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Fault Detection and Isolation for Linear
Structured Systems

Jiajia Jia , Harry L. Trentelman , and M. Kanat Camlibel

Abstract—This letter deals with the fault detec-
tion and isolation (FDI) problem for linear structured
systems in which the system matrices are given by
zero/nonzero/arbitrary pattern matrices. In this letter, we
follow a geometric approach to verify solvability of the
FDI problem for such systems. To do so, we first develop
a necessary and sufficient condition under which the FDI
problem for a given particular linear time-invariant system
is solvable. Next, we establish a necessary condition for
solvability of the FDI problem for linear structured systems.
In addition, we develop a sufficient algebraic condition for
solvability of the FDI problem in terms of a rank test on an
associated pattern matrix. To illustrate that this condition
is not necessary, we provide a counterexample in which the
FDI problem is solvable while the condition is not satisfied.
Finally, we develop a graph-theoretic condition for the full
rank property of a given pattern matrix, which leads to a
graph-theoretic condition for solvability of the FDI problem.

Index Terms—Fault detection, fault diagnosis, linear
systems.

I. INTRODUCTION

THIS letter is concerned with the FDI problem for linear
time-invariant (LTI) systems with faults. This problem has

received considerable attention within the control community
in the past decades and this has lead to several approaches
to FDI, see [1]–[6] and the references therein. Among these
references, those closer to the results presented in the current
paper are [2] and [6], in which FDI for LTI systems is per-
formed using unknown input observers that enable so-called
output separability of the fault subspaces. If such observers
exist, then we say that for the given system the FDI problem
is solvable.

Although conditions for solvability of the FDI problem for
a given LTI system have been introduced in [2], their appli-
cation relies on the exact knowledge of the dynamics of this
system, meaning that precise information on the system matri-
ces is required. However, in many scenarios, such knowledge
is unavailable, and only the zero/nonzero/arbitrary structure
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can be acquired. This leads to the concept of linear struc-
tured system introduced in [7] which represents a family of
LTI systems sharing the same structure. A large amount of
literature has been devoted to analyzing system-theoretical
properties for linear structured systems. For instance, strong
structural controllability has been studied in [7]–[10], strong
targeted controllability in [11], [12], and identifiability in [13].

Roughly speaking, in the framework of linear structured
systems, the research on the FDI problem can be subdivided
into two directions. The first direction aims at providing con-
ditions under which the FDI problem is solvable for at least
one member of a given structured system, see [5], [14], [15].
The other direction aims at establishing conditions to guar-
antee that the FDI problem is solvable for all members of a
given structured system, see [6]. In the present paper, we will
pursue the second research direction. For a given structured
system, if the FDI problem for all systems in the structured
system is solvable, then we say that the FDI problem for this
structured system is solvable. To the best of our knowledge,
in this direction the only existing work is [6], which has stud-
ied a special kind of linear structured system, named systems
defined on graphs. The goal of the present paper is to pro-
vide conditions under which the FDI problem is solvable for
a general structured system. The main contributions of this
letter are the following:

1) We develop a necessary and sufficient condition under
which the FDI problem is solvable for a given particular
LTI system.

2) For linear structured systems we first establish a nec-
essary condition for solvability of the FDI problem.
Assuming that this necessary condition holds, we then
establish a sufficient algebraic condition for solvabil-
ity of the FDI problem. This condition is expressed in
terms of a rank test on a pattern matrix associated with
the structured system. Moreover, we provide a coun-
terexample to show that this sufficient condition is not
necessary.

3) Using the concept of colorability of a graph, we provide
a graph-theoretic condition for solvability of the FDI
problem for a given structured system.

This letter is structured as follows. In Section II, we review
concepts and preliminary results on geometric control theory
and the geometric approach to the FDI problem for particular
LTI systems. In addition, we introduce the concept of linear
structured systems and formulate the problem studied in this
letter. Section III presents a necessary and sufficient condition
under which for a given particular LTI system the FDI problem
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is solvable. Section IV provides a necessary and a sufficient
algebraic condition for solvability of the FDI problem for
structured systems. Next, in Section V we establish a graph-
theoretic condition for solvability of the FDI problem. Finally,
Section VI concludes this letter.

II. PRELIMINARIES AND PROBLEM STATEMENT

Let R and R
n denote the field of real numbers and the vector

space of n-dimensional real vectors, respectively. Likewise, we
denote the space of n × m real matrices by R

n×m. For a given
matrix M ∈ R

n×m, the ith column of M is denoted by Mi.
Moreover, I and 0 will denote identity and zero matrices of
appropriate dimensions, respectively. Given M ∈ R

n×m we
define its image by im M = {Mx | x ∈ R

m} and its kernel by
ker M = {x ∈ R

m | Mx = 0}. If S is a subspace of R
m then

we define the image of S under M by MS = {Mx | x ∈ S }.

A. Geometric Control Theory

Geometric control theory plays a fundamental role in this
letter. Therefore, in this subsection, we will give a brief review
of some basic concepts in this field. Consider the LTI system

ẋ = Ax + Bu

y = Cx, (1)

where x ∈ R
n, u ∈ R

m and y ∈ R
p are the state, input and

output, respectively, and A, B and C are matrices of appropriate
dimensions. A subspace S ⊆ R

n is called (C, A)-invariant
if A(S ∩ ker C) ⊆ S . This condition is equivalent to the
existence of a matrix G ∈ R

n×p such that S is (A + GC)-
invariant, i.e., (A + GC)S ⊆ S . Such a G is called a friend
of S . A family {Si}k

i=1 of (C, A)-invariant subspaces of R
n is

called compatible if the subspaces Si have a common friend.
Given the system (1), a family of subspaces {Si}k

i=1 is called
output separable if for i = 1, 2, . . . , k

CSi ∩ (
∑

j �=i

CSj) = {0}.

Any output separable family of (C, A)-invariant subspaces is
compatible [2, Lemma 2]. Moreover, if it also satisfies the
condition that CSi �= {0} for i = 1, 2, . . . , k, we say that the
family {CSi}k

i=1 is independent.
For a given subspace D ⊆ R

n, there exists a smallest (C, A)-
invariant subspace containing D , denoted by S ∗. Such a
minimal subspace can be computed by the following subspace
algorithm (see the conditioned invariant subspace algorithm
[16, p. 111]):

S 0 = D

S k = D + A(S k−1 ∩ ker C) for k = 1, 2, . . . (2)

Denote the dimension of D by dim(D). It follows from [16,
Th. 5.8] that there exists k ≤ n−dim D such that Sk = Sk+1,
and hence S ∗ = Sk.

B. The Geometric Approach to the FDI Problem for LTI
Systems

In this subsection, we will review the geometric approach
to the FDI problem for LTI systems. Consider the LTI system

ẋ = Ax + Lf

y = Cx, (3)

where x ∈ R
n, f ∈ R

q and y ∈ R
p are the state, fault and

output, respectively, and A, L and C are matrices of appropri-
ate dimensions. We denote the system (3) by (A, L, C). We
say that the ith fault occurs if fi �= 0 (i.e., not identically
equal to 0), where fi is the ith component of f . Following the
approach proposed in [2], the FDI problem for (3) amounts to
finding G ∈ R

n×p such that the family of subspaces {CVi}q
i=1 is

independent, where Vi is the smallest (A + GC)-invariant sub-
space containing im Li. Here, Li denotes the ith column of L. If
such G exists, then we say that the FDI problem is solvable. In
what follows, we will briefly explain this approach. Suppose
that we have found a G satisfying the above constraints.
Consider the state observer

˙̂x = (A + GC)x̂ − Gy. (4)

Define the innovation as

r := Cx̂ − y

and error

e := x̂ − x.

By interconnecting (3) and (4), we obtain

ė = (A + GC)e − Lf

r = Ce. (5)

Note that in this letter, we do not consider any stability require-
ment on the observer, which means that we do not require
e(t) → 0, and we assume that e(0) = 0. Under this assump-
tion, for any fault f , the resulting error trajectory e(t) lies in the
reachable subspace of (A + GC, L), which is clearly equal to
V1 +V2 +· · ·+Vq. For the corresponding innovation trajectory
r(t) we then have

r(t) ∈ CV1 + CV2 + · · · + CVq.

If the family {CVi}q
i=1 is independent, then this is a direct sum,

and r(t) can be written uniquely as

r(t) = r1(t) + r2(t) + · · · + rq(t) (6)

with ri(t) ∈ CVi for all t. The unique representation (6) can be
used to determine whether the ith fault occurs. Indeed in (6)
ri �= 0 (i.e., not identically equal to 0) only if fi �= 0. To see
this, note that fi(t) = 0 for all t implies e(t) ∈ ∑

j �=i Vj, so
r(t) ∈ ∑

j �=i CVj, equivalently, ri(t) = 0 for all t.
Let S ∗

i be the smallest (C, A)-invariant subspace containing
im Li. In [2] it has been shown that the FDI problem for the
system (3) is solvable if and only if the family {CS ∗

i }q
i=1 is

independent, i.e., the family {S ∗
i }q

i=1 is output separable and
CS ∗

i �= {0} for i = 1, 2, . . . , q.

C. Linear Structured Systems and Problem Formulation

Again, consider the LTI system (3). In many scenarios, the
exact values of the entries in the system matrices are not
known, but some entries are known to be always zero, some
are nonzero, and the remaining entries are arbitrary real num-
bers. To describe such kind of matrices, the authors in [7] have
introduced the definition of pattern matrix as follows.

A pattern matrix is a matrix with entries in the set of sym-
bols {0, ∗, ?}. The set of all r × s pattern matrices is denoted
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by {0, ∗, ?}r×s. For a given r × s pattern matrix M , we define
the pattern class of M as

P(M ) := {M ∈ R
r×s | Mij = 0 if Mij = 0,

Mij �= 0 if Mij = ∗}.
This means that for a matrix M ∈ P(M ), the entry Mij is
either (i) zero if Mij = 0, (ii) nonzero if Mij = ∗, or (iii)
arbitrary (zero or nonzero) if Mij =?.

Let A ∈ {0, ∗, ?}n×n, L ∈ {0, ∗, ?}n×q and C ∈
{0, ∗, ?}n×p. The family of systems (A, L, C) with A ∈ P(A ),
L ∈ P(L ) and C ∈ P(C ) is called the linear structured
system associated with A , L , and C . Throughout this letter,
we use (A ,L ,C ) to represent this structured system, and
we write (A, L, C) ∈ (A ,L ,C ) if A ∈ P(A ), L ∈ P(L )

and C ∈ P(C ). Based on these notions and notations, we
define the FDI problem for (A ,L ,C ) to be solvable if the
FDI problem is solvable for every (A, L, C) ∈ (A ,L ,C ).
The research problem of this letter is then formally stated as
follows.

Problem 1: Given (A ,L ,C ), find conditions under which
the FDI problem is solvable for (A ,L ,C ).

III. A NECESSARY AND SUFFICIENT CONDITION FOR

SOLVABILITY OF THE FDI PROBLEM FOR (A, L, C)

In this section, we will establish a necessary and sufficient
condition under which the FDI problem is solvable for a given
LTI system (A, L, C) of the form (3). Recall that solvability
of the FDI problem for (A, L, C) is equivalent to the inde-
pendence of the family {CS ∗

i }q
i=1, where S ∗

i is the smallest
(C, A)-invariant subspace containing im Li (i = 1, 2, . . . , q).
Therefore, we will first provide a characterization of S ∗

i . Let
di be a positive integer such that

CAjLi = 0 for j = 0, 1, . . . , di − 2 and CAdi−1Li �= 0.

Here and in the sequel, we define A0 := I. It is obvious from
the Cayley-Hamilton theorem that either di ≤ n or di does not
exist. If this di exists, we then call it the index of (A, Li, C).

We are now ready to state a characterization of CS ∗
i in the

following lemma.
Lemma 1: Consider the system (A, L, C) of the form (3).

Let i ∈ {1, 2, . . . , q}. Denote by S ∗
i the smallest (C, A)-

invariant subspace containing im Li. Then, we have that

CS ∗
i =

{
im CAdi−1Li if the index di of (A, Li, C) exists,
{0} otherwise.

Proof: In this proof, we will employ the recurrence rela-
tion (2) to prove the statement. Let S �

i be the sequence of
subspaces given by

S 0
i = im Li,

S �
i = im Li + A(S �−1

i ∩ ker C) for � = 1, 2, . . . (7)

We then distinguish two cases: (i) di exists, and (ii) di does
not exist.

In case (i), we have that

CAkLi = 0 for k = 0, 1, . . . , di − 2 (8)

and

CAdi−1Li �= 0. (9)

By combining (7) and (8), it can be verified directly that

S k
i = im

[
Li ALi · · · AkLi

]
for k = 0, 1, . . . , di − 1. (10)

Now, we claim that:
(a) S di−1

i = S di
i ,

(b) the dimension of S di−1
i is strictly larger than that of

S di−2
i .

If both claims (a) and (b) are true, then

S ∗
i = S di−1

i = im
[
Li ALi · · · Adi−1Li

]
,

and hence CS ∗
i = im CAdi−1Li. Note that (a) follows

immediately from (9) and (10):

S di−1
i

(10)= im
[
Li ALi · · · Adi−1Li

]

S di
i = im Li + A(S di−1

i ∩ ker C)

(9)= im
[
Li ALi · · · Adi−1Li

]
.

To prove (b), we assume that (b) is not true, i.e.,

S di−1
i = S di−2

i = im
[
Li ALi · · · Adi−2Li

]
.

This implies

Adi−1Li ∈ im
[
Li ALi · · · Adi−2Li

] ⊆ ker C,

which contradicts (9), and hence (b) is proved.
For case (ii), we have

CAkLi = 0 for k = 0, 1, . . . , n − 1. (11)

By combining (7) and (11), we obtain

S n−1
i = im

[
Li ALi · · · An−1Li

] ⊆ ker C

S n
i = im

[
Li ALi · · · An−1Li AnLi

]
.

It then follows from the Caley-Hamilton theorem that

AnLi ∈ S n−1
i ,

i.e., S n−1
i = S n

i , and hence S ∗
i = S n−1 ⊆ ker C.

Therefore, we have CS ∗
i = {0}. This completes the

proof.
By the above lemma, the family {CS ∗

i }q
i=1 of subspaces is

independent if and only if the index di exist for i = 1, 2, . . . , q,
and the vectors {CAdi−1Li}q

i=1 are linearly independent. Thus
we arrive at the main result of this section which provides
a necessary and sufficient condition under which the FDI
problem for (A, L, C) is solvable.

Theorem 1: Consider the system (A, L, C) of the form (3).
The FDI problem for (A, L, C) is solvable if and only if the
index di exists for i = 1, 2, . . . , q, and the matrix R has full
column rank, where R is defined by

R := [
CAd1−1L1 CAd2−1L2 · · · CAdq−1Lq

]
. (12)

Proof: The proof follows immediately from Lemma 1 and
is hence omitted.
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TABLE I
ADDITION AND MULTIPLICATION WITHIN THE SET {0, ∗, ?}

IV. ALGEBRAIC CONDITIONS FOR SOLVABILITY OF THE

FDI PROBLEM FOR (A ,L ,C )

In this section, we will establish a necessary condition and
a sufficient condition that enables the FDI problem for a
given structured system (A ,L ,C ) to be solvable. Before
presenting the results of this section, we first provide some
background on operations on pattern matrices. More details
can be found in [17]. Addition and multiplication within the
set {0, ∗, ?} are defined in Table I below.

Based on the operations in Table I, multiplication of pattern
matrices is then defined as follows.

Definition 1: Let M ∈ {0, ∗, ?}r×s and N ∈ {0, ∗, ?}s×t.
The product of M and N is defined as MN ∈ {0, ∗, ?}r×t

given by

(MN )ij :=
q∑

k=1

(Mik · Nkj) i = 1, 2, . . . , r, j = 1, 2, . . . , t. (13)

It is easily seen that MN ∈ P(MN ) for every pair of
matrices M ∈ P(M ) and N ∈ P(N ). If r = s, we call M
a square pattern matrix. For any given non-negative integer k,
we define the kth power M k recursively by

M 0 = I , M i = M i−1M , i = 1, 2, . . . , k,

where I represents a square pattern matrix of appropriate
dimensions with all diagonal entries equal to ∗ and all off-
diagonal equal to 0. In the sequel, let O denote any pattern
matrix of appropriate dimensions with all entries equal to 0.

Next, consider the system (A ,L ,C ). Let Li represent the
ith column of L for i = 1, 2, . . . , q. Let ηi be a positive
integer such that

C A jLi = O for j = 0, 1, . . . , ηi − 2 and C A ηi−1Li �= O.

If ηi exists, then we call it the index of (A ,Li,C ). In the
sequel, we will write (A, Li, C) ∈ (A ,Li,C ) if A ∈ P(A ),
Li ∈ P(Li) and C ∈ P(C ). Before continuing to explore
conditions for solvability of the FDI problem for (A ,L ,C ),
we first provide the following lemma which states the relation-
ship between the index of (A ,Li,C ) and that of (A, Li, C) ∈
(A ,Li,C ).

Lemma 2: Consider the pattern matrix triple (A ,Li,C ).
Then the following holds:

(i) Let (A, Li, C) ∈ (A ,Li,C ). If both the index ηi of
(A ,Li,C ) and the index di of (A, Li, C) exist, then
di ≥ ηi.

(ii) Suppose that the index ηi of (A ,Li,C ) exists, and sup-
pose further that at least one entry of C A ηi−1Li is equal
to ∗. Let (A, Li, C) ∈ (A ,Li,C ). Then, the index di of
(A, Li, C) exists and di = ηi.

(iii) If the index of (A ,Li,C ) does not exist, then the
index of (A, Li, C) does not exist for any (A, Li, C) ∈
(A ,Li,C ).

Proof: By Definition 1, it follows that the vector CA�Li ∈
P(C A �Li) for i = 0, 1, . . . and for all (A, Li, C) ∈
(A ,Li,C ). In order to prove (i), suppose that both the index
ηi of (A ,Li,C ) and the index di of (A, Li, C) exist. By
the definition of ηi we have that C A �Li = O for � =
0, 1, . . . , ηi − 2, and by the definition of di it follows that
CAdi−1Li �= 0. Therefore, we obtain di ≥ ηi. Next, to
prove (ii), we assume that C A ηi−1Li contains at least one
∗ entry, which implies that all the vectors in the pattern class
P(C A ηi−1Li) are unequal to 0. Let (A, Li, C) ∈ (A ,Li,C ).
Clearly, the vector CAηi−1Li ∈ P(C A ηi−1Li), and hence
CAηi−1Li �= 0. By definition, the index di of (A, Li, C) must
exist and di ≤ ηi. Recalling (i), we conclude that di = ηi.
The proof of (iii) is trivial. Indeed, suppose that the index of
(A ,Li,C ) does not exist. It then follows that

C A �Li = O for � = 0, 1, . . . ,

which implies that CA�Li is equal to 0 for every (A, Li, C) ∈
(A ,Li,C ). That is, the index of (A, Li, C) does not exist for
any (A, Li, C) ∈ (A ,Li,C ).

To illustrate the above lemma, we now provide an example.
Example 1: Consider the system (A ,L ,C ) with

A =
⎡

⎣
0 0 0
∗ 0 0
0 0 0

⎤

⎦, L =
⎡

⎣
∗ 0 0
0 ∗ 0
0 ∗ ∗

⎤

⎦, C =
[

? ∗ 0
0 ∗ 0

]
. (14)

Let L1, L2 and L3 denote the first, second and third column
of L . For L1 and L2 we compute

C L1 =
[

?
0

]
�= O and C L2 =

[∗
∗
]

�= O.

This implies that η1 = η2 = 1, where ηi is the index of
(A ,Li,C ) for i = 1, 2. In addition, for L3 we compute

C A �L3 = O for i = 0, 1, 2, . . .

which implies that the index of (A ,L3,C ) does not exists.
Next, we will show that for some (A, L1, C) ∈ (A ,L2,C )

the index d1 of (A, L1, C) is larger than η1, for every
(A, L2, C) ∈ (A ,L2,C ) its index d2 is equal to η2, and
for every (A, L3, C) ∈ (A ,L3,C ) its index does not exists.
Indeed, for A ∈ P(A ), L ∈ P(L ) and C ∈ P(C ) we have

A =
⎡

⎣
0 0 0
c1 0 0
0 0 0

⎤

⎦, L =
⎡

⎣
c2 0 0
0 c3 0
0 c4 c5

⎤

⎦, C =
[
λ1 c6 0
0 c7 0

]
, (15)

where c1, c2, . . . , c7 are arbitrary nonzero real numbers, and
λ1 is an arbitrary real number. Next, we compute

[
CL1 CL2

] =
[
λ1c2 c3c6

0 c3c9

]
and CAL1 =

[
c1c2c6
c1c2c7

]
. (16)

Thus, for all choices of c1, c2, . . . , c7 and λ1 we have

d2 = 1 = η2,

while if λ1 = 0 then d1 = 2 > η1 and otherwise d1 = 1 = η1.

In addition, it is obvious that for all choices of c1, c2, . . . , c7
and λ1 we have

CA�L3 = 0 for � = 0, 1, . . .

and hence the index of (A, L3, C) does not exist.
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Lemma 2 immediately yields a necessary condition for
solvability of the FDI problem for (A ,L ,C ).

Theorem 2: Consider the system (A ,L ,C ). Suppose that
the FDI problem for (A ,L ,C ) is solvable. Then, the index
ηi of (A ,Li,C ) exists for all i = 1, 2, . . . q.

Proof: Since the FDI problem for (A ,L ,C ) is solvable,
the FDI problem is solvable for all (A, L, C) ∈ (A ,L ,C ).
Assume that for some i ∈ {1, 2, . . . , q} the index ηi of
(A ,Li,C ) does not exist. By statement (iii) of Lemma 2,
it follows that the index di of (A, Li, C) does not exist for
any (A, Li, C) ∈ (A ,Li,C ). It then follows from Theorem 1
that the FDI problem for (A, L, C) is not solvable for any
(A, L, C) ∈ (A ,L ,C ). Therefore, we reach a contradiction
and complete the proof.

By the above theorem, in the sequel we will assume that for
all i = 1, 2, . . . q the indices ηi exist. Based on this assumption,
we will continue to explore sufficient conditions for solvability
of the FDI problem for (A ,L ,C ). To do so, we first define
the following pattern matrix associated with (A ,L ,C ):

R := [
C A η1−1L1 C A η2−1L2 · · · C A ηq−1Lq

]
, (17)

where ηi is the index of (A ,Li,C ). We say that R has full
column rank if all the matrices in the pattern class P(R) have
full column rank. We are now ready to establish a sufficient
condition for solvability of the FDI problem for (A ,L ,C ).

Theorem 3: Consider the system (A ,L ,C ). Let R be the
pattern matrix given by (17). The FDI problem for (A ,L ,C )

is solvable if R has full column rank.
Proof: Since R has full column rank, each column of R

contains at least one ∗ entry. Let (A, L, C) ∈ (A ,L ,C ). By
(ii) of Lemma 2 it follows that di = ηi, where di is the index
of (A, Li, C) for i = 1, 2, . . . , q. This implies that the matrix
R given by (12) is in P(R), and hence R has full column
rank. It then follows from Theorem 1 that the FDI problem is
solvable. Since (A, L, C) is an arbitrary system in (A ,L ,C ),
we conclude that the FDI problem for (A ,L ,C ) is solvable
and complete the proof.

Note that the condition given in Theorem 3 is sufficient
but not necessary. To show this, we provide the following
counterexample.

Example 2: Consider the system (A ,L ,C ) with

A =
[

0 0
0 0

]
, L =

[∗ ∗
0 ∗

]
, C =

[∗ ∗
∗ 0

]
.

Let L1 and L2 be the first and second column of L . We
compute

C L1 =
[∗
∗
]

and C L2 =
[

?
∗
]
,

and, by (17), R =
[∗ ?
∗ ∗

]
. Since

[
1 1
1 1

]
∈ P(R), R

does not have full column rank. Next, we will show that,
however, the FDI problem for (A ,L ,C ) is solvable. Due
to Theorem 1, it suffices to show that for each (A, L, C) ∈
(A ,L ,C ) the associated matrix R has full column rank.
Clearly, every (A, L, C) ∈ (A ,L ,C ) has the form

A =
[

0 0
0 0

]
, L =

[
c1 c2
0 c3

]
, C =

[
c4 c5
c6 0

]
,

where c1, c2, . . . , c6 are arbitrary nonzero real numbers.
By (12), we obtain

R = CL =
[

c1c4 c2c4 + c3c5
c1c6 c2c6

]
.

It turns out that R has full column rank. Indeed, the deter-
minant of R is equal to −c1c3c5c6 which is always nonzero.
Consequently, the FDI problem for (A ,L ,C ) is solvable.
This provides a counterexample for the necessity of the
condition in Theorem 3.

V. A GRAPH-THEORETIC CONDITION FOR SOLVABILITY

OF THE FDI PROBLEM

So far, we have provided a sufficient condition for solvabil-
ity of the FDI problem for (A ,L ,C ) in terms of the full
column rank property of its associated matrix R. However,
given such a matrix R, it is not clear how to check its full
column rank property. Hence, in this section, we will provide
a graph-theoretic condition under which a given pattern matrix
R has full column rank. Clearly, by Theorem 3 this will imme-
diately lead to a graph-theoretic condition for solvability of the
FDI problem for (A ,L ,C ).

We will now first review the concept of graph associated
with a given pattern matrix, and the color change rule that
acts on this graph. For more details, see [7].

For a given pattern matrix M ∈ {0, ∗, ?}r×s with r ≤ s,
the graph G(M ) = (V, E) associated with M is defined as
follows. Take as node set V = {1, 2, . . . , r} and define the edge
set E ⊆ V × V such that (j, i) ∈ E if and only if Mij = ∗ or
Mij =?. Also, in order to distinguish between ∗ and ? entries
in M , we define two subsets E∗ and E? of the edge set E
as follows: (j, i) ∈ E∗ if and only if Mij = ∗ and (j, i) ∈ E?
if and only if Mij =?. Then, obviously, E = E∗ ∪ E? and
E∗ ∩ E? = ∅. To visualize this, solid and dashed arrows are
used to represent edges in E∗ and E?, respectively. We say that
M has full row rank if the matrix M has full row rank for
all M ∈ P(M ). Next, we introduce a so-called color change
rule which is defined as follows.

(1) Initially, color all nodes in G(M ) white.
(2) If a node i has exactly one white out-neighbor j and

(i, j) ∈ E∗, change the color of j to black.
(3) Repeat step 2 until no more nodes can be colored black.

The graph G(M ) is called colorable if the nodes 1, 2, . . . , r
are colored black following the procedure above. Note that
the remaining nodes r + 1, r + 2, . . . , s can never be colored
black since they have no incoming edges. A criterion for the
full row rank property of M is then given by the following
proposition.

Proof [7, Th. 11]: Let M ∈ {0, ∗, ?}r×s be a pattern matrix
with r ≤ s. Then M has full row rank if and only if G(M )

is colorable.
Define the transpose of R as the pattern matrix

R
 ∈ {0, ∗, ?}s×r with (R
)ij = Rji

for i = 1, 2, . . . , s and j = 1, 2, . . . , r. We then obtain the
following obvious fact:

Lemma 3: Consider the system (A ,L ,C ). Let R be the
pattern matrix given by (17) and R
 be its transpose. Then
R has full column rank if and only if G(R
) is colorable.
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Fig. 1. The graph G(R
) is colorable.

This then immediately yields the main result of this section
which provides a graph-theoretic condition under which the
FDI problem for (A ,L ,C ) is solvable.

Theorem 4: Consider the system (A ,L ,C ). Suppose that
the indices ηi exists for i = 1, 2, . . . , q. Let R be the pattern
matrix given by (17). Then, the FDI problem for (A ,L ,C )

is solvable if G(R
) is colorable.
Proof: The proof follows immediately from Theorem 3 and

Lemma 3.
To conclude this section, we will provide an example.
Example 3: Consider the system (A ,L ,C ) with

A =

⎡

⎢⎢⎢⎢⎣

∗ 0 0 0 0
∗ ? 0 ? 0
0 ∗ ∗ ? 0
∗ 0 0 ? ∗
0 0 ∗ 0 ∗

⎤

⎥⎥⎥⎥⎦
, L =

⎡

⎢⎢⎢⎢⎣

∗ 0
? ∗
0 0
0 0
0 0

⎤

⎥⎥⎥⎥⎦
, C =

⎡

⎣
0 0 0 ∗ 0
0 0 0 ? ?
0 0 0 ∗ ∗

⎤

⎦.

By multiplying the pattern matrices, we obtain that

[
C L1 C A L1

] =
⎡

⎣
0 ∗
0 ?
0 ∗

⎤

⎦

and

[
C L2 C A L2 C A 2L2

] =
⎡

⎣
0 0 0
0 0 ?
0 0 ∗

⎤

⎦,

where Li is the ith column of L . By (17), it follows that the
associated matrix R and its transpose R
 are given by

R = [
C A L1 C A 2L2

] =
⎡

⎣
∗ 0
? ?
∗ ∗

⎤

⎦

and

R
 =
[∗ ? ∗

0 ? ∗
]
.

As depicted in Fig. 1 G(R
) is colorable. Indeed, initially let
all nodes in G(R
) be colored white as shown in Fig. 1(a).
Node 1 then colors itself black as depicted in Fig. 1(b), and
finally node 3 colors 2 to black as in Fig. 1(c). Therefore, by
Theorem 4, the FDI problem for (A ,L ,C ) is solvable.

VI. CONCLUSION

In this letter, we have studied the FDI problem for lin-
ear structured systems. We have established a necessary and
sufficient condition for solvability of the FDI problem for a
given particular LTI system. Based on this, we have estab-
lished a necessary condition under which the FDI problem for
structured systems is solvable. Moreover, we have developed
a sufficient condition for solvability of the FDI problem in
terms of a rank test on a pattern matrix associated with the
structured system. Next, we have provided a counterexample

to show that this condition is not necessary. Finally, we have
developed a graph-theoretic condition for solvability of the
FDI problem using the concept of colorability of a graph.

This letter has only established a necessary condition and
sufficient conditions for solvability of the FDI problem for
structured systems. Finding necessary and sufficient condi-
tions for solvability of the FDI problem is still an open
problem. In addition, as we have mentioned in Section II-B,
this letter does not consider the stability of the unknown input
observers. Therefore, another possible future research direction
is to establish conditions under which stable unknown input
observers exist for linear structured systems. Furthermore,
investigating solvability of FDI for structured systems with
constraints, such as allowing dependencies on some nonzero
and arbitrary entries [18]–[20], is also a possibility for future
research.
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