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Abstract

Sirenomelia is a rare severe malformation sequence of unknown cause characterized

by fused legs and severe visceral abnormalities. We present a series of nine families

including two rare familial aggregations of sirenomelia investigated by a trio‐based
exome sequencing strategy. This approach identified CDX2 variants in the two

familial aggregations, both fitting an autosomal dominant pattern of inheritance with

variable expressivity. CDX2 is a major regulator of caudal development in vertebrate

and mouse heterozygotes are a previously described model of sirenomelia.

Remarkably, the p.(Arg237His) variant has already been reported in a patient with

persistent cloaca. Analysis of the sporadic cases revealed six additional candidate

variants including a de novo frameshift variant in the genetically constrained NKD1

gene, encoding a known interactor of CDX2. We provide the first insights for a

genetic contribution in human sirenomelia and highlight the role of Cdx and Wnt

signaling pathways in the development of this disorder.

K E YWORD S

caudal dysgenesis, CDX2, de novo mutation, exome sequencing, Sirenomelia

Sirenomelia is a severe, immediately recognizable, embryological mal-

formation of the lower body characterized by fused legs and visceral

abnormalities (Opitz, Zanni, Reynolds, & Gilbert‐Barness, 2002; Orioli

et al., 2011). Hindlimb malformation varies between superficial fusion

of normally‐ yet posteriorly‐rotated legs, to the most severe forms

consisting in an unrecognizable limb with a single bone without feet

(Types I–VII, see Figure 1 and Supporting Information; Boer, Morava,

Klein, Schepens‐Franke, & Oostra, 2017; Kjaer et al., 2003; Stocker &

Heifetz, 1987). Visceral malformations are usually incompatible with

survival and almost constantly include renal agenesis, external genitalia

and gastrointestinal abnormalities, and fetal vascular malformations

(Opitz et al., 2002; Orioli et al., 2011). The pathophysiology of this

disorder is not understood. Two main hypotheses have been proposed.

First, the observation that almost all sirenomelia fetuses exhibit a single

umbilical artery (SUA) of abnormal origin has led to a vascular

hypothesis, in which the malformations may derivate from a nutriment

restriction of the lower part of the embryo. Second, the defective

blastogenesis hypothesis suggests that sirenomelia might result from a

defect occurring earlier, during the final stages of gastrulation, with

similarities with the caudal dysgenesis phenotypes (Garrido‐Allepuz
et al., 2011). Sirenomelia cases have been reported in all ethnic groups

with an incidence of 1–3 per 100,000 birth (Castilla & Orioli, 2004;

Groisman, Liascovich, Gili, Barbero, & Bidondo, 2016; Källén

et al., 1992; Orioli et al., 2011; Seidahmed et al., 2014). No environ-

mental factor has yet been clearly identified, besides the observation

that the rate of sirenomelia is much higher in mono or bi‐chorionic twin
pregnancies usually with one affected and one non‐affected fetus

(Di Lorenzo, Brandt, & Veilleux, 1991). Some reports found an asso-

ciation with maternal hyperglycemia (Castori et al., 2010; Lynch &

Wright, 1997; Ozturk et al., 2014) although the vast majority of cases

occur in absence of any maternal/gestational diabetes (Duesterhoeft,

Ernst, Siebert, & Kapur, 2007; Gerard et al., 2012; Orioli et al., 2011;

Seidahmed et al., 2014; Thottungal, Charles, Dickinson, &

Bower, 2010). Sirenomelia generally occurs sporadically, with very few

familial aggregations reported. In contrast to human sirenomelia,

several genetic determinants of sirenomelia are known in mice. Both

spontaneous mutations and genetically modified animals have been

observed to recapitulate the human phenotype. The known genetic

bases of sirenomelia in mice include the disruption of Cyp26a1, Cdx2, or

Por, which alter the distribution of the retinoic acid (RA) morphogen,

the disruption of BMP signaling, either via Bmp7:Tsg or Bmp7:Shh

double mutants, or conditional Bmp4 knockout in the developing

hindlimb field (Garrido‐Allepuz, González‐Lamuño, & Ros, 2012; Zakin,

Reversade, Kuroda, Lyons, & De Robertis, 2005), and hypomorphic

alleles in Wnt3a (Greco et al., 1996; Wansleeben et al., 2011).

We hypothesized, as for a high proportion of severe develop-

mental disorders (Deciphering Developmental Disorders Study, 2017),

that sporadic cases of sirenomelia could result from rare exonic de

novo variants. We present the results of a genomic screening based on

exome sequencing in an international cohort of (a) seven sporadic

cases of classical sirenomelia and (b) two familial aggregations of

sirenomelia and related phenotypes.

Following an international recruitment, we first gathered clinical

data on seven sirenomelia sporadic cases (Figure 1a; Supporting In-

formation). All seven pregnancies were interrupted for severe fetal

malformation between 13 weeks of gestation (WG) and 21 WG+1.

All fetuses had fused legs, with two moderate (Type II of Stocker and

Heifetz classification; Stocker & Heifetz, 1987), and five severe forms

(Type III–IV). We observed no sex predominance, with four males and

three females. Two affected fetuses were part of twin pregnancies,
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one with a normal dizygotic twin born at term, and the other one

with a malformed monozygotic twin, showing prune belly sequence

and distended bladder (Figure 1). A SUA was present in six of seven

fetuses (85%). Additional malformations were observed in two

fetuses: fetus S7 had bilateral radial hypoplasia, and fetus S3

presented with unilateral radial hypoplasia and a thoracic involve-

ment with a ventricular septal defect and an arteria lusoria. No

maternal diabetes was reported in the seven pregnancies as part of

the systematic screen during pregnancies.

In addition, we included two families exhibiting aggregations of

sirenomelia and related malformative phenotypes (Figure 1b). In the

previously described family S5 (Gerard et al., 2012), a first female

fetus was interrupted in the second trimester of pregnancy

presenting with intrauterine growth retardation, total absence of

urinary system, agenesis of the uterus and SUA. The lower limbs

were normal. A second female fetus from the same parents was

interrupted at 12 weeks of gestation after the identification of a

phenotype of classical sirenomelia. Then, a male individual was born

from the same parents with less severe malformations consisting of

unilateral kidney agenesis and imperforate anus. His mother also

presented imperforate anus at birth. In the unpublished family S13, a

female fetus exhibited sirenomelia. A male sibling had an SUA. Like in

family S5, the mother was born with imperforate anus. The mother

presented a family history of sirenomelia in one sibling but no

autopsy had been performed and no DNA sample was available for

genetic testing.

Following exome sequencing in the seven affected fetuses and

unaffected parents (see Supporting Information), we identified

14 candidate coding or splice region de novo mutations (DNMs) in

four probands, which were subsequently confirmed to be present in

the proband and absent in the parents by Sanger sequencing

(Table S1). Three affected fetuses did not harbor any DNM within the

coding sequence or splicing regions. Overall, no gene was hit twice by

a DNM among the seven probands. DNMs were manually classified

into two groups regarding the functional predictions and the variant

frequency in the general population in the gnomAD database.

Eight variants, either with no predicted effect on coding sequence

(i.e., intronic and synonymous variants) or nonsynonymous variants

observed at a nonnull frequency in gnomAD, were considered as

poor candidates. Conversely, six de novo nonsynonymous variants in

four fetuses were classified as good candidate variants. These novel

candidate variants included three missense variants (MN1, ZFR, and

DISP1), one start‐lost (FBXO7), one frameshift indel variant (NKD1)

and one multinucleotide variant in TTC30A, predicted to result in the

substitution of two consecutive amino‐acid residues (Table S1).

Due to this small number of candidate genes (n = 6), standard Gene

Ontology terms analysis failed to highlight any statistically

overrepresented gene biological function, but manual assessment

identified that four of these six genes are developmental genes

involved in either morphogenesis of either the skull and face (MN1;

Pallares et al., 2015), gastrulation (ZFR; Meagher & Braun, 2001) or in

global morphogenesis regulation (DISP1; Etheridge, Crawford, Zhang,

F IGURE 1 Clinical description of all cases. (a) Sporadic cases. (b) Familial cases. Stocker and Heifetz classification: Type I: all bones are
present; Type II: fibular fusion; Type III: absence of fibula; Type IV: partial femoral fusion, fibular fusion; Type V: partial femoral fusion, absence
of fibula; Type VI: femoral and tibial fusion; Type VII: femoral fusion, absence of tibia. NE, not evaluated; VSD, ventricular septal defect; WG,

weeks of gestation
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& Roelink, 2010), NKD1 (Angonin & Van Raay, 2013). PPI analysis

did not highlight any direct interaction between the products

of these six genes (data not shown). Among these de novo

variants, the truncating variant in NKD1, NM_033119.4:c.524del,

p.(Pro175Glnfs*9), appears as the most promising candidate variant,

regarding both variant effect and gene function. Indeed, this variant

is absent from the general population bases, it is predicted to disrupt

NKD1, which is very sensitive to loss of function (LOF) mutations (as

confirmed by the 0.08 [90% confidence interval {CI} = 0.03–0.27]

observed/expected LOF ratio in gnomAD). The NKD1 protein

is a negative regulator of the Wnt signaling pathway (Angonin &

Van Raay, 2013), a major determinant of body‐axis polarization in

vertebrate embryos (Hikasa & Sokol, 2013). Experimental evidence

from animal models suggested that canonical Wnt signaling is a good

candidate dysregulated pathway in the human phenotypes of

caudal dysplasia and caudal dysgenesis (van de Ven et al., 2011).

Interestingly, NKD1 has been implicated in animal models of

sirenomelia (Greco et al., 1996; Ishikawa et al., 2004) and in a

mouse model of caudal dysgenesis by Cdx2 conditional knockout

(van de Ven et al., 2011), another gene identified in our study (see

below). Yet the precise impact of NKD1 dosage in the patterning of

the caudal pole is still unknown.

In addition to de novo variants, we analyzed variants fitting an

autosomal recessive model of inheritance in trios. Rare homozygous

variants (minor allele frequency <1% in gnomAD popmax) and rare

compound heterozygous variants within the coding sequence and

canonical splice sites were evaluated. This recessive approach did not

lead to the identification of any candidate variant, after excluding

variants with either no predicted effect on protein (synonymous

variants) or variants observed as homozygous in the gnomAD dataset

(Table S2). Among putative copy number variants (CNV) detected by

the CANOES read‐depth comparison tool (Backenroth et al., 2014;

Quenez et al., 2019), none was interpreted as a good candidate based

on frequencies in CNV databases and gene content (see Supporting

Information).

We then analyzed the two familial aggregations of sirenomelia

and associated malformations (Figure 1b). Familial presentation in

these two pedigrees argued in favor of an autosomal dominant mode

of inheritance with variable expressivity. We applied two strategies

to filter rare coding inherited variants of interest: (a) a filtration on a

shortlist of candidate genes based on the murine genetic basis of

sirenomelia (Table S3), and (b) a filtration on genes simultaneously

harboring a rare (MAF < 0.001) coding variant in both families.

Strikingly, both approaches highlighted the same gene CDX2, as (a) it

was the only gene with a rare variant in the candidate gene approach,

and (b) it was the best candidate variant (regarding variant frequency

and variant function) within the list of nine genes harboring a variant

present in affected individuals in both families.

In family S13, the proband (S13–4) harbored a missense CDX2

variant, NM_001265.5:c.710G>A, p.(Arg237His). The variant was

inherited from the mother born with imperforate anus. The mother's

affected sibling was not available for testing (S13–1). This variant

was absent in gnomAD, and pathogenicity predictors consistently

indicated a deleterious effect (Polyphen‐2 score: 1.000 [probably

damaging]; SIFT score: 0.00 [deleterious], Mutation Taster

probability score: 1 [disease causing]; CADD score: 33). Remarkably,

this same missense variant was recently identified as the probable

cause of a closely related phenotype of persistent cloaca (PC;

Hsu et al., 2018).

In family S5, the CDX2 variant was predicted to result in

the loss of the natural stop codon: NM_001265.5:c.940T>C,

p.(Ter314ArgextTer13). This variant was absent from gnomAD, as well

as any other stop‐loss variants affecting this transcript. It was present

in both affected fetuses (S5–3 and S5–4 in Figure 1b), and was in-

herited from the mother born with imperforate anus. Targeted Sanger

sequencing showed that it was also carried by the other sibling

presenting with imperforate anus and unilateral kidney agenesis

(S5–5; Figure 1b and Table 1). To assess the potential effect of this

variant predicted to increase protein length by 13 aberrant residues,

we used the I‐TASSER resource (Zheng, Zhang, Bell, & Zhang, 2019) to

predict the protein structure in the wild‐type and mutant contexts.

This analysis suggested possible disorganization of the 3D conforma-

tion in the mutant protein, therefore losing its predicted ability to bind

DNA and putatively modifying critical functions of this transcription

factor (Figure S1). The screening by Sanger sequencing of six

additional cases of sirenomelia did not identify any other rare CDX2

variant. In addition, we assessed the presence of another variant in the

coding sequence of CDX2, whatever the frequency or the coding ef-

fect, in fetuses S5 and S13, and found no additional variant. Then, we

went back to the exome sequencing data of all seven trios and did not

identify any inherited candidate variant in the gene list used for the

analysis of familial cases.

CDX2 is a central component of the caudal type homeobox

transcription factors, also comprising CDX1 and CDX4. It is notably

expressed in the caudal part of the elongating embryo, in the

presomitic mesoderm where it is hypothesized to act as an integrator

of caudalizing information (Savory et al., 2009). Several mice models

have been used to evaluate the functions of CDX2. Homozygous

knockout animals do not survive due to a lack of embryo implanta-

tion, and heterozygous mice present a variable association of tail

abnormalities, growth restriction, vertebral and rib abnormalities,

and polyps of the gastroinestinal tract (Chawengsaksophak, James,

Hammond, Köntgen, & Beck, 1997). To bypass the early lethality

caused by the absence of Cdx2, more complex mice models have

been developed, based on tetraploid fusion (Chawengsaksophak, de

Graaff, Rossant, Deschamps, & Beck, 2004) and conditional inducible

knockouts (Savory et al., 2009). These Cdx2‐null embryos presented

axial truncation posterior to the forelimbs. Interestingly,

heterozygous mutants exposed to RA presented the phenotype of

sirenomelia while wild‐type littermates showed an absence of tail

(Savory et al., 2009). These results suggest that sirenomelia

can be triggered by the combination of altered RA signaling in the

predisposing genetic context of a heterozygous Cdx2 variant.

In a recent study, de novo variants in CDX2 have been identified in

two individuals with sporadic isolated PC, a rare condition caused by

the absence of development of the urorectal septum during early fetal
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development, leading to the persistence of a common channel

between rectum, vagina, and urethra (Hsu et al., 2018, p. 2). The

well‐established role of CDX2 in the morphogenesis of the caudal

region of the embryo and the insights from animal models, as well as

the very low probability of identifying two de novo variants in the

same gene in a small cohort were strong arguments in favor of the

association of CDX2 to PC. However, the molecular mechanism

remained unclear, as both variants were found to result in apparently

opposite effects. The first variant had a stop‐gain consequence and

was predicted to result in a loss of CDX2 function. In contrast, when

overexpressed in cell lines, the second variant, leading to the

p.(Arg273His) missense change, showed an upregulation of the mes-

senger RNA of CDX2′s direct target gene CYP26A1, in favor of a

possible gain of function. Interestingly, we observed the exact same

missense variant in the affected cases of family S13, thus extending

the phenotype associated with this variation. The other CDX2 variant

that we identified, in family S5, was predicted to result in a loss of the

natural stop codon. In silico analysis was in favor of disorganization of

the 3D protein conformation, which could hypothetically lead to a loss

of CDX2 function, but further functional evidence will be needed to

validate a putative deleterious effect. According to the data

from gnomAD v2.1, CDX2 appears moderately constrained in

the general population with an observed/expected LOF ratio of 0.19

(CI: 0.07–0.59), but the small size of the gene, and, therefore, the

small amount of observed and expected variants, precludes definite

conclusions. No deletions or duplications are present in the Database

of Genomic Variants and in the gnomAD Structural Variant

database (Collins et al., 2019).

In total, a CDX2 variant has been observed in eight individuals

with caudal abnormalities (clinical and genetic descriptions

summarized in Table 1), ranging from isolated imperforate anus to

the severe complete phenotype of classical sirenomelia. Individual

S13–5 from family S13 presented with an isolated SUA, but the DNA

sample was unavailable, preventing the association of this mild

phenotype to the clinical spectrum of CDX2 pathogenic variants. The

observation of the high intrafamilial variation caused by pathogenic

CDX2 variants is clinically important and should result in the

incorporation of CDX2 in gene panels for caudal malformation, given

the risk for more severely affected offspring when a pathogenic

variant in CDX2 is identified. However, given the variable clinical

expression, its use of genetic counseling may be difficult.

In summary, we identified CDX2 as the first likely causal

sirenomelia gene in humans and several novel candidate genes with

DNMs. CDX2 variants appeared to be associated with a wide spectrum

of caudal abnormalities, including sirenomelia in its most severe form.

This phenotypic variability is reminiscent of the inconsistency of the

occurrence of sirenomelia in most mice models, where genotype

and environment are controlled, arguing for a stochastic expression

of the disease in individuals with a genetic predisposition.

Alternatively, phenotypic variability in humans could result from

epigenetic/environmental factors or even other genetic variants

modulating the phenotype. Among trios, the observation of a de novo

truncating variant in NKD1, which is a biologically and genetically

plausible gene, makes us propose NKD1 haploinsufficiency as a novel

genetic determinant in humans as well. The validation of NKD1 null

variants as a risk factor for sirenomelia would require replication in

other affected individuals. Similarly, variants in MN1, ZFR, DISP1,

FBXO7, and TTC30A will need further investigations regarding

their functional effect, and a recurrence with other affected cases to

be considered as putatively contributing to the development of

sirenomelia. In addition, other mechanisms including noncoding

variations should be assessed to better understand the genetic

determinism of sirenomelia.
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