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Peptidomimetics Very Important Paper

TEAD–YAP Interaction Inhibitors and MDM2 Binders from
DNA-Encoded Indole-Focused Ugi Peptidomimetics
Verena B. K. Kunig, Marco Potowski, Mohammad Akbarzadeh, Mateja Klika Škopić,
Denise dos Santos Smith, Lukas Arendt, Ina Dormuth, H�l�ne Adihou, Blaž Andlovic,
Hacer Karatas, Shabnam Shaabani, Tryfon Zarganes-Tzitzikas, Constantinos G. Neochoritis,
Ran Zhang, Matthew Groves, St�phanie M. Gu�ret, Christian Ottmann, Jçrg Rahnenf�hrer,
Roland Fried, Alexander Dçmling, and Andreas Brunschweiger*

Abstract: DNA-encoded combinatorial synthesis provides
efficient and dense coverage of chemical space around
privileged molecular structures. The indole side chain of
tryptophan plays a prominent role in key, or “hot spot”,
regions of protein–protein interactions. A DNA-encoded
combinatorial peptoid library was designed based on the Ugi
four-component reaction by employing tryptophan-mimetic
indole side chains to probe the surface of target proteins.
Several peptoids were synthesized on a chemically stable
hexathymidine adapter oligonucleotide “hexT”, encoded by
DNA sequences, and substituted by azide-alkyne cycloaddition
to yield a library of 8112 molecules. Selection experiments for
the tumor-relevant proteins MDM2 and TEAD4 yielded
MDM2 binders and a novel class of TEAD-YAP interaction
inhibitors that perturbed the expression of a gene under the
control of these Hippo pathway effectors.

The development of small molecules that inhibit protein–
protein interactions (PPIs) often suffers from a lack of
starting points for compound design, even though many target
proteins contain small-molecule binding sites.[1] PPI inhibitors
harbor vast potential to understand biological systems and for

drug development.[2] For instance, PPIs such as the MDM2–
p53 and TEAD–YAP interactions are involved in malignant
diseases.[1] Dysregulated PPIs of transcriptional enhancer
factor-1 domains (TEAD1-4) with co-transcription factor
YAP (Yes-associated protein), late Hippo signaling effectors,
are involved in important oncogenic mechanisms.[3–5] Inhib-
ition of the TEAD–YAP PPI has been achieved in vitro with
peptides that addressed “interface 3” (Figure 1a).[6, 7] In silico
small-molecule screening yielded TEAD–YAP inhibitors
1 and 2 (Figure 1 b).[8] Intriguingly, TEAD is palmitoylated
in a cavity, called a “central pocket”, which contributes to
protein stability.[9] Compounds that bound to this pocket such
as niflumic acid (4), flufenamic acid (5), and TED-347 (6)
displaced a YAP-derived peptide from hTEAD4, while
quinolinol 7 augmented YAP–TEAD activity (Figure 1c).[10]

DNA-encoded libraries (DELs) have delivered a few PPI
inhibitors.[11, 12] They enable deep sampling of chemical space
around key or “anchor” motifs. Here, we designed a DNA-
encoded peptidomimetic library focused on the tryptophan
side-chain motif—the indole moiety (Figure 1d). Tryptophan
is significantly enriched in protein–protein interactions and
often contributes disproportionally to protein binding.[13]
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Thus, it has been exploited as an “anchor motif” for the design
of PPI inhibitors.[14,15] In this strategy, the anchor analogue—
a substructure that is a chemical mimic of a specific amino
acid residue (here tryptophan)—will be used to provide
focused libraries with an increased probability of bioactivity.
The anchor motif strategy has been repeatedly used to
discover potent PPI inhibitors.[16] Our DNA-encoded pepti-
domimetic library was selected on the p53-binding domain of
MDM2 as the archetypal target for indole-based peptidomi-
metics.[14] As a second promising target for this library we
selected the YAP-interacting domain of (human) hTEAD4,
because it contains a key tryptophan-binding site in “interface

3”, and its central pocket has been demonstrated to accom-
modate heteroaromatic structures (Figure 1 a).[10, 16]

We elected the Ugi four-component reaction for the initial
step in the design of an encoded library because it combines
selectable linker moieties to the DNA, diversity elements, and
handles for library expansion into a peptoid backbone
(Figure 1d). DNA-encoded library synthesis was initiated
by a Ugi reaction (U-4CR, Figure 2a) on the chemically
stable, solid-phase-coupled hexathymidine adapter “hexT”,
with a broad range of reaction conditions tolerated (Fig-
ures 2b and S1).[17] This strategy allows for the synthesis of
target molecules from bulk hexT-coupled starting materials in
parallel, and it is more efficient than coupling individual
multicomponent reaction products to DNA codes; all hexT
products were isolated, thus providing fidelity. Carboxylic
acid hexT 1 and indole-carboxaldehydes hexT2 and hexT 3
were reacted either with an alkyne-substituted amine (hexT 1,
hexT 2, and hexT 3) or an alkyne-substituted carboxylic acid
(hexT 2) that served as handles for the library expansion step.
Three tryptophan-mimicking indole carbaldehydes and one
tyrosine-mimicking p-hydroxybenzaldehyde placed the
anchor motif distal from the DNA. A set of 18 isocyanides

Figure 1. Targeting the TEAD family of transcription factors. a) Struc-
ture of the TEAD1–YAP complex (PDB ID: 3KYS; TEAD1 in gray, YAP
in yellow, orange, green, and blue) with areas highlighted that can be
targeted for inhibitor development. b) TEAD inhibitors binding to the
surface of TEAD. c) TEAD modulators binding to a palmitate-accom-
modating “central pocket”. d) Design of the indole-focused encoded
peptidomimetic library.

Figure 2. Library design and synthesis. a) Ugi four-component reac-
tion. b) Synthesis of the library: Ugi reaction followed by a click
reaction. c) Barcoding strategy.
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were used as diversity elements R1 in the Ugi reaction
(Figure 2b, Tables S1 and S2). Reaction optimization efforts
identified temperatures of 80 8C and high concentrations of
isocyanides as requisite for peptoid synthesis. We synthesized
in total 78 hexT peptoids, which were then ligated in one pot
to peptoid backbone- and isocyanide-encoding DNA bar-
codes (Figures 2c and S4).[17] Pooling, splitting, a second
barcode ligation step, and copper(I)-promoted alkyne-azide
cycloaddition with 104 azides,[18] —produced in situ from the
corresponding halides beforehand— finalized the 8112-mem-
bered “tiDEL” (thymidine-initiated DEL; Figure S2 and
Table S3). The library was selected against streptavidin for
library validation (Figures 3b and S7), against the p53-
binding domain of MDM2, and against the YAP-interacting
domain of human TEAD4 (hTEAD4). The sequencing data
were progressed by the in-house-programmed algorithm
ECEC (encoded compound enrichment calculator) based
on R (Figures 3a, S5, and S6). Two-dimensional plots
visualized enrichment factors of selection experiments
versus bead-only control selections to facilitate compound
identification. For the MDM2 target, the most highly enriched
peptoids contained 6-chloroindole derivatives irrespective of
their positioning on the backbone (Figure 3c). Interestingly,
a single building block from the 104 diverse azides was
enriched, the 2,4-dimethylphenylacetamide A48. Compound
8 was selected based on enrichment factor calculations. It
showed a plausible in silico binding mode, and MST experi-
ments confirmed binding to MDM2, thus validating the
library design concept (Figures 4 a,b and S9).[15] Selection
experiments for hTEAD4 identified peptoid hexT 21-A56 as
the most enriched compound (Figures 3 d and S8). In this
peptoid, a 6-chloroindole was flanked by a C-terminal
hydrocarbon and a triazole-linked imidazopyridine. We
synthesized a small series of compounds inspired by
hexT 21-A56/9 and investigated their binding to depalmitoy-
lated hTEAD4 by nanodifferential scanning fluorimetry

(Figures 4 c,d and S10). Stabilization of hTEAD4 was
observed for peptoids 9—11, which differed in their C-
terminal alkyl amides, with a tert-butyl amide leading to the
highest DTm value. Exchanging the succinate linker by
acetamide 14 reduced the DTm value, thereby suggesting
that the linker was involved in protein binding.[19] The
imidazopyridine substituent could be exchanged by 5-phenyl-
oxazole-2-yl (to give 12), as suggested by the enrichment plot
(Figure S8). We next studied the biological consequences of
the compound–hTEAD4 interaction. Compound 9 inhibited
the palmitic acid–hTEAD4 interaction with an IC50 value of
0.41 mm, while compound 10 showed a much weaker inhib-
ition, which suggests a different binding mode (Figure 4e).
Both compounds were then evaluated for inhibition of the
YAP–hTEAD4 interaction (YAP50–100, Figure 4 f). They
inhibited the PPI with IC50 values of 6.75 mm (9) and 5.65 mm

(10).
Finally, we tested the cellular activity of compound 9 by

measuring transcript levels of CTGF, a gene under control of
the hippo pathway effectors TEAD–YAP (Figure 4g).
HEK293 cells were treated with compound 9 alone, and
with a combination of compound 9 and the hippo signaling
inhibitor XMU-MP-1. XMU-MP-1 blocks MST1/2 kinases
which are upstream components in the Hippo pathway. This
inhibition results in inactivation of downstream kinases
LATS1/2, and subsequent translocation of YAP into the
nucleus, where it forms a transcriptional complex with TEAD,
thereby leading to gene expression. The addition of com-
pound 9 to HEK293 cells did not alter the CTGF transcript
levels, whereas it caused significant reduction in gene
expression after inhibition of Hippo signaling by XMU-MP-
1. This observation was in line with an on-target mechanism
and suggested a potential implication for treating tumors
driven by abnormal Hippo pathway signaling.

Initiating encoded library synthesis with an Ugi multi-
component reaction step that turned simple starting materials

Figure 3. Identification of compounds by selection. a) Compound identification. b) Encoded library validation by streptavidin selection. c) Library
selection for MDM2 identifies a 1,3-dimethylanilide building block coupled to the peptoid. d) Selection of the library for hTEAD4 uncovered
a novel class of potential TEAD4 binders.
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into peptoid side chains provided flexibility in the library
design around privileged “anchor” motifs such as tryptophan
mimics. This library design uncovered chemical aspects of
challenging target proteins from relatively few encoded
compounds. Currently, we are elucidating the binding mode
of compounds 9 and 10, and we are synthesizing analogues to
better understand the structure–activity relationships of these
TEAD–YAP inhibitors.
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