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Abstract

Generalizing the attack structure in argumentation frameworks (AFs) has been

studied in different ways. Most prominently, the binary attack relation of Dung

frameworks has been extended to the notion of collective attacks. The result-

ing formalism is often termed SETAFs. Another approach is provided via ab-

stract dialectical frameworks (ADFs), where acceptance conditions specify the

relation between arguments; restricting these conditions naturally allows for so-

called support-free ADFs. The aim of the paper is to shed light on the relation

between these two different approaches. To this end, we investigate and compare

the expressiveness of SETAFs and support-free ADFs under the lens of 3-valued

semantics. Our results show that it is only the presence of unsatisfiable acceptance

conditions in support-free ADFs that discriminate the two approaches.

1 Introduction

Abstract argumentation frameworks (AFs) as introduced by Dung [1] are a core for-

malism in formal argumentation. A popular line of research investigates extensions of

Dung AFs that allow for a richer syntax (see, e.g. [2]). In this work we investigate two

generalisations of Dung AFs that allow for a more flexible attack structure (but do not

consider support between arguments).

The first formalism we consider are SETAFs as introduced by Nielsen and Par-

sons [3]. SETAFs extend Dung AFs by allowing for collective attacks such that a set of

arguments B attacks another argument a but no proper subset of B attacks a. Argumen-

tation frameworks with collective attacks have received increasing interest in the last

years. For instance, semi-stable, stage, ideal, and eager semantics have been adapted

to SETAFs in [4, 5]; translations between SETAFs and other abstract argumentation
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formalisms are studied in [6]; [7] observed that for particular instantiations, SETAFs

provide a more convenient target formalism than Dung AFs. The expressiveness of

SETAFs with two-valued semantics has been investigated in [4] in terms of signatures.

Signatures have been introduced in [8] for AFs. In general terms, a signature for a

formalism and a semantics captures all possible outcomes that can be obtained by the

instances of the formalism under the considered semantics. Besides that, signatures are

recognized as crucial for operators in dynamics of argumentation (cf. [9]).

The second formalism we consider are support-free abstract dialectical frameworks

(SFADFs), a subclass of abstract dialectical frameworks (ADFs) [10] which are known

as an advanced abstract formalism for argumentation, that is able to cover several gen-

eralizations of AFs [2, 6]. This is accomplished by acceptance conditions which spec-

ify, for each argument, its relation to its neighbour arguments via propositional for-

mulas. These conditions determine the links between the arguments which can be, in

particular, attacking or supporting. SFADFs are ADFs where each link between argu-

ments is attacking; they have been introduced in a recent study on different sub-classes

of ADFs [11].

For comparison of the two formalisms, we need to focus on 3-valued (labelling)

semantics [12, 13], which are integral for ADF semantics [10]. In terms of SETAFs,

we can rely on the recently introduced labelling semantics in [5]. We first define a new

class of ADFs (SETADFs) where the acceptance conditions strictly follow the nature

of collective attacks in SETAFs and show that SETAFs and SETADFs coincide for the

main semantics, i.e. the σ -labellings of a SETAF are equal to the σ -interpretations of

the corresponding SETADF. We then provide exact characterisations of the 3-valued

signatures for SETAFs (and thus for SETADFs) for most of the semantics under con-

sideration. While SETADFs are a syntactically defined subclass of ADFs, the second

formalism we study can be understood as semantical subclass of ADFs. In fact, for

SFADFs it is not the syntactic structure of acceptance conditions that is restricted but

their semantic behavior, in the sense that all links need to be attacking. The second

main contribution of the paper is to determine the exact difference in expressiveness

between SETADFs and SFADFs.

We briefly discuss related work. The expressiveness of SETAFs has first been in-

vestigated in [14] where different sub-classes of ADFs, i.e. AFs, SETAFs and Bipolar

ADFs, are related w.r.t. their signatures of 3-valued semantics. Moreover, they pro-

vide an algorithm to decide realizability in one of the formalisms under different se-

mantics. However, no explicit characterisations of the signatures are given. Recently,

Pührer [15] presented explicit characterisations of the signatures of general ADFs (but

not for the sub-classes discussed above). In contrast, [4] provides explicit character-

isations of the two-valued signatures of SETAFs and shows that SETAFs are more

expressive than AFs. In both works all arguments are relevant for the signature, while

in [5] it is shown that when allowing to add extra arguments to an AF which are not

relevant for the signature, i.e. the extensions/labellings are projected on common argu-

ments, then SETAFs and AFs are of equivalent expressiveness. Other recent work [16]

already implicitly showed that SFADFs with satisfiable acceptance conditions can be

equivalently represented as SETAFs. This provides a sufficient condition for rewriting

an ADF as SETAF and raises the question whether it is also a necessary condition. In

fact, we will show that a SFADF has an equivalent SETAF if and only if all accep-
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tance conditions are satisfiable. Different sub-classes of ADFs (including SFADFs)

have been compared in [11], but no exact characterisations of signatures as we provide

here are given in that work.

To summarize, the main contributions of our paper are as follows:

• We embed SETAFs under 3-valued labeling based semantics [5] in the more

general framework of ADFs. That is, we show 3-valued labeling based SETAF

semantics to be equivalent to the corresponding ADF semantics. As a side result,

this also shows the equivalence of the 3-valued SETAF semantics in [14] and [5].

• We investigate the expressiveness of SETAFs under 3-valued semantics by pro-

viding exact characterizations of the signatures for preferred, stable, grounded

and conflict-free semantics, thus complementing the investigations on expres-

siveness of SETAFs [4] in terms of extension-based semantics.

• We study the relations between SETAFs and support-free ADFs (SFADFs). In

particular we give the exact difference in expressiveness between SETAFs and

SFADFs under conflict-free, admissible, preferred, grounded, complete, stable

and two-valued model semantics.

Some technical details had to be omitted but are available in an appendix.

2 Background

In this section we briefly recall the necessary definitions for SETAFs and ADFs.

Definition 1. A set argumentation framework (SETAF) is an ordered pair F = (A,R),
where A is a finite set of arguments and R ⊆ (2A \ { /0})×A is the attack relation.

The semantics of SETAFs are usually defined similarly to AFs, i.e., based on exten-

sions. However, in this work we focus on 3-valued labelling based semantics, cf. [5].

Definition 2. A (3-valued) labelling of a SETAF F = (A,R) is a total function λ : A 7→
{in,out,undec}. For x ∈ {in,out,undec} we write λx to denote the sets of argu-

ments a∈A with λ (a)= x. We sometimes denote labellings λ as triples (λin,λout,λundec).

Definition 3. Let F = (A,R) be a SETAF. A labelling is called conflict-free in F if

(i) for all (S,a) ∈ R either λ (a) 6= in or there is a b ∈ S with λ (b) 6= in, and (ii) for all

a ∈ A, if λ (a) = out then there is an attack (S,a)∈ R such that λ (b) = in for all b ∈ S.

A labelling λ which is conflict-free in F is

• admissible in F iff for all a ∈ A if λ (a) = in then for all (S,a) ∈ R there is a

b ∈ S such that λ (b) = out;

• complete in F iff for all a ∈ A (i) λ (a) = in iff for all (S,a) ∈ R there is a b ∈ S

such that λ (b) = out, and (ii) λ (a) = out iff there is an attack (S,a) ∈ R such

that λ (b) = in for all b ∈ S;

• grounded in F iff it is complete and there is no λ ′ with λ ′
in
⊂ λin complete in F ;
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Figure 1: The SETAF of Example 1.

• preferred in F iff it is complete and there is no λ ′ with λ ′
in
⊃λin complete in F ;

• stable in F iff λundec = /0.

The set of all σ labellings for a SETAF F is denoted by σL (F), where σ ∈ {cf,adm,

com,grd,prf,stb} abbreviates the different semantics in the obvious manner.

Example 1. The SETAF F = ({a,b,c},{({a,b},c),({a,c},b)}) is depicted in Fig-

ure 1. For instance, ({a,b},c) ∈ R says that there is a joint attack from a and b to c.

This represents that neither a nor b is strong enough to attack c by themselves. Fur-

ther, {a 7→ in,b 7→ undec,c 7→ in} is an instance of a conflict-free labelling, that is

not an admissible labelling (since c is mapped to in but neither a nor b is mapped

to out). The labelling that maps all argument to undec is not a complete labelling,

however, it is an admissible labelling. Further, {a 7→ in,b 7→ undec,c 7→ undec} is an

admissible, the unique grounded and a complete labelling, which is not a preferred la-

belling because λin = {a} is not ⊆-maximal among all complete labellings. Moreover,

prfL (F) = stbL (F) = {{a 7→ in,b 7→ out,c 7→ in},{a 7→ in,b 7→ in,c 7→ out}}.

We next turn to abstract dialectical frameworks [17].

Definition 4. An abstract dialectical framework (ADF) is a tuple D = (S,L,C) where:

• S is a finite set of arguments (statements, positions);

• L ⊆ S× S is a set of links among arguments;

• C = {ϕs}s∈S is a collection of propositional formulas over arguments, called

acceptance conditions.

An ADF can be represented by a graph in which nodes indicate arguments and

links show the relation among arguments. Each argument s in an ADF is attached by a

propositional formula, called acceptance condition, ϕs over par(s) such that, par(s) =
{b | (b,s) ∈ L}. Since in ADFs an argument appears in the acceptance condition of

an argument s if and only if it belongs to the set par(s), the set of links L of an ADF

is given implicitly via the acceptance conditions. The acceptance condition of each

argument clarifies under which condition the argument can be accepted and determines

the type of links (see Definition 6 below). An interpretation v (for F) is a function

v : S 7→ {t, f,u}, that maps arguments to one of the three truth values true (t), false (f),

or undecided (u). Truth values can be ordered via information ordering relation <i

given by u <i t and u <i f and no other pair of truth values are related by <i. Relation

≤i is the reflexive and transitive closure of <i. An interpretation v is two-valued if it

maps each argument to either t or f. Let V be the set of all interpretations for an ADF
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D. Then, we call a subset of all interpretations of the ADF, V⊆ V , an interpretation-

set. Interpretations can be ordered via ≤i with respect to their information content, i.e.

w ≤i v if w(s)≤i v(s) for each s ∈ S. Further, we denote the update of an interpretation

v with a truth value x ∈ {t, f,u} for an argument b by v|bx , i.e. v|bx(b) = x and v|bx(a) =
v(a) for a 6= b. Finally, the partial valuation of acceptance condition ϕs by v, is given

by ϕv
s = v(ϕs) = ϕs[p/⊤ : v(p) = t][p/⊥ : v(p) = f], for p ∈ par(s).

Semantics for ADFs can be defined via a characteristic operator ΓD for an ADF

D. Given an interpretation v (for D), the characteristic operator ΓD for D is defined as

ΓD(v) = v′ such that v′(s) =











t if ϕv
s is irrefutable (i.e., a tautology),

f if ϕv
s is unsatisfiable,

u otherwise.

Definition 5. Given an ADF D = (S,L,C), an interpretation v is

• conflict-free in D iff v(s) = t implies ϕv
s is satisfiable and v(s) = f implies ϕv

s is

unsatisfiable;

• admissible in D iff v ≤i ΓD(v);

• complete in D iff v = ΓD(v);

• grounded in D iff v is the least fixed-point of ΓD;

• preferred in D iff v is ≤i-maximal admissible in D;

• a (two-valued) model of D iff v is two-valued and for all s ∈ S, it holds that

v(s) = v(ϕs);

• a stable model of D if v is a model of D and vt = wt, where w is the grounded

interpretation of the stb-reduct Dv = (Sv,Lv,Cv), where Sv = vt, Lv = L∩ (Sv ×
Sv), and ϕs[p/⊥ : v(p) = f] for each s ∈ Sv.

The set of all σ interpretations for an ADF D is denoted by σ(D), where σ ∈ {cf,adm,

com,grd,prf,mod,stb} abbreviates the different semantics in the obvious manner.

Example 2. An example of an ADF D = (S,L,C) is shown in Figure 2. To each argu-

ment a propositional formula is associated, the acceptance condition of the argument.

For instance, the acceptance condition of c, namely ϕc : ¬a∨¬b, states that c can be

accepted in an interpretation where either a or b (or both) are rejected.

In D the interpretation v = {a 7→ u,b 7→ u,c 7→ t} is conflict-free. However, v

is not an admissible interpretation, because ΓD(v) = {a 7→ u,b 7→ u,c 7→ u}, that is,

v 6≤i ΓD(v). The interpretation v1 = {a 7→ f,b 7→ t,c 7→ u} on the other hand is an

admissible interpretation. Since ΓD(v1) = {a 7→ f,b 7→ t,c 7→ t} and v1 ≤i ΓD(v1).
Further, prf(D) = mod(D) = {{a 7→ t,b 7→ f,c 7→ t},{a 7→ f,b 7→ t,c 7→ t}}, but only

the first interpretation in this set is a stable model. This is because for v = {a 7→ t,b 7→
f,c 7→ t} the unique grounded interpretation w of Dv is {a 7→ t,c 7→ t} and vt = wt.

The interpretation v′ = {a 7→ f,b 7→ t,c 7→ t} is not a stable model, since the unique

grounded interpretation w′ of Dv′ is {b 7→ u,c 7→ t} and v′t 6= w′t. Actually, v′ is not
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¬b

b∨¬c ¬a∨¬b

Figure 2: The ADF of Example 2.

a stable model because the truth value of b in v′ is since of self-support. Moreover,

the unique grounded interpretation of D is v = {a 7→ u,b 7→ u,c 7→ u}. In addition, we

have com(D) = prf(D)∪grd(D).

In ADFs links between arguments can be classified into four types, reflecting the

relationship of attack and/or support that exists among the arguments. In Definition 6

we consider two-valued interpretations that are only defined over the parents of a, that

is, only give values to par(a).

Definition 6. Let D = (S,L,C) be an ADF. A link (b,a) ∈ L is called

• supporting (in D) if for every two-valued interpretation v of par(a), v(ϕa) = t

implies v|bt (ϕa) = t;

• attacking (in D) if for every two-valued interpretation v of par(a), v(ϕa) = f

implies v|bt (ϕa) = f;

• redundant (in D) if it is both attacking and supporting;

• dependent (in D) if it is neither attacking nor supporting.

The classification of the types of the links of ADFs is also relevant for classify-

ing ADFs themselves. One particularly important subclass of ADFs is that of bipolar

ADFs or BADFs for short. In such an ADF each link is either attacking or supporting

(or both; thus, the links can also be redundant). Another subclass of ADFs, having only

attacking links, is defined in [18], called support free ADFs (SFADFs) in the current

work, defined formally as follows.

Definition 7. An ADF is called support-free if it has only attacking links.

For SFADFs, it turns out that the intention of stable semantics, i.e. to avoid cyclic

support among arguments, becomes immaterial, thus mod(D) = stb(D) for any ADF

D; the property is called weakly coherent in [18].

Proposition 1. For every SFADF D it holds that mod(D) = stb(D).

Proof. The result follows from the following observation: Let D=(S,L,C) be an ADF,

let v be a model of D and let s∈ S be an argument such that all parents of s are attackers.

Thus, ϕv
s is irrefutable if and only if ϕs[p/⊥ : v(p) = f] is irrefutable.
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3 Embedding SETAFs in ADFs

As observed by Polberg [19] and Linsbichler et.al [14], the notion of collective attacks

can also be represented in ADFs by using the right acceptance conditions. We next

introduce the class SETADFs of ADFs for this purpose.

Definition 8. An ADF D = (S,L,C) is called SETAF-like (SETADF) if each of the

acceptance conditions in C is given by a formula (with C a set of non-empty clauses)

∧

cl∈C

∨

a∈cl

¬a.

That is, in a SETADF each acceptance condition is either ⊤ (if C is empty) or a

proper CNF formula over negative literals. SETADFs and SETAFs can be embedded

in each other as follows.

Definition 9. Let F = (A,R) be a SETAF. The ADF associated to F is a tuple DF =
(S,L,C) in which S = A, L = {(a,b) | (B,b) ∈ R,a ∈ B} and C = {ϕa}a∈S is the collec-

tion of acceptance conditions defined, for each a ∈ S, as

ϕa =
∧

(B,a)∈R

∨

a′∈B

¬a′.

Let D = (S,L,C) be a SETADF. We construct the SETAF FD = (A,R) in which,

A = S, and R is constructed as follows. For each argument s ∈ S with acceptance

formula
∧

cl∈C

∨

a∈cl ¬a we add the attacks {(cl,s) | cl ∈ C } to R.

Clearly the ADF DF associated to a SETAF F is a SETADF and D is the ADF asso-

ciated to the constructed SETAF FD. We next deal with the fact that SETAF semantics

are defined as three-valued labellings while semantics for ADFs are defined as three

valued interpretations. In order to compare these semantics we associate the in label

with t, the out label with f , and the undec label with u.

Theorem 2. For σ ∈ {cf,adm,com,prf,grd,stb}, a SETAF F and its associated SET-

ADF D, we have that σL (F) and σ(D) are in one-to-one correspondence with each

labelling L ∈ σL (F) corresponding to an interpretation v ∈ σ(D) such that v(s) = t

iff λ (s) = in, v(s) = f iff λ (s) = out, and v(s) = u iff λ (s) = undec.

Notice that by the above theorem we have that the 3-valued SETAF semantics in-

troduced in [14] coincide with the 3-valued labelling based SETAF semantics of [5]

and the model semantics of [14] corresponds to the stable semantics of [5].

4 3-valued Signatures of SETAFs

We adapt the concept of signatures [8] towards our needs first.

Definition 10. The signature of SETAFs under a labelling-based semantics σL is de-

fined as Σ
σL

SETAF = {σL (F) | F ∈ SETAF}. The signature of an ADF-subclass C under

a semantics σ is defined as Σσ
C
= {σ(D) | D ∈ C }.
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By Theorem 2 we can use labellings of SETAFs and interpretations of the SETADF

class of ADFs interchangeably, yielding that Σ
σL

SETAF ≡ Σσ
SETADF , i.e. the 3-valued sig-

natures of SETAFs and SETADFs only differ in the naming of the labels. For conve-

nience, we will use the SETAF terminology in this section.

Proposition 3. The signature Σ
stbL

SETAF is given by all sets L of labellings such that

1. all λ ∈ L have the same domain ARGSL; λ (s) 6= undec for all λ ∈ L, s ∈
ARGSL.

2. If λ ∈ L assigns one argument to out then it also assigns an argument to in.

3. For arbitrary λ1,λ2 ∈L with λ1 6= λ2 there is an argument a such that λ1(a) = in

and λ2(a) = out.

Proof. We first show that for each SETAF F the set stbL (F) satisfies the conditions of

the proposition. First clearly all λ ∈ stbL (F) have the same domain and by the defini-

tion of stable semantics do not assign undec to any argument. That is the first condition

is satisfied. For Condition (2), towards a contradiction assume that the domain is non-

empty and λ ∈ stbL (F) assigns all arguments to out. Consider an arbitrary argument

a. By definition of stable semantics a is only labeled out if there is an attack (B,a) such

that all arguments in B are labeled in in, a contradiction. Thus we obtain that there is

at least one argument a with λ (a) = in. For Condition (3), towards a contradiction

assume that for all arguments a with λ1(a) = in also λ2(a) = in holds. As λ1 6= λ2

there is an a with λ2(a) = in and λ1(a) = out. That is, there is an attack (B,a) such

that λ1(b) = in for all b ∈ B. But then also λ2(b) = in for all b ∈ B and by λ2(a) = in

we obtain that λ2 6∈ cfL (F), a contradiction.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL)
with AL = ARGSL and RL = {(λin,a) | λ ∈L,λ (a) = out}. We show that stbL (FL) =
L.

To this end we first show stbL (FL) ⊇ L. Consider an arbitrary λ ∈ L: By Con-

dition (1) there is no a ∈ ARGSL with λ (a) = undec and it only remains to show

λ ∈ cfL (FL). First, if λ (a) = out for some argument a then by construction of

RL and Condition (2) we have an attack (λin,a) and thus a is legally labeled out.

Now towards a contradiction assume there is a conflict (B,a) such that B∪{a} ⊆ λin.

Then, by construction of RL there is a λ ′ ∈ L with λ ′
in

= B and λin 6= B (as a ∈ λin).

That is, λ ′
in

⊂ λin, a contradiction to Condition (3). Thus, λ ∈ cfL (FL) and therefore

λ ∈ stbL (FL).
To show stbL (FL) ⊆ L, consider λ ∈ stbL (FL). If λ maps all arguments to in

then there is no attack in RL which means that L contains only the labelling λ . Thus,

we assume that there is a with λ (a) = out and there is (B,a) ∈ RL with B ⊆ λin.

By construction there is λ ′ ∈ L such that λ ′
in

= B. Then by construction we have

(B,c) ∈ RL for all c 6∈ B and thus λ ′
in

= B = λin and moreover λ ′
out

= λout and thus

λ = λ ′.

We now turn to the signature for preferred semantics. Compared to the conditions

for stable semantics, labelling may now assign undec to arguments. Note that stable is

the only semantics allowing for an empty labelling set.
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Proposition 4. The signature Σ
prfL
SETAF is given by all non-empty sets L of labellings s.t.

1. all labellings λ ∈ L have the same domain ARGSL.

2. If λ ∈ L assigns one argument to out then it also assigns an argument to in.

3. For arbitrary λ1,λ2 ∈ L with λ1 6= λ2 there is an argument a such λ1(a) = in

and λ2(a) = out.

Proof sketch. We first show that for each SETAF F the set prfL (F) satisfies the con-

ditions of the proposition. The first condition is satisfied as all λ ∈ prfL (F) have the

same domain. The second condition is satisfied by the definition of conflict-free la-

bellings. Condition (3) is by the ⊆-maximality of λin which implies that there is a

conflict between each two preferred extensions.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL)
with AL = ARGSL and RL = {(λin,a) | λ ∈ L,λ (a) = out} ∪ {(λin ∪ {a},a) | λ ∈
L,λ (a) = undec}. It remains to show that prfL (FL) = L. To show prfL (FL) ⊇ L,

consider an arbitrary λ ∈ L. λ ∈ cfL (FL) can be seen by construction, and λ ∈
admL (FL) since argument labelled out is attacked by λ ; finally λ ∈ prfL (FL) is guar-

anteed since the arguments a with λ (a) = undec are involved in self-attacks. To show

prfL (FL)⊆ L consider λ ∈ prfL (FL). It can be checked that λ satisfies all the condi-

tions of the proposition.

Proposition 5. The signature Σ
cfL
SETAF is given by all non-empty sets L of labellings s.t.

1. all λ ∈ L have the same domain ARGSL.

2. If λ ∈ L assigns one argument to out then it also assigns an argument to in.

3. For λ ∈ L and C ⊆ λin also (C, /0,ARGSL \C) ∈ L.

4. For λ ∈ L and C ⊆ λout also (λin,λout \C,λundec∪C) ∈ L.

5. For λ ,λ ′ ∈ L with λin ⊆ λ ′
in

also (λ ′
in
,λout∪λ ′

out
,λundec∩λ ′

undec
) ∈ L.

6. For λ ,λ ′ ∈ L and C ⊆ λout (s.t. C 6= /0) we have λin∪C 6⊆ λ ′
in

.

Proof sketch. Let F be an arbitrary SETAF we show that cfL (F) satisfies the con-

ditions of the proposition. The first two conditions are clearly satisfied by the def-

inition of conflict-free labelling. For Condition (3), towards a contradiction assume

that (C, /0,ARGSL \C) is not conflict-free. Then there is an attack (B,a) such that

B∪ {a} ⊆ C ⊆ λin, and thus λ 6∈ cfL (F), a contradiction. Condition (4) is satisfied

as in the definition of conflict-free labellings there are no conditions for labeling an

argument undec. Further, the conditions that allow to label an argument out solely

depend on the in labeled arguments. For Condition (5), consider λ ,λ ′ ∈ cfL (F) with

λin ⊆ λ ′
in

and λ ∗ = (λ ′
in
,λout ∪ λ ′

out
,λundec ∩ λ ′

undec
). Since λ ,λ ′ ∈ L, it is easy to

check that λ ∗ is a well-founded labelling and λ ∗ ∈ cfL (F). For Condition (6), con-

sider λ ,λ ′ ∈ cfL (F) and a set C ⊆ λout containing an argument a such that λ (a)= out.

That is, there is an attack (B,a) with B ⊆ λin and thus λin∪C 6⊆ λ ′
in

. That is, Condition

(6) is satisfied.
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Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL)
with AL = ARGSL and RL = {(λin,a) | λ ∈ L,λ (a) = out}∪{(B,b) | b ∈ B,∄λ ∈ L :

λin = B}. To complete the proof it remains to show that cfL (FL) = L.

Finally, we give an exact characterisation of the signature of grounded semantics.

Proposition 6. The signature Σ
grdL

SETAF is given by sets L of labellings such that |L|= 1,

and if λ ∈ L assigns one argument to out then λin 6= /0.

Notice that Proposition 6 basically exploits that grounded semantics is a unique

status semantics based on admissibility. The result thus immediately extends to other

semantics satisfying these two properties, e.g. to ideal or eager semantics [5].

So far, we have provided characterisations for the signatures Σ
stbL

SETAF, Σ
prfL
SETAF, Σ

cfL
SETAF,

Σ
grdL

SETAF. By Theorem 2 we get analogous characterizations of Σσ
SETADF for the corre-

sponding ADF semantics.

We have not yet touched admissible and complete semantics. Here, the exact char-

acterisations seem to be more cumbersome and are left for future work. However, for

admissible semantics the following proposition provides necessary conditions for an

labelling-set to be adm-realizable, but it remains open whether they are also sufficient.

Proposition 7. For each L ∈ Σ
admL

SETAF we have:

1. all λ ∈ L have the same domain ARGSL.

2. If λ ∈ L assigns one argument to out then it also assigns an argument to in.

3. For λ ,λ ′ ∈ L and C ⊆ λout (s.t. C 6= /0) we have λin∪C 6⊆ λ ′
in

.

4. For arbitrary λ ,λ ′ ∈ L either (a) (λin∪λ ′
in
,λout∪λ ′

out
,λundec∩λ ′

undec
) ∈ L or

(b) there is an argument a such λ (a) = in and λ ′(a) = out.

5. For λ ,λ ′∈L with λout ⊆ λ ′
out

, and C ⊆ λin \
⋃

λ ∗∈L: λ ∗
in
=λ ′

in

λ ∗
out

we have (λ ′
in
∪

C,λ ′
out

,λ ′
undec

\C) ∈ L.

6. For λ ,λ ′ ∈ L with λin ⊆ λ ′
in

, and C ⊆ λout we have (λ ′
in
,λ ′

out
∪C,λ ′

undec
\C) ∈

L.

7. For λ ,λ ′ ∈ L with λin ⊆ λ ′
in

and λout ⊇ λ ′
out

we have (λin,λ
′
out

,ARGSL \(λin∪
λ ′
out

)) ∈ L.

8. ( /0, /0,ARGSL) ∈ L.

Proof. We show that for each SETAF F the set admL (F) satisfies the conditions of

the proposition. Conditions (1)–(3) are by the fact that admL (F)⊆ cfL (F). For Con-

dition (4), let λ ,λ ′ ∈ admL (F) with λin ∩λ ′
out = {} (since each admissible labelling

defends itself, λ ′
in
∩ λout = {}). Thus, λ ∗ = (λin ∪ λ ′

in
,λout ∪ λ ′

out
,λundec ∩ λ ′

undec
)

is a well-defined labelling. Further, since λ ,λ ′ ∈ admL (F) it is easy to check that

λ ∗ ∈ admL (F). For Condition (5), let λ ∗ = (λ ′
in
∪C,λ ′

out
,λ ′

undec
\C). First, λ ∗ is a

well-defined labelling. Notice that the set C contains arguments defended by λ and

not attacked by λ ′
in

. Now, it is easy to check that λ ∗ meets the condition for being
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an admissible labelling. For Condition (6), let λ ∗ = (λ ′
in
,λ ′

out
∪C,λ ′

undec
\C). No-

tice that the set C contains only arguments attacked by λin and thus are also attacked

by λ ′
in

. Thus, starting from the admissible labelling λ ′ we can relabel arguments in

C to out and obtain that λ ∗ is also an admissible labelling. For Condition (7), let

λ ∗ = (λin,λ
′
out

,ARGSL \ (λin∪λ ′
out

)). First, λ ∗ is a well-defined labelling. We have

that setting λ ′
out

to out is sufficient to make all the in labels for arguments in λ ′
in

valid

and thus are also sufficient to make the in labels for arguments λin ⊆ λ ′
in

valid. More-

over, as λout ⊇ λ ′
out

also labelling arguments λin with in is sufficient to make the out

labels for λ ′
out

valid. Hence, λ ∗ is admissible. For Condition (8), the conditions of

admissible labelling for arguments labelled in or out in ( /0, /0,ARGSL) are clearly met,

since there are no such arguments.

5 On the Relation between SETAFs and Support-Free

ADFs

In order to compare SETAFs with SFADFs, we can rely on SETADFs (recall Theo-

rem 2). In particular, we will compare the signatures Σσ
SETADF and Σσ

SFADF , cf. Def-

inition 10. We start with the observation that each SETADF can be rewritten as an

equivalent SETADF that is also a SFADF.1

Lemma 8. For each SETADF D = (S,L,C) there is an equivalent SETADF D′ =
(S,L′,C′) that is also a SFADF, i.e. for each s ∈ S, ϕs ∈C, ϕ ′

s ∈C′ we have ϕs ≡ ϕ ′
s.

Proof. Given a SETADF D, by Definition 8, each acceptance condition is a CNF over

negative literals and thus does not have any support link which is not redundant. We can

thus obtain L′ by removing the redundant links from L and C′ by, in each acceptance

condition, deleting the clauses that are super-sets of other clauses.

By the above we have that Σσ
SETADF ⊆ Σσ

SFADF. Now consider the interpretation

v = {a 7→ f}. We have that for all considered semantics σ , v is a σ -interpretation of the

SFADF D = ({a},{ϕa =⊥}) but there is no SETADF with v being a σ -interpretation.

We thus obtain Σσ
SETADF ( Σσ

SFADF .

Theorem 9. Σσ
SETADF ( Σσ

SFADF , for σ ∈ {cf,adm,stb,mod,com,prf,grd}.

In the remainder of this section we aim to characterise the difference between

Σσ
SETADF and Σσ

SFADF . To this end we first recall a characterisation of the acceptance

conditions of SFADF that can be rewritten as collective attacks.

Lemma 10. [16] Let D = (S,L,C) be a SFADF. If s ∈ S has at least one incoming

link then the acceptance condition ϕs can be written in CNF containing only negative

literals.

It remains to consider those arguments in an SFADF with no incoming links. Such

arguments allow for only two acceptance conditions ⊤ and ⊥. While condition ⊤ is

1 As discussed in [6], in general, SETAFs translate to bipolar ADFs that contain attacking and redundant

links. However, when we first remove redundant attacks from the SETAF we obtain a SFADF.
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unproblematic (it refers to an initial argument in a SETAF), an argument with unsat-

isfiable acceptance condition cannot be modeled in a SETADF. In fact, the different

expressiveness of SETADFs and SFADFs is solely rooted in the capability of SFADFs

to set an argument to f via a ⊥ acceptance condition.

We next give a generic characterisations of the difference between Σσ
SETADF and

Σσ
SFADF .

Theorem 11. For σ ∈{cf,adm,stb,mod,com,prf,grd}, we have ∆σ =Σσ
SFADF\Σσ

SETADF

with

∆σ = {V ∈ Σσ
SFADF | ∃v ∈V s.t. ∀a : v(a) ∈ {f,u}∧∃a : v(a) = f}.

Proof sketch. First for V ∈ ∆σ the interpretation v cannot be realized in a SETADF as

we cannot have v(a)∈ f without v(b) ∈ t for some other argument b. On the other hand

one can show that when V ∈ Σσ
SFADF is such that each v ∈V assigns some argument to t

one can construct a SETADF D with σ(D) =V. This is by the fact that we can rewrite

acceptance conditions via Lemma 10 and replace⊥ acceptance conditions by collective

attacks, i.e. for each interpretation we add collective attacks from the arguments set to

t to all argument with ⊥ acceptance condition.

Next, we provide stronger characterisations of ∆σ for preferred and stable seman-

tics.

Proposition 12. For V ∈ ∆σ and σ ∈ {stb,mod,prf} we have |V| = 1. For σ ∈
{stb,mod} the unique v ∈ V assigns all arguments to f.

Proof sketch. If a SFADF has a σ -interpretation v that assigns some arguments to f

without assigning an argument to t then we have that the arguments assigned to f are

exactly the arguments with acceptance condition ⊥. For stb and mod semantics this

means all arguments have acceptance condition ⊥ and the result follows. Each pre-

ferred interpretation assigns arguments with acceptance condition ⊥ to f and thus the

existence of another preferred interpretation would violate the ≤i-maximality of v.

In other words each interpretation-set which is σ -realizable in SFADFs and con-

tains at least two interpretations can be realized in SETADFs, for σ ∈ {stb,prf,mod}.

We close this section with an example illustrating that the above characterisation thus

not hold for cf, adm, and com.

Example 3. Let D = ({a,b,c},{ϕa = ⊥,ϕb = ¬c,ϕc = ¬b}). We have com(D) =
{{a 7→ f,b 7→ u,c 7→ u},{a 7→ f,b 7→ t,c 7→ f},{a 7→ f,b 7→ f,c 7→ t}}. By Theorem 11,

com(D) cannot be realized as SETADF. Moreover, as com(D) ⊆ adm(D) ⊆ cf(D) for

every ADF D, we have that, despite all three contain more than one interpretation, none

of them can be realized via a SETADF.

6 Discussion

In this paper, we have characterised the expressiveness of SETAFs under 3-valued sig-

natures. The more fine-grained notion of 3-valued signatures reveals subtle differences

of the expressiveness of stable and preferred semantics which are not present in the
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2-valued setting [4] and enabled us to compare the expressive power of SETAFs and

SFADFs, a subclass of ADFs that allows only for attacking links. In particular, we have

exactly characterized the difference for conflict-free, admissible, complete, stable, pre-

ferred, and grounded semantics; this difference is rooted in the capability of SFADFs

to set an initial argument to false. Together with our exact characterisations on signa-

tures of SETAFs for stable, preferred, grounded, and conflict-free semantics, this also

yields the corresponding results for SFADFs. Exact characterisations for admissible

and complete semantics are subject of future work. Another aspect to be investigated

is to which extent our insights on labelling-based semantics for SETAFs and SFADFs

can help to improve the performance of reasoning systems.
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[4] Wolfgang Dvořák, Jorge Fandinno, and Stefan Woltran. On the expressive power

of collective attacks. Argument & Computation, 10(2):191–230, 2019.

[5] Giorgos Flouris and Antonis Bikakis. A comprehensive study of argumentation

frameworks with sets of attacking arguments. Int. J. Approx. Reason., 109:55–86,

2019.

[6] Sylwia Polberg. Developing the abstract dialectical framework. PhD thesis, TU

Wien, Institute of Information Systems, 2017.

[7] Bruno Yun, Srdjan Vesic, and Madalina Croitoru. Toward a more efficient gener-

ation of structured argumentation graphs. In Proc. COMMA, pages 205–212. IOS

Press, 2018.

[8] Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan Woltran.

Characteristics of multiple viewpoints in abstract argumentation. Artif. Intell.,

228:153–178, 2015.

13



[9] Ringo Baumann and Gerhard Brewka. Extension removal in abstract argumen-

tation - an axiomatic approach. In Proc. AAAI, pages 2670–2677. AAAI Press,

2019.

[10] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes P. Wallner, and

Stefan Woltran. Abstract Dialectical Frameworks: An Overview. In Handbook

of Formal Argumentation, chapter 5. College Publications, February 2018.

[11] Martin Diller, Atefeh Keshavarzi Zafarghandi, Thomas Linsbichler, and Stefan

Woltran. Investigating subclasses of abstract dialectical frameworks. Argument

& Computation, 11(1), 2020.

[12] Bart Verheij. Two approaches to dialectical argumentation: admissible sets and

argumentation stages. Proc. NAIC, 96:357–368, 1996.

[13] Martin W. A. Caminada and Dov M. Gabbay. A logical account of formal argu-

mentation. Studia Logica, 93(2-3):109–145, 2009.

[14] Thomas Linsbichler, Jörg Pührer, and Hannes Strass. A uniform account of re-

alizability in abstract argumentation. In Proc. ECAI, pages 252–260. IOS Press,

2016.

[15] Jörg Pührer. Realizability of three-valued semantics for abstract dialectical frame-

works. Artif. Intell., 278, 2020.

[16] Johannes Peter Wallner. Structural constraints for dynamic operators in abstract

argumentation. Argument & Computation, 11(1-2): 151-190, 2020.

[17] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes P. Wallner, and

Stefan Woltran. Abstract dialectical frameworks revisited. In Proc. IJCAI, pages

803–809, 2013.

[18] Atefeh Keshavarzi Zafarghandi. Investigating subclasses of abstract dialectical

frameworks. Master’s thesis, TU Wien, 2017.

[19] Sylwia Polberg. Understanding the abstract dialectical framework. In Proc.

JELIA, LNCS 10021, pages 430–446, 2016.

14



A Full Proofs

Proof of Proposition 1

We first show the following result.

Lemma 13. Let D = (S,L,C) be an ADF, let v be a model of D and let s ∈ S be an

argument such that all parents of s are attackers. Thus, ϕv
s is irrefutable if and only if

ϕs[p/⊥ : v(p) = f] is irrefutable.

Proof. Assume that D = (S,L,C) is an ADF and v is a model of D. Further, assume

s ∈ S such that ∀p ∈ par(s), (p,s) is an attacking link in D. Clearly if ϕs[p/⊥ : v(p) =
f] is irrefutable then also ϕv

s = ϕs[p/⊤ : v(p) = t][p/⊥ : v(p) = f] is irrefutable. It

remains to show that if ϕv
s is irrefutable then also ϕs[p/⊥ : v(p) = f] is irrefutable.

Let ϕ ′
s = ϕs[p/⊥ : v(p) = f]. Towards a contradiction, assume that ϕv

s is irrefutable

and ϕ ′
s is not irrefutable. That is, either ϕ ′

s is unsatisfiable or it is undecided. In both

cases, ϕ ′
s[p/⊤ : v(p) = t] is unsatisfiable (as all the links are attacking). Thus, ϕv

s =
ϕ ′

s[p/⊤ : v(p) = t] is unsatisfiable as well. This is a contradiction with the assumption

that ϕv
s is irrefutable.

Proof of Proposition 1. Let D=(S,L,C) be a SFADF. Since stb(D)⊆mod(D) for each

ADF D, it remains to show that each model of D is also a stable model of D. Towards

a contradiction assume that mod(D) 6⊆ stb(D). Thus, there exists a model v of D which

is not a stable model. Let Dv be a stb-reduct of D and let w be the unique grounded

interpretation of Dv. Since it is assumed that v is not a stable model, vt 6= wt. That is,

there exists s ∈ S such that v(s) = t and w(s) 6= t. Thus, ϕs[p/⊥ : v(p) = f] is not

irrefutable. Since, D is a SFADF, all parents of s are attackers. Hence, By Lemma 13,

ϕv
s is not irrefutable, that is, v(s) 6= t. This is a contradiction by the assumption that

v(s) = t. Thus, the assumption that D consists of a model which is not a stable model

is incorrect.

Proof of Theorem 2

We first introduce some notation.

Definition 11. The function Lab2Int(·) maps three-valued labellings to three-valued

interpretations such that

• (a) Lab2Int(λ )(s) = t iff λ (s) = in,

• (b) Lab2Int(λ )(s) = f iff λ (s) = out, and

• (c) Lab2Int(λ )(s) = u iff λ (s) = undec.

For a labelling λ and an interpretation I we write λ ≡ I iff Lab2Int(λ ) = I. For a set

L of labellings and a set V of interpretations we write L ≡ V iff {Lab2Int(λ ) | λ ∈
L }= V.

With the above notation we can restate Theorem 2 as follows: For a SETAF F and

its associated SETADF D we have σL (F)≡ σ(D) for σ ∈ {cf,adm,com,prf,grd,stb}.
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Proof of Theorem 2. Let F = (A,R) be a SETAF and D= (S,L,C) be its corresponding

SETADF. We show that {Lab2Int(λ ) | λ ∈ σL (F)} = σ(D). Let λ be an arbitrary

three-valued labelling and let v = Lab2Int(λ ). We investigate that λ ∈ σL (F) if and

only if v ∈ σ(D).

• Let σ = adm. We first assume that λ ∈ admL (F) and show that v ∈ adm(D).
Consider s ∈ S and the acceptance condition ϕs =

∧

(B,s)∈R

∨

a∈B¬a. If v(s) = t

we have that λ (s) = in and thus that for all (B,s) ∈ R there exists b ∈ B s.t.

λ (b) = out. The latter holds iff for all (B,s) ∈ R there exists b ∈ B s.t. v(b) = f

iff partial evaluation of ϕs under v is irrefutable iff ΓD(v)(s) = t. If v(s) = f

we have that λ (s) = out and thus that there exists (B,s) ∈ R s.t. for all b ∈ B:

λ (b) = in. The latter holds iff there exists (B,s) ∈ R s.t. for all b∈ B: v(b) = t iff

ϕv
s is unsatisfiable iff ΓD(v)(s) = f. We thus obtain that v ≤i ΓD(v) and therefore

v ∈ adm(D).

Now we assume v ∈ adm(D) and show that λ ∈ admL (F). That is for each s

with λ (s) = in we have ΓD(v)(s) = t and, as argued above, that for all (B,s) ∈ R

there exists b ∈ B s.t. λ (b) = out. Moreover for each s with λ (s) = out we have

ΓD(v)(s) = f and, as argued above, that there exists (B,s) ∈ R s.t. for all b ∈ B:

λ (b) = in. We obtain λ ∈ admL (F).

• Let σ ∈ {com,prf,grd}. Let λ ∈ comL (F) and let ϕs =
∧

(B,s)∈R

∨

a∈B¬a be the

acceptance condition of s ∈ S in D. For complete semantics it is enough to show

that λ (s) = in iff ΓD(v)(s) = t and λ (s) = out iff ΓD(v)(s) = f.

– It holds that λ (s) = in (i.e. v(s) = t) iff for all (B,s) ∈ R there exists b ∈ B

s.t. λ (b) = out iff for all (B,s) ∈ R there exists b∈ B s.t. v(b) = f iff partial

evaluation of ϕs under v is irrefutable iff ΓD(v)(s) = t.

– On the other hand, λ (s) = out (i.e. v(s) = f) iff there exists (B,s) ∈ R s.t.

for all b ∈ B: λ (b) = in iff there exists (B,s) ∈ R s.t. for all b ∈ B: v(b) = t

iff ϕv
s is unsatisfiable iff ΓD(v)(s) = f.

Now as complete semantics coincide it is easy to verify that also the maximal, i.e.

the preferred, extensions and the minimal, i.e. the grounded, extension coincide.

• Let σ = stb. Recall that, by Proposition 1, on SETADFs we have that stable

and models semantics coincide. We will show that λ ∈ stbL (F) iff v ∈ mod(D).
That is we show that for each s ∈ S we have (i) λ (s) = in iff v(ϕs) = t and (ii)

λ (s) = out iff v(ϕs) = f. To this end let ϕs =
∧

(B,s)∈R

∨

a∈B¬a be the acceptance

condition of s.

– It holds that λ (s) = in (i.e. v(s) = t) iff for all (B,s) ∈ R there exists b ∈ B

s.t. λ (b) = out iff for all (B,s) ∈ R there exists b ∈ B s.t. v(b) = f iff

v(ϕs) = t.

– On the other hand, λ (s) = out (i.e. v(s) = f) iff there exists (B,s) ∈ R s.t.

for all b ∈ B: λ (b) = in iff there exists (B,s) ∈ R s.t. for all b ∈ B: v(b) = t

iff v(ϕs) = f.
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• Finally let σ = cf. We first assume that λ ∈ cfL (F) and show that v ∈ cf(D).
Consider s ∈ S and the acceptance condition ϕs =

∧

(B,s)∈R

∨

a∈B¬a. If v(s) = t

we have that λ (s) = in and thus that for all (B,s) ∈ R there exists b ∈ B s.t.

λ (b) 6= in. The latter holds iff for all (B,s) ∈ R there exists b ∈ B s.t. v(b) 6= t

iff ϕv
s is satisfiable. If v(s) = f we have that λ (s) = out and thus that there exists

(B,s) ∈ R s.t. for all b ∈ B: λ (b) = in. The latter holds iff there exists (B,s) ∈ R

s.t. for all b ∈ B: v(b) = t iff ϕv
s is unsatisfiable. We thus obtain that v ∈ cf(D).

Now we assume v ∈ cf(D) and show that λ ∈ cfL (F). That is for each s with

λ (s) = in we have ϕv
s is satisfiable and, as argued above, that for all (B,s) ∈ R

there exists b ∈ B s.t. λ (b) 6= in. Moreover for each s with λ (s) = out we have

ϕv
s is unsatisfiable and, as argued above, that there exists (B,s) ∈ R s.t. for all

b ∈ B: λ (b) = in. We obtain λ ∈ cfL (F).

Proof of Proposition 4

We first show that for each SETAF F the set prfL (F) satisfies the conditions of the

proposition. The first condition is satisfied as clearly all λ ∈ prfL (F) have the same

domain. Now, assume that λ ∈ prfL (F) assigns an argument a to out. By the

definition of conflict-free labellings there is an attack (B,a) such that all arguments

b ∈ B are labeled in. Thus Condition (2) is satisfied. For Condition (3), consider

λ ,λ ′ ∈ prfL (F). Notice that there must be a conflict (S,a) with S∪{a} ⊆ λin ∪λ ′
in

as otherwise (λin ∪ λ ′
in
,λout ∪ λ ′

out
,λundec ∩ λ ′

undec
) would be a larger admissible la-

belling. If a ∈ λ ′
in

then, by the definition of admissible labellings, there is an attack

(B,b) with B ⊆ λ ′
in

and b ∈ S ∩ λin. Thus b is an argument with λ (b) = in and

λ ′(b) = out. Otherwise if a ∈ λin then, by the definition of admissible labellings,

there is an attack (B,b) with B ⊆ λin and b ∈ S∩λ ′
in

. Then, again by the definition of

admissible labellings, there is an attack (C,c) with C ⊆ λ ′
in

and c ∈ B ⊆ λin. Thus c is

an argument with λ (c) = in and λ ′(c) = out.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL)
with prfL (FL) = L. We use

AL = ARGSL

RL = {(λin,a) | λ ∈ L,λ (a) = out}∪{(λin∪{a},a) | λ ∈ L,λ (a) = undec}

We first show prfL (FL) ⊇ L: Consider an arbitrary λ ∈ L: We first show λ ∈
cfL (FL). We first consider out labeled arguments. First, if λ (a) = out for some

argument a then by construction and Condition (2) we have an attack (λin,a) and thus

a is legally labeled out. Now towards a contradiction assume there is a conflict (B,a)
such that B∪{a} ⊆ λin.

If |L| = 1, by the construction of FL there is no (B,a) ∈ RL such that a ∈ λin.

That is, a is legally labeled in. If |L| > 1, by construction there is a λ ′ ∈ L with

λ ′
in

= B \ {a}, a contradiction to Condition (3). Thus, λ ∈ cfL (FL). Next we show

that λ ∈ admL (FL). Consider an argument a with λ (a) = in and an attack (B,a).
Then, by construction there is a λ ′ ∈ L with λ ′

in
= B \ {a} and, by Condition (3), an

argument b ∈ B such that λ (b) = out. Thus, λ ∈ admL (FL). Finally we show that

λ ∈ prfL (FL). Towards a contradiction assume that there is a λ ′ ∈ admL (FL) with
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λin ⊂ λ ′
in

. Let a be an argument such that λ ′(a) = in and λ (a) ∈ {out,undec}. By

construction there is either an attack (λin,a) or an attack (λin∪{a},a). In both cases

λ ′ 6∈ admL (FL), a contradiction. Hence, λ ∈ prfL (FL).
We complete the proof by showing prfL (FL) ⊆ L: Consider λ ∈ prfL (FL): If λ

maps all arguments to in then there is no attack in RL which means that L contains

only the labelling λ . Thus we can assume that λ (a) = out for some argument a and

there is (B,a) ∈ RL with λ (b) = in for all b ∈ B. By construction there is λ ′ ∈ L such

that λ ′
in

= B. Then by construction we have (B,c) ∈ RL for all c with λ ′(c) = out and

(B∪{c},c) ∈ RL for all c with λ ′(c) = undec. We obtain that λ ′
in

= B = λin and thus

λ = λ ′.

Proof of Proposition 5

We first show that for each SETAF F the set cfL (F) satisfies the conditions of the

proposition. The first condition is satisfied as clearly all λ ∈ cfL (F) have the same

domain. Now, assume that λ ∈ cfL (F) assigns an argument a to out. By the definition

of conflict-free labellings there is an attack (B,a) such that all arguments b ∈ B are

labeled in. Thus Condition (2) is satisfied. For Condition (3), towards a contradiction

assume that (C, /0,ARGSL \C) is not conflict-free. Then there is an attack (B,a) such

that B∪{a} ⊆ C. But then also B∪{a} ⊆ λin and thus λ 6∈ cfL (F), a contradiction.

Condition (4) is satisfied as in the definition of conflict-free labellings there are no

conditions for label an argument undec. Further, the conditions that allow to label an

argument out solely depend on the in labeled arguments. Since λout \C ⊆ λout, the

condition for arguments labeled out is satisfied. For Condition (5) consider λ ,λ ′ ∈
cfL (F) with λin ⊆ λ ′

in
and λ ∗ = (λ ′

in
,λout∪λ ′

out
,λundec∩λ ′

undec
). First there cannot

be an attack (B,a) such that B∪{a} ⊆ λ ∗
in

as λ ′ ∈ cfL (F). Hence, λ ′
in
∩λout = /0 and

thus λ ∗ is a well-defined labelling. Moreover, for each a with λ ∗(a) = out there is an

attack (B,a) with B ⊆ λ ∗
in

as either λ (a) = out or λ ′(a) = out. Thus, λ ∗ ∈ cfL (F)
and therefore the condition holds. For Condition (6) consider λ ,λ ′ ∈ cfL (F) and a set

C ⊆ λout containing an argument a such that λ (a) = out. That is, there is an attack

(B,a) with B ⊆ λin and thus λin∪C 6⊆ λ ′. That is, Condition (6) is satisfied.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL)
satisfying cfL (FL) = L, where

AL = ARGSL

RL = {(λin,a) | λ ∈ L,λ (a) = out}∪{(B,b) | b ∈ B,∄λ ∈ L : λin = B}

We first show cfL (FL)⊇L: Consider an arbitrary λ ∈L: First, if λ (a) = out for some

argument a then by construction and Condition (2) we have an attack (λin,a) and thus

a is legally labeled out. Now towards a contradiction assume there is a conflict (B,a)
such that B∪{a} ⊆ λin. By Condition (3) it cannot be the case that a ∈ B. Thus, by

construction there is a λ ′ ∈ L with λ ′
in

= B, a contradiction to Condition (6). Thus,

λ ∈ cfL (FL).
We complete the proof by showing cfL (FL)⊆L: Consider λ ∈ cfL (FL): If λ maps

all arguments to in then there is no attack in RL which means that L contains only the

labelling λ . Thus we can assume that λ (a) ∈ {out,undec} for some argument a. If
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λin 6= λ ′
in

for all λ ′ ∈ L then by construction of the second part of RL there would be

attacks (λin,b) for all b ∈ λin, which is in contradiction to λ ∈ cfL (FL). Thus, there

is λ ′ ∈ L such that λ ′
in

= λin. For arguments a with λ (a) = out there is an attack

(B,a) with B ⊆ λin and, by construction, a λ ∗ ∈ L such that λ ∗
in
= B and λ ∗(a) = out.

By the existence of λ ′ ∈ L and Condition (5) we have that there exists λ ′′ ∈ L such

that λin = λ ′′
in

, λ ′
out

⊆ λ ′′
out

and a ∈ λ ′′
out

. By iteratively applying this argument for

each argument a with λ (a) = out we obtain that there is a labelling λ̂ ∈ L such that

λin = λ̂in and λout ⊂ λ̂out. By Condition (4) we obtain that λ ∈ L.

Proof of Proposition 6

We first show that for each SETAF F the set grdL (F) satisfies the conditions of the

proposition. Towards a contradiction assume that there are λ ,λ ′ ∈ grdL with λ 6= λ ′.

By the definition of grounded labelling λin λin are ⊆-minimal among all complete

labellings, thus, λin = λ ′
in

. Assume that λout ⊂ λ ′
out

. Since each grounded labelling is

conflict-free, for each a with a∈ λ ′
out

there is (B,a) such that B ⊆ λ ′
in

. Since λin = λ ′
in

,

a ∈ λout. Therefore, λ = λ ′. Now, assume that λ ∈ grdL (F) assigns an argument a

to out. By the definition of conflict-free labeling there is an attack (B,a) such that

B ⊆ λin.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL)
with grdL (FL) = L. We set

AL = ARGSL

RL = {(λin,a) | λ ∈ L,λ (a) = out}∪{(λin∪{a},a) | λ ∈ L,λ (a) = undec}

Consider the unique λ ∈ L and the unique λ G ∈ grdL (FL). For each argument a ∈ λin

we have that a is not attacked in FL and thus a ∈ λ G
in

. For each argument a ∈ λout there

is an attack (λin,a) in FL and as λin ⊆ λ G
in

by the definition of complete labellings we

have a ∈ λ G
out

. Finally for each argument a ∈ λundec the attack (λin∪{a},a) is the only

attack towards a in FL. Thus, by the definition of complete labellings, we have that a

is neither labelled in nor out in FL and therefore a ∈ λ G
undec

. We obtain that λ G = λ
and thus grdL (FL) = L.

Proof of Theorem 9

Σσ
SETADF ⊆ Σσ

SFADF follows from Lemma 8. For showing Σadm
SETADF ( Σadm

SFADF, let V =
{{a 7→ u,b 7→ u},{a 7→ u,b 7→ f},{a 7→ t,b 7→ f}} be an interpretation-set. A witness of

adm-realizability of V in SFADFs is D = ({a,b},{ϕa = ¬a∨¬b,ϕb =⊥}). However,

V is not realizable by any SETADF for admissible interpretations (cf. Proposition 7).

To show Σσ
SFADF 6⊆ Σσ

SETADF, for σ ∈ {stb,mod,com,prf,grd}, let V= {{a 7→ f}}. The

interpretation V is σ -realizable in SFADFs for σ ∈ {stb,mod,com,prf,grd}, and a wit-

ness of σ -realizability of V in SFADFs is D = ({a},{ϕa =⊥}). However, V cannot be

realized by any SETADF for semantics σ ∈ {adm,stb,prf,grd} (cf. Propositions 3–6).

The result for σ = mod follows from Proposition 1 and for σ = com by |V|= 1 (i.e.

complete and grounded semantics have to coincide). Further, cf(D) is not cf-realizable

with any SETADF.
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Lemma 14. Given an interpretation-setV∈∆σ , for σ ∈{adm,stb,mod, com,prf,grd}.

Let v ∈ V be a non-trivial interpretation in which v(a) = f/u, for each argument a. In

all SFADFs that realize V under σ , the acceptance conditions of all arguments as-

signed to f by v are equal to ⊥.

Proof. Let D be a SFADF that realizesV under σ , for σ ∈{adm,stb,mod,com, prf,grd}.

Let v ∈V be an non-trivial interpretation that assigns all arguments either to f or u. To-

wards a contradiction, assume that there exists an argument a which is assigned to f

by v, and ϕa 6= ⊥ in D. First we show that V cannot be adm-realizable in SFADFs.

Since a is assigned to f in v the acceptance condition of a cannot be equal to ⊤. By

Lemma 10, the acceptance condition of a is in CNF and having only negative literals.

Since all b ∈ par(a) are either assigned to f or u by v, ϕv
a cannot be unsatisfiable. That

is, v(a) 6≤i ΓD(v)(a). Therefore, v is not an admissible interpretation of D. Thus, any V
that contains v is not adm-realizable in SFADF. To complete the proof it remains to see

that for each of the remaining semantics, each σ -interpretation is also admissible.

Proof of Theorem 11

To show that ∆σ = {V ∈ Σσ
SFADF | ∃v ∈ V s.t. ∀a : v(a) ∈ {f,u}∧ ∃a : v(a) = f}, let

V be an arbitrary interpretation-set of ∆σ . By the definition of ∆σ , V ∈ Σσ
SFADF and

V 6∈Σσ
SETADF. It remains to show that there exists v∈V that assigns at least an argument

to f but none of the arguments to t. Towards a contradiction, assume that there exists no

such interpretation and let D = (S,L,C be an arbitrary SFADF with σ(SFADF) = V.

Notice that by Lemma 10 all acceptance conditions of D that are not equal to ⊥ can

be transformed to be in SETADF form. Thus we can focus on the arguments with

acceptance condition ⊥. As, under the above assumption, each v ∈ V that assigns an

argument to f also assigns an argument b to t it is easy to verify that we can replace

⊥ acceptance conditions by
∧

s∈S ¬s without changing the semantics. That is, we can

transform D to an equivalent SETADF and thus V ∈ ΣSETADF. This is a contradiction

by the definition of ∆σ and we obtain that there exists v ∈V that assigns all arguments

to either f or u.

On the other hand, let V be an interpretation-set that is σ -realizable in SFADF such

that there exists v ∈V that assigns at least one argument to f and none of the arguments

to t. We show that V 6∈ Σσ
SETADF . By Lemma 14, in any SFADF with σ(SFADF) = V

the acceptance conditions of all arguments assigned to f by v are equal to ⊥. Therefore,

D is not σ -realizable in any SETADF. That is, V ∈ ∆σ .

Proof of Proposition 12

Consider V∈ ∆σ , for σ ∈ {stb,mod,prf} and let v ∈V be an interpretation that assigns

all arguments to either f or u (since V ∈ ∆σ , such a v exists). By Lemma 14, the

acceptance condition of all arguments that are assigned to f by v is equal to ⊥ in all

SFADFs that realize V under σ ∈ {stb,mod,prf}. Let D = (S,L,C) be a witness of

σ -realizibility of V in SFADFs, under σ ∈ {stb,mod,prf}.

First, if all arguments are assigned to f in v, the acceptance conditions of all argu-

ments are ⊥ in SFADF D and |σ(D)|= 1. Now assume that v assigns some arguments
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to u. Thus, V cannot be mod or stb-realized in any ADF. It remains to consider prf

semantics. Let B = {s ∈ S | v(b) = u}. For each s ∈ S \B, by Lemma 14, ϕs = ⊥ in

D. Therefore, in all v′ ∈ V, v′(s) = f for s ∈ S \B. For each v′ 6= v in V there exists

at least b ∈ B such that v′(b) 6= u, therefore, v < v′. By the definition of preferred in-

terpretations v cannot be a preferred interpretation. Thus, |prf(D)| = 1 and therefore,

the assumption |V| = 1. Summarizing the two cases we have that interpretation set

V ∈ ∆σ , for σ ∈ {stb,mod,prf} consist of only one interpretation.
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