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3Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martı́ i Franquès 1, E-08028 Barcelona, Spain
4ICREA, Pg. Lluis Companys 23, E-08010 Barcelona, Spain.
5Department of Physics, University of Surrey, Guildford GU2 7XH, Surrey, UK
6Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
7Kapteyn Astronomical Institute, University of Groningen, Postbus 800, NL-9700AV Groningen, the Netherlands
8Department of Physics and Astronomy, University of Victoria, PO Box 3055, STN CSC, Victoria, BC V8W 3P6, Canada

Accepted 2019 October 19. Received 2019 October 18; in original form 2019 August 20

ABSTRACT
The globular cluster (GC) 47 Tuc has recently been proposed to host an intermediate-mass
black hole (IMBH) or a population of stellar mass black holes (BHs). To shed light on its dark
content, we present an application of self-consistent multimass models with a varying mass
function and content of stellar remnants, which we fit to various observational constraints.
Our best-fitting model successfully matches the observables and correctly predicts the radial
distribution of millisecond pulsars and their gravitational accelerations inferred from long-
term timing observations. The data favours a population of BHs with a total mass of 430+386

−301

M�, but the most likely model has very few BHs. Since our models do not include a central
IMBH and accurately reproduce the observations, we conclude that there is currently no need
to invoke the presence of an IMBH in 47 Tuc. The global present-day mass function inferred
is significantly depleted in low-mass stars (power-law slope α = −0.52+0.17

−0.16). Given the orbit
and predicted mass-loss history of this massive GC, the dearth of low-mass stars is difficult to
explain with a standard initial mass function (IMF) followed by long-term preferential escape
of low-mass stars driven by two-body relaxation, and instead suggests that 47 Tuc may have
formed with a bottom-light IMF. We discuss alternative evolutionary origins for the flat mass
function and ways to reconcile this with the low BH retention fraction. Finally, by capturing
the effect of dark remnants, our method offers a new way to probe the IMF in a GC above the
current main-sequence turn-off mass, for which we find a slope of −2.49 ± 0.08.

Key words: stars: kinematics and dynamics – stars: luminosity function, mass function; stars:
black holes – globular clusters: general – globular clusters: individual: 47 Tuc.

1 IN T RO D U C T I O N

Postulated to populate the mass regime between stellar mass black
holes (BHs) and supermassive black holes (SMBHs), intermediate-
mass black holes (IMBHs; ∼102−105 M�) could represent a
missing link in black hole growth, seeding the rapid formation
of SMBHs in galaxies in the early Universe (e.g. Volonteri 2010).
Theoretical studies have suggested that IMBHs may form in the
dense environment found in the cores of globular clusters (GCs),
for example from a supermassive star that forms via runaway stellar
collisions during their early life (e.g. Portegies Zwart et al. 2004;

� E-mail: vincent.henault@smu.ca

Gieles et al. 2018b) or via mergers of BHs via gravitational wave
inspiral over a period of several Gyr (Giersz et al. 2015; Antonini,
Gieles & Gualandris 2019). From simply extrapolating the observed
relation between the black hole mass and the velocity dispersion of
its host galaxy (Ferrarese & Merritt 2000; Gebhardt et al. 2000),
one may expect black holes with masses characteristic of IMBHs to
hide in GCs. If confirmed, observational evidence of IMBHs would
also have a significant impact on a wide range of other astrophysical
problems, from the origin of ultraluminous X-ray sources in nearby
galaxies to the rates of gravitational wave events.

The quest to find IMBHs in the core of Milky Way GCs,
where their presence has been debated for a long time, is however
challenging. Deep radio observations of nearby GCs looking for
signatures of accretion on to an IMBH have put upper limits on
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their masses of a several 100 to ∼1000 M� (Strader et al. 2012b;
Tremou et al. 2018), but these non-detections could be due to the
paucity of gas in GCs at the present day. A lot of effort has thus
focused on indirect dynamical inference to search for the presence
of IMBHs, but to this day all reported detections remain contentious
and inconclusive.

Earlier claims of IMBH detections in GCs are based on indica-
tions of a shallow central cusp in the surface brightness profile or
a central rise in the velocity dispersion profile inside the sphere of
influence of a putative IMBH (e.g. Newell, Da Costa & Norris 1976;
Noyola, Gebhardt & Bergmann 2008; Lützgendorf et al. 2011),
which is expected from relaxation arguments (Bahcall & Wolf
1976). All these findings have been rebutted, or at least questioned.
In some cases, this was due to improvements in the measurements
of the central velocity dispersion with discrete kinematics (proper
motions or line-of-sight velocities for individual stars; van der
Marel & Anderson 2010; Lanzoni et al. 2013) rather than integrated-
light spectra which can be biased by stochasticity induced by
bright stars (see e.g. Bianchini et al. 2015; de Vita et al. 2017).
In other cases, there are other physical explanations that cannot
be ruled out and are more plausible. Radially biased anisotropy in
the velocity distribution (Zocchi, Gieles & Hénault-Brunet 2017)
or the presence of dark remnants such as white dwarfs, neutron
stars (Illingworth & King 1977; den Brok et al. 2014) and BHs
(Lützgendorf, Baumgardt & Kruijssen 2013; Peuten et al. 2016;
Baumgardt et al. 2019; Zocchi, Gieles & Hénault-Brunet 2019) can
mimic the dynamical signatures previously ascribed to an IMBH,
in particular the increase in the central velocity dispersion. The
same goes for high-velocity stars found in the cores of some GCs
(Gunn & Griffin 1979; Meylan, Dubath & Mayor 1991; Lützgendorf
et al. 2012), which may suggest interaction with an IMBH but
can in fact simply result from interactions with a binary system
(Lützgendorf et al. 2012) or represent ‘potential escapers’, stars
above the local escape velocity that are energetically unbound but
trapped inside the Jacobi surface for several orbits before escaping
the cluster (Fukushige & Heggie 2000; Claydon, Gieles & Zocchi
2017; Daniel, Heggie & Varri 2017).

Pulsar timing is a promising way to probe the gravitational
potential of GCs and look for an IMBH in their core. Given
the precise and stable clock provided by measurements of the
period (spin or binary orbital period) of a pulsar, one can relate an
observed change in that period (typically over a baseline of several
years) to the gravitational acceleration from the cluster potential
at the position of the pulsar. If there is no process intrinsic to the
pulsar or binary system changing this period, then the observed
period derivative is directly related to the gravitational acceleration
along the line of sight (Phinney 1993; Prager et al. 2017). Perera
et al. (2017) recently used long-term timing observations of the
millisecond pulsar (MSP) PSR B1820−30A, located less than 0.5′′

from the centre of NGC 6624, to argue for the presence of a central
IMBH in that GC. Gieles et al. (2018a) however showed that the
maximum line-of-sight acceleration at the position of the MSP is
consistent with a mass segregated dynamical model of NGC 6624
without an IMBH. Baumgardt et al. (2019) also concluded that there
is no need for an IMBH in NGC 6624 by comparing observations
to N-body models with and without an IMBH.

Using spin period derivatives for 23 MSPs with timing solutions
in 47 Tuc, Kızıltan, Baumgardt & Loeb (2017) argued for an
IMBH with a mass M• ∼ 2200+1500

−800 M� in this cluster. To reach
this conclusion, they compared the inferred pulsar accelerations
(assuming an intrinsic spin-down distribution comparable to that of
the Galactic field MSP population) to the accelerations of neutron

stars in a grid of N-body simulations of GCs with and without
an IMBH. Several assumptions could however have affected their
analysis, for example the short distance to 47 Tuc of 4 kpc assumed
by Kızıltan et al. (2017), whereas most recent estimates put it at
∼4.5 kpc (Chen et al. 2018, and references therein). As pointed out
by Mann et al. (2019), the N-body models of Kızıltan et al. (2017)
do not have significant mass in binaries or other heavy objects (their
main grid of models contained no primordial binaries and little or
no stellar mass black holes after a Hubble time). A lack of massive
objects that would sink to the centre due to dynamical friction could
lead to an underestimation of the gravitational acceleration in the
central regions of their models without an IMBH. The assumption
by Kızıltan et al. (2017) of a mass 1.4 M� for the MSPs (a lower limit
on the true masses given that many of these are in binary systems;
e.g. Freire et al. 2017) could also bias the comparison of the inferred
accelerations of some pulsars with the distribution of accelerations
in the N-body models since the adopted mass affects the predicted
spatial distribution of these objects. Mann et al. (2019) used stellar
proper motions from the Hubble Space Telescope (HST) in the core
of 47 Tuc along with Jeans models to conclude that the measured
central velocity dispersion profile provides no strong evidence for
an IMBH, in particular if significant concentrated populations of
heavy binary systems and dark stellar remnants are included.

This last point is particularly relevant given the recent interest
in uncovering BH populations in GCs because of the detection
of gravitational waves from merging BHs by LIGO (Abbott et al.
2016a). Dynamical formation of close BH–BH binaries in the dense
cores of GCs could be one of the main formation channels for these
mergers (e.g. Sigurdsson & Hernquist 1993; Portegies Zwart &
McMillan 2000; Abbott et al. 2016b; Rodriguez, Chatterjee & Rasio
2016). The amount of dynamically formed BH–BH binaries and
eventual mergers in GCs as a function of time depends on several
ingredients (e.g. the initial mass function – IMF, the initial–final
mass relation, massive binary star evolution, the magnitude of natal
kicks that BHs receive at birth, the dynamical age of the cluster, etc.),
many of which are poorly constrained. A promising avenue to make
progress is to quantify the size of BH populations in GCs today.

Radio and X-ray observations of GCs have led to the discovery
of a few accreting stellar mass BH candidates in mass-transferring
binaries (e.g. Strader et al. 2012a), including one in 47 Tuc (Miller-
Jones et al. 2015). Giesers et al. (2018) identified a detached stellar
mass BH candidate in the core of the Galactic GC NGC 3201
from the radial velocity variations of a main-sequence turn-off star
companion. These findings suggest that the natal kick velocities of
BHs can be low enough to retain at least a small fraction of the BHs
formed in GCs. Since these types of binaries are rare (Kremer et al.
2018a), they could represent the tip of the iceberg of a much larger
population of BHs that might be common in GCs1 but would have
to be detected indirectly (e.g. through their dynamical signature).

Due to two-body relaxation and the trend towards kinetic energy
equipartition, BHs (which are�10 times more massive than the typ-
ical ∼0.5 M� star in a GC) have a dynamical heating effect on cluster
stars and tend to inflate the visible cluster core while suppressing

1Note that models from Kremer et al. (2018a) show little correlation between
the presence of mass-transferring BH systems and the total number of BHs
in the cluster at any given time; the net rate of formation of BH-non-BH
binaries is largely independent of the total number of retained BHs. Should
this lack of correlation generally hold true, one would not be able to estimate
the total number of BHs in a GC by extrapolating from the number of known
BH candidates in binaries.
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mass segregation among observable stars in the cluster (e.g. Merritt
et al. 2004; Mackey et al. 2008; Peuten et al. 2016). Based on
relations between the number of BHs in GC models and their global
properties or kinematics, present-day populations of a few tens to
a few hundreds of BHs have been proposed in several Milky Way
GCs (e.g. Peuten et al. 2016; Askar, Arca Sedda & Giersz 2018;
Kremer et al. 2018b, 2019). For 47 Tuc, Weatherford et al. (2018)
inferred a population of ∼20 BHs (but possibly as large as ∼150
BHs within 2σ ) based on the observed mass segregation between
giants and low-mass main-sequence stars in the central regions
of the cluster. There is however a need to confirm the predictions
from these simple relations with more elaborate methods and/or by
comparing models simultaneously to a wider range of observations
of the internal kinematics and structural properties of GCs.

To shed light on the mass distribution and dark content of 47 Tuc,
we present in this work a new self-consistent equilibrium multimass
model of the cluster (without an IMBH) that captures the effect
of mass segregation in the presence of dark stellar remnants. In
Section 2, we present the various data sets to which we fit our
models. We describe the multimass models and fitting procedure
in Section 3 and the results of the fits in Section 4. We discuss the
implications for the BH content, global present-day mass function
and IMF of 47 Tuc in Section 5, and finally we summarize our
conclusions in Section 6.

2 DATA

We summarize below the various data sets to which the models
described in Section 3 are fitted, as well as additional data to
which we compare predictions from our best-fitting models. In
contrast to previous work that studied the mass distribution and
black hole content of 47 Tuc focusing on one type of observable
(e.g. either pulsar accelerations, the central velocity dispersion, or
the observed mass segregation; Kızıltan et al. 2017; Mann et al.
2019; Weatherford et al. 2018, see Section 1), we simultaneously
compare and fit our models to several observables that probe the
mass distribution within the cluster and the phase-space distribution
of objects of different masses.

2.1 Number density profile

To constrain the structural parameters of the cluster, we use the
number density profile of 47 Tuc from the catalogue of de Boer
et al. (2019), which is based on Gaia Data Release 2 (DR2) data,
allowing accurate membership selection in the outer parts of the
cluster. The profile is extended using supplemental literature data
from surface brightness measurements (Trager, King & Djorgovski
1995) in the central regions of the cluster, where the completeness of
Gaia data is affected by crowding. The Gaia number density profile
is calculated from bright stars (m > 0.6 M�) and the literature
data are also dominated by bright stars. In both cases, the profile
is dominated by stars from a narrow range of stellar masses (cf.
de Boer et al. 2019). When fitting models, we thus assume that
the number density profile traces the spatial distribution of upper
main-sequence and evolved stars.

2.2 Kinematics

2.2.1 Proper motions

As the main constraint on the total mass of the cluster (and its
distribution as a function of distance from the centre), we consider

kinematic data from various sources. We use the HST proper motion
dispersion profiles (tangential and radial components in the plane
of the sky) in the central regions of the cluster from Watkins et al.
(2015). These are based on cleaned samples of bright stars from
the HST proper motion catalogues of Bellini et al. (2014) and only
include stars brighter than the main-sequence turn-off.

We complement the data set above with HST proper motion
dispersion profiles of main-sequence stars from Heyl et al. (2017)
in a field located further out and centred 6.7′ in projection from
the cluster centre (∼8.8 pc, a little over two times the half-light
radius; McLaughlin & van der Marel 2005). The mean mass of the
stars in this data set is 0.38 M� – significantly lower than the stars
entering the other kinematic data sets – so inclusion of this data set
provides constraints on mass segregation and the mass dependence
of kinematics. These data show evidence of radial anisotropy in
the outer parts of 47 Tuc and provide a useful constraint on the
anisotropy parameter (see Section 3). As shown by Zocchi et al.
(2017), anisotropy in the outer regions of a cluster can influence
the central velocity dispersion, with radially anisotropic models
having a larger central dispersion (in the radial, tangential, and line-
of-sight components) than the equivalent isotropic models. This
ingredient was however not considered by Mann et al. (2019), who
fitted isotropic Jeans models to the velocity dispersion profile in the
core of the cluster. Given the different mass regime probed by these
data compared to the other kinematic data used, they also provide
additional leverage to capture and correctly model the effect of mass
segregation.

For our main set of models, we adopt a distance of 4.45 kpc
to convert model velocities to observed proper motions in units
of mas yr−1. This distance is the most recent and precise estimate
(4.45 ± 0.01 ± 0.12 kpc; random and systematic errors, respec-
tively) for 47 Tuc, obtained by Chen et al. (2018) using parallaxes
from Gaia DR2 and taking advantage of the background stars in
the Small Magellanic Cloud and quasars to account for parallax
systematics. This distance also agrees with the recent dynamical
distance of 4.4 ± 0.1 kpc by Kamann et al. (2018). In Section 4,
we will discuss how 2σ excursions from this adopted value of D =
4.45 kpc influence our results, and show that our main conclusions
remain unaffected even with D = 4.2 kpc or D = 4.7 kpc.

2.2.2 Line-of-sight velocities

We also use the line-of-sight velocity dispersion profile of 47 Tuc
from Baumgardt & Hilker (2018), which builds on a compilation
of line-of-sight velocity measurements from Baumgardt (2017) and
considers additional archival data. This includes several measure-
ments from the literature (Mayor et al. 1983; Gebhardt et al. 1995;
Carretta et al. 2009; Lane et al. 2011; Gratton et al. 2013; Da
Costa 2016; Kunder et al. 2017; Kamann et al. 2018) which have
been put on the same velocity scale by matching their mean radial
velocity.

2.3 Stellar mass functions

In order to constrain the global stellar mass function of the cluster,
we compare our models to measurements of the local stellar mass
function in concentric annuli covering different ranges of projected
distances from the cluster centre. Sollima & Baumgardt (2017)
extracted stellar mass functions in four annuli within a projected
radius of 1.6 arcmin from the centre of 35 GCs using the HST/ACS
photometry published by the Globular Cluster ACS Treasury Project

MNRAS 491, 113–128 (2020)
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(Sarajedini et al. 2007). To convert magnitudes to stellar masses,
they adopted the mass–luminosity relation of suitable isochrones
from the Dotter et al. (2007) data base. 47 Tuc was not retained
in the final sample analysed in Sollima & Baumgardt (2017), but
stellar mass functions determined in the same way as for their
35 selected clusters were provided to us by Sollima (priv. comm.).
These stellar mass functions for 47 Tuc are also presented in fig. 2 of
Baumgardt & Hilker (2018). The annuli cover the projected radius
ranges 0.0 arcmin < R < 0.4 arcmin, 0.4 arcmin < R < 0.8 arcmin,
0.8 arcmin < R < 1.2 arcmin, and 1.2 arcmin < R < 1.6 arcmin. The
mass range covered is ∼0.2 M� < m < 0.85 M� in the outermost
of these four annuli but is narrower in the innermost annulus where
crowding significantly affects the completeness of observations for
the fainter low-mass stars.

Note that observations of the mass function in 47 Tuc were not
considered in the analysis of Kızıltan et al. (2017), who argued
in favour of an IMBH. These authors used N-body simulations
of isolated star clusters with a Kroupa (2001) IMF (and hence
no significant preferential loss of low-mass stars), despite the fact
that previous work suggests a global stellar mass function depleted
in low-mass stars for this cluster (e.g. Giersz & Heggie 2011).
This could have affected their inferred mass distribution, and hence
the predicted pulsar accelerations on which their conclusions are
based.

2.4 Pulsar data

Although we do not directly include them in the fitting procedure,
we consider the spatial distribution and inferred accelerations of
pulsars in 47 Tuc as additional observables that are compared to our
best-fitting models to serve as a consistency check. Because pulsars
have a higher mass than our tracer stars and their accelerations
probe the gravitational potential of the cluster, these data help to
assess the validity and predictive power of our models fitted to
the number density profile, kinematics, and stellar mass function
data.

Freire et al. (2017) presented updated or new long-term timing
solutions for the majority of the 25 known MSPs in 47 Tuc based
on data from the Parkes 64-m radio telescope. To compare with the
maximum line-of-sight accelerations predicted by our models, we
take the orbital period derivatives and associated inferred line-of-
sight accelerations (alos � c Ṗorb/Porb, i.e. no intrinsic component to
the observed period derivative) for 10 binary systems with a timing
solution and measured orbital period derivative (Ridolfi et al. 2016
for 47 Tuc X, Freire et al. 2017 for the nine other binary systems:
47 Tuc E, H, I, Q, R, S, T, U, and Y). Two of these (47 Tuc I and R)
are black-widow systems with a low-mass companion (<0.05 M�)
and the others have a white dwarf companion. For the remainder of
the MSPs with a timing solution (either isolated pulsars or binaries
for which the orbital period derivative could not be measured),
we compute an upper limit on the line-of-sight acceleration from
the measured first spin period derivative (alos ≤ c Ṗspin/Pspin; with
measurements from Freire et al. 2017, Ridolfi et al. 2016, and
Freire & Ridolfi 2018).

From the coordinates of all of the above MSPs, plus two
additional ones without a timing solution (47 Tuc P and V; e.g.
Ridolfi et al. 2016), we build a cumulative radial distribution of
MSPs in 47 Tuc which we use as a proxy for the spatial distribution
of neutron stars in the cluster and an additional sanity check for our
mass segregated models. We adopt the position of the cluster centre
determined by Goldsbury et al. (2010).

3 MO D E L S A N D F I T T I N G PRO C E D U R E

3.1 Multimass dynamical models

To model the mass distribution within 47 Tuc, we use the multimass
version of the LIMEPY2 family of dynamical models (Gieles &
Zocchi 2015). These models are based on a distribution function
that approximates an isothermal sphere for the most bound stars
in the central regions and is described by polytropes in the
external regions near the escape energy. The latter aspect allows
to describe dynamically evolved and tidally limited systems and
approximately capture the effect of the galactic tidal field on the
structure and dynamics of GCs in the simplifying assumption of
spherical symmetry. The truncation parameter g (related to the
polytropic index n = g + 1.5) sets the sharpness of the truncation
in energy: models with larger values of g are more extended and
have a less abrupt truncation. The concentration of the models is
controlled by the dimensionless central potential W0, similar to the
concentration parameter of King (1966) models. LIMEPY models
with g = 1 are single-mass King models, while models with g = 0
are Woolley (1954) models and those with g = 2 the also well-known
isotropic and non-rotating Wilson (1975) models. Note that any
intermediate level of truncation ‘sharpness’ is possible by setting
g to a non-integer value. The exact meaning of W0 depends on
the definition of the mean mass, and we adopt here the global
mean mass of the entire model (for details on this and alternative
definitions, see Peuten et al. 2017). The distribution function of the
LIMEPY models includes an angular momentum term that allows
to include Michie-type anisotropy (isotropy in the centre of the
cluster, radially anisotropic velocity distribution in the intermediate
parts, and isotropy again near the truncation radius; Michie 1963).
This is specified by the anisotropy radius (ra) parameter, which
sets the amount of velocity anisotropy in the system: models with
a small ra are radially anisotropic, while models with a large ra

(with respect to the truncation radius) have an isotropic velocity
distribution everywhere. This form of anisotropy profile has been
shown to satisfyingly describe GCs evolving in an external tidal field
in N-body simulations (Sollima et al. 2015; Tiongco, Vesperini &
Varri 2016; Zocchi et al. 2016). Peuten et al. (2017) showed with
N-body models that in the early evolution ra is smaller for the
lower mass objects and in the late stages of evolution it is the more
massive stars and remnants that have a smallest ra. For the present-
day dynamical age of 47 Tuc (Giersz & Heggie 2011), the results
of Peuten et al. (2017) suggest that ra is approximately independent
of mass, hence we proceed with the assumption that anisotropy for
all mass bins can be described by a single value of ra.

Multiple mass components and the effect of mass segregation
between these components are included in the LIMEPY models
by relating the velocity scale of each mass component (sj) to
the mass of the component (mj) as sj ∝ m−δ

j (where δ is usually
set to 1/2; see Gunn & Griffin 1979). This formulation leads to
equipartition at high masses, but to a shallower mass dependence
of the central velocity dispersion at lower masses which matches
what is seen in N-body and Monte Carlo simulations of GCs (e.g.
Gieles & Zocchi 2015; Bianchini et al. 2016; Peuten et al. 2017).
We emphasize that the LIMEPY models have been extensively tested
against snapshots from direct N-body simulations for which the
full phase-space information is available, including that of different

2A PYTHON solver allowing to compute models is available at https://github
.com/mgieles/limepy
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mass components in simulations with a mass spectrum (Zocchi et al.
2016; Peuten et al. 2017). In particular, Peuten et al. (2017) showed
that multimass LIMEPY models accurately reproduce the degree of
mass segregation in evolved multimass systems in different tidal
fields and with vastly different populations of dark remnants (e.g.
from no neutron stars and BHs to a large retention fraction of stellar
mass black holes).

In addition to the three parameters introduced above (W0, g, and
ra) and the mean stellar mass (mj) and total mass (Mj) of each of the
different mass components, two physical scales must be specified to
compute a model that can be compared to observations. We adopt
here the total cluster mass (M) and half-mass radius (rh) as the
additional parameters specifying those scales.

3.2 Stellar mass function and remnants

To determine the individual values of mj and Mj, we define four
additional free parameters associated with the global mass function
within the cluster. An IMF is adopted and defined by a three-
component broken power law (dN/dm ∝ m−α) with break masses
at m = 0.5 M� and m = 1 M�, and power-law indices α1, α2, and
α3 corresponding to the low-, intermediate-, and high-mass ranges,
respectively. We evolve this mass function to the present day as-
suming a metallicity of [Fe/H] = −0.7 and an age of 11 Gyr (Dotter
et al. 2010; Hansen et al. 2013) to turn higher mass stars into white
dwarfs, neutron stars, and black holes following the mass function
evolution algorithm from Balbinot & Gieles (2018), updated3 by
Peuten et al. (in preparation) to include a more realistic treatment
of the initial–final mass relation for the different types of remnants
(e.g. Belczynski et al. 2008; Dotter 2016). Modification of the mass
function by dynamical evolution and preferential escape of low-
mass stars and remnants is assumed to be negligible for 47 Tuc (see
Section 5.2), so this effect is not included in our models and fitting
procedure. We note that Monte Carlo models by Giersz & Heggie
(2011) suggest that almost 50 per cent of the mass of the cluster has
been lost, but this is due to stellar evolution mass loss, i.e. high-mass
stars turning into remnants, and not escaping low-mass stars.

We allow for a varying retention fraction of the number of
BHs (BHret), removing the more massive BHs first as expected
for a slow depletion of the BH reservoir from dynamical ejections,
where the more massive BHs have a larger dynamical interaction
cross-section (Morscher et al. 2015; Antonini & Gieles 2019). This
approach implicitly assumes a 100 per cent BH retention after
supernovae, which is justified given the estimates the of initial
mass and escape velocity at formation of 47 Tuc (see Giersz &
Heggie 2011, and Section 5.3). For the neutron stars, we make
the common assumption of a retention fraction of 10 per cent
(e.g. Pfahl, Rappaport & Podsiadlowski 2002), but our results are
actually insensitive to the precise retention fraction of neutron stars
adopted (see Section 4). Our mass function evolution algorithm
assigns objects into discrete mass bins, with stars distributed over
30 logarithmically spaced mass bins at time t = 0. Depending on
the BH retention, the mass function consists of 15–19 mass bins at
the present day.4

Combined with the total cluster mass M, the four additional free
parameters (power-law exponents α1, α2, α3, and BHret) fully define

3https://github.com/balbinot/ssptools/blob/master/ssptools/evolve mf.py
4See Peuten et al. (2017) for a discussion of the choice and minimum number
of mass bins to ensure fast but stable solutions of multimass LIMEPY models.

the mass function, allowing to specify all values of mj and Mj needed
to build the multimass model.

When fitting multimass models similar to the ones described
here to mock data from an N-body simulation, Hénault-Brunet et al.
(2019) found that the fraction of the cluster mass in dark remnants
and even the mass function of the remnants can be reliably recovered
and constrained. Thanks to the trend towards equipartition between
objects of different masses, the phase-space distribution of tracer
stars is sensitive to the dark remnants, allowing to probe the BH
content and the IMF above the present-day main-sequence turn-off
mass.

3.3 Fitting procedure

For the models described in the previous subsections, we have a
total of 12 free parameters, including the 10 following: W0, g,
log ra, M, rh, α1, α3, α3, BHret, and δ defined as above. The two
additional parameters are nuisance parameters that capture other-
wise unaccounted-for observational uncertainties or limitations of
the model for the density profile (s2) and the mass function (F), as
described below.

To compare a given model to the data sets described in Sec-
tions 2.1–2.3, we compute the likelihood of each observational
data point given the model parameters. We assume a Gaussian
likelihood for all the observables, with the standard deviation δ

given by the uncertainties (observational, plus in some cases an
additional component captured by a nuisance parameter). The
likelihood of an observed line-of-sight velocity dispersion σ LOS∗,i

with its uncertainty δσ LOS∗,i at projected distance R from the centre,
given model parameters �, is

LσLOS,i

(
σLOS∗,i(R), δσLOS∗,i(R) | �

) =

1√
2πδσLOS∗,i(R)

exp

(
−1

2

(
σLOS,i(R) − σLOS∗,i(R)

)2(
δσLOS∗,i(R)

)2

)
, (1)

where σ LOS,i(R) is the model line-of-sight velocity dispersion at
the distance R. Since the line-of-sight velocity dispersion data is
dominated by giants, we use the mass bin corresponding to the
most massive upper main-sequence stars for the model line-of-sight
velocity dispersion to compare with the data.5

Similarly, for the HST proper motion dispersion data in the central
regions of the cluster from Watkins et al. (2015), the likelihood of
an observed proper motion dispersion in the radial direction σ pmR∗,i

with its uncertainty δσ pmR∗,i at projected distance R from the centre,
given model parameters �, is

LσpmR,i

(
σpmR∗,i(R), δσpmR∗,i(R) | �

) =

1√
2πδσpmR∗,i(R)

exp

(
−1

2

(
σpmR,i(R) − σpmR∗,i(R)

)2(
δσpmR∗,i(R)

)2

)
, (2)

where σ pmR,i(R) is the model proper motion dispersion at the
distance R in the radial direction. The likelihood of an observed

5For the MUSE data from Kamann et al. (2018) which are included in the
line-of-sight velocity dispersion profile compiled by Baumgardt & Hilker
(2018), this assumption is not entirely accurate. Because of the different
stellar densities, longer exposure times were used when observing the outer
MUSE fields. Hence, in the outermost bins of the MUSE observations the
kinematics trace different stars than in the innermost bins. For 47 Tuc, the
difference in the effective stellar mass traced over the spatial extent of the
MUSE data is however only ∼ 0.1 M�, so this does not have a significant
impact on the results.
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proper motion dispersion in the tangential direction σ pmT∗,i with its
uncertainty δσ pmT∗,i at projected distance R from the centre, given
model parameters �, is

LσpmT,i

(
σpmT∗,i(R), δσpmR∗,i(R) | �

) =

1√
2πδσpmT∗,i(R)

exp

(
−1

2

(
σpmT,i(R) − σpmT∗,i(R)

)2(
δσpmT∗,i(R)

)2

)
, (3)

where σ pmT,i(R) is the model proper motion dispersion at the
distance R in the tangential direction. Since these proper motion
data only include stars brighter than the main-sequence turn-off,
we again use the mass bin corresponding to the most massive
upper main-sequence stars for the model proper motion dispersion
to compare with the data. Evolved phases like red giant branch
(RGB) and asymptotic giant branch (AGB) stars are expected to
have a very similar mass and to behave dynamically like stars with
a mass comparable to the mass of turn-off stars. In particular, for
47 Tuc, Parada et al. (2016) conclude that the post-main-sequence
mass loss occurs at the end of the AGB phase, so the mass remains
constant for stars going through the evolutionary stages from the
upper main-sequence up to the horizontal branch. Their slightly
higher mass estimates for AGB stars are consistent with the AGB
having evolved from somewhat more massive stars.

For the proper motion dispersion observations from Heyl et al.
(2017), the likelihood is defined in the same way as in equations (2)
and (3). The median mass of the stars in this data set is 0.38 M�,
so we use the mass bin with the corresponding lower mean mass
mj for the model proper motion dispersion to compare with these
data, and we refer to the likelihood of an observed proper motion
dispersion asLσpmT low,i

andLσpmR low,i
, respectively, for the radial and

tangential components. We note that the median mass of 0.38 M� is
based on a sample of stars from a relatively wide magnitude or mass
range (24 > F814W > 18; 0.2 � m/M� � 0.8), and the velocity
dispersion from this whole sample is not necessarily exactly the
same as the dispersion of stars with this median mass because the
velocities are mass dependent. We thus also considered a separate
test case where we fitted these proper motion dispersion data by
using as a reference a lower mass bin in our models (mj = 0.3 M�),
which may be representative of the mean kinematics of the sample
considered (cf. figs 6 and 7 from Heyl et al. 2017). We conclude in
Section 4 that this does not significantly affect our results, since the
difference in the velocity dispersion is very small (�0.3 kms−1) for
this small difference in tracer mass in this outer field.

The number density profile from de Boer et al. (2019) is compared
to the model prediction for the heaviest main-sequence stars. We
include in our model density profile a constant background level of
0.08 arcmin−2 to match the data in the very outskirts of the cluster.
To let the total mass be constrained by the kinematics and stellar
mass functions, we only fit on the shape of the profile and not on
the absolute values. The likelihood of a measured number density
�∗,i(R) and its uncertainty δ�∗,i(R) at the projected distance R,
given model parameters �, is

LND,i

(
�∗,i (R) , δ�∗,i (R) | �

) =

1√
2πδ�∗,i (R)

exp

(
−1

2

(
K�i (R) − �∗,i (R)

)2

δ�∗,i (R)2

)
, (4)

where �i(R) is the predicted number density from the model at the
distance R in the heaviest main-sequence mass bin. K is the scaling
parameter that minimizes the vertical offset between the model and
observed profile. It re-scales the model profile and allows to fit
only on the shape of the number density profile, not its absolute

values. It is derived from setting the derivative of the χ2 expression∑Np
i=1

(
K �i (R) − �∗,i (R)

)2
/δ�∗,i (R)2 with respect to K equal

to zero and is defined as

K =
∑Np

i=1 �∗,i(R)�i (R) /δ�∗,i (R)2∑Np
i=1(�i (R))2/δ�∗,i (R)2

, (5)

where the sums are over all Np data points in the binned observed
density profile. In the uncertainty on the observed number density
profile (δ�∗, i(R)), we include both the formal uncertainty from de
Boer et al. (2019), δ�0,i(R), and an additional unknown uncertainty
encapsulated by nuisance parameter s2 such that δ�∗,i(R)2 =
δ�0,i(R)2 + s2. This nuisance parameter adds a constant component
to the uncertainty over the entire extent of the observed number
density profile. This effectively allows small deviations between
the model and observations in the outer parts of the cluster, for
example to account for the effect of potential escapers (Claydon
et al. 2017, 2019) which are not captured by multimass LIMEPY

models in their current implementation (cf. Hénault-Brunet et al.
2019).

For the comparison of the models and mass function data, we
write down the likelihood of an observed number of stars per unit
mass N∗,i with its uncertainty δN∗,i at mass m in a given field, given
model parameters �, as

LMF,i

(
N∗,i (m) , δN∗,i (m) | �

) =

1√
2πδN∗,i (m)

exp

(
−1

2

(
Ni (m) − N∗,i (m)

)2

δN∗,i (R)2

)
, (6)

where Ni(m) is the number of stars per unit mass at mass m
predicted by the model in the same region. The likelihood for
the observed mass function in a given field is the product of the
individual likelihoods of all measurements at different masses in
that field (LMF = 
iLMF,i). We compute the likelihood for the
observed mass function given the model parameters in the four
different annular regions mentioned above (LMF,0−0.4′ , LMF,0.4−0.8′ ,
LMF,0.8−1.2′ , LMF,1.2−1.6′ ).

In the uncertainty on the observed number of stars per unit mass
(δN∗,i), we include both the Poisson error on the number of stars
(δN0, i) and an additional unknown uncertainty captured by the
nuisance parameter F and expressed as a fraction between 0 and
1, such that δN2

∗,i = δN2
0,i + (

F N∗,i

)2
. This nuisance parameter

encapsulates possible additional sources of uncertainty like errors in
the completeness correction of the photometric data set from which
the mass functions were extracted, or limitations of the assumed
broken power-law functional form for the underlying global mass
function, which may not be a perfect representation of the mass
function of the cluster.

For each data set, we multiply the individual likelihoods for
different data points to obtain the likelihood of this data set given
the model. We then multiply the likelihoods for different data sets
to obtain the total likelihood:

Ltot = LMF,0−0.4′ LMF,0.4−0.8′ LMF,0.8−1.2′ LMF,1.2−1.6′

LND LσpmT LσpmR LσpmT,low LσpmR,low LσLOS . (7)

Using the total likelihood function above (in practice we maxi-
mize the log-likelihood and can conveniently sum individual log-
likelihoods for the different data sets to get the total log-likelihood),
we determine the posterior distributions of the model parameters
using the Markov Chain Monte Carlo sampler EMCEE (Foreman-
Mackey et al. 2013), adopting uniform priors on all parameters
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Table 1. Best-fitting model parameters and associated uncertainties (i.e.
the median and ±1 σ uncertainties – corresponding to the 16th and 84th
percentiles of the marginalized posterior probability distribution) for our
multimass model fit to 47 Tuc data.

Parameter Value Prior range

W0 6.1+0.1
−0.1 [3, 20]

g 0.57+0.07
−0.07 [0, 2.3]

log ra/pc 1.23+0.02
−0.02 [0, 5]

M/106 M� 1.06+0.01
−0.01 [0.01, 10]

rh/pc 8.16+0.12
−0.12 [0.5, 15]

α1 0.52+0.17
−0.16 [−2, 6]

α2 1.35+0.25
−0.23 [−2, 6]

α3 2.49+0.08
−0.08 [−2, 6]

BHret 0.59+0.06
−0.04 % [0, 100 per cent]

δ 0.44+0.02
−0.02 [0.3, 0.5]

F 0.21+0.04
−0.03 [0, 0.5]

s2 0.01+0.01
−0.005 [0, 10]

(for the anisotropy radius we actually fit on log (ra)). The ranges
considered for these uniform priors are listed in Table 1.

4 R ESULTS

4.1 Best-fitting model and parameters

We show in Fig. 1 the resulting model fit to the number density
profile, kinematics, and local stellar mass functions. The error
bars displayed for the number density profile and mass function
data include the error contributions captured by the associated
nuisance parameters. Fig. 2 shows the corresponding marginalized
posterior probability distribution and 2D projection of the posterior
probability distribution for each fitting parameter and pair of param-
eters. The posterior probability distributions are all well confined
within the adopted prior ranges and appear mostly unimodal. The
best-fitting model parameters and associated uncertainties (i.e. the
median and ±1σ uncertainties – corresponding to the 16th and 84th
percentiles of the marginalized posterior probability distribution)
are listed in Table 1. Note that the best-fitting model (continuous
lines) and credible intervals (shaded regions) shown in Fig. 1 do not
correspond directly to models computed from the best-fitting values
of Table 1, but rather they are computed from the 16th, 50th, and
84th percentiles (at a given radius or mass) of the profiles computed
by sampling parameters from the posterior distribution.

All the different observables considered in the fit are satisfyingly
reproduced by the best-fitting model. Some small deviations are
found between the best-fitting model and data, but the vast majority
are within 2σ , apart from the outermost line-of-sight velocity
dispersion data points where the model underestimates the observed
velocity dispersion (this is in the regime where we may expect
potential escapers, not included in our model, to slightly inflate the
velocity dispersion). We note that additional physical ingredients
like rotation could eventually be included in the modelling to
obtain an even better and complete description of the cluster; 47
Tuc indeed displays significant rotation (e.g. Bellini et al. 2017).
Such improvements are however beyond the scope of this study.

All our fitting parameters are well constrained by the data, but
Fig. 2 reveals small degeneracies between some pairs of parameters
(see oval shapes in the 2D projections of the posterior probability
distributions). For example, α1 and α2 show an anticorrelation in

the sense that a shallower low-mass slope (α1) can be compensated
by steeper intermediate slope (α2). A similar behaviour is seen for
α2 and α3. This perhaps suggests that α2 is somewhat redundant and
that we could have approximated the mass function of visible stars
with a single power law, but given that the three mass function slopes
are well constrained we stick to the adopted functional form. α3 and
BHret are also degenerate: a flatter high-mass mass function slope
produces more BHs from the IMF, so this has to be accompanied
by a lower BHret to yield the same number of BHs (or mass in BHs)
after ejection. α1 is similarly degenerate with BHret, which is more
difficult to interpret. Possibly it is because, as the low-mass end
of the mass function slope gets steeper, a larger BHret is needed to
produce the same number of BHs per unit cluster mass. Also, for
flatter MFs at low masses, the more massive stars and remnants do
not segregate as far into the centre as for steeper slopes (Shanahan &
Gieles 2015), hence more BHs are needed to raise the central mass
density and velocity dispersion by a certain amount. BHret is also
degenerate with the amount of anisotropy, a consequence of the
well-known mass-anisotropy degeneracy. Both a larger retention of
black holes and a larger amount of radial anisotropy increases the
central velocity dispersion (e.g. Zocchi et al. 2017; Zocchi, Gieles &
Hénault-Brunet 2019).

Our best-fitting mass segregation parameter (δ = 0.44 ± 0.02)
is close to the commonly adopted value of δ = 0.5. The resulting
relation between the central velocity dispersion and mass (in the
range ∼0.4−0.8 M�) is shallower (σ (r = 0) ∝ m−0.38). In projection
our model gives: σ p(R = 0) ∝ m−0.32.

Comparing to the results of Baumgardt & Hilker (2018), who
fitted their grid of N-body models to similar data for 47 Tuc, we find a
half-mass radius that is ∼ 30 per cent larger and a total cluster mass
that is ∼ 25 per cent larger (both significantly different than allowed
by the statistical errors on the fits of the two studies). We note that the
ratio M/rh, which is proportional to the velocity dispersion squared,
is very similar in both models. Part of the difference in mass may be
traced to the shallower present-day mass function inferred by these
authors, who find a power-law slope of α = −0.53 over the mass
range 0.2 M� < m < 0.8 M�. Our mass function, with a break at
0.5 M�, is comparable below 0.5 M� but steeper above this break
mass, and thus contains a larger proportion of low-mass stars which
would be preferentially distributed in the outer parts of the cluster
and could increase the inferred total mass and half-mass radius
without significantly affecting the mass profile in the inner regions.
Moreover, our total likelihood function includes a comparison with
radial and tangential proper-motion data that provide constraints
on the radial anisotropy in 47 Tuc, whereas such data is not
included in the fits of Baumgardt & Hilker (2018) – anisotropy
cannot be freely varied in their grid of N-body models. It is
possible that their best-fitting model has too much radial anisotropy,
which would then require less mass to fit the central velocity
dispersion and could lead to underestimating the cluster mass or
their models have less mass in the outer parts. An other explanation
could be that the visible stars are more segregated towards the
centre in our models because we allowed δ to be free. A direct
comparison between the models would be required to understand the
differences.

4.2 Radial distribution and line-of-sight accelerations of
millisecond pulsars

Fig. 3 shows the cumulative radial distribution of the 25 known
MSPs (Ridolfi et al. 2016; Freire et al. 2017; Freire & Ridolfi 2018)
in 47 Tuc (black line) compared to the prediction of our best-fitting
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120 V. Hénault-Brunet et al.

Figure 1. Results of our multimass model fit to observations of 47 Tuc. The different data sets are shown with filled circles and error bars, and the best-fitting
models with continuous lines. The 1σ and 2σ credible intervals of the fitted models are shown with dark and light shaded regions, respectively. Top left:
Number density profile from de Boer et al. (2019, see also Section 2.1). Top right: Line-of-sight velocity dispersion profile from Baumgardt & Hilker (2018,
see also Section 2.2.2). Middle panels: Proper motion dispersion profiles (radial and tangential components), with innermost data from Watkins et al. (2015) in
green and outer data from Heyl et al. (2017) in black (Section 2.2.1). Bottom left: Ratio of the tangential and radial proper motion dispersions for the data sets
shown in the middle panels. Bottom right: Local stellar mass functions at different distances from the cluster centre as described in Section 2.3. An arbitrary
vertical offset has been applied to the different mass functions in different annuli to facilitate visual comparison of the results.

multimass models for a 1.6 M� tracer (the typical mass of MSP
systems in 47 Tuc given the presence of binary companions in
a fraction of the systems. We assume a mass of 1.4 M� for the
isolated pulsars). We emphasize that these data were not included
in our model fit and that only observables probing the phase-space
distribution of visible stars below ∼0.85 M� were used to constrain
the free parameters of the model. Thus, the remarkable agreement
between the data and model predictions lends further support to
the ability of our models to reliably reproduce the underlying
distribution of objects of different masses, including heavy dark
remnants.

As discussed in Section 1, long-term timing of MSPs can also be
used to probe the gravitational potential of a GC. Ignoring intrinsic
effects modifying the period (spin or orbital) of the MSP, this period
and its derivative can be linked to the line-of-sight gravitational
acceleration within the cluster potential as Ṗ /P = alos/c (Phinney
1993; Prager et al. 2017), where c is the speed of light (a positive
alos, i.e. away from the observer, leads to an apparent spin-down

or growth of the period). In the presence of an unknown intrinsic
spin-down (e.g. due to magnetic breaking in a MSP), the inferred
acceleration is an upper limit to the true acceleration from the cluster
potential. If the intrinsic component is known, the acceleration
can be computed as alos/c = (

Ṗ /P
)

meas
− (

Ṗ /P
)

int
, where the

‘meas’ and ‘int’ subscripts refer to the measured and intrinsic period
derivatives. Additional terms, for example the acceleration due to
the Galactic potential and the proper motion, are usually negligible
(Phinney 1993).

Fig. 4 compares inferred line-of-sight accelerations for MSPs in
47 Tuc to the maximum (positive) and minimum (negative) line-of-
sight accelerations predicted by our best-fitting multimass model as
a function of projected distance from the centre of the cluster. We
split the sample of inferred accelerations into two subgroups follow-
ing the data presented in Section 2.4: (1) line-of-sight accelerations
determined from the orbital period derivatives of 10 MSPs in binary
systems, which we assume are directly probing the acceleration in
the cluster because the intrinsic orbital period derivative should be

MNRAS 491, 113–128 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/491/1/113/5606806 by R
ijksuniversiteit G

roningen user on 03 July 2020



On the black hole content and IMF of 47 Tuc 121

Figure 2. Marginalized posterior probability distribution and 2D projections of the posterior probability distribution of the fitting parameters for the LIMEPY

multimass model fit to 47 Tuc observations. Contours indicate 1σ , 2σ , and 3σ levels on the 2D posterior probability distributions.

negligible and (2) upper limits on the line-of-sight accelerations
based on the spin period derivatives of the other 13 MSPs, which
could have a non-negligible (but currently unknown) intrinsic spin-
down component, hence the upper limit. We see from Fig. 4 that
all upper limits from the latter subgroup are safely above the
minimum (negative) line-of-sight acceleration allowed by our best-
fitting model and scattered between the maximum (positive) and
minimum (negative) acceleration boundaries. The true accelerations
determined for the 10 binary systems are also in good agreement
with our model. They all fall within the boundaries allowed by
the model within 1σ , except for one system (47 Tuc S) which is
however still consistent within less than 1.5σ . The majority of the

accelerations for these binary systems cluster around the maximum
and minimum boundaries. We note that this is not unexpected;
the probability distribution of the acceleration at a given projected
distance from the centre peaks near these boundaries as a result of
the density distribution of the cluster and the variation with line-
of-sight distance of the component of the acceleration vector that
is projected along the line of sight. The good agreement between
the MSP data and our mass model lends confidence to our choice
of model and associated assumptions. A more in-depth statistical
analysis of the pulsar accelerations and associated constraints on
the mass profile and BH content of 47 Tuc will be presented in a
future work.
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Figure 3. Cumulative radial distribution of the 25 known MSPs in 47 Tuc
(black line) compared to the prediction of our best-fitting multimass models
for a 1.6 M� tracer (the typical mass of MSP systems in 47 Tuc given the
presence of binary companions in a fraction of the systems). The 1σ and 2σ

credible intervals of the model distribution for these objects are shown with
dark and light shaded green regions, respectively.

Figure 4. Line-of-sight gravitational acceleration of pulsars as a function
of projected distance from the centre of 47 Tuc. The green envelope
bounds the maximum (positive) and minimum (negative) line-of-sight
acceleration at a given projected distance from the centre, based on the mass
distribution of our best-fitting multimass model. Red circles show line-of-
sight accelerations inferred from the measured orbital period derivative of 10
MSPs, while blue inverted triangles show upper limits on the line-of-sight
acceleration in the field of the cluster for another 13 MSPs based on their
spin-period derivative (which could have an intrinsic spin-down component,
hence the upper limit on the real acceleration in the field of the cluster).

4.3 Global present-day mass function and IMF

We highlight in Fig. 5 the marginalized posterior probability
distribution for each of the three power-law exponents defining the
(initial) stellar mass function in 47 Tuc. The inferred global mass
function for low-mass stars is significantly flatter than a canonical
IMF (Kroupa 2001), with α1 = 0.52+0.17

−0.16 and α2 = 1.35+0.25
−0.23 com-

pared to α1 = 1.3 and α2 = 2.3 for the Kroupa IMF in the same mass
range. Despite allowing the high-mass IMF slope to be completely
free to vary, we are nevertheless able to constrain the value of α3

to be 2.49+0.08
−0.08, slightly steeper but consistent with the Salpeter

value (2.35; Salpeter 1955) within 1.5σ . It is worth nothing that the
uncertainty on α3 is smaller than that of α1 and α2, i.e. despite the
fact that the number of low-mass stars can to a large extent simply

be counted, the inferred high-mass slope is better constrained. This
is because of the sensitivity of the central velocity dispersion to
the central mass distribution, which is dominated by dark stellar
remnants. Our method provides a unique way to probe the stellar
IMF at high redshift (for a given choice of the initial–final mass
relation).

4.4 Model assumptions and uncertainties

In addition to the results presented above, for which a distance of
4.45 kpc was adopted (Chen et al. 2018), we also repeated the
fitting procedure by assuming distance values of D = 4.2 kpc
and D = 4.7 kpc (2σ excursions from the value of Chen et al.
2018). This mainly affected the inferred mass, radius, and some of
the mass function slopes, although not in a major way. All other
model parameters and inferred secondary quantities (including the
mass in BHs; see discussion below) remained the same within
1σ uncertainties. For D = 4.2 kpc, the inferred rh decreased
to 7.4 ± 0.1 pc and the inferred cluster mass decreased to
0.88 ± 0.01 × 106 M�. On the other hand, for D = 4.7 kpc, the
inferred rh increased to 8.7 ± 0.1 pc and the inferred cluster mass
increased to 1.20 ± 0.01 × 106 M�. Either way, the effect on the
radius is less than 10 per cent and the effect on the cluster mass less
than 20 per cent. While α1 changed by less than 0.1 when adopting
the two extreme distance values, the other power-law exponents
were more significantly affected: α2 = 1.74+0.27

−0.29 and α3 = 2.21+0.10
−0.11

for D = 4.2 kpc, whereas α2 = 1.06+0.29
−0.25 and α3 = 2.64+0.07

−0.09 for
D = 4.7 kpc. Our conclusion that the low-mass mass function is
significantly flatter than a Kroupa IMF is therefore robust and not
strongly affected by uncertainties on the distance.

We also performed fits assuming different retention fractions for
the neutron stars, with anywhere from zero to several thousands of
neutron stars retained, and found that all the best-fitting parameters
remained unchanged within 1σ uncertainties. Similarly, adopting a
lower mass of 0.3 M� (compared to 0.38 M�) for the model tracer
stars to be compared with the proper motion data from Heyl et al.
(2017) did not significantly change any of the best-fitting parameter
values.

We finally recall that we have assumed that modification of the
mass function by dynamical evolution and preferential escape of
low-mass stars and remnants is negligible for 47 Tuc. When varying
the mass function at low masses, we therefore assume that this
corresponds to variations in the IMF. Note that if the IMF was
actually normal and was dynamically depleted of low-mass stars
by some dynamical effect not considered, then the low-mass end
of the white dwarf mass function would also be affected (e.g. see
fig. 2 from Gieles et al. 2018a). This may require a somewhat flatter
high-mass IMF to end up with the same mass in remnants, but it
is not immediately clear precisely how this would affect the mass
model.

5 D ISCUSSION

5.1 Black holes in 47 Tuc

5.1.1 No need for an IMBH

Our best-fitting multimass model of 47 Tuc can naturally accommo-
date the accelerations of MSPs in this cluster, without invoking the
presence of a central IMBH. The good agreement between the model
and a range of observational constraints suggests that an IMBH
is not needed given the data currently available (see also Mann
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Figure 5. Marginalized posterior probability distribution (blue shaded histograms) for each of the three power-law exponents defining the (initial) stellar mass
function in 47 Tuc, for the ranges m < 0.5 M� (α1), 0.5 < m < 1 M� (α2), and m > 1 M� (α3). For each distribution, the median is shown by a solid blue
vertical line and the 1σ uncertainties (16th and 84th percentiles) by the dashed dotted blue lines. For reference, we also show vertical lines with the slopes
for the Kroupa (dash–dotted green lines) and Salpeter (grey dashed lines) in the corresponding mass range. The tension with a standard IMF is clear in the
low-mass regime.

Figure 6. Posterior probability distribution for the total mass in BHs in our
multimass model of 47 Tuc. The median is shown by the solid black line and
the 1σ uncertainties (16th and 84th percentiles) by the dashed black lines.

et al. 2019). Kızıltan et al. (2017) reached a different conclusion
when using the spin-period derivatives of pulsars (along with an
assumed intrinsic spin-down distribution to infer accelerations)
as the sole observable to distinguish between models with and
without an IMBH; their models favoured an IMBH with a mass
M• ∼ 2200+1500

−800 M�. It is unclear which assumption(s) in their
analysis (see Section 1) could have led to this different result, but
we note that it is based on a grid of isolated N-body models that
would have a much steeper present-day mass function, closer to
a Kroupa (2001) IMF and the assumption of a shorter distance.
In Section 4.4, we showed that adopting a shorter distance leads
to a shallower IMF slopes at high masses. This suggests that the
data then prefers additional dark mass in the centre in the form of
remnants, which might explain the need for an IMBH in the analysis
of Kızıltan et al. (2017).

5.1.2 Constraints on the stellar mass BH population

From the constraints on the mass function, total cluster mass and
black hole retention fraction provided by our multimass model fit,
we can recover the probability distribution for the total mass in BHs
at the present day in 47 Tuc (Fig. 6). We find a preference for a

population of BHs with a total mass of 430+386
−301 M�, or equivalently

141+97
−95 BHs with a mean mass of 3.1 ± 0.4 M� given our

assumptions impacting the BH mass function (where our average
BH mass is low because we assume massive BHs are dynamically
ejected). The BHs contribute ∼104 M� pc−3 to the central mass
density of the cluster, which we infer to be ∼105 M� pc−3 from
our best-fitting models. While the BH contribution to the central
density is not dominant, it is much more important (thanks to mass
segregation) than one might guess from the very small fraction of
the cluster mass in BHs (� 0.1 per cent). This makes our models
sensitive to a relatively small BH population and allows us to place
the useful constraints above.

Our results are also consistent with a negligible number of BHs
within ∼1.5σ . This is in agreement with the 19 BHs retained in
the Monte Carlo model of 47 Tuc by Giersz & Heggie (2011),
although we note that their results are based on a limited number
of Monte Carlo models (the study indeed does not claim a full
exploration of the parameter space for the cluster initial conditions
and the retention of BHs). We should mention that these Monte
Carlo models assumed that BHs and neutron stars received the same
(large) natal kicks, naturally leading to a small number of retained
BHs early on. Our constraints on the BH content in 47 Tuc are
also in keeping with the low number of retained BHs implied by the
results of Askar et al. (2018) and Arca Sedda, Askar & Giersz (2018)
and in agreement with the population of ∼20 BHs (but possibly as
large as ∼150 BHs within 2σ ) inferred by Weatherford et al. (2018)
based on the observed mass segregation between giants and main-
sequence stars in the central regions of the cluster, although we
note that our models are simultaneously fitted to several additional
observables. To model the velocity dispersion in the core of 47 Tuc
with the main goal of placing constraints on the presence of an
IMBH, Mann et al. (2019) took into consideration populations of
objects more centrally concentrated than the typical main-sequence
stars (binaries and stellar remnants) which may cause the velocity
dispersion to rise in the core and affect the inferred IMBH mass.
They found that concentrated populations of binary stars and dark
stellar remnants alone appear to be enough to explain the velocity
dispersion in the core, and thus that there is no evidence for an
IMBH (unless an unrealistically small population of remnants is
assumed). Pushing their adopted retention of neutron stars and BHs
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Figure 7. Inferred IMF (upper panel, green), initial mass function of BHs
(i.e. before any dynamical ejections; upper panel, orange), and present-day
mass function of stars (lower panel, blue), and stellar remnants (lower panel,
black) based on 200 random samples from the posterior distribution of our
model fit to 47 Tuc. We show the binned mass functions that are used as
input to LIMEPY models. The darker shades are where the different samples
pile up, while lighter shades indicate less likely values.

higher than ∼ 8.5 per cent even led to a larger velocity dispersion
than is observed in the core, requiring an unphysical negative IMBH
mass in their Jeans model fit. Given their assumptions about the
initial BH population and their adopted object mass of 10 M� for
each BH, this maximum retention fraction translates to an upper
limit of 1615 M� in BHs, consistent with our new constraints.
All these results are in keeping with the presence of a strong
BH binary candidate in 47 Tuc (X 9; Miller-Jones et al. 2015;
Bahramian et al. 2017; Church et al. 2017; Tudor et al. 2018),
consistent with the idea that 47 Tuc still hosts at least some BHs
today.

Forcing our models to retain a significantly larger population of
BHs would adversely affect the quality of the fit by producing a
core that is too large and suppressing mass segregation to the extent
that the observed change in the local stellar mass function slope
with radius cannot be matched. As most BHs formed in 47 Tuc
are expected to have been ejected dynamically (see below), the
inferred upper limit provides important constraints on the dynamical
evolution history of the cluster.

Due to our adopted prescription for the initial–final mass relation
of massive stars, our assumption that the more massive black holes
are ejected first, and the low inferred low dynamical retention
fraction of BHs, the present-day population of BHs that we infer in
47 Tuc is comprised of objects of a few solar masses only and at
most ∼6 M� (see Fig. 7). If the retained BHs were in reality more
massive on average, our reported number of retained BHs would
overestimate the true number of BHs and should then be taken as
an upper limit (if the BHs are more massive, fewer are needed
to produce the same dynamical effect). This would be the case if

a significant mass gap exists between the heaviest neutron stars
and the lightest BHs (with no BH below ∼5 M�, e.g. Belczynski
et al. 2012), which is not captured in our adopted initial–final mass
relation (our minimum BH mass is 2.6 M�).

Our assumption that the massive BHs are preferentially removed
(as expected from dynamical ejections) could possibly also lead to
a similar bias. A fraction of the BHs formed in a GC is expected
to leave the cluster due to experiencing natal kicks larger than the
escape velocity at the time of supernova. This is expected to lead
to a mass-dependent retention fraction and predominantly remove
low-mass BHs. However, the present-day central escape velocity
of our model is � 50 km s−1 and this would have been at least
a factor of two higher at birth because of stellar mass loss and
subsequent adiabatic expansion. If we assume that BHs receive
the same momentum kick as neutron stars, then Antonini & Gieles
(2019) showed that for escape velocities above ∼100 km s−1 almost
all BHs are retained (their fig. 1). Note however that according to
the mass fallback prescription, low-mass BHs will receive larger
natal kicks and it would be easier for them to escape the system.
The argument above about the escape velocity might be softened
because initial mass loss associated with the most massive stars
will lower the central potential before lower mass BHs form.
This would lead to a larger average BH mass at the present day.
On the other hand, the initial escape velocity could have been
substantially higher than the conservative estimate obtained from
correcting for adiabatic expansion only, as we will discuss in
Section 5.3.

An exciting prospect to break the degeneracy between dynami-
cally ejected BHs and those lost via natal kicks is by finding BH
candidates with reliable mass estimates, either with multi-epoch
spectroscopy if they are in a detached binary with a stellar com-
panion (Giesers et al. 2018), or microlensing of background (SMC)
stars or quasars (Wyrzykowski et al. 2016; Wyrzykowski & Mandel
2019). This would provide constraints on the BH mass function in
our mass models and therefore on natal kicks and dynamical BH
ejection, because a small dynamical retention fraction implies low
BH masses, while a small retention fraction resulting from natal
kicks leads to a high BH masses (if natal kicks are larger for low-
mass BHs).

5.1.3 The effect of binaries

We did not explicitly include binary systems when building the
global present-day mass function for our multimass models, and it
is worth discussing the potential effect of ignoring these binaries.
From an analysis on the visual/near-infrared colour–magnitude
diagram (CMD) of 47 Tuc stars, Mann et al. (2019) estimated
binary fractions in different mass-ratio (q) ranges (above q = 0.5,
where binaries can be isolated from the single-star main sequence).
For the ranges, 0.5 < q < 0.7, 0.7 < q < 0.9, and q > 0.9, they
find binary fractions of 2.65 per cent, 0.98 per cent, and 0.3 per cent,
respectively.

Only binaries with a primary mass close to the main-sequence
turn-off mass and a q above ∼0.7 would have a system mass
comparable to neutron stars. From the estimates in table 2 of Mann
et al. (2019), the binaries with a system mass above 1.4 M� could
make up to ∼5000 M� of the cluster mass. This is less than 1 per cent
of the total cluster mass but these objects would be concentrated in
the inner regions of the cluster due to mass segregation and could
provide a significant contribution to the gravitational potential there.
However, in our tests where we changed the adopted retention
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fraction of neutron stars, we found that retaining anywhere from
very few to several thousands of neutron stars did not significantly
affect our results, in particular with respect to the mass in BHs and
IMF. Neutron stars (and heavy binaries with comparable mass) are
thus expected to be relatively unimportant dynamically. Their total
mass contribution would actually be dwarfed by the mass in massive
(>1 M�) white dwarfs in our best-fitting model, which add up to
∼6 × 104 M�.

Interestingly, from their CMD analysis, Mann et al. (2019)
estimate a total mass of ∼41 500 M� in heavy binaries (>1 M�), and
their assumptions about the mass function and retention of stellar
remnants lead to a mass of ∼27 600 M� in heavy remnants (massive
white dwarfs >1 M�, neutron stars, BHs) in their model. Their
total mass in objects more massive than 1 M� (∼6.9 × 104 M�)
is therefore very comparable to what we infer in our multimass
model. By ignoring heavy binaries when building our multimass
model, there is therefore a possibility that this missing mass is
compensated by favouring more mass in heavy remnants and a
model with a high-mass IMF (α3) that is shallower than the true
cluster IMF. In that respect, it is interesting to recall that the Monte
Carlo model of 47 Tuc by Giersz & Heggie (2011) required a
relatively steep IMF for stars above the main-sequence turn-off,
with an index of about 2.8 (compared to 2.35 for a Salpeter mass
function), but still a relatively flat IMF for the lower main sequence
(α1 = 0.4).

The vast majority of (undetected) low-q binaries (q < 0.5) would
have total binary masses below 1 M� and behave dynamically like
the general main-sequence population, but they could potentially
bias the star counts as a function of mass in the observed local stellar
mass functions. However, even under the conservative assumption
than only a quarter of binaries have q > 0.5, the total binary fraction
is expected to be < 10 per cent in 47 Tuc (e.g. Milone et al. 2012)
and we do not expect this small population of low-q binaries to
affect our conclusions. We defer a detailed treatment of the effect
of binaries on our models to future work.

We note that Mann et al. (2019) inferred a total cluster mass
and a central velocity dispersion that are significantly larger than
what other studies have found for 47 Tuc, and this may have
led them to overestimate the total mass in binaries and in heavy
remnants. They obtain a total cluster mass of 1.47 × 106 M�, at
least ∼ 35 per cent higher than what we (Table 1), Giersz & Heggie
(2011), and Baumgardt & Hilker (2018) found. This could partly
be due to a limitation of their method, which only fits on kinematic
data in the central region of the cluster and does not yield a self-
consistent model of different observables (e.g. not including the
density distribution) over the whole spatial extent of the cluster.
Their central velocity dispersion (∼14−15 km s−1) is also high
compared to the value of ∼12 km s−1 that is derived from the LOS
velocities and that we find from our fit to the proper motion and
line-of-sight kinematic data of Baumgardt & Hilker (2018) and
Watkins et al. (2015). It is not clear what the range of magnitudes
(and corresponding masses) of the stars entering the central velocity
dispersion profile of Mann et al. (2019) is, but if stars fainter than
the main-sequence turn-off (thus lower mass tracers) were included,
it may explain the discrepancy; the kinematic data that we used are
based on samples of stars with a mass comparable to turn-off stars.
An indication in that sense comes from the central proper motion
velocity dispersion measured by McLaughlin et al. (2006) for stars
with a mass comparable to the turn-off mass, 0.609 ± 0.010 mas
yr−1, which corresponds to 12.8 kms−1 when scaled to a distance
of 4.45 kpc, significantly lower than the value of ∼14−15 km s−1

reported by Mann et al. (2019).

5.2 The initial stellar mass function

We have seen in the previous section that the global stellar mass
function of 47 Tuc is significantly shallower at low masses than
that of a ‘canonical’ (Kroupa 2001) IMF. Because of the long
half-mass relaxation time of 47 Tuc (log (trh/yr) � 9.7), and its
relatively circular orbit (Gaia Collaboration 2018), it is unlikely that
the long-term preferential escape of low-mass stars as the result
of equipartition has played an important role. Given our current
knowledge of the cluster’s orbit, 47 Tuc is not expected to have lost
a significant amount of its initial mass (beyond mass loss from stellar
evolution; e.g. Balbinot & Gieles 2018). In fact, dynamical Monte
Carlo of models of 47 Tuc require a flat (low-mass) IMF as initial
conditions to reproduce a flat present-day mass function (Giersz &
Heggie 2011). Other GCs with similar trh tend to have steeper low-
mass mass functions (corresponding to α1 indices of ∼1, Sollima &
Baumgardt 2017, their fig. 3), making 47 Tuc a clear outlier. Fig. 7
illustrates the inferred present-day global mass function of stars and
remnants from our best-fitting multimass model of 47 Tuc, along
with the corresponding IMF.

From integrated light studies of GCs in M31 and the Milky Way,
Strader, Caldwell & Seth (2011) and Kimmig et al. (2015) found an
anticorrelation between the V-band mass-to-light ratio (ϒV) and
metallicity ([Fe/H]). Because SSP models predict a correlation
between ϒV and [Fe/H], these findings can be interpreted as metal-
rich GCs having bottom-light MFs (i.e. fewer dwarfs) and/or top-
light MFs (i.e. fewer remnants). However, light-weighted velocity
dispersions and half-light radii of mass segregated clusters are
sensitive to [Fe/H] dependent biases (Sippel et al. 2012), which
can give rise to the observed anticorrelation between the dynamical
ϒV and [Fe/H] even if all GCs formed with the same canonical IMF
(Shanahan & Gieles 2015). The latter authors also showed that the
dynamically inferred ϒV for a canonical MF is similar to that of a
bottom-light MF, making ϒV a particularly poor proxy of the MF
at low masses in mass segregated GCs.

Hence, resolved GCs are needed to make a solid statement
about the MF slope at high [Fe/H]. 47 Tuc is among the most
metal-rich Milky Way GCs at a relatively close distance for which
kinematics and star counts are available. Our findings suggest that
indeed the IMF of this cluster could have been both bottom light
and (somewhat) top light compared to the canonical IMF. The
universality of the IMF is an ongoing debate, and it cannot be
concluded yet whether 47 Tuc is a genuine threat to the universality
hypothesis or can be reconciled with other GCs once scatter in
the outcome of IMF sampling is considered. But it is interesting
to note that a putative correlation between MF slope index and
[Fe/H] is opposite of what is found in extragalactic studies of
early-type galaxies. Systematically larger ϒV have been reported
in more massive (i.e. more metal-rich) early-type galaxies based on
dwarf-sensitive spectral features (e.g. Conroy & van Dokkum 2012),
kinematics (e.g. Cappellari et al. 2012) and strong lensing (e.g. Treu
et al. 2010). A spectral analysis of (integrated-light properties of)
47 Tuc (as in Villaume et al. 2017), similar to what is done for early-
type galaxies, would be an interesting step towards understanding
this potentially troubling contradiction between IMF variations in
GCs and early-type galaxies.

5.3 Black holes, the IMF, and the early dynamical evolution of
47 Tuc

There is an important caveat to the argument above about a possible
bottom-light IMF for 47 Tuc. Even though it is unlikely that the
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cluster suffered significant preferential escape of low-mass stars
during its long-term evolution (given its long half-mass relaxation
time and orbit), there remains a possibility that the loss of low-
mass stars occurred early on. If 47 Tuc formed with a high enough
density, it could have become completely mass segregated (and
thus vulnerable to the loss of low-mass) on a short time-scale (an
extreme initial half-mass density of 107 M� pc−3 would imply an
initial half-mass relaxation time of ∼100 Myr).

While tides at the present-day orbit are too weak to remove low-
mass stars, tidal perturbations with giant molecular clouds (GMCs)
during the early evolution could have played a role,6 although for
a large initial density the time-scale for this process would also
be very large. It also remains to be seen whether this can lead
to a change in the low-mass mass function by �α � 0.8 and
explain the inferred present-day mass function with a standard IMF.
From Baumgardt & Makino (2003), a cluster needs to lose about
85 per cent of its initial mass by evaporation to achieve �α ∼ 0.8.
About 45 per cent of this mass loss is due to stellar evolution, so
the cluster needs to lose about 40 per cent of its initial mass through
evaporation. For a present-day mass of ∼1 × 106 M�, this implies
an initial mass of ∼6.7 × 106 M�. However, we need to be cautious
with using this relation between mass loss and �α to other mass
loss mechanism, because the way low-mass stars are lost could
be different. For example, tidal perturbations remove stars at large
radii, while evaporation removes stars with high energies, and this
may not lead to the same �α for a given amount of mass-loss.

Interestingly, a very high initial density might explain why 47
Tuc has retained almost no BHs, which is otherwise puzzling given
its relatively long relaxation time and large radius (see e.g. Breen &
Heggie 2013). Dense initial conditions are needed to dynamically
eject most BHs during a Hubble time. The Monte Carlo model of
47 Tuc by Giersz & Heggie (2011) has an initial half-mass density
of ∼3 × 104 M� pc−3, but we recall that in their models the BHs
received the same (large) natal velocity kicks as the neutron stars.
Using the fast cluster evolution model of Antonini & Gieles (2019)
and assuming that the BHs receive the same momentum kick as
the neutron stars, we find that an initial density of ∼106 M� pc−3

is required to dynamically eject nearly all BHs (assuming an initial
mass in BHs of 4 per cent of the total initial mass, appropriate for the
metallicity of 47 Tuc). Although speculative, it could be that more
metal-rich GCs like 47 Tuc form substantially denser (due to more
efficient cooling) and fully segregate soon after formation, which
leads to a flattening of their mass function by various disruption
processes like interactions with GMCs. A potential complication
is that the high initial density required to quickly mass segregate
the cluster and dynamically eject the BHs makes the cluster more
resilient to tidal perturbations and makes it harder to reach the
present-day rh � 8pc. In future modelling efforts, understanding
the interplay between the evolution of the cluster size, black hole
population, and mass function will be key to understand the IMF of
47 Tuc and the evolution of its BH population.

6 C O N C L U S I O N S

We presented a self-consistent multimass LIMEPY model of 47 Tuc
where the mass function and content of stellar remnants were free

647 Tuc is an in situ cluster according to its position in the age-[Fe/H]
diagram (e.g. Leaman, VandenBerg & Mendel 2013), and may have formed
in the disc. It could have been scattered out of the plane by GMC interactions,
losing (low-mass) stars in the process.

to vary and constrained by finding the best simultaneous match
to a range of observational constraints: number density profile,
kinematics (line-of-sight and proper motion dispersion profiles),
and stellar mass function at different projected distances from the
cluster centre. Not only does our best-fitting model satisfyingly
match all these observations, it also correctly predicts the radial
distribution of MSPs in 47 Tuc and can accommodate the line-of-
sight accelerations of MSPs inferred from their period derivatives.
Our main findings can be summarized as follows:

(i) There is no need for an IMBH in 47 Tuc given the current
data. Our model, which does not include an IMBH, can successfully
explain a range of observables including the line-of-sight accelera-
tions (or upper limits on these) of MSPs. We thus concur with the
conclusions of Mann et al. (2019) rebutting the findings of Kızıltan
et al. (2017).

(ii) We constrain the stellar mass BH population in 47 Tuc to
contain a total mass of 430+386

−301 M�, or equivalently 141+97
−95 BHs

(for a mean BH mass of 3.1 M�). This serves as a demonstration of
the power of the mass modelling technique presented here to address
questions about the BH content of GCs by modelling their present-
day properties. These results also provide important constraints on
the dynamical evolution history of 47 Tuc and its BH population.

(iii) We infer a relatively shallow present-day global stellar MF
and IMF for 47 Tuc (α1 = 0.52+0.17

−0.16 and α2 = 1.35+0.25
−0.23 compared

to the steeper values of α1 = 1.3 and α2 = 2.3 for a Kroupa IMF), in
keeping with previous results from evolutionary dynamical models
of this cluster (e.g. Giersz & Heggie 2011). Given our current
knowledge of the orbit and predictions for the long-term mass-
loss history of 47 Tuc, it is not expected to have lost a significant
amount of its initial mass (beyond mass loss from stellar evolution),
and preferential loss of low-mass stars due to long-term dynamical
evolution in the tidal field of the Milky Way should have been
minimal. The shallow global present-day mass function inferred for
main-sequence stars therefore hints at a possible dearth of low-mass
stars and a bottom-light IMF. However, we cannot exclude that a
loss of low-mass stars occurred early on in the evolution of 47 Tuc.
Interestingly, the high initial density that would be required in this
case may be linked to the fact that the cluster has retained almost
no BHs despite its relatively long relaxation time and large radius
at the present day. We emphasize that understanding the interplay
between the evolution of the cluster size, black hole population, and
mass function will be key to understand the IMF of 47 Tuc and the
evolution of its BH population.

(iv) At higher masses, our inferred IMF slope is close to Salpeter
(α3 = −2.49 ± 0.08 compared to α = 2.35 for Salpeter), although
this slope might be steeper if we included the contribution of heavy
binaries. In any case, the method presented here, which relies on
modelling the dynamical effect of otherwise unseen dark remnants
(mainly white dwarfs), provides a promising new way to probe the
IMF at high masses in GCs and to address questions about possible
variations with environment.
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