuning range above the linear reflection peak at
Δ31 = 2ΔL = 2000, the reflection coefficient R is a
three-valued function of the intensity |Ω0|2. The analy-
sis of stability (of Lyapunov exponents) of different
branches shows that the branches with a negative slope
are unstable (thus implying bistability of reflection),

 ρ = − Δ + μ Δ + γ − μ γ ρ
  

+ μ γ − Δ ρ + γ − Δ ρ + μρ ρ

+ Ω μ + ρ

�

2 2
21 21 21 21 21 21

21 31 31 21 32

0 21 32

1( )
2

*( ) ( )( )
*( ).

L R

R L R L

i Z Z

i Z i

Z

ω → ω + Δ ω → ω + μ Δ2
3 3 31 2 2 21, ,L LZ Z

γ + γ → γ + γ − γ31 32 31 32 31(1/2)( ) (1/2)( ),RZ

γ → γ − μ γ2
21 21 21(1/2) (1/2)( ).RZ

Ω = γ ρ + μρrefl 31 21( ),R

Ω = Ω + γ ρ + μρtr 0 31 21( ).R

Ω=
Ω

2
refl

0

.R

 μ Δ + γ + γ + Δ + γ
  = γ

   Δ − Δ + γ + γ + γ Δ − μ Δ + γ + μ γ − μ γ − Δ
      

2
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R

i i i
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Fig. 6. Contour plot of the linear reflection coefficient R of
the monolayer, calculated using Eq. (9). A low-intensity
reflection peak appears in the range of Δ31 ≈ Δ32/2 (a); a
peak of the almost total reflection (R ≈ 1) occurs in the
range of Δ31 ≈ 2ΔL (b).
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Fig. 7. Bistability of the (nonlinear) reflection coefficient
R of the monolayer as a function of detuning Δ31 from res-
onance, the values of which are shown at the curves. The
curves were obtained from the solution of the steady-state
problem by the method described in Appendix A. Doublet

splitting Δ32 = 100;  = 1750 is the bistability threshold.
Solid (dashed) fragments of the curve correspond to stable
(unstable) regions of R.
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i.e., the monolayer ref lectance can be switched from a

low to a high value and back by a small variation of the
external field intensity. In other words, in the region of
the strong reflection peak (R ≈ 1), the monolayer can
operate as a bistable mirror. The bistability threshold
(emergence of a three-valued solution) turns out to be

 = 1750 for the adopted values of parameters. This
value coincides with a high degree of accuracy with
that for a two-level QE model where = ΔL =
1732 [26, 36].

5. CONCLUSIONS

We have analyzed theoretically the optical response
of a monolayer of regularly spaced quantum emitters
with a doublet in the excited state (of the V-type) tak-
ing into account their total retarded dipole–dipole
interaction, which is considered in the mean-field
approximation. This interaction, due to its depen-
dence on the current quantum state of an emitter, pro-
duces positive feedback, which, together with the
immanent nonlinearity of emitters themselves, leads
to multistability, periodic and aperiodic self-oscilla-
tions, and dynamic chaos in the optical response of the
monolayer. Such a system can be implemented on the
basis of supercrystals of semiconductor QDs with a
degenerate valence band in a magnetic field [18] which
gives rise to the Zeeman splitting of the conduction
band of the quantum dot. Asymmetric semiconductor
QDs, in which the anisotropic exchange interaction
between an electron and a hole causes the doublet
splitting of the one-exciton state (see, for example,
[43]), can also serve as a model of a V-type quantum
emitter.

For parameters of real supercrystals of semicon-
ductor quantum dots, the frequencies of self-oscilla-
tions fall into the terahertz radiation range, i.e., the
self-oscillation regime of the monolayer response is of

Δth
31

Δth
21 3
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interest for terahertz radiation sources. The sensitivity
of the monolayer response to the initial conditions in
the regime of dynamic chaos can be used for data
encoding [44].

In a certain frequency range, the monolayer oper-
ates as a bistable mirror, i.e., its reflectance can be
switched by a small variation of the external field
amplitude from the state of almost total reflection to
transmission. Analogous properties of 2D semicon-
ductors (transition metals dichalcogenides) have
recently been reported in publications [45, 46]. The
(meta)monolayer of quantum emitters with the
V-type scheme of operating optical transitions, con-
sidered in this study is another example of a nanome-
ter-thick bistable mirror.

The above mentioned features of the nonlinear
optical response of a monolayer of quantum emitters
with a doublet in the excited state suggest promising
applications in nanophotonics.

APPENDIX A

Solution of the Steady-State Problem

The steady-state solutions to the problem considered
here (  = 0, α, β = 1, 2, 3) can be found by solving the
following system off nonlinear algebraic equations:

(22)

(23)

αβρ�

γ + γ − γ + γ

− μ Ω ρ + Ωρ = γ − γ
21 32 31 21 32 21

21 21 21 32

( 2 ) (2 )

*3 ( * ) ,

Z Z

γ + γ − γ + γ

+ Ω ρ + Ωρ = − γ + γ
31 32 31 31 32 21

31 31 31 32

2( ) ( )

*3( * ) ( ),

Z Z
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(24)

(25)

(26)

(27)
where we used the substitution

Further, we define two vectors,

The system of equations (22)–(26) can be written in
the matrix form:

(28)
where the superscript T indicates the transposition,
and the explicit form of the matrix , i, j = 1, 2, …, 8
can easily be reconstructed from Eqs. (22)–(26). The
formal solution to Eq. (28) reads

(29)

where the inverse matrix  can be found in an
explicit form. It should be emphasized that both 
and  and, accordingly, the solution to Eq. (29)
depend parametrically on Ω. Having determined the
vector r, we can use it in (27) and obtain a closed equa-
tion for Ω. Knowing Ω, we can easily reconstruct all
elements of the density matrix using Eq. (29) (see [16]
for details). Thus, the steady-state problem is solved
exactly.

APPENDIX B

Normal Modes of Dressed V-QE

As noted in Section 3.3, the optical transitions 1 ↔
2 and 1 ↔ 3 in the dressed V-QE, first, acquire the fre-
quency shifts and additional broadenings and, second,
interact with each other due to the secondary field. We
are interested in the normal modes of such a system in
the linear case (|Ω0| ≪ 1, ρ11 ≈ 1). These modes can be
found by solving the homogeneous problem (Ω0 = 0):

(30)

(31)
where we set Δ31 = 0 and Δ21 = –Δ32 (in zero external
field) and introduced the notation

 Ω − Δ + γ + γ ρ + μΩρ =
  31 31 31 32 31 32

1 ( ) 0,
2

Z i

( )μΩ − Δ + γ ρ + Ωρ =21 21 21 21 32
1 * 0,
2

Z i

 μΩ ρ + Δ + γ + γ + γ ρ + Ωρ =
  31 32 31 21 32 32 12

1 ** ( ) 0,
2

i

Ω = Ω + γ − Δ ρ + μρ0 31 21( )( ),R Li

ρ = − + ρ = + −22 31 21 33 31 21
1 1(1 2 ), (1 2 ).
3 3

Z Z Z Z

= ρ ρ ρ ρ ρ ρ31 21 31 21 32 31 21 32
* * *( , , , , , , , ),Z Zr

= γ − γ − γ + γ0 21 32 31 32( , ( ),0,0,0,0,0,0).r

=} 0 ,T Tr r

} ij

−= }
1

0 ,T Tr r
−

}
1

}

−
}

1

ρ = Δ − Γ ρ − μ γ − Δ ρ�31 3 31 21[ ] ( ) ,L R Li i

ρ = Δ + μ Δ − Γ ρ − μ γ − Δ ρ�

2
21 32 2 21 31[ ( ) ] ( ) ,L R Li i

Γ = γ + μ γ Γ = γ + γ + γ2
2 21 3 31 32

1 1, ( ) .
2 2R R
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Further, let us seek the solution in the standard form
ραβ = Rαβexp(κt). Equating the determinant of the
resultant system of algebraic equations to zero, we
obtain the following equation for the eigenfrequencies
of normal modes:

(32)

We do not write down here the cumbersome gen-
eral expression for the roots κ± of Eq. (32) and restrict
our analysis to the case of μ = 1. Then

(33)

Further, we take into account the fact that under the
conditions considered in this study, the value of ΔL is
much larger than the values of remaining quantities
(Δ32, Γ2, Γ3, and γR) so that one can use for κ± the
expansion into the Taylor series in small parameters
Δ32/ΔL, Γ2/ΔL, Γ3/ΔL, and γR/ΔL. Under these assump-
tions, the expressions for the roots κ± take the form

(34)

(35)

From here it follows that the bare frequencies – ΔL and
‒(ΔL + Δ32) (see Eqs. (30) and (31)), detuned from
each other by ΔL, are radically renormalized due to the
interaction: the frequencies of normal modes have val-
ues –Δ32/2 and –(2ΔL + Δ32/2) and differ from each
other by 2ΔL. The relaxation constants of the normal
modes are also modified considerably: the mode “+”
now contains the double collective constant γR, while
this constant is completely absent in the mode “–.”

Using the algebraic equations for the amplitudes
R31 and R21, one can find the ratio R31/R21 in the modes
“+” and “–.” Simple calculations show that

i.e., the amplitudes R31 and R21 in the mode “+” are
added in phase (symmetric, or bright mode), while in
the mode “–,” these amplitudes are added in anti-
phase (antisymmetric, or dark mode). This is precisely
what determines the coupling (strong or weak) of
these modes with the external field. The mode mixing
depends linearly on the doublet splitting Δ32. This is
confirmed in the linear regime of reflection (see Fig. 6).

κ − + μ Δ + Δ − Γ − Γ + Δ − Γ
× Δ + μ Δ − Γ − μ γ − Δ =

2 2
32 2 3 3

2 2 2
32 2

{ [(1 ) ] } ( )

[ ( ) ] ( ) 0.
L L

L R L

i i

i i

±κ = Δ + Δ − Γ − Γ

± Δ + Γ − Γ + Δ − γ

32 2 3

2 2 1/2
32 3 2

1[ (2 ) ]
2

1[( ) 4( ) ] .
2

L

L R

i

i i

( )
( )
+κ = Δ + Δ − Γ + Γ + γ

= Δ + Δ − γ + γ + γ − γ

32 2 3

32 21 31 32

1 12 ( 2 )
2 2

1 12 ( ) 2 ,
2 4

L R

L R

i

i

−κ = Δ − Γ + Γ − γ

= Δ − γ + γ + γ

32 2 3

32 21 31 32

1 1 ( 2 )
2 2

1 1 ( ).
2 4

Ri

i

+ + = + Δ Δ31 21 32/ 1 ( / ),LR R O

− − = − + Δ Δ31 21 32/ 1 ( / ),LR R O
YSICS  Vol. 131  No. 2  2020



254 BAIRAMDURDYEV et al.
REFERENCES
1. N. I. Zheludev, Science (Washington, DC, U. S.) 328,

582 (2010).
2. C. M. Soukoulis and M. Wegener, Science (Washing-

ton, DC, U. S.) 330, 1633 (2010).
3. Y. Liu and X. Zhang, Chem. Soc. Rev. 40, 2494 (2011).
4. W. H. Evers, B. Goris, S. Bals, M. Casavola, J. de

Graaf, R. van Roij, M. Dijkstra, and D. Vanmaekelber-
gh, Nano Lett. 13, 2317 (2013).

5. M. P. Boneschanscher, W. H. Evers, J. J. Geuchies,
T. Altantzis, B. Goris, F. T. Rabouw, S. A. P. van Ros-
sum, H. S. J. van der Zant, L. D. A. Siebbeles, G. van
Tendeloo, I. Swart, J. Hilhorst, A. V. Petukhov, S. Bals,
and D. Vanmaekelbergh, Science (Washington, DC,
U. S.) 344, 1377 (2014).

6. A. V. Baranov, E. V. Ushakova, V. V. Golubkov,
A. P. Litvin, P. S. Parfenov, A. V. Fedorov, and K. Ber-
wick, Langmuir 31, 506 (2015).

7. W. Liu, X. Luo, Y. Bao, Y. P. Liu, G.-H. Ning, I. Ab-
delwahab, L. Li, C. T. Nai, Z. G. Hu, D. Zhao, B. Liu,
S. Y. Quek, and K. P. Loh, Nat. Chem. 9, 563 (2017).

8. A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov,
A. V. Baranov, and A. V. Fedorov, Sci. Rep. 3, 1727
(2013).

9. A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov,
Opt. Lett. 38, 2259 (2013).

10. A. S. Baimuratov, A. I. Shlykov, W. Zhu, M. Yu. Leon-
ov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko,
Opt. Lett. 42, 2223 (2017).

11. I. A. Vovk, N. V. Tepliakov, A. S. Baimuratov,
M. Yu. Leonov, A. V. Baranov, A. V. Fedorov, and
I. D. Rukhlenko, Phys. Chem. Phys. 20, 25023 (2018).

12. J. F. Nossa and A. S. Camacho, Microelectron. J. 38,
1251 (2008).

13. A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov,
A. V. Fedorov, and I. D. Rukhlenko, Sci. Rep. 6, 23321
(2016).

14. R. Malikov, I. Ryzhov, and V. Malyshev, Eur. Phys. J.
Web Conf. 161, 02014 (2017).

15. V. A. Malyshev, P. Á. Zapatero, A. V. Malyshev,
R. F. Malikov, and I. V. Ryzhov, J. Phys.: Conf. Ser.
1220, 012006 (2019).

16. I. V. Ryzhov, R. F. Malikov, A. V. Malyshev, and
V. A. Malyshev, Phys. Rev. A 100, 033820 (2019).

17. I. Ryzhov, R. Malikov, A. Malyshev, and V. Malyshev,
Eur. Phys. J. Web Conf. 220, 02012 (2019).

18. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal,
D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843
(1996).

19. D. Bayramdurdiyev, R. Malikov, I. Ryzhov, and
V. Malyshev, Eur. Phys. J. Web Conf. 220, 03004
(2019).

20. R. A. Vlasov, A. M. Demeza, and M. G. Gladush,
J. Appl. Spectrosc. 80, 698 (2013).

21. R. A. Vlasov, A. M. Lemeza, and M. G. Gladush, Laser
Phys. Lett. 10, 045401 (2013).

22. G. Lindblad, Comm. Math. Phys. 48, 119 (1976).
23. K. Blum, Density Matrix: Theory and Applications

(Springer, Berlin, 2012).
24. R. H. Dicke, Phys. Rev. 93, 99 (1954).
25. R. F. Malikov, E. D. Trifonov, and A. I. Zaitsev, Sov.

Phys. JETP 49, 33 (1979).
26. M. G. Benedict, A. M. Ermolaev, V. A. Malyshev,

I. V. Sokolov, and E. D. Trifonov, Super-Radiance:
Multiatomic Coherent Emission (IOP, Bristol, 1996).

27. J.-P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617
(1985).

28. A. Katok and B. Hasselblatt, Introduction to the Modern
Theory of Dynamical Systems (Cambridge Univ. Press,
Cambridge, 1997).

29. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory
of Oscillators (Pergamon, New York, 1966).

30. J. Guckenheimer and P. Holmes, Nonlinear Oscilla-
tions, Dynamical Systems and Bifurcations of Vector
Fields (Springer, Berlin, 1986).

31. V. S. Afrajmovich, Yu. S. Il’yashenko, and L. P. Shil’nikov,
Dynamical Systems V: Bifurcation Theory and Catastro-
phe Theory, Ed. by V. I. Arnol’d (Springer, Berlin,
1994).

32. Y. Ben-Aryeh, C. M. Bowden, and J. C. Englund, Phys.
Rev. A 34, 3917 (1086).

33. S. M. Zakharov and E. A. Manykin, Poverkhnost’,
No. 2, 137 (1988).

34. A. M. Basharov, Sov. Phys. JETP 67, 1131 (1988).
35. M. G. Benedikt, A. I. Zaitsev, V. A. Malyshev, and

E. D. Trifonov, Opt. Spectrosc. 68, 473 (1990).
36. M. G. Benedict, A. I. Zaitsev, V. A. Malyshev, and

E. D. Trifonov, Phys. Rev. A 43, 3845 (1991).
37. A. N. Oraevsky, D. J. Jones, and D. K. Bandy, Opt.

Commun. 111, 163 (1994).
38. V. A. Malyshev and E. Conejero Jarque, Opt. Experess

6, 227 (2000).
39. H. Glaeske, V. A. Malyshev, and K.-H. Feller,

J. Chem. Phys. 113, 1170 (2000).
40. J. A. Klugkist, V. A. Malyshev, and J. Knoester,

J. Chem. Phys. 127, 164705 (2007).
41. R. F. Malikov and V. A. Malyshev, Opt. Spectrosc. 122,

955 (2017).
42. R. F. Malikov and V. A. Malyshev, Eur. Phys. J. Web

Conf. 161, 03005 (2017).
43. S. Stufler, P. Machnikowski, P. Ester, M. Bichler,

V. M. Axt, T. Kuhn, and A. Zrenner, Phys. Rev. B 73,
125304 (2006).

44. T. Gao and Z. Chen, Phys. Lett. A 372, 394 (2008).
45. P. Back, S. Zeytinoglu, A. Ijaz, M. Kroner, and A. Ima-

moğlu, Phys. Rev. Lett. 120, 037401 (2018).
46. G. Scuri, Y. Zhou, A. A. High, D. S. Wild, C. Shu,

K. de Greve, L. A. Jauregui, T. Taniguchi, K. Wata-
nabe, P. Kim, M. D. Lukin, and H. Park, Phys. Rev.
Lett. 120, 037402 (2018).

Translated by N. Wadhwa
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 131  No. 2  2020


	1. INTRODUCTION
	2. MODEL AND FORMALISM
	3. RESULTS
	3.1. Steady-State Solutions
	3.2. Dynamics
	3.3. Qualitative Reasoning

	4. REFLECTION
	4.1. Linear Regime
	4.2. Nonlinear Regime

	5. CONCLUSIONS
	Solution of the Steady-State Problem
	Normal Modes of Dressed V-QE
	REFERENCES

		2020-09-20T22:31:11+0300
	Preflight Ticket Signature




