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Parkinson’s disease (PD) is the most frequent of all Lewy body diseases, a family of

progressive neurodegenerative disorders characterized by intra-neuronal cytoplasmic

inclusions of α-synuclein. Its most defining features are bradykinesia, tremor, rigidity and

postural instability. By the time PD manifests with motor signs, 70% of dopaminergic

midbrain neurons are lost, and the disease is already in the middle or late stage.

However, there are various non-motor symptoms occurring up to 20 years before the

actual parkinsonism that are closely associated with profound deficiency of myocardial

noradrenaline content and peripheral sympathetic denervation, as evidenced by

neuroimaging experiments in recent years. Additionally, there is an inherent autotoxicity

of catecholamines in the neuronal cells in which they are produced, forming toxic

catecholaldehyde intermediates that make α-synuclein prone to aggregation, initiating

a cascade of events that ultimately leads to neuronal death. The etiopathogenesis

of PD and related synucleinopathies thus may well be a prototypical example of

a catecholamine-regulated neurodegeneration, given that the synucleinopathy in PD

spreads in synergy with central and peripheral catecholaminergic dysfunction from the

earliest phases onward. That is why catecholamines and their metabolites, precursors, or

derivatives in cerebrospinal fluid or plasma could be of particular interest as biomarkers

for prodromal and de novo PD. Because there is great demand for such markers, this

mini-review summarizes all catecholamine-related studies to date, in addition to providing

profound neurochemical evidence on a systemic and cellular level to further emphasize

this hypothesis and with emphasis on extracellular vesicles as a novel diagnostic and

therapeutic incentive.

Keywords: biomarker, catecholamines, cerebrospinal fluid, DHPG/MHPG, DOPAC, extracellular vesicles,

Parkinson’s disease, plasma

INTRODUCTION

Parkinson’s disease (PD) is recognized as the second most common neurodegenerative disorder
following Alzheimer’s disease (AD), with an approximate incidence rate of 10–18 per 100,000
person-years. PD is present in about 1% of the population over 65 years of age and more than
4–5% in that over 80. Age and gender are established risk factors, followed by ethnicity. An
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increase by more than 50% is expected by 2030, given the rising
life expectancy worldwide (1, 2). Generally, PD is diagnosed
when bradykinesia occurs alongside rigidity or tremor, so
its clinical diagnosis mostly depends on motor findings. On
the pathological level, this is when about 50–80% of the
dopaminergic neurons of the substantia nigra pars compacta
(SNpc) are lost due to α-synuclein deposits, known as Lewy
bodies. PD is, therefore, often diagnosed clinically when the
synucleinopathy is already advanced. On the other hand, patients
frequently report having non-motor symptoms for 10–20 years
before the diagnosis (3). These prodromes, defined as “early
(non-specific) symptoms or signs which often indicate the
onset of a disease before more diagnostically specific signs
and symptoms develop,” provide a potential temporal window
during which disease-modifying therapy, once it becomes
available, could be administered to prevent or delay the
development and progression of disease. Similarly, researchers
and clinicians recognize the need for a clinical diagnosis
based on quantifiable measures (i.e., biomarkers) to refine
qualitative assessments. Characteristic prodromal symptoms of
PD are impaired olfaction (anosmia/hyposmia), constipation,
depression, excessive daytime sleepiness, rapid eye movement
(REM) sleep behavior disorder (RBD), impaired color vision,
mild cognitive impairment, and autonomic dysfunction (e.g.,
orthostatic hypotension (OH), erectile dysfunction, bladder
disturbances) (1, 3). From a neurochemical point of view, PD
was the first neurodegenerative disease of which the underlying
neurochemical abnormality was identified, i.e., striatal depletion
of the catecholamine dopamine (DA) (4). This pivotal discovery
led to the introduction of the first successful symptomatic
treatment with levodopa/carbidopa therapy (5). Almost half a
century later, this theory of “central catecholamine deficiency” in
PD has expanded considerably, entailing both dopaminergic and
noradrenergic neurotransmission deficits, not only in the central
but also in the peripheral nervous system.

PERIPHERAL CATECHOLAMINERGIC
DEFICIENCY AS NEUROCHEMICAL
SUBSTRATE OF PRODROMES IN PD

A catecholamine is a monoamine neurotransmitter, an organic
compound that has a catechol (benzene ring with adjacent
hydroxyl groups) and one (“mono”) side-chain amine group.
Included among catecholamines are DA and (nor)adrenaline
[(N)A]. All are derived from the amino acid tyrosine, which
is retrieved from dietary sources, as well as synthesis from
phenylalanine. Principal metabolites of DA and (N)A, are
3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic
acid (HVA), and, 3,4-dihydroxyphenylglycol (DHPG) and 3-
methoxy-4-hydroxyphenylglycol (MHPG). Furthermore, NA is
synthesized from DA (6). Catecholamine neurons are relatively
rare in the central nervous system, but with abundant afferent
and efferent projections. Toxic intraneuronal α-synuclein
depositions in the brainstem nuclei that produce DA and
NA, i.e., SNpc and locus coeruleus (LC), therefore, leads to
widespread alterations on both central and peripheral levels.

Interestingly, upregulated NA reuptake in the LC area of
early-stage PD patients, compatible with enhanced NA release,
has previously been suggested as a compensatory, protective
mechanism against degeneration of nigrostriatal dopaminergic
projections (7).

Apart from the central depletion of DA in the brain’s
nigrostriatal system, giving rise to the well-known motor
phenomenology, PD is equally characterized by a severe
deficiency of NA in the heart (8). Other Lewy body diseases
such as pure autonomic failure or dementia with Lewy
bodies (DLB) similarly involve decreased myocardial NA
content (9). According to Braak’s staging concept, nigrostriatal
neuropathological lesioning in PD occurs in stage three
out of six (10) and imputes early autonomic involvement
(11). The LC, the brain’s main source of NA, becomes
affected by the synucleinopathy in stage two. During
stage one, the dorsal motor nucleus of the vagal nerve
becomes affected, which has strong connections with the
parasympathetic nervous system of the gastrointestinal
system and lungs and with the nucleus ambiguous, which
partially involves the innervation of the heart via preganglionic
parasympathetic neurons (12). Intriguingly, peripheral cardiac
sympathetic neurodegeneration occurs even earlier in the
disease process and has a significant clinical importance.
The cardiac noradrenergic sympathetic deficiency has been
associated with cognitive impairment (13), fatigue/exercise
intolerance (14, 15), anosmia (16), RBD (17), visual
hallucinations (18), falls from neurogenic OH (19), and
decreased survival (20). Gastrointestinal symptoms due to
local α-synuclein accumulation and as part of enteric neuronal
dysfunction also appear well before the onset of motor
symptoms (21).

In PD, OH is a common prodrome that occurs some
years before or concurrent with the clinical motor phase and
is associated with sympathetic neurocirculatory failure (22).
The loss of sympathetic noradrenergic neurons thus might be
assumed, but studies using immunoreactive tyrosine hydroxylase
as a marker of myocardial catecholaminergic innervation have
noted a 75% decrease (23), whereas the loss of NA levels
is about 95–99% (8, 9). This points to a proportion of
inactive/dysfunctional but not completely eradicated residual
nerves and may involve abnormalities in vesicular storage of
NA, altered enzymes, decreased vesicular uptake via the vesicular
monoamine transporter (VMAT) type 2, and, increased vesicular
permeability (24). The cardiac sympathetic denervation does
not affect cardiac structure or function under resting conditions
but creates a failure to increase the myocardial contractility
following stimuli that depend on NA release, for instance
during exercise, and is linked with generalized fatigue (25).
In AD, myocardial sympathetic innervation is unaltered, so
cardiac sympathetic neuroimaging can provide a means for
improvement of the differential diagnosis between AD and DLB,
as was evidenced previously using 123I-metaiodobenzylguanidine
scintigraphy (26).

Remarkably, neither the severity of noradrenergic sympathetic
denervation nor values for measures of other non-motor
manifestations seem to be 100% related to the severity of
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loss of central nigrostriatal dopaminergic neurons (16, 27).
If compatible with Braak’s concept of ascending pathology,
such patients with decreased striatal dopaminergic innervation
should also have cardiac noradrenergic denervation. In contrast,
autonomic dysfunction seems to occur independently of the
dopaminergic cell loss that causes the parkinsonian triad of
motor symptoms (9).

LOW AND HIGH FUNCTIONAL
THRESHOLD SYSTEMS

The hypothesis of Braak et al. of the ascending and trans-
synaptically prion-like spreading of α-synuclein from peripheral
nerves, such as via a nasal or gastric route (28), to the
brainstem and midbrain up to higher cortical structures is
questioned due to contradictory neurochemical, neuroimaging,
and clinical evidence [(9), for review: (29)]. In part, the
evidence against the idea of the trans-synaptic spread comes
from Tysnes et al. (30), who concluded that the idea of
performing full truncal vagotomy in reducing the risk of PD
(31) may be too premature. Recently, Engelender and Isacson
(29) challenged the theory of Braak et al. and proposed a
model based on evidence of parallel degeneration and pathology
of the central and peripheral nervous system in PD. Under
this alternative, systems reach their individual thresholds for
symptoms at different rates. Even though the brainstem,
peripheral and autonomic neurons seem more resilient to
insults as opposed to dopaminergic midbrain neurons, the
threshold for the brainstem and peripheral motor symptoms
to become apparent is lower than that for motor symptoms.
The key factor in understanding this theory is the greater
functional reserve of the dopaminergic midbrain neurons,
which are more sensitive but have vast interconnections
throughout the midbrain, striatal, pallidal, thalamic, and cortical
nuclei, providing extensive compensatory mechanisms and
redundancy to allow initiation of movement. This is in contrast
to catecholaminergic neurons of the autonomic, peripheral,
and enteric nervous systems which interconnect with the
brainstem nuclei (29). Various types of inputs to the striatal
medium spiny neurons derived from, e.g., cortex (glutamatergic),
thalamus (glutamatergic), and even the dorsal raphe nuclei
(serotonergic), could compensate for a progressively reduced
input of dopaminergic SNpc neurons. Direct and indirect
pathways of the striatal system have strong bidirectional
interactions. On the other hand, the functional network of
the enteric nervous system (cholinergic, noradrenergic) is
much less developed, suggesting that enteric neurons would
have less functional reserve and thus may elicit constipation
as a prodromal symptom. Cardiac autonomic dysfunction
(noradrenergic) and RBD due to lesioning of the brainstem–
reticular activating system (cholinergic, noradrenergic) may
develop likewise.

In essence, 70% loss of sensitive dopaminergic midbrain
neurons causes motor symptoms (high threshold), whereas
only a 20–30% reduction in mainly noradrenergic neurons
of the brainstem/peripheral/enteric/autonomic nervous system

(low threshold) already seems sufficient to elicit non-motor
symptoms. In agreement, the difference between the low and
high functional threshold system may explain the appearance
of prodromes up to 20 years before the onset of the motor
symptomatology and supports the notion of an ideal biofluid
marker for prodromal PD to potentially be of catecholaminergic
origin (Figure 1).

THE CATECHOLAMINE AUTOTOXICITY
THEORY: IMPLICATIONS FOR
BIOMARKER RESEARCH

Dopamine spontaneously auto-oxidizes to form neuromelanin,
the black pigment that pinpoints the SNpc, and the final
product of the DA oxidative pathway. Nigral depigmentation,
therefore, likely has a neurochemical basis. In a nutshell,
the “catecholaldehyde hypothesis” in PD theorizes that long-
term increased buildup of 3,4-dihydroxyphenylacetaldehyde
(DOPAL)—the catecholaldehyde of DA—significantly
contributes to the death of dopaminergic neurons (33, 34). This
concept builds on the notion that there is an inherent cytotoxicity
of catecholamines and metabolites in the cells in which they are
produced [Figure 11 of Goldstein and Sharabi (9)]. The vesicular
uptake of cytosolic DA is regulated via VMAT2. Next, DA leaks
from the synaptic vesicle into the cytosol, undergoing exocytotic
release. DA transporter takes most of the released DA back into
the cytosol. However, within the neuron, monoamine oxidase
(MAO)-A enzymatically oxidizes DA into an intermittent
form, i.e., DOPAL. This reaction yields hydrogen peroxide,
which reacts with metal cations to produce extremely harmful
hydroxyl radicals. DOPAL can also auto-oxidize, forming
DOPAL-quinone, which can be transformed into cysteinyl-
DOPAL. Simultaneously, this reaction produces deleterious
reactive oxygen species (ROS). Under physiological conditions,
DOPAL is metabolized into DOPAC by aldehyde dehydrogenase
(ALDH). In glial cells, DOPAC is further metabolized into HVA
by catechol-O-methyltransferase (COMT).

Apart from the enzymatic deamination of cytoplasmic DA
into DOPAL, DA itself can also auto-oxidize into DA-O-
quinone, producing cysteinyl-DA (cys-DA), (amino)chrome,
5,6-indolequinone, polydopamine, and condensation products
(e.g., salsolinol), most of which are toxic for the cellular
environment. Finally, from 5,6-indolequinone, neuromelanin is
formed and stored.

It seems that enzymatic or spontaneous DA oxidation
creates aldehydes (DOPAL), ROS, hydrogen peroxide,
and thio-catecholamines (cys-DA/cys-DOPAL) within the
neuron. The peculiar tendency of α-synuclein to precipitate
in dopaminergic neurons can be explained by the fact that
DOPAL-quinone can induce oligomerization of α-synuclein in
the cytoplasm, forming Lewy bodies. Moreover, ROS inhibit
ALDH and thus build up cytoplasmic DOPAL, which leads to an
imbalanced system.

The same goes for the production of the noradrenergic
aldehyde dihydroxyphenylglycolaldehyde (DOPEGAL).
DOPEGAL is formed in the sympathoneural cytosol upon
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FIGURE 1 | Graphical representation of the complex interplay between catecholaminergic neuronal preservation, the high and low functional threshold theory, and the

time course of (non-)motor symptoms in prodromal, early, moderate, and advanced Parkinson’s disease. The high threshold for clinical appearance of parkinsonian

motor symptoms is only reached when there is at least 70% reduction in dopaminergic midbrain neurons (32). On the other hand, a 20 to 30% loss of mainly

noradrenergic brainstem-RAS/peripheral/autonomic/enteric neurons of the low threshold system is already sufficient to elicit a variety of non-motor symptoms such as

constipation, RBD, EDS/fatigue, hyposmia, and neurogenic OH. These can be regarded as prodromes. Both catecholaminergic systems progressively degenerate

over a period of almost 50 years, albeit with an initial less steeper decline in the noradrenergic system (29). The question mark relates to the uncertainty regarding the

extent of noradrenergic decline from early to advanced PD. Figures vary between 40 and 90%, depending on whether NA loss was measured in the myocardium (e.g.,

90–95%) or sympathetic ganglia (e.g., 40%). These results are consistent with the concept of centripetal, retrograde “die-back” degeneration of cardiac sympathetic

nerves in Lewy body diseases (9). Preferentially, the ideal biofluid marker or combination of markers should be sensitive enough to detect the first subtle

catecholaminergic alterations at the convergence point from where both neurotransmitter systems tend to deteriorate in an accelerated fashion. EDS, excessive

daytime sleepiness; FOG, freezing of gait; LID, levodopa-induced dyskinesia; MCI, mild cognitive impairment; OH, orthostatic hypotension; PD, Parkinson’s disease;

RAS, reticular activating system; RBD, REM sleep behavior disorder.

oxidative deamination of NA and undergoes metabolization to
form DHPG, mainly via aldehyde/aldose reductase (6). Similar
as with DOPAL-induced synucleinopathy in the SN in PD, the
DOPEGAL-promoted formation of tau aggregates in the LC in
AD has recently been demonstrated (35).

Various early alterations within the dopaminergic neuron,
such as decreased vesicular sequestration of DA via VMAT2 and
decreased DOPAL metabolism by reduced activity of ALDH, are
the multifactorial result of genetic predispositions, exposure to
environmental toxins, stress, and aging. Ultimately, this cascade
of events could trigger PD pathophysiology. The fungicide
benomyl, for instance, increases PD risk by inhibiting ALDH,
causing subsequent DOPAL accumulation (36). Furthermore,
neuromelanin has the potential to bind environmental redox-
active metal ions in situ. These are released upon neuronal death,
augmenting DOPAL-induced oligomerization of α-synuclein
(37, 38).

Altogether, the autotoxicity theory clarifies the selective
vulnerability of central and peripheral catecholaminergic
neurons, converting a stabile negative feedback-regulated in-cell
system to a fragile, unstoppable positive feedback loop (33).
This context naturally provides rationale for the development of
biofluid markers of dopaminergic/noradrenergic origin.

BIOFLUID CATECHOLAMINE MARKERS
FOR PRODROMAL PD: THE EVIDENCE

So far, only a handful of researchers investigated the biomarker
potential of circulating catecholamines or derivatives in
prodromal or de novo PD (dnPD), evidently with no record of
present or past therapy with anti-parkinsonian drugs (Table 1).
For matters of comparison, neurochemical investigations in
early-stage PD patients have also been enlisted in the table.

Kienzl et al. (39) included 16 dnPD patients with Hoehn and
Yahr stage scores I or II. The study of D’Andrea and colleagues
included 16 dnPD patients diagnosed within 1 year or less
following the onset of parkinsonism (40). In 2019, the same group
analyzed a larger variety of catecholamines and trace amines, with
inclusion of 21 dnPD patients with a disease duration of less than
2 years (47). As for Goldstein et al. (41), 14 out of 34 PD patients
were dnPD, with cerebrospinal fluid (CSF) obtained within 2
years or even before the onset of parkinsonism. The authors also
excluded DA data from 17 PD patients to eliminate potential
treatment effects, even after levodopa washout. Next, the same
group performed similar research in early-stage PD patients,
complying with three out of four clinical PD criteria, that were
off levodopa or MAO inhibitor treatments, as confirmed by
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TABLE 1 | Enlistment of studies evaluating biofluid catecholamines and their derivatives or precursors as potential markers for prodromal, de novo, or early-stage

Parkinson’s disease.

Study Subjects (N) CA marker Main findings Remarks

Kienzl et al. (39) 15 HC

16 dnPD

21 PD

11 OTHER

Urinary DA-3-o-sulfate

and DA-4-o-sulfate

DA-4-o-sulfate is reduced in dnPD compared

to HC and OTHER

DA-4-o-sulfate levels remained

unaltered during levodopa therapy

D’Andrea et al. (40) 28 HC

16 dnPD

47 nfPD

21 fPD

Plasma octopamine

and NA

Octopamine levels were lower in dn/nf/fPD vs.

HC; NA levels were only lower in nf/fPD vs. HC

Trace amines are hard to detect; very

low circulating levels

Goldstein et al. (41) 38 HC

34 PD (14 dn)

54 MSA

20 PAF

Plasma and CSF

l-DOPA, DA, DOPAC,

NE and DHPG

CSF DOPAC and DHPG strongly decreased in

all groups vs. HC; CSF DOPAC lower, and CSF

DHPG higher, in PD than PAF; CSF DOPAC

100% sensitive and 89% specific in dnPD vs.

HC

Plasma DHPG levels were lower in

PAF than in HC; in PD, CSF and

plasma DHPG were positively

correlated

Goldstein et al. (42) 26 HC

12 PD+OH

11 PD-OH

21 MSA-p

5 MSA-c

11 PAF

Plasma

F-DOPAC and

DHPG

F-DOPAC levels were higher, and, DHPG levels

lower, in PD+OH vs. MSA-p and HC

F-DOPAC:DHPG ratio differentiated

PD+OH from MSA-p

Goldstein et al. (43) 32 HC

24 PD

32 MSA-p

18 PAF

CSF (cys-)l-DOPA,

(cys-) DA, DOPAC,

(N)A, DHPG

DOPAC was decreased in PD and MSA-p vs.

HC

cys-DA:DOPAC two times as high in

PD and MSA-p than HC or PAF

Figura et al. (44) 22 early PD

28 aPD+LID

23 aPD-LID

Serum phenylalanine

and tyrosine

Phenylalanine levels were higher in early PD

than aPD+LID

No differences in tyrosine; no

inclusion of HC

Goldstein et al. (45) 26 subjects at risk for

PD with 3.7 years FU

CSF l-DOPA and

DOPAC

4 out of 26 with low baseline l-DOPA and

DOPAC developed PD

At least three risk factors: genetic,

olfactory, RBD, and/or OH

Kim et al. (46) 26 untreated dnPD

with ±2.5 years of

disease duration

Tear fluid DA, NA and A

levels

NA and DA were increased, A decreased, in

PD vs. HC; increases were pronounced on the

ipsilateral motor side

Results were confirmed in (pre)clinical

stages of a neurotoxic PD mouse

model

D’Andrea et al. (47) 10 HC

21 dnPD

27 PD-treat

Plasma tyrosine,

tyramine, tryptamine,

octopamine, TRP,

β-PEA, 5-HT, NA, MNE

Tyramine differed between all three groups;

tyramine, tyrosine and NA combined acted as

biomarkers of disease progression

Trace amines are hard to detect; very

low circulating levels

β-PEA, beta phenylethylamine; 5-HT, serotonin (5-hydroxytryptamine); A, adrenaline; aPD+/-LID, advanced PD patients with(out) levodopa-induced dyskinesia; CA, catecholamine;

CSF, cerebrospinal fluid; cys-DA, cysteinyl-dopamine; cys-l-DOPA, cysteinyl-levodopa; DA, dopamine; DHPG, 3,4-dihydroxyphenylglycol; dnPD, de novo PD subjects; DOPAC,

3,4-dihydroxyphenylacetic acid; F-DOPAC, fluoro-DOPAC; fPD, fluctuating PD patients; FU, follow-up; HC, healthy controls; l-DOPA, levodopa (3,4-dihydroxyphenylalanine); MNE,

metanephrine; MSA, multiple system atrophy; MSA-c, cerebellar variant of MSA; MSA-p, parkinsonian variant of MSA; NA, noradrenaline; nfPD, non-fluctuating PD patients; OH,

orthostatic hypotension; OTHER, other neurological disorders, such as polyneuropathy, multiple sclerosis, cerebral infarction, myasthenia gravis, arthritis, cerebral atrophy, and Wilson’s

disease; PAF, pure autonomic failure; PD, Parkinson’s disease; PD-treat, PD patients on levodopa or other dopaminergic drugs; RBD, REM sleep behavior disorder; TRP, tryptophan.

additionally measured CSF DOPA levels (42, 43). Figura et al.
examined serum amino acids in four dnPD and 18 early PD
subjects. The latter group was defined as having a score of I or
II on the Hoehn and Yahr staging scale, less than 3 years of
disease duration, and stable levodopa response (44). Goldstein
et al. (45) also clinically evaluated 26 prodromal subjects who had
at least three risk factors for PD, i.e., olfactory dysfunction, RBD,
OH, and/or genetic predisposition, and, no motor symptoms.
Finally, Kim et al. (46) assessed tear fluid catecholamines
in 26 untreated dnPD patients having Hoehn and Yahr
stages I–II.

At first glance, (i) three CSF and plasma metabolites [DOPAC
(41, 43, 45), DHPG (41, 42), L-DOPA (41, 43, 45)], (ii) one
plasma and three tear fluid catecholamines [N(A) (40, 41, 46),
DA (46)], and (iii) two derivative plasma trace amines [tyramine

(47) and octopamine (40), whether or not combined with plasma
NA (47)] seem promising as markers for prodromal or dnPD
(Table 1). Regarding CSF DOPAC, results are quite unequivocal,
with very low to low levels across PD stages, from prodromal (45)
to de novo (41) and early-stage (43). For instance, four out of 26
subjects at risk for PD with low CSF levels of DOPAC (<1.22
pmol/ml) and L-DOPA (<2.63 pmol/ml) at baseline inclusion
eventually developed PD (45).

Just like DHPG, MHPG—the final metabolite of NA
metabolism—has also been indicated as a potential biofluid
marker for Lewy body diseases, albeit in the context of cognitive
dysfunction in PD (48), or to differentiate DLB from AD (49).
Because MHPG crosses both blood–brain (BBB) and CSF–blood
barriers (50), plasma alterations may well be indicative of central
noradrenergic dysfunction.
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EXTRACELLULAR VESICLES AS A NOVEL
DIAGNOSTIC AND THERAPEUTIC
APPROACH

It is still challenging to efficiently treat PD patients, due to
a BBB impeding passage of most drugs. The development
of various drug delivery systems encapsulating, e.g., DA,
is, therefore, desirable (51). The focus herein lies upon
extracellular vesicles (EVs), nanoparticles including exosomes
(<100 nm), microvesicles (100–1,000 nm), and apoptotic bodies
(up to 4,000 nm) (52). Their cargo mostly contains lipids,
proteins, mRNA, and microRNA (miRNA). EVs show low
immunogenicity and can easily cross the BBB. As such, small-
molecule therapeutics like paclitaxel, doxorubicin, and curcumin
have been encapsulated into exosomes to treat cancer and
inflammatory diseases (53–55).

One great advantage over levodopa of an exosomal DA
delivery system to the brain via a peripheral route would
be that exosomes can be engineered to strategically target
specific neurons or neuronal populations (56). This would
prevent the non-targeted levodopa-derived DA exocytosis
in serotonergic rather than residual dopaminergic nerve
terminals. These serotonergic projections innervate entirely
different systems, such as the prefrontal cortex, nucleus
accumbens, subthalamic nucleus, and hippocampus (57). Since
VMAT2 is contained in serotonergic neurons too for the
uptake of in situ synthesized DA, increased extracellular
DA levels in these extrastriatal regions have been linked
to various (non-)motor symptoms, such as psychosis and
LID (58).

On the other hand, exosomes may intercellularly transfer
and sequester misfolded, pathogenic α-synuclein from neuron to
neuron and from neuron to glia, in turn leading to the activation
of an inflammatory response, and thus contributing to neuronal
dysfunction and overall disease progression (59). However, few
studies also reported functional evidence of a neuroprotective
functionality via exosomal externalization of α-synuclein, which
may be beneficial for the surviving dopaminergic neurons of the
SNpc (60, 61).

Despite the potential role of EVs in contributing to the
onset or progression of PD, exosomes could represent a valuable
drug delivery tool (62). Qu et al. (63) administered DA-loaded
blood exosomes to PD mice, which successfully entered the
nigrostriatal system, induced nigral dopaminergic neurogenesis,
and improved the symptomatic performance compared to
exogenous DA treatment (64). More recently, Narbute et al. (65)
developed EVs derived from stem cells from the dental pulp of
human exfoliated deciduous teeth, which are highly proliferative
and capable of differentiating into, e.g., neural cells (66–68).
These derived EVs were administered intranasally and improved
gait parameters in a PD rat model (65).

Furthermore, EVs contain miRNA-124a as part of their cargo
(69), which is a potent regulator of MAO-A expression in
dopaminergic neurons (70). Regulating EV-containing miRNA-
124a expression levels in the brain might be an inventive
therapeutic approach, especially because it avoids adverse effects
caused by conventional MAO-A inhibitors. Meanwhile, Gui et al.

(71) found 16 downregulated miRNAs in CSF exosomes of
PD patients compared to controls. Cao et al. (72) concluded
that miRNA-19b was downregulated and miRNA-195 and
miRNA-24 upregulated in PD. This raises the possibility that
serum exosomal miRNA profiling may be a novel strategy for
diagnosing prodromal PD.

CONCLUSIONS AND FUTURE
PERSPECTIVES

By and large, in PD, α-synuclein pathologically spreads in synergy
with central and peripheral catecholaminergic dysfunctioning,
so the quest for biofluid catecholamine markers seems a
rational choice. Above, we provided neurochemical, clinical, and
pathophysiolocial evidence. On the systemic level, the threshold
theory acknowledges that the earliest symptoms are caused
by catecholaminergic deficiency of the peripheral/autonomic
nervous system, followed by a central dopaminergic depletion.
On the cellular level, the hypothesis of DOPAL- and DOPEGAL-
induced synucleinopathy and a consequentially altered metabolic
route of DA and NA are in agreement with a handful of studies
so far that indicated CSF DOPAC and plasma DHPG/MHPG
to be of potential interest as biomarkers for prodromal PD in
particular. Moreover, the concept of EVs in CSF/plasma needs
further refinement, since these nanoparticles may contain a vast
amount of information about disease progression, for instance as
encoded by exosomal miRNA profiles.

Preferentially, future studies should include more PD patients
in prodromal and de novo stages based on strict inclusion
criteria [e.g., risk factors (45)] and with prolonged follow-
up, since current studies only comprised a mere 10–30 study
subjects per group. Baseline and intermittent sampling with
preceding levodopa washouts would be necessary if early-stage
PD subjects are to be included or if treatment was initiated
in the meanwhile. Additionally, optimal cutoff CSF/plasma
values of DOPAC, L-DOPA, and DHPG/MHPG need to be
determined and independently verified on an international scale.
In this regard, “very low, low, normal, or high” levels can
be attributed to numerical meanings. Metabolomic approaches,
such as liquid chromatography with sensitive electrochemical
detection, whether or not coupled to mass spectrometry, are
routinely implemented in most research hospitals and are
feasible techniques for catecholamine biomarker analyses in
daily clinical practice (73). Finally, one should also reckon
with important methodological issues that are inherent in
monoaminergic research, such as sampling conditions (e.g., CSF
rostrocaudal concentration gradient, circadian rhythm (74), and
dietary effects) and pre-analytical stability of CSF catecholamine
metabolites (75).
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