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Formulas for Data-Driven Control: Stabilization,
Optimality, and Robustness

Claudio De Persis and Pietro Tesi

Abstract—In a paper by Willems et al., it was shown
that persistently exciting data can be used to represent the
input–output behavior of a linear system. Based on this
fundamental result, we derive a parametrization of linear
feedback systems that paves the way to solve important
control problems using data-dependent linear matrix in-
equalities only. The result is remarkable in that no explicit
system’s matrices identification is required. The examples
of control problems we solve include the state and output
feedback stabilization, and the linear quadratic regulation
problem. We also discuss robustness to noise-corrupted
measurements and show how the approach can be used
to stabilize unstable equilibria of nonlinear systems.

Index Terms—Control design, data-driven control, learn-
ing systems, linear matrix inequalities, nonlinear control
systems, robust control.

I. INTRODUCTION

L EARNING from data is essential to every area of science.
It is the core of statistics and artificial intelligence, and is

becoming ever more prevalent also in the engineering domain.
Control engineering is one of the domains where learning from
data is now considered as a prime issue.

Learning from data is actually not novel in control theory.
System identification [1] is one of the major developments
of this paradigm, where modeling based on first principles is
replaced by data-driven learning algorithms. Prediction error,
maximum likelihood as well as subspace methods [2] are all
data-driven techniques, which can be now regarded as standard
for what concerns modeling. The learning-from-data paradigm
has been widely pursued also for control design purposes. A
main question is how to design control systems directly from
process data with no intermediate system identification step.
Besides their theoretical value, answers to this question could
have a major practical impact especially in those situations
where identifying a process model can be difficult and time
consuming, for instance, when data is affected by noise or in the
presence of nonlinear dynamics. Despite many developments in
this area, data-driven control is not yet well understood even
if we restrict the attention to linear dynamics, which contrasts
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the achievements obtained in system identification. A major
challenge is how to incorporate data-dependent stability and
performance requirements in the control design procedure.

A. Literature Review

Contributions to data-driven control can be traced back to
the pioneering work by Ziegler and Nichols [3], direct adap-
tive control [4], and neural networks [5] theories. Since then,
many techniques have been developed under the heading data-
driven and model-free control. We mention unfalsified control
theory [6], iterative feedback tuning [7], and virtual reference
feedback tuning [8]. This topic is now attracting more and more
researchers, with problems ranging from proportional-integral-
derivative (PID) like control [9] to model reference control and
output tracking [10]–[14], predictive [15], [16], robust [17], and
optimal control [18]–[24], the latter being one of the most fre-
quently considered problems. The corresponding techniques are
also quite varied, ranging from dynamics programming to opti-
mization techniques and algebraic methods. These contributions
also differ with respect to how learning is approached. Some
methods only use a batch of process data meaning that learning is
performed offline, while other methods are iterative and require
multiple online experiments. We refer the reader to [25] and [26]
for more references on data-driven control methods.

B. Willems et al. Fundamental Lemma and Paper
Contribution

A central question in data-driven control is how to replace
process models with data. For linear systems, there is actually
a fundamental result, which answers this question, proposed
by Willems et al. [27]. Roughly, this result stipulates that the
whole set of trajectories that a linear system can generate can
be represented by a finite set of system trajectories provided
that such trajectories come from sufficiently excited dynamics.
While this result has been (more or less explicitly) used for data-
driven control design [16], [18], [28]–[30], certain implications
of the so-called Willems et al.’s fundamental lemma seems not
fully exploited.

In this article, we first revisit Willems et al.’s fundamental
lemma, originally cast in the behavioral framework, through
classic state-space descriptions (see Lemma 2). Next, we show
that this result can be used to get a data-dependent representation
of the open-loop and closed-loop dynamics under a feedback
interconnection. The first result (see Theorem 1) indicates that
the parametrization that emerges from the fundamental lemma
is, in fact, the solution to a classic least-squares problem, and
has clear connections with the so-called dynamic mode de-
composition [31]. The second result (see Theorem 2) is even
more interesting as it provides a data-based representation of
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the closed-loop system transition matrix, where the controller is
itself parametrized through data.

Theorem 2 turns out to have surprisingly straightforward,
yet profound, implications for control design. We discuss this
fact in Section IV. The main point is that the parametrization
provided in Theorem 2 can be naturally related to the classic
Lyapunov stability inequalities. This makes it possible to cast
the problem of designing state-feedback controllers in terms of
a simple linear matrix inequality (LMI) [32] (see Theorem 3).
In Theorem 4, the same arguments are used to solve a linear
quadratic regulation problem through convex optimization. A
remarkable feature of these results is that 1) no parametric model
of system is identified; 2) stability guarantees come with a finite
(computable) number of data points. Theorems 3 and 4 should
be understood as examples of how the parametrization given in
Theorem 2 can be used to approach the direct design of control
laws from data. In fact, LMIs have proven their effectiveness
in a variety of control design problems [32], and we are con-
fident that the same arguments can be used for approaching
other, more complex, design problems such as H∞ control and
quadratic stabilization [32]. In Section V, we further exemplify
the merits of the proposed approach by considering the problem
of designing stabilizing controllers when data are corrupted by
noise (see Theorem 5), as well as the problem of stabilizing
an unstable equilibrium of a nonlinear system (see Theorem
6), both situations where identification can be challenging. The
main derivations are given for state feedback. The case of output
feedback (see Theorem 8) is discussed in Section VI. Concluding
remarks are given in Section VII.

C. Notation

Given a signal z : Z → Rσ , we denote by z[k,k+T ], where
k ∈ Z, T ∈ N, the restriction in vectorized form of z to the
interval [k, k + T ] ∩ Z, namely

z[k,k+T ] =

⎡
⎢⎣

z(k)
...

z(k + T )

⎤
⎥⎦ .

When the signal is not restricted to an interval, then it is simply
denoted by its symbol, say z. To avoid notational burden, we
use z[k,k+T ] also to denote the sequence {z(k), . . . , z(k + T )}.
For the same reason, we simply write [k, k + T ] to denote the
discrete interval [k, k + T ] ∩ Z.

We denote the Hankel matrix associated to z as

Zi,t,N =

⎡
⎢⎢⎢⎣

z(i) z(i+ 1) · · · z(i+N − 1)

z(i+ 1) z(i+ 2) · · · z(i+N)
...

...
. . .

...
z(i+ t− 1) z(i+ t) · · · z(i+ t+N − 2)

⎤
⎥⎥⎥⎦

where i ∈ Z and t,N ∈ N. The first subscript denotes the time
at which the first sample of the signal is taken, the second one the
number of samples per each column, and the last one the number
of signal samples per each row. Sometimes, if t = 1, noting that
the matrix Zi,t,N has only one block row, we simply write

Zi,N =
[
z(i) z(i+ 1) · · · z(i+N − 1)

]
.

II. PERSISTENCE OF EXCITATION AND WILLEMS et al.’s
FUNDAMENTAL LEMMA

In this section, we revisit the main result in [27] and state
a few auxiliary results inspired by subspace identification [2],
which will be useful throughout the article.

For the sake of simplicity, throughout the article, we consider
a controllable and observable discrete-time linear system

x(k + 1) = Ax(k) +Bu(k) (1a)

y(k) = Cx(k) +Du(k) (1b)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp. The system input–output
response of over [0, t− 1] can be expressed as

[
u[0,t−1]

y[0,t−1]

]
=

[
Itm 0tm×n

Tt Ot

] [
u[0,t−1]

x0

]
(2)

where x0 is the system initial state, and where

Tt :=

⎡
⎢⎢⎢⎢⎢⎢⎣

D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAt−2B CAt−3B CAt−4B · · · D

⎤
⎥⎥⎥⎥⎥⎥⎦

Ot :=

⎡
⎢⎢⎢⎣

C

CA
...

CAt−1

⎤
⎥⎥⎥⎦

are the Toeplitz and observability matrices of order t.
Let now ud,[0,T−1] and yd,[0,T−1] be the input–output data of

the system collected during an experiment, and let

[
U0,t,T−t+1

Y0,t,T−t+1

]
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ud(0) ud(1) · · · ud(T − t)

ud(1) ud(2) · · · ud(T − t+ 1)
...

...
. . .

...
ud(t− 1) ud(t) · · · ud(T − 1)

yd(0) yd(1) · · · yd(T − t)

yd(1) yd(2) · · · yd(T − t+ 1)
...

...
. . .

...
yd(t− 1) yd(t) · · · yd(T − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)
be the corresponding Hankel matrix. Similarly to (2), we can
write

[
U0,t,T−t+1

Y0,t,T−t+1

]
=

[
Itm 0tm×n

Tt Ot

] [
U0,t,T−t+1

X0,T−t+1

]
(4)

where

X0,T−t+1 =
[
xd(0) xd(1) . . . xd(T − t)

]

and xd(i) are the state samples. For ud, yd, and xd, we use the
subscript d so as to emphasize that these are the sample data
collected from the system during some experiment.
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A. Persistently Exciting Data and the Fundamental
Lemma

Throughout the article, having the rank condition

rank

[
U0,t,T−t+1

X0,T−t+1

]
= n+ tm (5)

satisfied plays an important role. As we will see, a condition of
this type, in fact, ensures that the data encode all the information
for the direct design of control laws. A fundamental property
established in [27] is that it is possible to guarantee (5) when
the input is sufficiently exciting. We first recall the notion of
persistency of excitation.

Definition 1 (see [27]): The signal z[0,T−1] ∈ Rσ is persis-
tently exciting of order L if the matrix

Z0,L,T−L+1 =

⎡
⎢⎢⎢⎣

z(0) z(1) · · · z(T − L)

z(1) z(2) · · · z(T − L+ 1)
...

...
. . .

...
z(L− 1) z(L) · · · z(T − 1)

⎤
⎥⎥⎥⎦

has full rank σL. �
For a signal z to be persistently exciting of order L, it

must be sufficiently long, namely T ≥ (σ + 1)L− 1. We now
state two results which are key for the developments of the
article.

Lemma 1 (see [27, Cor. 2]): Consider system (1a). If the in-
put ud,[0,T−1] is persistently exciting of order n+ t, then con-
dition (5) holds. �

Lemma 2 (see [27, Th. 1]): Consider system (1). Then, the
following holds.

1) If ud,[0,T−1] is persistently exciting of order n+ t, then
any t-long input/output trajectory of system (1) can be
expressed as

[
u[0,t−1]

y[0,t−1]

]
=

[
U0,t,T−t+1

Y0,t,T−t+1

]
g

where g ∈ RT−t+1.
2) Any linear combination of the columns of the matrix in

(3), that is
[
U0,t,T−t+1

Y0,t,T−t+1

]
g

is a t-long input/output trajectory of (1).
Proof: See the Appendix. �
Lemma 1 shows that if T is taken sufficiently large, then (5)

turns out to be satisfied, and this makes it possible to represent
any input/output trajectory of the system as a linear combination
of collected input/output data. This is the key property that
enables one to replace a parametric description of the system
with data. Lemma 2 has been originally proven in [27, Th. 1]
using the behavioral language, and it was later referred to in [33]
as the fundamental lemma to describe a linear system through
a finite collection of its input/output data. Here, for making the
article as self-contained as possible, we gave a proof of this
result using state-space descriptions, as they will recur often in
the remainder of this article.

III. DATA-BASED SYSTEM REPRESENTATIONS

Lemma 2 allows us to get a data-dependent representation of
the open-loop and closed-loop dynamics of system (1a). The
first result (see Theorem 1) is a covert system identification
result where, however, the role of Lemma 2 is emphasized,
and which draws connections with the so-called dynamic mode
decomposition [31]. Theorem 2 shows instead how one can
parametrize feedback interconnections just by using data. This
result will be the key later on for deriving control design methods
that avoid the need to identify a parametric model of the system
to be controlled.

Consider a persistently exciting input sequence ud,[0,T−1] of
order t+ n with t = 1. Notice that the only requirement on T is
that T ≥ (m+ 1)n+m, which is necessary for the persistence
of excitation condition to hold. By Lemma 1

rank

[
U0,1,T

X0,T

]
= n+m. (6)

From now on, we will directly refer to condition (6), bearing in
mind that this condition requires persistently exciting inputs of
order n+ 1. Before proceeding, we point out that condition (6)
can always be directly assessed when the state of the system is
accessible. When instead only input/output data are accessible,
condition (6) cannot be directly assessed. Nonetheless, thanks
to Lemma 1, this condition can always be enforced by applying
an exciting input signal of a sufficiently high order—for a dis-
cussion on the types of persistently exciting signals the reader is
referred to [2, Sec. 10]. We will further elaborate on this point in
Section VI where we also give an alternative explicitly verifiable
condition for the case where only input/output data of the system
are accessible.

A. Data-Based Open-Loop Representation

The next result gives a data-based representation of a linear
system and emphasizes the key role of Lemma 2.

Theorem 1: Let condition (6) hold. Then, system (1a) has the
following equivalent representation:

x(k + 1) = X1,T

[
U0,1,T

X0,T

]† [
u(k)

x(k)

]
(7)

where

X1,T =
[
xd(1) xd(2) . . . xd(T )

]

and † denotes the right inverse.
Proof: See the Appendix. �
Theorem 1 is an identification type of result where the role of

Lemma 2 is made explicit. In fact, noting that

X1,T =
[
B A

] [U0,1,T

X0,T

]
(8)

it follows immediately that

[
B A

]
= X1,T

[
U0,1,T

X0,T

]†
. (9)

In particular, the right-hand side of the above identity is simply
the minimizer of the least-square problem [2, Exercise 9.5]

min[B A]

∥∥∥∥X1,T −
[
B A

] [U0,1,T

X0,T

]∥∥∥∥
F

(10)
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where ‖ · ‖F is the Frobenius norm. The representation given in
Theorem 1 can be, thus, interpreted as the solution of a least-
square problem.

It is also interesting to observe that Theorem 1 shows clear
connections between Willems et al.’s fundamental lemma and
the dynamic mode decomposition [31], a numerical procedure
for recovering state and control matrices of a linear system
from its trajectories. In fact, by performing a singular value
decomposition

[
U0,1,T

X0,T

]
= U1ΣV

�
1

it readily follows that (9) can be rewritten as X1,TV1Σ
−1U�

1
[2, Sec. 2.6], which is the basic solution described in
[31, Sec. III-B] for recovering the matrices A and B of a linear
system from its trajectories.

B. Data-Based Closed-Loop Representation

We now exploit Lemma 2 to derive a parametrization of
system (1a) in closed loop with a state-feedback law u = Kx.
We give here a proof of this result since the arguments we use
will often recur in the next sections.

Theorem 2: Let condition (6) hold. Then, system (1a) in
closed loop with a state feedback u = Kx has the following
equivalent representation:

x(k + 1) = X1,TGKx(k) (11)

where GK is a T × n matrix satisfying
[
K

In

]
=

[
U0,1,T

X0,T

]
GK . (12)

In particular

u(k) = U0,1,TGKx(k). (13)

Proof: By the Rouché–Capelli theorem, there exists a T × n
matrix GK such that (12) holds. Hence

A+BK =
[
B A

] [K
In

]
=

[
B A

] [U0,1,T

X0,T

]
GK

= X1,TGK . (14)

In particular, the first identity in (12) gives (13). �

C. From Indirect to Direct Data-Driven Control

Obviously, Theorem 1 already provides a way for designing
controllers from data, at least when the state of the system to be
controlled is fully accessible. However, this approach is basically
equivalent to a model-based approach where the system matrices
A and B are first reconstructed using a collection of sample
trajectories. A crucial observation that emerges from Theorem 2
is that also the controller K can be parametrized through data
via (12). Thus, for design purposes, one can regard GK as a
decision variable, and search for the matrix GK that guarantees
stability and performance specifications. In fact, as long as GK

satisfies the conditionX0,TGK = In in (12), we are ensured that
X1,TGK provides an equivalent representation of the closed-
loop matrix A+BK with feedback matrix K = U0,1,TGK . As
shown in the next section, this enable design procedures that
avoid the need to identify a parametric model of the system.

We point out that Theorem 2 already gives an identification-
free method for checking whether a candidate controller K is
stabilizing or not. In fact, given K, any solution GK to (12)
is such that X1,TGK = A+BK. One can, therefore, compute
the eigenvalues of X1,TGK to check whether K is stabilizing
or not. This method does not require to place K into feedback,
in the spirit of unfalsified control theory [6].

IV. DATA-DRIVEN CONTROL DESIGN: STABILIZATION AND

OPTIMAL CONTROL

In this section, we discuss how Theorem 2 can be used to
get identification-free design algorithms. Although the problems
considered hereafter are all of practical relevance, we would
like to regard them as application examples of Theorem 2. In
fact, we are confident that Theorem 2 can be used to approach
other, more complex, design problems such as H∞ control and
quadratic stabilization [32].

A. State Feedback Design and Data-Based
Parametrization of All Stabilizing Controllers

By Theorem 2, the closed-loop system under state-feedback
u = Kx is such that

A+BK = X1,TGK

where GK satisfies (12). One can, therefore, search for a matrix
GK such that X1,TGK satisfies the classic Lyapunov stability
condition. As the next result shows, it turns out that this problem
can be actually cast in terms of a simple LMI.

Theorem 3: Let condition (6) hold. Then any matrix Q sat-
isfying

[
X0,T Q X1,TQ

Q�X�
1,T X0,T Q

]
	 0 (15)

is such that

K = U0,1,TQ(X0,TQ)−1 (16)

stabilizes system (1a). Conversely, if K is a stabilizing state-
feedback gain for system (1a), then it can be written as in (16),
with Q solution of (15).

Proof: By Theorem 2, (11) is an equivalent representation of
the closed-loop system. Hence, for any givenK, the closed-loop
system with u = Kx is asymptotically stable if and only if there
exists P 	 0 such that

X1,TGKPG�
KX�

1,T − P ≺ 0 (17)

where GK satisfies (12).
Let Q := GKP . Stability is, thus, equivalent to the existence

of two matrices Q and P 	 0 such that
⎧
⎪⎨
⎪⎩

X1,TQP−1Q�X�
1,T − P ≺ 0

X0,TQ = P

U0,1,TQ = KP

(18)

where the two equality constraints are obtained from (12). By
exploiting the constraint X0,TQ = P , stability is equivalent to
the existence of a matrix Q such that

⎧
⎪⎨
⎪⎩

X1,TQ(X0,TQ)−1Q�X�
1,T −X0,TQ ≺ 0

X0,TQ 	 0

U0,1,TQ = KX0,TQ.

(19)
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From the viewpoint of design, one can, thus, focus on the
two inequality constraints, which correspond to (15), while
the equality constraint is satisfied a posteriori with the choice
K = U0,1,TQ(X0,TQ)−1. �

Note that in the formulation (15), the parametrization of the
closed-loop matrix A+BK is given by X1,TQ(X0,TQ)−1,
that is, with GK = Q(X0,TQ)−1, which satisfies X0,TGK = I
corresponding to the second identity in (12). On the other hand,
the constraint corresponding to the first identity in (12) is guaran-
teed by the choice K = U0,1,TQ(X0,TQ)−1. This is the reason
why (15) is representative of closed-loop stability even if no
constraint like (12) appears in the formulation (15). We point out
that Theorem 3 characterizes the whole set of stabilizing state-
feedback gains in the sense that any stabilizing feedback gain K
can be expressed as in (16) for some matrix Q satisfying (15).

Illustrative example: As an illustrative example, consider
the discretized version of a batch reactor system [34] using a
sampling time of 0.1 s

[A B ]

=

⎡
⎢⎢⎢⎣

1.178 0.001 0.511 −0.403 0.004 −0.087

−0.051 0.661 −0.011 0.061 0.467 0.001

0.076 0.335 0.560 0.382 0.213 −0.235

0 0.335 0.089 0.849 0.213 −0.016

⎤
⎥⎥⎥⎦.

The system to be controlled is open-loop unstable. The control
design procedure is implemented in MATLAB. We generate the
data with random initial conditions and by applying to each input
channel a random input sequence of length T = 15 by using the
MATLAB command rand. To solve (15), we used CVX [35],
obtaining

K =

[
0.7610 −1.1363 1.6945 −1.8123

3.5351 0.4827 3.3014 −2.6215

]

which stabilizes the closed-loop dynamics in agreement with
Theorem 3. �

Remark 1 (Numerical Implementation): There are other
ways to implement (15). One of these alternatives is obtained
from (18), considering the first inequality, the third equality,
and condition P 	 0, and rewriting them as

[
P X1,TQ

Q�X�
1,T P

]
	 0, X0,TQ = P.

In this case, the resulting stabilizing state feedback gain takes the
expression K = U0,1,TQP−1. In the previous numerical exam-
ple but also in those that follow we observed that a formulation
like the one above is more stable numerically. The reason is that
CVX cannot directly interpret (15) as a symmetric matrix (the
upper-left block is given by X0,TQ with nonsymmetric deci-
sion variable Q), and returns a warning regarding the expected
outcome. �

Remark 2 (Design for Continuous-Time Systems): Similar
arguments can be used to deal with continuous-time systems.
Given a sampling time Δ > 0, let

U0,1,T =
[
ud(0) ud(Δ) . . . ud((T − 1)Δ)

]

X0,T =
[
xd(0) xd(Δ) . . . xd((T − 1)Δ)

]

be input- and state-sampled trajectories. Under condition (6)
(note that, if the sequence ud(0), ud(Δ), . . . is persistently
exciting of order n+ 1, then the application of the zero-order

hold signal obtained from the input samples above ensures
condition (6) for the sampled-data system for generic choices
of Δ), we have A+BK = X1,TGK where

X1,T :=
[
ẋd(0) ẋd(Δ) . . . ẋd((T − 1)Δ)

]
.

Hence, for any given K, the closed-loop system with u = Kx is
asymptotically stable if and only if there exists P 	 0 such that

X1,TGKP + PG�
KX�

1,T ≺ 0

where GK satisfies (12). In full analogy with the discrete-time
case, it follows that any matrix Q satisfying

{
X1,TQ+Q�X�

1,T ≺ 0

X0,TQ 	 0
(20)

is such that K = U0,1,TQ(X0,TQ)−1 is a stabilizing feedback
gain. The main difference with respect to the case of discrete-
time systems is the presence of the matrixX1,T that contains the
derivatives of the state at the sampling times, which are usually
not available as measurements. The use of these methods in
the context of continuous-time systems might require the use
of filters for the approximation of derivatives [36]–[38]. This is
left for future research. We stress that even though the matrix (6)
is built starting from input and state samples, the feedback gain
K = U0,1,TQ(X0,TQ)−1, whereQ is the solution of (20), stabi-
lizes the continuous-time system, not its sampled-data model. �

B. Linear Quadratic Regulation

Matrix (in)equalities similar to the one in (15) are recurrent
in control design, with the major difference that in (15) only
information collected from data appears, rather than the system
matrices. Yet, these matrix inequalities can inspire the data-
driven solution of other control problems. Important examples
are optimal control problems.

Consider the system

x(k + 1) = Ax(k) +Bu(k) + ξ(k)

z(k) =

[
Q

1/2
x 0

0 R1/2

] [
x(k)

u(k)

]
(21)

where ξ is an external input to the system, and where z is a perfor-
mance signal of interest; Qx � 0, R 	 0 are weighting matrices
with (Qx, A) observable. The objective is to design a state-
feedback law u = Kx, which rendersA+BK stable and mini-
mizes theH2 norm of the transfer functionh : ξ → z [39, Sec. 4]

‖h‖2 :=

[
1

2π

∫ 2π

0

trace
(
h
(
ejθ

)�
h
(
ejθ

))
dθ

] 1
2

. (22)

This corresponds in the time domain to the 2-norm of the output
z when impulses are applied to the input channels, and it can
also be interpreted as the mean-square deviation of z when ξ is
a white process with unit covariance. It is known [39, Sec. 6.4]
that the solution to this problem is given by the controller

K = −(R+B�XB)−1B�XA

where X is the unique positive definite solution to the
discrete-time algebraic Riccati (DARE) equation

A�XA−X − (A�XB)(R+B�XB)−1(B�XA)+Qx = 0.
(23)
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This problem of finding K can be equivalently formulated as
a convex program [40], [41]. To see this, notice that the closed-
loop system is given by

[
x(k + 1)
z(k)

]
=

⎡
⎢⎣

A+BK I[
Q

1/2
x

R1/2K

]
0

⎤
⎥⎦
[
x(k)

ξ(k)

]
(24)

with corresponding H2 norm

‖h‖2 =
[
trace

(
QxWc +K�RKWc

)] 1
2 (25)

whereWc denotes the controllability Gramian of the closed-loop
system (24), which satisfies

(A+BK)Wc(A+BK)� −Wc + I = 0

where Wc � I . The second term appearing in the trace function
is equivalent to trace(R1/2KWcK

�R1/2). As a natural coun-
terpart of the continuous-time formulation in [40], the optimal
controller K can be found by solving the optimization problem

min
K,W,X

trace (QxW ) + trace(X)

subject to
⎧
⎪⎨
⎪⎩

(A+BK)W (A+BK)� −W + In � 0

W � In

X −R1/2KWK�R1/2 � 0.

(26)

This can be cast as a convex optimization problem by means of
suitable change of variables [40]. Based on this formulation, it
is straightforward to derive a data-dependent formulation of this
optimization problem.

Theorem 4: Let condition (6) hold. Then, the optimal H2

state-feedback controller K for system (21) can be computed as
K = U0,1,TQ(X0,TQ)−1 where Q optimizes

min
Q,X

trace (QxX0,TQ) + trace(X)

subject to
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
X R1/2U0,1,TQ

Q�U�
0,1,TR

1/2 X0,TQ

]
� 0

[
X0,TQ− In X1,TQ

Q�X�
1,T X0,TQ

]
� 0.

(27)

Proof: In view of (12) and the parametrization (13), the
optimal solution to (26) can be computed as K = U0,1,TGK ,
where GK optimizes

min
GK ,W,X

trace (QxW ) + trace(X)

subject to
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

X1,TGKWG�
KX�

1,T −W + In � 0

W � In

X −R1/2U0,1,TGKWG�
KU0,1,TG

�
KR1/2 � 0

X0,TGK = In.

(28)

To see this, let (K∗,W∗, X∗) be the optimal solution to (26)
with cost J∗. We show that the optimal solution (GK ,W ,X)
to (28) is such that (K,W,X) = (U0,1,TGK ,W ,X) is feasible

for (26) and has cost J∗, which implies K∗ = U0,1,TGK as the
optimal controller is unique. Feasibility simply follows from the
fact that K = U0,1,TGK along with X0,TGK = In implies that
X1,TGK = A+BK. In turn, this implies that (K,W,X) =

(U0,1,TGK ,W ,X) satisfies all the constraints in (26). As a final
step, let J be the cost associated with the solution (K,W,X) =
(U0,1,TGK ,W ,X). Since the latter is a feasible solution to (26),
we must have J ≥ J∗. Notice now that J is also the optimal cost
of (28) associated with the solution (GK ,W ,X). Accordingly,
let GK∗ be a solution to (12) computed with respect to K = K∗.
Thus, (GK ,W,X) = (GK∗ ,W∗, X∗) is a feasible solution to
(28) with cost J∗. This implies that J ≤ J∗ and, thus, J = J∗.
This shows that K∗ = U0,1,TGK .

The formulation (27) follows directly from (28) by defining
Q = GKW and exploiting the relation X0,TQ = W . �

Illustrative example: We consider the batch reactor system
of the previous section. As before, we generate the data with
random initial conditions and by applying to each input channel a
random input sequence of lengthT = 15 by using the MATLAB
command rand. We let Qx = In and R = Im. To solve (27),
we used CVX, obtaining

K =

[
0.0639 −0.7069 −0.1572 −0.6710

2.1481 0.0875 1.4899 −0.9805

]
.

This controller coincides with the controller K obtained with
the MATLAB command dare, which solves the classic DARE
equation. In particular, ‖K −K‖ ≈ 10−7. �

Remark 3 (Numerical Issues for Unstable Systems): The
above results are implicitly based on open-loop data. When
dealing with unstable systems, numerical instability problems
may arise. Nonetheless, by Lemma 1 a persistently exciting
input of order n+ 1 suffices to ensure (6). In turn (see the
discussion in Section III), this ensures that we “only” need
T = (m+ 1)n+m samples in order to compute the controller.
This guarantees that one can compute a priori for how long
a system should run in open loop. In practice, this result also
guarantees practical applicability for systems of moderate size
that are not strongly unstable.

When dealing with large-scale and highly unstable systems,
the situation is inevitably more complex, and other solutions
might be needed. For instance, if a stabilizing controller K̂ (not
necessarily performing) is known, then one can think of running
closed-loop experiments during which a persistently exciting
signal is superimposed to the control signal given by K̂, making
sure that all the previous results continue to follow without
any modification. Measures of this type are widely adopted in
adaptive control to overcome issues of loss of stabilizability due
to the lack of excitation caused by feedback [42, Sec. 7.6]. �

V. ROBUSTNESS: NOISE-CORRUPTED DATA

AND NONLINEAR SYSTEMS

In the previous sections, we have considered data-driven
design formulations based on LMIs. Besides their simplicity,
one of the main reasons for resorting to such formulations is
that LMIs have proven their effectiveness also in the presence
of perturbations and/or uncertainties around the system to be
controlled [32]. In this section, we exemplify this point by con-
sidering stabilization with noisy data, as well as the problem of
stabilizing an unstable equilibrium of a nonlinear system, which
are both situations where identification can be challenging.
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A. Stabilization With Noisy Data

Consider again system (1a), but suppose that one can only
measure the signal

ζ(k) = x(k) + w(k) (29)

where w is an unknown measurement noise. We will assume no
particular statistics on the noise. The problem of interest is to
design a stabilizing controller for system (1a) assuming that we
measure ζ. Let

W0,T := [wd(0) wd(1) · · · wd(T − 1) ] (30)

W1,T := [wd(1) wd(2) · · · wd(T ) ] (31)

wherewd(k), k = 0, 1, . . . , T are noise samples associated with
the experiment, and

Z0,T := X0,T +W0,T (32)

Z1,T := X1,T +W1,T . (33)

The latter are the matrices containing the available information
about the state of the system. Recall that in the noise-free case,
a stabilizing controller can be found by searching for a solution
Q to the LMI (15). In the noisy case, it seems, thus, natural to
replace (15) with the design condition

[
Z0,T Q Z1,TQ

Q�Z�
1,T Z0,T Q

]
	 0. (34)

This condition already gives a possible solution approach. In
fact, since positive definiteness is preserved under sufficiently
small perturbations, for every solution Q to (15), there exists a
noise level such thatQwill remain solution to (34), and such that
the controller K = U0,1,TQ(Z0,TQ)−1 obtained by replacing
X0,T withZ0,T will remain stabilizing, where the latter property
holds since the eigenvalues of A+BK depend with continuity
on K. This indicates that the considered LMI-based approach
has some intrinsic degree of robustness to measurement noise.

We formalize these considerations by focusing the attention
on a slightly different formulation, which consists in finding a
matrix Q and a scalar α > 0 such that

[
Z0,T Q− αZ1,TZ

�
1,T Z1,TQ

Q�Z�
1,T Z0,T Q

]
	 0

[
IT Q

Q� Z0,T Q

]
	 0. (35)

It is easy to verify that in the noise-free case and with persistently
exciting inputs also this formulation is always feasible and
any solution Q is such that K = U0,1,TQ(Z0,TQ)−1 gives
a stabilizing controller. We show this fact in Remark 4. We
consider the formulation (35) because it makes it possible to
explicitly quantify noise levels for which a solution returns a
stabilizing controller.

Remark 4 ( Feasibility of (35) Under Noise-Free Data): In
the noise-free case, that is, when Z0,T = X0,T and
Z1,T = X1,T , the formulations (34) and (15) coincide. Suppose
then that (34) is feasible and let Q be a solution. Since
positive definiteness is preserved under small perturbations,
(Q,α) = (Q, β) will be a solution to the first of (35) for a
sufficiently small β > 0. Hence (Q,α) = (δQ, δβ) will remain
feasible for the first of (35) for all δ > 0. We can, thus, pick

δ small enough so that (Q,α) := (δQ, δβ) satisfies also the
second of (35).

Conversely, consider any solution (Q,α) to (35) and let
K = U0,1,TQ(Z0,TQ)−1. Since α > 0, the first inequality in
(35) implies that (34) also holds, which, in view of the identities
Z0,T = X0,T and Z1,T = X1,T , is equivalent to have condition
(15) satisfied. Hence, the gain K is stabilizing. �

Consider the following assumptions.
Assumption 1: The matrices

[
U0,1,T

Z0,T

]
, Z1,T (36)

have full row rank. �
Assumption 2: It holds that

R0,TR
�
0,T � γZ1,TZ

�
1,T (37)

for some γ > 0, where R0,T := AW0,T −W1,T . �
Assumptions 1 and 2 both express the natural requirement

that the loss of information caused by noise is not significant.
In particular, Assumption 1 is the counterpart of condition (6)
for noise-free data, and is always satisfied when the input is
persistently exciting and the noise is sufficiently small. This
is because: 1) condition (6) implies that X0,T has rank n; 2)
X1,T = AX0,T +BU0,1,T so that condition (6) implies that
rankX1,T = rank[B A] = n otherwise the system would not
be controllable; and 3) the rank of a matrix does not change
under sufficiently small perturbations.

Intuitively, Assumption 1 alone is not sufficient to guarantee
the existence of a solution returning a stabilizing controller
since this assumption may also be verified by arbitrary noise,
in which case the data need not contain any useful information.
Assumption 2 takes into account this aspect, and plays the role
of a signal-to-noise ratio (SNR) condition. Notice that when
Assumption 1 holds, then Assumption 2 is always satisfied for
large enough γ. As next theorem shows, however, to get stability,
one needs to restrict the magnitude of γ, meaning that the SNR
must be sufficiently large.

Theorem 5: Suppose that Assumptions 1 and 2 hold. Then,
any solution (Q,α) to (35) such that γ < α2/(4 + 2α) returns
a stabilizing controller K = U0,1,TQ(Z0,TQ)−1.

Proof: As a first step, we parametrize the closed-loop system
as a function of GK and the noise

A+BK =
[
B A

] [K
I

]

=
[
B A

] [U0,1,T

Z0,T

]
GK

=
[
B A

] [ U0,1,T

X0,T +W0,T

]
GK

= X1,TGK +AW0,TGK

= (Z1,T +R0,T )GK (38)

where GK is a solution to
[
K

I

]
=

[
U0,1,T

Z0,T

]
GK (39)

which exists in view of Assumption 1.
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By this parametrization, A+BK is stable if and only if there
exists P 	 0 such that

(Z1,T +R0,T )GKPG�
K (Z1,T +R0,T )

� − P ≺ 0 (40)

where GK satisfies (39). Following the same analysis as in
Section IV-A, introducing the change of variable Q = GKP
and exploiting the relation Z0,TQ = P , stability is equivalent
to the existence of a matrix Q such that

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Z0,TQ 	 0

(Z1,T +R0,T )Q(Z0,T Q)−1·
·Q�(Z1,T +R0,T )

� − Z0,T Q ≺ 0

U0,1,TQ = KZ0,TQ.

(41)

From the viewpoint of design, one can focus on the inequal-
ity constraints, since the equality constraint can be satisfied a
posteriori with K = U0,1,TQ(Z0,TQ)−1.

We can now finalize the proof. First recall that for arbitrary
matrices X,Y, F with F 	 0, and a scalar ε > 0, it holds that
XFY � + Y FX� � εXFX� + ε−1Y FY �. By applying this
property to the second inequality in (41) with F = Z0,TQ,
X = Z1,TQ(Z0,TQ)−1, Y = R0,TQ(Z0,TQ)−1, a sufficient
condition for stability is that
⎧
⎨
⎩

Z0,TQ 	 0

Θ := (1 + ε)Z1,TQ(Z0,T Q)−1Q�Z�
1,T

+(1 + ε−1)R0,TQ(Z0,T Q)−1Q�R�
0,T − Z0,T Q ≺ 0

where ε > 0. By the Schur complement, any solution (Q,α)
gives Z1,TQ(Z0,T Q)−1Q�Z�

1,T + αZ1,TZ
�
1,T − Z0,TQ ≺ 0

and Q(Z0,T Q)−1Q� ≺ IT . Accordingly, any solution (Q,α)
ensures that

Θ ≺ −αZ1,TZ
�
1,T + εZ1,TZ

�
1,T + (1 + ε−1)R0,TR

�
0,T . (42)

This implies that any solution (Q,α) to (35) ensures stability if
the right-hand side of (42) is negative definite. Pick ε = α/2.
The right-hand side of (42) is negative definite if

R0,TR
�
0,T ≺ α2

2(2 + α)
Z1,TZ

�
1,T

which is satisfied when γ < α2/(4 + 2α). �
Illustrative Example: We consider the batch reactor system

of the previous section. We generate the data with unit random
initial conditions and by applying to each input channel a unit
random input sequence of length T = 15. The noise is taken as
a random sequence within [−0.01, 0.01]. To solve (35) we used
CVX, obtaining

K =

[
2.5934 −1.6853 3.2184 −1.8010
3.1396 0.1146 3.2873 −1.5069

]

with α ≈ 10−4. Condition γ < α2/(4 + 2α) is not satisfied as
the smallest value of γ satisfying Assumption 2 is ≈ 10−2.
Nonetheless, K stabilizes the closed-loop system. As pointed
out, this simply reflects that the condition γ < α2/(4 + 2α)
can be theoretically conservative. In fact, numerical simulations
indicate that condition γ < α2/(4 + 2α) is satisfied for noise
of order 10−4, while, in practice, the algorithm systematically
returns stabilizing controllers for noise of order 10−2, and for
noise of order 10−1 (noise which can also alter the first digit
of the noise-free trajectory), it returns stabilizing controllers in
more than half of the cases. �

In contrast with Assumption 1, which can be assessed from
data only, checking whether Assumption 2 holds with a value
γ < α2/(4 + 2α) requires prior knowledge of an upper bound
on R0,T . In turn, this requires prior knowledge of an upper
bound on the noise and on the largest singular value of A. If this
information is available, then Assumption 2 can be assessed from
data.1 One can replace Assumption 2 with a (more conservative)
condition, which can be assessed under the only assumption that
an upper bound on the noise is available. Before stating this
result, we nonetheless point out that there is a reason why A
appears in Assumption 2. In fact, the information loss caused
by noise does not depend only on the magnitude of the noise
but also on its “direction.” For instance, in case the noise w
follows the equation w(k + 1) = Aw(k), then R0,T becomes
zero, meaning that Assumption 2 holds with an arbitrary γ
irrespective of the magnitude ofw. In fact, in this case,w behaves
as a genuine system trajectory (it evolves in the set of states that
the system can generate), so it brings useful information on the
system dynamics. This indicates that noise of large magnitude
but “close” to the set of states where the system evolves can
be less detrimental of noise with smaller magnitude but which
completely alters the direction of the noise-free trajectory.

As anticipated, one can replace Assumption 2 with a (more
conservative) condition verifiable under the only assumption that
an upper bound on the noise is known.

Assumption 3: It holds that
[

0

W0,T

] [
0

W0,T

]�
� γ1

[
U0,1,T

Z0,T

] [
U0,1,T

Z0,T

]�
(44)

W1,TW
�
1,T � γ2Z1,TZ

�
1,T (45)

for some γ1 ∈ (0, 0.5) and γ2 > 0. �
Corollary 1: Suppose that Assumptions 1 and 3 hold. Then,

any solution (Q,α) to (35) such that

6γ1 + 3γ2
1− 2γ1

<
α2

2(2 + α)
(46)

returns a stabilizing controller K = U0,1,TQ(Z0,TQ)−1.
Proof: See the Appendix. �
In both Theorem 5 and Corollary 1, stability relies on the

fulfillment of a condition like γ < α2/(4 + 2α). This suggests
that it might be convenient to reformulate the design problem
by searching for the solution (Q,α) to (35) maximizing α,
which still results in a convex problem. Nonetheless, it is worth
noting that both Theorem 5 and Corollary 1 only give sufficient
conditions, meaning (as shown also in the previous numerical
example) that one can find stabilizing controllers even when
γ ≥ α2/(4 + 2α) and (46) does not hold.

B. Stabilization of Nonlinear Systems

The previous result shows that a controller can be designed
in the presence of noise provided that the SNR is sufficiently

1For instance, recalling that W0,T and W1,T are n× T matrices, it follows
from the Gershgorin theorem that

W0,TW�
0,T � nwTIn, W1,TW�

1,T � nwTIn (43)

where w denotes an upper bound on the noise, that is, |wi(k)wj(k)| ≤ w for
all 1 ≤ i, j ≤ n and for all k = 0, 1, . . . , T . This implies that R0,T satisfies
R0,TR�

0,T � 2nwTIn(1 + σA), where σA denotes the square of the largest
singular value of the matrix A.
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small. This hints at the possibility of designing also a stabilizing
control for nonlinear systems based on data alone. As a matter of
fact, around an equilibrium, a nonlinear system can be expressed
via its first-order approximation plus a remainder. If we run our
experiment in such a way that the input and the state remain
sufficiently close to the equilibrium, then the remainder can be
viewed as a process disturbance of small magnitude and there is
a legitimate hope that the robust stabilization result also applies
to this case. In the rest of this section, we formalize this intuition.

Consider a smooth nonlinear system

x(k + 1) = f(x(k), u(k)) (47)

and let (x, u) be a known equilibrium pair, that is, such that
x = f(x, u). Let us rewrite the nonlinear system as

δx(k + 1) = Aδx(k) +Bδu(k) + d(k) (48)

where δx := x− x, δu := u− u, and where

A :=
∂f

∂x

∣∣∣∣
(x,u)=(x,u)

, B :=
∂f

∂u

∣∣∣∣
(x,u)=(x,u)

. (49)

The quantity d accounts for higher-order terms and it has the
property that is goes to zero faster than δx and δu, namely we
have

d = R(δx, δu)

[
δx

δu

]

withR(δx, δu) ann× (n+m)matrix of smooth functions with
the property that

lim
[ δxδu ]→0

R(δx, δu) = 0. (50)

It is known that if the pair (A,B) defining the linearized
system is stabilizable, then the controller K rendering A+BK
stable also exponentially stabilizes the equilibrium (x, u) for
the original nonlinear system. The objective here is to provide
sufficient conditions for the design of K from data. To this
end, we consider the following result, which is an adaptation
of Theorem 5:

X0,T := [ δxd(0) δxd(1) · · · δxd(T − 1) ]

X1,T := [ δxd(1) δxd(2) · · · δxd(T ) ]

U0,1,T := [ δud(0) δud(1) · · · δud(T − 1) ]

D0,T := [dd(0) dd(1) · · · dd(T − 1) ]

be the data resulting from an experiment carried out on the
nonlinear system (47). Note that the matrices X0,T , X1,T , and
U0,1,T are known. Consider the following assumptions.

Assumption 4: The matrices
[
U0,1,T

X0,T

]
, X1,T (51)

have full row rank. �
Assumption 5: It holds that

D0,TD
�
0,T � γX1,TX

�
1,T (52)

for some γ > 0. �
The following result holds.
Theorem 6: Consider a nonlinear system as in (47), along

with an equilibrium pair (x, u). Suppose that Assumptions 4

and 5 hold. Then, any solution (Q,α) to
[
X0,T Q− αX1,TX

�
1,T X1,TQ

Q�X�
1,T X0,T Q

]
	 0

[
IT Q

Q� X0,T Q

]
	 0 (53)

such that γ < α2/(4 + 2α) returns a stabilizing state-feedback
gain K = U0,1,TQ(X0,TQ)−1, which locally stabilizes the
equilibrium pair (x, u).

Proof: We only sketch the proof since it is essentially anal-
ogous to the proof of Theorem 5. Note that

A+BK =
[
B A

] [K
I

]
=

[
B A

] [U0,1,T

X0,T

]
GK

= (X1,T −D0,T )GK (54)

where GK is a solution to
[
K

I

]
=

[
U0,1,T

X0,T

]
GK (55)

which exists in view of Assumption 4. The rest of the proof
follows exactly the same steps as the proof of Theorem 5 by
replacing Z0,T , Z1,T , and R0,T by X0,T , X1,T , and −D0,T ,
respectively. �

Before illustrating the result with a numerical example, we
make some observations.

Assumptions 4 and 5 parallel the assumptions considered
for the case of noisy data. In particular, Assumptions 5 is the
counterpart of Assumption 2 (or Assumption 3) and it amounts
to requiring that the experiment is carried out sufficiently close
to the system equilibrium so that the effect of the nonlinearities
(namely the disturbance d) becomes small enough compared
with δx [cf., (50)].

At this moment, we do not have a method for designing the
experiments in such a way that Assumptions 4 and 5 hold.
This means that verifying Assumption 5 requires at this stage
prior knowledge of an upper bound on d, that is, on the type of
nonlinearity (Assumption 4 can be anyway assessed from data
only). Albeit, in some cases, this information can be inferred
from physical considerations, in general, this is an important
aspect, which deserves to be studied. Numerical simulations
(including the example which follows) nonetheless indicate that
at least, in certain cases, the “margin” is appreciable in the sense
that one obtains stabilizing controllers even when the experiment
leads the system sensibly far from its equilibrium.

Illustrative Example: Consider the Euler discretization of
an inverted pendulum

x1(k + 1) = x1(k) + Δx2(k)

x2(k + 1) =
Δg


sinx1(k) +

(
1− Δμ

m2

)
x2(k)

+
Δ

m2
u(k)

where we simplified the sampled times kΔ in k, with Δ the
sampling time. In the model,m is the mass to be balanced,  is the
distance from the base to the center of mass of the balanced body,
γ is the coefficient of rotational friction, and g is the acceleration
due to gravity. The states x1, x2 are the angular position and
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velocity, respectively, u is the applied torque. The system has
an unstable equilibrium in (x, u) = (0, 0) corresponding to the
pendulum upright position and, therefore, δx = x and δu = u.
It is straightforward to verify that

d(k) =

[
0

Δg
� (sinx1(k)− x1(k))

]
.

Suppose that the parameters are Δ = 0.1, m =  = 1, g =
9.8, andμ = 0.01. The control design procedure is implemented
in MATLAB. We generate the data with random initial con-
ditions within [−0.1, 0.1], and by applying a random input
sequence of length T = 5 within [−0.1, 0.1]. To solve (53), we
used CVX, obtaining

K = [−12.3895 −3.6495 ]

which stabilizes the unstable equilibrium in agreement with
Theorem 6 as the linearized system has matrices

A =

[
1.0000 0.1000

0.9800 0.9990

]
, B =

[
0

0.1

]
.

In this example, α = 0.0422 and condition γ < α2/(4 + 2α)
holds because X1,T is of order 0.01 and D0,T is of order 10−5

so that the smallest value of γ for which Assumption 5 holds
is ≈ 10−6 while α2/(4 + 2α) ≈ 10−4. We finally notice that
the algorithm systematically returns stabilizing controllers also
for initial conditions and inputs within the interval [−0.5, 0.5],
which corresponds to an initial displacement of about 28◦ from
the equilibrium, albeit in this case, condition γ < α2/(4 + 2α)
not always holds. �

VI. INPUT–OUTPUT DATA: THE CASE OF

SINGLE-INPUT–SINGLE-OUTPUT (SISO) SYSTEMS

In Section IV-A, the measured data are the inputs and the state,
and the starting point is to express the trajectories of the system
and the control gain in terms of the Hankel matrix of input-state
data. Here, we show how similar arguments can be used when
only input/output data are accessible. The main derivations are
given for single-input–single-output (SISO) systems. A remark
on multi-input–multi-output (MIMO) systems is provided in
Section VI-C.

Consider a SISO systems as in (1) in left difference operator
representation [43, Sec. 2.3.3]

y(k) + any(k − 1) + · · ·+ a2y(k − n+ 1) + a1y(k − n)

= bnu(k − 1) + · · ·+ b2u(k − n+ 1) + b1u(k − n).
(56)

This representation corresponds to (1) for D = 0. In this case,
one can reduce the output measurement case to the state mea-
surement case with minor effort. Let

χ(k) := col(y(k − n), y(k − n+ 1), . . . , y(k − 1)

u(k − n), u(k − n+ 1), . . . , u(k − 1)) (57)

from (56), we obtain the state-space system (58) shown at the
bottom of this page. Note that we turned our attention to a system
of order 2n, which is not minimal.

Consider now the matrix in (6) written for the system χ(k +
1) = Aχ(k) + Bu(k) in (58), with T satisfying T ≥ 2n+ 1. If
this matrix is full-row rank, then the analysis in the previous
sections can be repeated also for system (58). For system (58),
the matrix in question takes the form

[
U0,1,T

X̂0,T

]
=

[
ud(0) ud(1) . . . ud(T − 1)

χd(0) χd(1) . . . χd(T − 1)

]
(59)

where χd(i+ 1) = Aχd(i) + Bud(i) for i ≥ 0 and where
χd(0) is the initial condition in the experiment

χd(0) = col(yd(−n), yd(−n+ 1), . . . , yd(−1)
ud(−n), ud(−n+ 1), . . . , ud(−1)).

The following result holds:
Lemma 3: The identity

[
U0,1,T

X̂0,T

]
=

⎡
⎣

U0,1,T

Y−n,n,T

U−n,n,T

⎤
⎦ (60)

holds. Moreover, if ud,[0,T−1] is persistently exciting of order
2n+ 1, then

rank

[
U0,1,T

X̂0,T

]
= 2n+ 1. (61)

χ(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0 0 0 · · · 0

0 0 1 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 1 0 0 0 · · · 0

−a1 −a2 −a3 · · · −an b1 b2 b3 · · · bn

0 0 0 · · · 0 0 1 0 · · · 0

0 0 0 · · · 0 0 0 1 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 0 0 0 0 · · · 1

0 0 0 · · · 0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

χ(k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

0

0

0
...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸︷︷︸
B

u(k)

y(k) =
[
−a1 −a2 −a3 · · · −an b1 b2 b3 · · · bn

]
︸ ︷︷ ︸

C

χ(k)

(58)
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Proof: The identity (60) follows immediately from the defi-
nition of the state χ in (57) and the definition X̂0,T in (59). As
for the second statement, by the Key Reachability Lemma [43,
Lemma 3.4.7], it is known that the 2n-dimensional state-space
model (58) is controllable if and only if the polynomials zn +
anz

n−1 · · ·+ a2z + a1, bnzn−1 + · · ·+ b2z + b1 are coprime.
Under this condition and persistency of excitation, Lemma 1
applied to (58) immediately proves (61). �

A. Data-Based Open-Loop Representation

Similar to the case in which inputs and states are measured,
the full rank property (61) plays a crucial role in expressing
the system via data. As a matter of fact, for any pair (u, χ),
we have

[
u

χ

]
=

[
U0,1,T

X̂0,T

]
g (62)

for some g. Hence

χ(k + 1) =
[
B A

] [u(k)
χ(k)

]

=
[
B A

] [U0,1,T

X̂0,T

]
g(k) = X̂1,T g(k) (63)

where

X̂1,T =

[
Y−n+1,n,T

U−n+1,n,T

]
, X̂0,T =

[
Y−n,n,T

U−n,n,T

]
. (64)

As in the proof of Theorem 1 for the full state measurement case,
we can, thus, solve for g in (62), replace it in (63), and obtain
the following result.

Theorem 7: Let condition (61) hold. Then, system (58) has
the following equivalent representation:

χ(k + 1) = X̂1,T

[
U0,1,T

X̂0,T

]† [
u(k)

χ(k)

]

y(k) = e�nX̂1,T

[
U0,1,T

X̂0,T

]† [
01×2n

I2n

]
χ(k) (65)

with en the nth versor of R2n.
Proof: The proof follows the same steps as the proof of

Theorem 1 and is omitted. �
A representation of ordern of the system can also be extracted

from (65). The model (65), which only depends on measured
input–output data, can be used for various analysis and design
purposes. In the next section, we focus on the problem of
designing an output feedback controller without going through
the step of identifying a parametric model of the system.

B. Design of Output Feedback Controllers

Consider the left difference operator representation (56), its
realization (58) and the input/state pair (u, χ). We introduce a
controller of the form

yc(k) + cny
c(k − 1) + · · ·+ c2y

c(k − n+ 1) + c1y
c(k − n)

= dnu
c(k − 1) + · · ·+ d2u

c(k − n+ 1) + d1u
c(k − n)

(66)

whose state-space representation is given by (67) shown at the
bottom of this page, with state χc defined similar to (57). In the
closed-loop system, we enforce the following interconnection
conditions relating the process and the controller:

uc(k) = y(k) yc(k) = u(k), k ≥ 0. (68)

Note, in particular, the identity, for k ≥ n

χ(k) =

[
y[k−n,k−1]

u[k−n,k−1]

]
=

[
uc
[k−n,k−1]

yc[k−n,k−1]

]

=

[
0n×n In
In 0n×n

]
χc(k). (69)

Hence, for k ≥ n, there is no loss of generality in considering
as the closed-loop system the system (70) shown at bottom of
the next page.

In the following result, we say that controller (66) stabilizes
system (56), meaning that the closed-loop system (70) is asymp-
totically stable.

Theorem 8: Let condition (61) hold. Then, the following
properties hold.

χc(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0 0 0 · · · 0

0 0 1 · · · 0 0 0 0 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 1 0 0 0 · · · 0

−c1 −c2 −c3 · · · −cn d1 d2 d3 · · · dn

0 0 0 · · · 0 0 1 0 · · · 0

0 0 0 · · · 0 0 0 1 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 0 0 0 0 · · · 1

0 0 0 · · · 0 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
F

χc(k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

0

0

0
...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸︷︷︸
G

uc(k)

yc(k) =
[
−c1 −c2 −c3 · · · −cn d1 d2 d3 · · · dn

]
︸ ︷︷ ︸

H

χc(k) (67)
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1) The closed-loop system (70) has the equivalent represen-
tation

χ(k + 1) = X̂1,TGKχ(k) (71)

where GK is a T × 2n matrix such that[
K
I2n

]
=

[
U0,1,T

X̂0,T

]
GK (72)

and

K := [d1 . . . dn − c1 . . . −cn] (73)

is the vector of coefficients of the controller (66).
2) Any matrix Q satisfying

[
X̂0,T Q X̂1,TQ
Q�X̂�

1,T X̂0,T Q

]
	 0 (74)

is such that the controller (66) with coefficients given by

K = U0,1,TQ(X̂0,TQ)−1 (75)

stabilizes system (56). Conversely, any controller (66) that
stabilizes system (56) must have coefficients K given by
(75), with Q a solution of (74).

Proof:
1) In view of condition (61) and by Rouché–Capelli theorem,

a T × 2n matrix GK exists such that (72) holds. Hence

A+ BK = [B A]

[
K
I2n

]

= [B A]

[
U0,1,T

X̂0,T

]
GK

= X̂1,TGK (76)

from which we obtain (71), which are the dynamics (70)
parametrized with respect to the matrix GK.

2) The parametrization (71) of the closed-loop system is the
output-feedback counterpart of the parametrization (14)
obtained for the case of full state measurements. We can,
then, proceed analogously to the proof of Theorem 3 re-
placingGK , X0,T , X1,T withGK, X̂0,T , X̂1,T and obtain
the claimed result mutatis mutandis.

�

Note that given a solution K as in (75), the resulting entries
ordered as in (73) lead to the following state-space realization
of order n for the controller:

ξ(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−cn 1 0 · · · 0

−cn−1 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−c1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
ξ(k) +

⎡
⎢⎢⎢⎢⎢⎢⎣

dn
dn−1

...
d2
d1

⎤
⎥⎥⎥⎥⎥⎥⎦
y(k)

u(k) =
[
1 0 0 · · · 0 0

]
ξ(k). (77)

As a final point, we notice that Theorem 8 relies on the knowl-
edge of the ordern of the system. In many cases, as, for instance,
in the numerical example which follows, this information can
result from first principles considerations. Otherwise, one can
determine the model order from data, e.g., using subspace
identification methods [44, Th. 2]. In this regard, it is worth
pointing out that determining the model order from data does not
correspond to the whole algorithmic procedure needed to get a
parametric model of the system. Note that this information is also
sufficient to render condition (61) verifiable from data, which
circumvents the problem of assessing persistence of excitation
conditions that depend on the state trajectory of the system.

Illustrative Example: Consider a system [45] made up by
two carts. The two carts are mechanically coupled by a spring
with uncertain stiffness γ ∈ [0.25, 1.5]. The aim is to control the
position of one cart by applying a force to the other cart. The
system state-space description is given by

[
A B
C D

]
=

⎡
⎢⎢⎢⎣

⎡
⎢⎣

0 1 0 0
−γ 0 γ 0
0 0 0 1
γ 0 −γ 0

⎤
⎥⎦

⎡
⎢⎣
0
1
0
0

⎤
⎥⎦

[ 0 0 1 0 ] 0

⎤
⎥⎥⎥⎦ . (78)

Assume thatγ = 1 (unknown). The system is controllable and
observable. All the open-loop eigenvalues are on the imaginary
axis. The input–output discretized version using a sampling time
of 1 s is as in (56) with coefficients

[a1 a2 a3 a4 ] = [ 1 −2.311 2.623 −2.311 ]

[ b1 b2 b3 b4 ] = [ 0.039 0.383 0.383 0.039 ] .

We design a controller following the approach described in
Theorem 8. We generate the data with random initial conditions

χ(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0 0 0 · · · 0

0 0 1 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 1 0 0 0 · · · 0

−a1 −a2 −a3 · · · −an b1 b2 b3 · · · bn

0 0 0 · · · 0 0 1 0 · · · 0

0 0 0 · · · 0 0 0 1 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 0 0 0 0 · · · 1

d1 d2 d3 . . . dn −c1 −c2 −c3 . . . −cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

χ(k) (70)
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and by applying a random input sequence of length T = 9. To
solve (74), we used CVX, obtaining from (75)

K =

[
1.1837 −1.5214 1.3408 −1.4770

0.0005 −0.5035 −0.9589 −0.9620
]

which stabilizes the closed-loop dynamics in agreement with
Theorem 8. In particular, a minimal state-space representation
(Ac, Bc, Dc, Dc) of this controller is given by [see (77)]

[
Ac Bc

Cc Dc

]
=

⎡
⎢⎢⎢⎣

⎡
⎢⎣
−0.9620 1 0 0
−0.9589 0 1 0
−0.5035 0 0 1
0.0005 0 0 0

⎤
⎥⎦

⎡
⎢⎣
−1.4770
1.3408

−1.5214
1.1837

⎤
⎥⎦

[ 1 0 0 0 ] 0

⎤
⎥⎥⎥⎦ .

�

C. Remark on the Case of MIMO Systems

An analysis similar to the one presented before can be repeated
starting from the left-difference operator of a MIMO system

y(k) +Any(k − 1) + · · ·+A2y(k − n+ 1) +A1y(k − n)

= Bnu(k − 1) + · · ·+B2u(k − n+ 1) +B1u(k − n)
(79)

where y ∈ Rp, u ∈ Rm, with Ai and Bi matrices of suitable
dimensions. We define the state vector χ ∈ R(m+p)n as before,
which yields the state representation (80), shown at the bottom of
this page. In case of MIMO systems, we assume that we collect
data with an input ud,[0,T−1], T ≥ ((m+ p)n+ 1)(m+ 1),
persistently exciting of order (m+ p)n+ 1. Then, by Lemma
1, we obtain the fulfillment of the following condition:

rank

[
U0,1,T

X̂0,T

]
= (m+ p)n+m. (81)

Under this condition, the same analysis of Section VI-B can be
repeated to obtain the following:

Corollary 2: Let condition (81) hold. Then, any matrix Q
satisfying (74) is such that the controller

yc(k) + Cny
c(k − 1) + · · ·+ C1y

c(k − n)

= Dnu
c(k − 1) + · · ·+D1u

c(k − n) (82)

with matrix coefficients given by
[
D1 . . . Dn − C1 . . . −Cn

]
= U0,1,TQ(X̂0,TQ)−1

(83)

stabilizes system (79). Conversely, any controller as in (82) that
stabilizes (79) can be expressed in terms of the coefficients
[D1 . . . Dn − C1 . . . − Cn] given by (83), with Q a so-
lution to (74).

VII. DISCUSSION AND CONCLUSION

Persistently exciting data enable the construction of data-
dependent matrices that can replace systems models. Adopting
this paradigm proposed by [27], we have shown the existence
of a parametrization of feedback control systems that allows
us to reduce the stabilization problem to an equivalent data-
dependent LMI. Since LMIs are ubiquitous in systems and
control, we expect that our approach could lead to data-driven
solutions to many other control problems. As an example, we
have considered an LQR problem. For several control problems,
LMIs have proven their effectiveness in providing robustness to
various sources of uncertainties. We have capitalized on this
fact extending the analysis to the case of noise-corrupted data
and showing how the approach can be used to stabilize unstable
equilibria of nonlinear systems, which are both situations where
identification can be challenging. A remarkable feature of all
these results is that: 1) no parametric model of system is iden-
tified; 2) stability guarantees come with a finite (computable)
number of data points.

Studying how our approach can be used to systematically
address control problems via data-dependent LMIs could be very
rewarding, and lead to a methodical inclusion of data to analyze
and design control systems. A great leap forward will come from
systematically extending the methods of this article to systems
where identification is challenging, such as switched [17] and

χ(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Ip 0 · · · 0 0p×m 0p×m 0p×m · · · 0p×m

0 0 Ip · · · 0 0p×m 0p×m 0p×m · · · 0p×m

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · Ip 0p×m 0p×m 0p×m · · · 0p×m

−A1 −A2 −A3 · · · −An B1 B2 B3 · · · Bn

0m×p 0m×p 0m×p · · · 0m×p 0m×m Im 0m×m . . . 0m×m

0m×p 0m×p 0m×p · · · 0m×p 0m×m 0m×m Im · · · 0m×m

...
...

...
. . .

...
...

...
...

. . .
...

0m×p 0m×p 0m×p . . . 0m×p 0m×m 0m×m 0m×m . . . Im

0m×p 0m×p 0m×p . . . 0m×p 0m×m 0m×m 0m×m . . . 0m×m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

χ(k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0p×m

0p×m

...

0p×m

0p×m

0m×m

0m×m

...

0m×m

Im

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

u(k)

y(k) =
[
−A1 −A2 −A3 · · · −An B1 B2 B3 · · · Bn

]
︸ ︷︷ ︸

C

χ(k) (80)
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nonlinear systems. The results of this article show that our
approach is concretely promising for nonlinear systems, but we
have only touched the surface of this research area. Estimating
the domain of attraction or considering other approaches such
as lifting techniques are two simple examples of compelling
research directions for nonlinear systems. Recent results have
reignited the interest of the community on system identification
for nonlinear systems, interestingly pointing out the importance
of the concept of persistently exciting signals [38], [46]. We are
confident that our approach will also play a fundamental role in
developing a systematic methodology for the data-driven design
of control laws for nonlinear systems.

APPENDIX

A. Proof of Lemma 2

1) By the Rouché–Capelli theorem, the rank condition (5)
implies the existence of a vector g ∈ RT−t+1 such that

[
u[0,t−1]

x0

]
=

[
U0,t,T−t+1

X0,T−t+1

]
g.

By replacing this expression in (2), we get
[
u[0,t−1]

y[0,t−1]

]
=

[
Itm 0tm×n

Tt Ot

][
U0,t,T−t+1

X0,T−t+1

]
g

=

[
U0,t,T−t+1

Y0,t,T−t+1

]
g

where the last identity holds because of (4). This con-
cludes the proof of 1).

2) In view of (4)
[
U0,t,T−t+1

Y0,t,T−t+1

]
g =

[
Itm 0tm×t

Tt Ot

][
U0,t,T−t+1

X0,T−t+1

]
g.

Now define [
u[0,t−1]

x0

]
:=

[
U0,t,T−t+1

X0,T−t+1

]
g.

Thus, U0,t,T−t+1g represents a t-long input sequence
u[0,t−1] of system (1), while Y0,t,T−t+1g = Otx0 +
Ttu[0,t−1] is the corresponding output obtained from ini-
tial conditions x0.

�

B. Proof of Theorem 1

For compactness, let

S :=

[
U0,1,T

X0,T

]
, v :=

[
u

x

]
.

By the Rouché–Capelli theorem, for any given v, the system of
equations

v = Sg (84)

admits infinite solutions g, given by

g = S†v +Π⊥
Sw, w ∈ RT (85)

where Π⊥
S := (I − S†S) is the orthogonal projector onto the

kernel of S. Hence

x(k + 1) =
[
B A

] [u(k)
x(k)

]
=

[
B A

]
Sg(k) (86)

for some g(k). As a final step, also note that [B A]S = X1,T .
Overall, we thus have

x(k + 1) = X1,T

(
S†

[
u(k)

x(k)

]
+Π⊥

Sw(k)

)
(87)

with X1,TΠ
⊥
S = [B A]SΠ⊥

S = 0 where the last identity holds
by the properties of the projector. �

C. Proof of Corollary 1

The idea for the proof is to show that Assumption 3 implies
Assumption 2 with

γ =
6γ1 + 3γ2
1− 2γ1

(88)

meaning that the proof of Theorem 5 applies to Corollary 1.
Suppose that (44) holds. By pre and postmultiplying both

terms of (44) by [B A] and [B A]�, we get

AW0,TW
�
0,TA

�

� γ1(AZ0,T +BU0,1,T )(AZ0,T +BU0,1,T )
�

=: γ1V0,TV
�
0,T (89)

where we set V0,T := AZ0,T +BU0,1,T for compactness. Let
us now write γ1 as

γ1 =
δ1

6 + 2δ1
⇐⇒ δ1 =

6γ1
1− 2γ1

. (90)

Note that the above relation is well defined since γ1 ∈ (0, 0.5)
by hypothesis. Also notice that for every γ1 ∈ (0, 0.5), there
uniquely corresponds δ1 > 0.

Hence, (89) can be rewritten as

3

2
AW0,TW

�
0,TA

� � δ1
4
V0,TV

�
0,T − δ1

2
AW0,TW

�
0,TA

�.

(91)

Recall now that for arbitrary matrices X,Y, F with F 	 0, and
a scalar ε > 0, it holds that

XFY � + Y FX� � εXFX� + ε−1Y FY �. (92)

By applying this property to the right-hand side of (91) with
ε = 0.5, X = V0,T , F = I , and Y = AW0,T , we get

δ1
4
V0,TV

�
0,T − δ1

2
AW0,TW

�
0,TA

�

=
δ1
2

[
V0,TV

�
0,T +AW0,TW

�
0,TA

�]

− δ1
2

[
1

2
V0,TV

�
0,T + 2AW0,TW

�
0,TA

�
]

� δ1
2

[
V0,TV

�
0,T +AW0,TW

�
0,TA

�]



DE PERSIS AND TESI: FORMULAS FOR DATA-DRIVEN CONTROL: STABILIZATION, OPTIMALITY, AND ROBUSTNESS 923

− δ1
2

[
AW0,TV

�
0,T + V0,TW

�
0,TA

�]

=
δ1
2

[
(V0,T −AW0,T )(V0,T −AW0,T )

�]

=
δ1
2
X1,TX

�
1,T . (93)

Thus, (89) implies

3

2
AW0,TW

�
0,TA

� � δ1
2
X1,TX

�
1,T . (94)

Consider now (45), and let us write γ2 as

γ2 =
δ2

3 + δ1
⇐⇒ δ2 = γ2(3 + δ1) (95)

where δ1 has been defined in (90) and δ2 is a constant. Condition
(45), thus, reads

3W1,TW
�
1,T � δ2Z1,TZ

�
1,T − δ1W1,TW

�
1,T . (96)

Combining (94) and (96) and using (92), we finally verify that
Assumption 2 is satisfied with γ as in (88). To see this, consider
first the terms on the left-hand side of (94) and (96). By applying
again (10) with ε = 0.5,X = AW0,T ,F = I , andY = −W1,T ,
we obtain

R0,TR
�
0,T = (AW0,T −W1,T ) (AW0,T −W1,T )

�

� 3

2
AW0,TW

�
0,TA

� + 3W1,TW
�
1,T . (97)

Consider next the terms on the right-hand side of (94) and (96).
By applying again (92) with ε = 0.5, X = X1,T , F = I , and
Y = −W1,T , we obtain

δ1
2
X1,TX

�
1,T − δ1W1,TW

�
1,T + δ2Z1,TZ

�
1,T

= δ1X1,TX
�
1,T + δ1W1,TW

�
1,T + δ2Z1,TZ

�
1,T

− δ1

[
1

2
X1,TX

�
1,T + 2W1,TW

�
1,T

]

� δ1X1,TX
�
1,T + δ1W1,TW

�
1,T + δ2Z1,TZ

�
1,T

+ δ1X1,TW
�
1,T + δ1W1,TX

�
1,T

= δ1(X1,T +W1,T )(X1,T +W1,T )
� + δ2Z1,TZ

�
1,T

= (δ1 + δ2)Z1,TZ
�
1,T

= γZ1,TZ
�
1,T . (98)

This gives the claim. �
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