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Abstract: Genetic effects and functional relationships between traits can be repre-18

sented by directed graphs, as proposed by Wright in 1921. Nowadays such graphs are19

often estimated from empirical data, typically by applying causal inference methods to20

multi-trait observations and a small number of QTLs. When however individual QTLs21

explain little genetic variance, much of the genetic signal will be missed. To overcome this22

limitation, Gianola and Sorensen (2004) defined structural equation models with random23

genetic effects. Current causal inference methods for these models treat the genetic effects24

as nuisance terms, that need to be eliminated by taking residuals from an unstructured25

multi-trait mixed model (MTM). Fitting such MTM for large numbers of traits is however26

computationally and statistically challenging.27

Here we propose an alternative strategy, where genetic effects are formally included28

in the graph. Using theoretical results, simulations and real data we show that this has29

several advantages: (1) the extended graph satisfies the global Markov property (2) genetic30

effects can be directly incorporated in algorithms like PC, allowing for many more traits31

(3) we can distinguish direct and indirect effects, and use more of the causal information32

contained in the data. For example, we can, under certain assumptions, recover the33

structure G→ Y1 → Y2 if the genetic variance of Y2 given Y1 is found to be zero. Finally,34

we show that this can be achieved with much higher power if individual plant or plot data35

are used, extending the results of Kruijer et al (2015) for single trait analyses. We have36

implemented the method in the R-package pcgen, publicly available from CRAN.37
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1 Introduction38

Structural equation models (SEM) have been proposed almost a century ago by Wright39

( [1]), and have been frequently used to describe causal relationships between phenotypes40

(for a review see [2]). SEM are called structural or functional because each variable is41

explicitly modeled as a function of the other variables and a noise term, and have a causal42

interpretation. The advantages compared to regression models are that (i) one can predict43

the behavior of the system when one or more of the structural equations are modified by44

some kind of intervention (ii) one can distinguish direct and indirect effects of one variable45

on another.46

In some cases a specific structural model may be formulated using prior biological47

knowledge (see e.g. [3]), but there is an increasing number of applications (especially48

in system genetics) were no causal model can be specified in advance. In such cases49

causal inference methods ( [4], [5], [6]) can be used to propose models. These methods50

are not a substitute for randomized experiments, but rather propose causal models that51

are most compatible with the observed data, which can be highly useful when having to52

prioritize future experiments. In genomics for example, the effect of gene-knockouts in53

yeast was better predicted with causal inference methods than using penalized regression54

[7]. Statistically, this is because of the manipulation [5] or truncated factorization theorem55

[4] which describes the distribution after an intervention on one or several variables, which56

regression methods cannot do.57

Causal inference methods have also been applied to genetic data, where observations58

come from different genotypes. An important question is then how genotypic differences59

should be accounted for in the model. A popular strategy is to perform causal inference60

on the traits and all available markers, or QTLs found by mapping ( [8], [9], [10]). When61

however part of the genetic variance is not explained by QTLs, genetic differences may62

have little added value to the reconstruction of the network. Moreover, typical model63

assumptions such as independence of residual errors may be violated.64

An important class of models that may overcome this limitation was introduced in65

[11], who defined structural equation models containing random genetic effects. Causal66

inference for these models is however challenging, due to the correlations of the genetic67

effects across traits and individuals. To deal with these correlations, [12] and [13] proposed68

to perform causal inference after subtracting genomic predictions obtained from a multi-69

trait model (MTM). Similarly, [14] applied the PC-algorithm to the residuals of multi-SNP70

models. The difficulty with these approaches is that the MTM is limited to small numbers71

of traits, and that the existence of direct genetic effects cannot be tested. For example,72

if Y1 → Y2 ← Y3, with direct genetic effects on Y1 and Y3, the absence of direct genetic73

effects on Y2 cannot be inferred from MTM residuals. Inspired by these problems we74

define a class of causal graphs in which direct genetic effects are part of the graph, and75

a single node G represents all direct genetic effects. For each trait Yj an arrow G → Yj76

is present if and only if the direct genetic effect Gj is nonzero, i.e. has positive variance.77
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See Figure 2 below for an example.78

Although this idea is not new, ( [15], [16], [17]), this work is, to the best of our79

knowledge, the first that formalizes it. In particular, we show that the Markov property80

holds for the graph extended with genetic effects (Theorem 1), and based on this develop81

the pcgen algorithm. pcgen stands for PC with genetic effects, and is an adaptation of the82

general PC-algorithm [5] (named after its inventors Peter Spirtes and Clark Glymour).83

Briefly, pcgen assesses the existence of a direct genetic effect on a given trait by testing84

whether its genetic variance is zero, conditional on various sets of other traits. For the85

existence of an edge between traits Y1 and Y2 we test whether in a bivariate MTM the86

residual covariance between Y1 and Y2 is zero, again conditional on sets of other traits.87

Alternatively, this test may be based on MTM residuals (as in existing approaches, who88

however did not test the existence of direct genetic effects). Under the usual assumptions89

of independent errors, recursiveness and faithfulness, we show that pcgen can recover90

the underlying partially directed graph (Theorem 2); this result holds for general genetic91

relatedness, and regardless of the correlations between the direct genetic effects.92

Successful network reconstruction with pcgen requires sufficient power, in the test93

for direct genetic effects (G → Yj) as well as for the trait to trait relations (Yj → Yk).94

Given a plant or other immortal population with observations on genetically identical95

replicates, this power is likely to be highest when the original observations are used,96

instead of genotypic means and a marker based genetic relatedness matrix (see [18], for the97

estimation of genetic variance). Because of this, we focus on experiments with replicates,98

although the pcgen algorithm and most of our results are generally applicable, to any99

species and relatedness matrix. Moreover, the use of the models developed here is not100

limited to pcgen, and in the discussion we will provide directions for further applications.101

Because fitting the MTM for all traits simultaneously is no longer necessary, pcgen can102

handle a considerably larger number of traits.103

Overview of the paper104

... Appendix D contains an overview of the notation.105

2 Materials and methods106

2.1 Genetic Structural Equation Models107

2.1.1 Structural Equation Models108

To introduce structural models, let us first consider a simple linear structural equation109

model (SEM) without genetic effects:110

yi = xiB + yiΛ + ei, (1)

where yi is a 1×p vector of phenotypic values for p traits measured on the ith individual,111

ei a vector of random errors, and Λ is a p× p matrix of structural coefficients. The q × p112
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matrix B = [β(1) · · · β(p)] contains intercepts and trait specific fixed effects of (exogenous)113

covariates, whose values are contained in the 1× q vector xi.114

Defining n× p matrices Y = [Y1 · · ·Yp] with rows yi and E = [E1 · · ·Ep] with rows115

ei, and a n× q design matrix X, we can write116

Y = XB + YΛ + E. (2)

Λ has zeros on the diagonal and defines a directed graph GY over the traits Y1, . . . , Yp,117

containing the edge Yj → Yk if an only if the (j, k)th entry of Λ is nonzero1. The118

columns in (2) correspond to p linear structural equations, one for each trait. These are119

determined by the path coefficients, the nonzero elements in Λ. For example, in Figure120

1, if X = 1n is the n × 1 vector of ones and B = [µ1 µ2 µ3], the third trait has values121

Y3 = µ31n + λ13Y1 + 2λ23Y2 + E3. The equality sign here can be understood as an122

assignment, i.e. Y3 is determined by the values of Y1 and Y2 (its parents in the graph123

GY) and an error. If the directed graph does not contain any cycle (i.e. a directed path124

from a trait to itself), it is a DAG (directed acyclic graph), and the SEM is said to be125

recursive. In the notation we will distinguish the nodes Y1, . . . , Yp in the graph GY (normal126

type), and the random vectors Y1, . . . ,Yp that these nodes represent (bold face).127

Assuming that the error vectors ei are independent and follow a multivariate normal128

N(0,ΣE) distribution, it follows from (1) that129

yi = xiB(I − Λ)−1 + ei(I − Λ)−1 = xiBΓ + eiΓ

∼ N(xiBΓ,ΓtΣEΓ) = N(xiBΓ,Σ),
(3)

i.e., the covariance of the yi’s is determined by ΣE and Γ = (I−Λ)−1. 2 Given sufficiently130

strong assumptions on Λ and ΣE, their non-zero elements are identifiable. In Figure 1 for131

instance, assuming ΣE is diagonal, it is possible to estimate the 8 parameters (λ12, λ13,132

λ23 and λ34, and the variances of the 4 error variables) based on the sample covariance133

matrix Σ̂ (which has 4 diagonal and 6 unique off-diagonal elements). For a more general134

discussion, see [19], [20] and [21].135

An important property of SEM is that the effects of interventions can be predicted,136

which are changes in one or more of the structural equations. For example, suppose that137

in Figure 1, Y1, Y2 and Y3 are the expression levels of 3 genes, and Y4 is plant height.138

Then after forcing Y2 to be zero (e.g. by knocking out the gene), the total effect of Y1 on139

Y4 changes from (λ13λ34 +λ12λ23λ34) to λ13λ34. More generally, the new joint distribution140

of Y1, . . . ,Yp after intervention can be obtained from the manipulation or truncated141

factorization theorem ( [4]), without needing observations from the new distribution. [16]142

discussed the consequences of interventions for genomic selection.143

1We put this path coefficient in the (j, k)th entry (instead of the (k, j)th), and in (2) we post-multiply
with Λ. This has the advantage that the data-matrix Y has the usual dimensions n × p, and that the
covariance of vec(Y) has terms of the form (ΓtΣGΓ)⊗K, instead of K ⊗ (ΓtΣGΓ); see e.g. equation (8)

2since we post-multiply ei with Γ = (I − Λ)−1, the covariance is ΓtΣEΓ and not ΓΣEΓt



5

Y1

Y2

Y3 Y4 Λ =


0 λ12 λ13 0
0 0 λ23 0
0 0 0 λ34

0 0 0 0


λ12 λ23

λ13 λ34

Figure 1. An example of a SEM.

2.1.2 GSEM: Structural Equation Models with genetic effects144

[11] extended model (1) with random genetic effects gi: for individuals i = 1, . . . , n, it is145

then assumed that146

yi = xiB + yiΛ + gi + ei, (4)

where again yi is a 1× p vector of phenotypes, Λ contains the structural coefficients, and147

ei ∼ N(0,ΣE) are vectors of random errors. We will refer to model (4) as a linear GSEM148

(genetic structural equation model), or simply GSEM. While the genetic effects introduce149

relatedness between individuals, there is no form of social interaction (as in e.g. [22], [23]).150

The 1 × p vectors gi contain the direct genetic effects for individuals i = 1, . . . , n.151

Each gi
t follows a N(0,ΣG) distribution, where ΣG is a p× p matrix of genetic variances152

and covariances. The vectors gi are independent of the ei’s, but not independent among153

themselves. Defining a n × p matrix G = [G1 · · ·Gp] with rows gi and columns Gj154

(j = 1, . . . , p), we can extend (2) as follows:155

Y = [Y1 · · ·Yp] = XB + YΛ + G + E. (5)

Each vector Gj is the vector of direct genetic effects on the jth trait. We make the156

following assumptions about the GSEM defined in (5):157

1. all traits are measured on each individual: the rows yi of Y may be either observa-158

tions on individual organisms or genotypic means of a number of replicates (plants,159

or plots in a field trial), but the original observations should always come from the160

same experiment. In addition, the residual errors originate from biological variation.161

2. recursiveness: the graph GY defined by Λ is a DAG.162

3. causal sufficiency: the covariance matrix ΣE of the error vectors ei is diagonal, i.e.163

there are no latent variables. This means that all nonzero (non-genetic) correlations164

between traits must be the consequence of causal relations between the traits. In165

the discussion we describe how this assumption may be relaxed. We also assume166

the diagonal elements of ΣE to be strictly positive.167

4. Genetic relatedness among individuals: G is independent from E, and has a matrix-168

variate normal distribution with row-covariance K and column covariance ΣG, where169
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K is a n× n relatedness matrix, which we describe in more detail in section 2.1.5.170

Equivalent with this, the np × 1 vector vec(G) = (G1
t, . . . ,Gp

t)t is multivariate171

normal with covariance ΣG ⊗ K, where vec denotes the operation of creating a172

column vector by stacking the columns of a matrix. Consequently, each Gj is mul-173

tivariate normal with covariance σ2
G,jK, where the variances σ2

G,j form the diagonal174

of ΣG. Using the same notation, we can write that E is matrix-variate normal with175

row-covariance In and column covariance ΣE, and that vec(E) ∼ N(0,ΣE ⊗ In).176

5. No collinear genetic effects: the diagonal elements of ΣG do not need to be strictly177

positive, but for all nonzero elements, the corresponding correlation is not 1 or −1.178

Assumptions 1-4 were also made in related work on structural models with random genetic179

effects ( [12], [13]), and 1-3 are commonly made for structural models without such effects.180

Assumption 1 is implicit in model (5) itself, as it is assumed that the structural equations181

propagate all errors to traits further down in the graph. Network reconstruction without182

this assumption would rely completely on the genetic effects, requiring ΣG to be diagonal,183

which is a rather unrealistic assumption (see the discussion, section 4.1). Assumption 1184

does not require traits to be measured at the same time. In particular, it is possible to185

include the same trait measured at different timepoints, which of course puts contraints186

on the causality. Such contraints can in principle be incorporated in our model, just as187

other biological contraints (see e.g. [24]), although we will not explore this here.188

2.1.3 Graphical representation of GSEM: extending GY with genetic effects189

Contrary to previous work, we will explicitly take into account the possibility that there190

are no direct genetic effects on some of the traits. In this case, the corresponding rows191

and columns in ΣG are zero. We let D ⊆ {1, . . . , p} denote the index set of the traits192

with direct genetic effects, and write ΣG[D,D] for the sub-matrix with rows and columns193

restricted to D. From assumption 3 above it follows that ΣG[D,D] is non-singular, i.e.194

there can be no perfect correlations between direct genetic effects.195

We graphically represent model (5) by a graph G with nodes Y1, . . . , Yp and a node G,196

which represent respectively Y1, . . . ,Yp and the matrix G = [G1 · · ·Gp]. G contains an197

edge Yj → Yk if the (j, k)th entry of Λ is nonzero, and an edge G → Yj if Gj is nonzero198

with probability one, i.e., if σ2
G,j > 0. See Figure 2 for an example. In words, G is defined199

as the original graph GY over the traits (defined by Λ), extended with arrows G → Yj200

for all traits with a direct genetic effect, i.e. for all j ∈ D. Consequently, our main201

objective of reconstructing trait-to-trait relationships and direct genetic effects translates202

as reconstructing G.203

As for the Yj’s, we distinguish the node in the graph G (normal type) and the random204

matrix G it represents (bold face). G is represented by a single node G, instead of205

multiple nodes G1, . . . , Gp. This choice is related to our assumption that K is the same206

for all traits; see Appendix G.1 for a motivating example. The orientation of any edge207
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Y2

Y1

Y3

G

Figure 2. An example of a graph G representing a genetic structural equation model
(GSEM). There is no direct genetic effect on Y2, and therefore no edge G→ Y2.

between G and Yj is restricted to G→ Yj, because G arises from a randomized treatment,208

and also because the opposite orientation would be biologically nonsensical. Because of209

our assumption that GY is a DAG, it follows that G is a DAG as well, as a cycle would210

require at least one edge pointing into G.211

We emphasize that G is just a mathematical object and not a complete visualization of212

all model terms and their distribution, as is common in the SEM-literature. In particular,213

G does not contain nodes for the residual errors, path coefficients, or information about214

the off-diagonal elements of ΣG. While ΣG is usually not entirely identifiable ( [11]), we215

will see that G is identifiable in terms of its skeleton (the undirected graph obtained when216

removing the arrowheads) and some of the orientations.217

2.1.4 Direct and indirect genetic effects218

Taking the term yiΛ from the right- to the left-hand side in equation (4), and assuming219

that the inverse Γ = (I − Λ)−1 exists, it follows that220

yi = xiBΓ + giΓ + eiΓ = xiBΓ + ui + eiΓ ∼ N(xi(BΓ),ΓtΣGΓ + ΓtΣEΓ), (6)

where ui = giΓ is the total genetic effect. Hence, as pointed out by [16], the genetic221

variance of a trait is not only driven by its direct genetic effect (gi), but also by direct222

genetic effects on traits affecting it, i.e. its parents in the graph GY . The indirect genetic223

effect is the difference ui − gi.224

Similarly, we can distinguish the contribution of direct and indirect genetic effects to225

the genetic covariance. The (j, k)th element of ΓtΣGΓ in (6) is the total genetic covariance226

between Yj and Yk. This is what is usually meant with genetic covariance. When227

necessary, we distinguish this from the covariance between the direct genetic effects Gj228

and Gk, determined by ΣG[j, k]. Indeed ΣG[j, k] affects the total genetic covariance, but229

the latter is also driven by causal relationships between traits, as defined by Γ = (I−Λ)−1.230

Regarding the diagonal of ΓtΣGΓ, we note that traits without a direct genetic effect may231

still have positive genetic variance.232
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2.1.5 Genetic relatedness233

The genetic relatedness matrix K introduced in assumption 4 determines the covariance234

between the rows of G. We will assume that K is one of the following types:235

• K = ZZt, Z being the n ×m incidence matrix assigning n = mr plants (or plots)236

to m genotypes, in a balanced design with r replicates for each genotype. This K is237

obtained when each genotype has an independent effect, as in the classical estimation238

of broad-sense heritability. Since no marker-information is included, the model239

cannot be used for genomic prediction, but we will see that for the reconstruction of240

G (using the training genotypes) it has considerable computational and statistical241

advantages.242

• K is estimated from a dense set of markers, assuming additive infinitesimal effects.243

To keep the notation simple we will still use σ2
G,j for the diagonal elements of ΣG,244

instead of σ2
A,j. This type of relatedness matrix is used when there is only a single245

individual per genotype, or when only genotypic means are available.246

In both cases K has dimension n× n. The balance required in the first case is necessary247

in Theorems 5 and 6 below, but is not a general requirement for our models, or for the248

pcgen algorithm.249

2.1.6 The joint distribution implied by the GSEM250

The sum G + E does in general not have a matrix-variate normal distribution, but from251

our assumption 4 it still follows that vec(G + E) is multivariate normal with covariance252

ΣG ⊗K + ΣE ⊗ In. We can therefore rewrite equation (5) as253

Y = XBΓ + GΓ + EΓ = XBΓ + U + EΓ, (7)

and equation (6) generalizes to254

vec(Y) ∼ N
(
vec(X(BΓ)), (ΓtΣGΓ)⊗K + (ΓtΣEΓ)⊗ In

)
. (8)

As pointed out in [11], [12] and [13], (8) can be re-written as255

vec(Y) ∼ N
(
vec(XB̃), VG ⊗K + VE ⊗ In

)
, (9)

where VG = ΓtΣGΓ and VE = ΓtΣEΓ, and B̃ is the matrix of fixed effects transformed256

by Γ. This is a common model for multi-trait GWAS and genomic prediction (see among257

others [15], [25], [26]).258

Using the results of [5] (p. 371), it turns out that Γ can be written directly in terms of259

sums of products of path coefficients (see Appendix E.2). Consequently, there is no need260
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to invert (I − Λ), although it still holds that Γ = (I − Λ)−1, provided the inverse exists.261

Defining γj as the jth column of Γ, we can express the jth trait as262

Yj = XBγj + Gγj + Eγj = XBγj + Uj + Eγj, (10)

i.e. equation (7), restricted to the jth column.263

2.1.7 Causal inference without genetic effects264

So far we have assumed that G in known: given sufficient restrictions on Λ, ΣG and ΣE,265

it may then be possible to estimate these matrices ( [11]). In this work however, we aim266

to reconstruct an unknown G, based on observations from a GSEM of the form (5). We267

will do this with the pcgen algorithm introduced in section 2.2, but first briefly review268

the necessary concepts. Appendix E.1 contains a more detailed introduction.269

Suppose for the moment we have observations generated by an acyclic SEM without270

latent variables, and without genetic effects. From the pioneering work of Judea Pearl271

and others in the 1980s it is known that we can recover the skeleton of the DAG and272

some of the orientations, i.e. those given by the v-structures. A v-structure is any triple273

of nodes Yj, Yk, Yl such that Yj → Yk ← Yl, without any edge between Yj and Yl. All274

DAGs with the same skeleton and v-structures form an equivalence class, which can be275

represented by a completed partially directed acyclic graph (CPDAG). DAGs from the276

same equivalence class cannot be distinguished from observational data, at least not under277

the assumptions we make here. For reconstruction of the CPDAG, constraint-based and278

score-based methods have been developed (for an overview, see [24]).279

Here we focus on constraint-based methods, which rely on the equivalence of condi-280

tional independence (a property of the distribution) and directed separation (d-separation;281

a property of the graph). An important property is that an edge Yj − Yk is missing in282

the skeleton of the DAG if and only if Yj and Yk are d-separated by at least one (possibly283

empty) set of nodes YS. Such YS is called a separating set for Yj and Yk. Given the284

equivalence of d-separation and conditional independence, this means that we can infer285

the presence of the edge Yj − Yk in the skeleton by testing Yj ⊥⊥ Yk|YS for all YS. The286

PC- and related algorithms therefore start with a fully connected undirected graph, and287

remove the edge Yj − Yk whenever Yj and Yk are found to be conditionally independent288

for some YS. While the first constraint-based algorithms such as IC [27] exhaustively289

tested all possible subsets, the PC-algorithm ( [5]) can often greatly reduce the number290

of subsets to be considered.291

Although structural equations are often assumed to be linear and the noise Gaussian,292

these assumptions are not essential for the equivalence of conditional independence and293

d-separation. For example, the pcalg package [28] contains a conditional independence294

test for binary data. However, structural equations with additional random effects are295

rarely considered, and many causal inference algorithms therefore assume independent296

observations.297
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2.1.8 Existing approaches for estimating GY , given genetic effects298

To deal with the dependence introduced by the genetic effects, [12] and [13] proposed299

to predict the total genetic effects (i.e., the terms ui = giΓ in (6)), and perform causal300

inference on the residuals. These methods are flexible in the sense that any genomic301

prediction method can be used, and combined with any causal inference method.302

A disadvantage however is that the presence of direct genetic effects cannot be tested.303

Suppose for example G→ Y1 → Y2 → Y3, and we subtract the total genetic effects. Then304

given only the residuals, we can never know if part of the genetic variance of Y2 was due to305

a direct effect G→ Y2. To use the causal information contained in the genetic effects, [13]306

estimated ’genomic networks’, based on the predictions themselves. These however seem307

to require additional assumptions not required for the residual networks (in particular,308

diagonal ΣG), and it seems difficult to relate edges in such a network to direct genetic309

effects (Appendix G.2). In summary, residual and genomic networks only estimate the310

subgraph GY of trait to trait relations, instead of the complete graph G.311

Another disadvantage is that the MTM (9) can only be fitted for a handful of traits [25],312

for statistical as well as computational reasons. For example, [29] showed that for general313

Gaussian covariance models, (residual) ML-estimation behaves like a convex optimization314

problem only when n & 14p. Similar problems are likely to occur for Bayesian approaches.315

The main problem with fitting the MTM to data from GSEM model (8) is that one cannot316

exploit the possible sparseness of G. Even for sparse graphs with few direct genetic effects,317

the matrices ΓtΣGΓ and ΓtΣEΓ may still be dense, requiring a total of p(p+1) parameters.318

To overcome these limitations, we consider the presence or absence of direct genetic effects319

to be part of the causal structure, and develop pcgen, a causal inference approach directly320

on G.321

2.2 The pcgen algorithm322

The main idea behind pcgen is that the PC-algorithm is applicable to any system in323

which d-separation and conditional independence are equivalent, and where conditional324

independence can be tested. We first describe the algorithm and propose independence325

tests; the equivalence is addressed in section 3.4. If we define Yp+1 := G and temporarily326

rename the node G as Yp+1, pcgen is essentially the PC-algorithm applied to Y1, . . . , Yp+1:327

1. skeleton-stage. Start with the fully connected undirected graph over {Y1, . . . , Yp+1},328

and an empty list of separation sets. Then test the conditional independence be-329

tween all pairs Yj and Yk, given subsets of other variables YS. Whenever a p-value330

is larger than the pre-specified significance threshold α, update the skeleton by re-331

moving the edge Yj − Yk, and add YS to the list of separation sets for Yj and Yk.332

This is done for conditioning sets of increasing size, starting with the empty set333

(S = ∅; marginal independence between Yj and Yk). Only consider S that, in the334

current skeleton, are adjacent to Yj or Yk.335
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2. orientation-stage. Apply the orientation rules given in Appendix A (R1-R3 in336

Algorithm 1) to the skeleton and separating sets found in the skeleton-stage. For337

example, if the skeleton is Y1 − Y2 − Y3 and {Y2} is not a separating set for Y1 and338

Y3, the skeleton is oriented Y1 → Y2 ← Y3; otherwise, none of the two edges can be339

oriented.340

To get pcgen, we only need to make a few refinements to these steps. First, in the skeleton341

stage we need to specify how to test conditional independence statements. Clearly, inde-342

pendence between two traits requires a different test than independence between a trait343

and G (i.e., Yp+1), in particular because the latter is not directly observed. Second, we344

need to modify the orientation rules, in order to avoid edges pointing into G. The usual345

rules give the correct orientations given perfect conditional independence information,346

but statistical errors in the tests may lead to edges of the form Yj → G. Third, statis-347

tical errors can also make the output of pc(gen) order-dependent. We therefore adopt348

the PC-stable algorithm of [30], who proposed to perform all operations in skeleton- and349

orientation-stage list-wise (details given in Appendix A).350

In summary, pcgen is the PC-stable algorithm with: (1) specific conditional indepen-351

dence tests (described in sections 2.2.1-2.2.3 below), and (2) modified orientation rules,352

in order to avoid edges pointing into G (Appendix A.2). As in the original PC-algorithm,353

the number of type-I and type-II errors occurring in the tests is determined by the choice354

of the significance threshold α, which is discussed in sections 2.5 and 4.3.355

2.2.1 Skeleton stage: conditional independence tests356

Writing again G for Yp+1, we can distinguish the following types of conditional indepen-357

dence statements in the skeleton stage:358

Yj ⊥⊥ Yk|(G,YS), (A)
359

Yj ⊥⊥ G|YS, (B)
360

Yj ⊥⊥ Yk|YS, (C)

where j, k ∈ {1, . . . , p} (j 6= k) and S ⊆ {1, . . . , p} \ {j, k} (or S ⊆ {1, . . . , p} \ {j}361

in statement (A)). In words, (B) means that the trait Yj is independent of all genetic362

effects (G), conditional on the traits Ym (m ∈ S). If S is the empty set, this is under-363

stood as marginal independence of Yj and G. Similarly, (A) and (C) express conditional364

independence of traits Yj and Yk given G and YS, or given YS alone.365

We now propose statistical tests for statements (A) and (B), which rely on the linearity366

of our GSEM (model (5)). Statement (C) can be tested using standard partial correlations367

and Fisher’s z-transform. However, as we show in appendix F, this test is redundant, since368

for any set YS that d-separates Yj and Yk, the set YS ∪{G} will also d-separate them. We369

therefore skip any test for Yj ⊥⊥ Yk|YS, and instead test the corresponding statement370

with G, i.e., Yj ⊥⊥ Yk|YS,G.371



12

2.2.2 Testing Yj ⊥⊥ Yk|(G,YS)372

For statement (A) we consider two different tests:373

• The residual covariance (RC) test. The RC-test is based on the bivariate distribution374

of (Yj,Yk) conditional on the observed YS = ỹS, which can be written as375 (
Yj

Yk

)
|YS = ỹS ∼ N

((
µj|S
µk|S

)
,Σjk|S

)
. (11)

Expressions for µj|S, µk|S and Σjk|S can be derived from equation (8), and are given376

in appendix E.6. For testing (A) it is assumed that µj|S and µk|S are of the form377

XBγj + ỹSβ
(j)
S , XBγk + ỹSβ

(k)
S , (12)

where XBγj is the marginal mean of Yj (see (10)), and β
(j)
S and β

(k)
S are |S| × 1378

vectors of regression coefficients. The covariance in (11) is assumed to be of the379

form380

Σjk|S = VG(jk|S)⊗K + VE(jk|S)⊗ In, (13)

for some 2× 2 matrices VG(jk|S) and VE(jk|S). Given these assumptions, we test381

whether the off-diagonal element in VE(jk|S) is zero, using the likelihood ratio382

test (LRT) described in Appendix A.3. In words, the conditional distribution is a383

bivariate MTM, in which we test the residual covariance3.384

The underlying idea is that a nonzero residual covariance must be the consequence385

of an edge Yj → Yk or Yk → Yj, because of the assumed normality and causal386

sufficiency. On the other hand, a nonzero genetic covariance may also be due to387

covariance between direct genetic effects on these variables, or due to a genetic effect388

on a common ancestor. The RC-test therefore compares the full bivariate mixed389

model with the submodel with diagonal VE(jk|S), while accounting for all genetic390

(co)variance using VG(jk|S).391

• The RG-test (Residuals of GBLUP), which is based on the residuals of MTM (9).392

Solving the mixed model equations, we obtain the BLUP U∗ of the total genetic393

effects U = GΓ, the BLUE B̃∗ of the fixed effects, and residuals Y −U∗ −XB̃∗.394

Next, we test statement (A) using the partial correlation between the residuals of395

Yj and Yk, given those of YS, and assess significance with Fisher’s z-transform.396

This is essentially the test used by [12] and [13], who instead took a fully Bayesian397

approach to predict U. Here we stick to the GBLUP, and consider two variants:398

(i) the one described above, based on the multivariate GBLUP, and (ii) based on399

univariate GBLUPs, i.e. all predictions U∗j are obtained from single trait mixed400

models. In both cases, the idea is that when U∗ is close enough to U, it follows401

3alternatively, we could test the residual correlation
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from equations (7)-(8) that vec(Y−U∗) approximately has covariance (ΓtΣEΓ)⊗In,402

i.e. that of independent samples, without any genetic relatedness.403

Both tests rely on approximations: they do not directly test conditional independence404

statement (A), but a related statement. In some cases the approximation is exact, and405

the related statement equivalent. In other cases it is not entirely equivalent, which may406

introduce an additional source of error (on top of the statistical errors that come with407

the test itself). In the RG-test the prediction error (U∗ −U) determines the quality of408

the approximation. The RC-test relies on assumptions (12)-(13) about the conditional409

mean and covariance of (Yj,Yk) given YS = ỹS. We discuss the appropriateness of these410

approximations in section 3.4.3.411

Model (13) (with S = ∅) can also provide an estimate of the total genetic covariance,412

i.e., the off-diagonal element of VG(jk|S). In Appendix A.4 we describe a test for zero413

genetic covariance, which can be useful for data exploration, but has no role in pcgen.414

A similar test for the total genetic correlation can be obtained using the delta method415

( [26]).416

2.2.3 Testing Yj ⊥⊥ G|YS417

Our test for statement (B) is based on the intuition that Yj is independent of G =418

[G1 · · ·Gp] given YS, whenever there is no direct genetic effect on Yj (i.e. Gj = 0), and419

all directed paths from G to Yj are blocked by the set {Ym : m ∈ S}. In particular, if S420

is the empty set, there should not be any directed path from G to Yj. Because directed421

paths from G to Yj will generally introduce some genetic variance in Yj, the idea is to test422

whether there is significant genetic variance in the conditional distribution of Yj given423

YS = ỹS. This is done as follows:424

• When K = ZZt, we use the classical F-test in a 1-way ANOVA, with X and ỹS425

as covariates. Technically, this is an ANCOVA (analysis of covariance), where the426

treatment factor genotype is tested conditional on the covariates being in the model.427

• For other K one can use the LRT, as in the RC-test for (A). The asymptotic428

distribution under the null-hypothesis is a mixture of a point mass at zero and a429

chi-square.430

In both cases, it is assumed that the mean of the conditional distribution of Yj given431

YS = ỹS is of the form (12), and the covariance of the form432

Σj|S = σ2
G(j|S)K + σ2

E(j|S)In, (14)

for some variance components σ2
G(j|S) and σ2

E(j|S). Again, the covariance assumption433

holds exactly when K = ZZt (Theorem 6); otherwise it is an approximation. As in the434

RC-test for statement (A), (12) is an approximation as well, and the assumed linearity435
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is essential. Suppose for example that Y2 := Y1
2 and Y1 := G1 ∼ N(0, ZZt), where for436

the sake of the argument we assume absence of residual errors. Then the factor genotype437

will generally be significant in the ANCOVA with Y1 as covariate. For example there438

could be 2 replicates of 3 genotypes, with genetic effects (−1,−1, 0, 0, 1, 1), then clearly439

there is some unexplained genetic variance when regressing Y2 = (1, 1, 0, 0, 1, 1)t on Y1.440

2.2.4 pcRes: reconstructing only trait-to-trait relationships441

Testing only conditional independencies of the form (A), one can reconstruct the graph442

GY of trait-to-trait relations. Moreover, if this is done with the RG-test, the algorithm is443

very similar to the residual approaches of [12] and [13]. Staying within the context of the444

PC-algorithm and using residuals from GBLUP, we will call this pcRes. Similar to pcgen445

with the RG-test, the performance of pcRes strongly depends on the prediction error of446

the GBLUP.447

2.3 Causal inference based on genotypic means448

In section 2.1.5 we assumed the genetic relatedness to be either K = ZZt (given observa-449

tions on replicates), or a marker-based relatedness matrix (given a single observation on450

each genotype). However, in many applications both a marker-based relatedness matrix451

and replicates are available. Suppose we have r replicates of m genotypes in a completely452

randomized design, with a m×m relatedness matrix A. 4 Reconstruction of G with pcgen453

or GY with pcRes is then possible using:454

1. both A and the replicates. The distribution of the data is assumed to be455

vec(Y) ∼ N
(
vec(X(BΓ)), (ΓtΣGΓ)⊗ (ZAZt) + (ΓtΣEΓ)⊗ In

)
, (15)

i.e. equation (8) with K = ZAZt.456

2. only the replicates. The true distribution of the data could be as in (15), but457

ignoring the information in A, we assume that458

vec(Y) ∼ N
(
vec(X(BΓ)), (ΓtΣGΓ)⊗ (ZZt) + (ΓtΣEΓ)⊗ In

)
. (16)

3. genotypic means and A. Assuming that the original plant or plot data are dis-459

tributed as in (15), the distribution of the m × p matrix Ȳ of genotypic means is460

such that461

vec(Ȳ) ∼ N

(
0, (ΓtΣGΓ)⊗ A+

1

r
(ΓtΣEΓ)⊗ Im

)
, (17)

where it is assumed that the fixed effects have been accounted for in the estimation462

of genotypic means.463

4We use the letter A to avoid confusion with the general n×n matrix K, and also because A typically
models additive effects.
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In our simulations (section 3.1 below) we compare these cases for pcRes. A similar464

comparison for pcgen is left for future work; here we will focus on the second case, using465

only replicates and assuming independent genetic effects. This is motivated by the good466

results for pcRes for this case, and by theoretical arguments (see Theorems 5-6 below, and467

the discussion (4.2)). However, we stress that in all simulations, the data are simulated468

as in (15), i.e. with additive genetic effects, inducing population structure.469

A second issue in pcRes (independent of the choice of K) are the residuals, which can470

be obtained from single- or multi-trait models. In the latter case, we fit the multi-trait471

model (9), with K equal to ZAZt, ZZt or A. In the univariate case, we do the same,472

assuming the covariance model σ2
GK + σ2

EI (where I is of dimension n × n or m × m,473

depending on K).474

2.4 Software, and overview of algorithms475

We now give an overview of pcgen, pcRes, and variations on these methods. Most of these476

are available in our R-package pcgen, freely available at https://cran.r-project.org/web/packages/pcgen/index.html.477

pcgen is built on the pcalg package ( [28], [31]), in which we modified the orientation rules478

and the default conditional independence test. Tables 5 and 6 in Appendix D provide a479

brief description, with the abbreviations and the required R-commands.480

pcgen can be run with either the RC- or the RG-test (pcgen-RC versus pcgen-RG).481

In case of the RG-test, either univariate or multivariate GBLUP could be used (pcgen-482

RG-uni versus pcgen-RG-multi). pcRes can be based on either univariate or multivariate483

GBLUP (pcRes-uni versus pcRes-multi). In either case, one can use a relatedness matrix484

only (postscript -K, for ’kinship’), only replicates (-R), or both replicates and a relatedness485

matrix (-RK). Finally, one could reconstruct GY using the GBLUP itself (pc-GBLUP),486

similar to the approach of [13].487

2.5 Assessing uncertainty488

The PC-algorithm is asymptotically correct, in the sense that the underlying CPDAG is489

recovered if conditional independence can be tested without error [5]. In Theorem 2 below490

we provide a related consistency result for pcgen. In practice however, type-I or type-II491

errors are likely to occur, leading to incorrect edges in the graph. Depending on the492

significance level α used in each test, there may be more type-I errors (large α) or rather493

more type-II errors (small α). However, reliable control of the (expected) false positive494

rate or total number of false positives remains challenging; see the discussion, section 4.3.495

We will therefore just consider the p-values as they are, and analyze a given dataset for496

various significance thresholds. A rough indication of confidence for each remaining edge497

is given by the largest p-value found across all conditioning sets for which the edge was498

tested.499
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2.6 Extensions of pcgen500

We conclude the materials and methods section with the following extensions of pcgen:501

• The RC-test with prior screening (pcgen-screening): The RC-test for state-502

ment (A) is computationally efficient, in the sense that only a bivariate MTM needs503

to be fitted, instead of for all traits. At the same time however, once residuals are504

available, the RG-test is much faster than the RC-test, as the former is based on505

partial correlations that can be computed recursively (see e.g [32]). An appealing506

strategy is therefore to run PC-stable on univariate residuals (i.e., a form of pcRes),507

and use the resulting skeleton as the starting point for pcgen with the RC-test. The508

advantage, at least for sparse graphs, is that the number of conducted RC-tests is509

greatly reduced. In the pcgen-package this is implemented in the pcgenFast func-510

tion. The skeleton based on univariate residuals typically contains somewhat more511

false edges, but these may be removed later on with the RC-test.512

• Inclusion of QTLs: apart from the random genetic effects, the GSEM considered513

here could include fixed effect QTLs as well. Each QTL is represented by a single514

node, which like the random effect node G is always a root node. No edges are515

allowed between QTLs or between a QTL and G; moreover every edge between516

a QTL and a trait is oriented towards the trait. Since the QTLs may further517

improve the orientation of the graph, the pcgen package provides an experimental518

implementation of this, although a full investigation of the added value is left for519

future work.520

• Comparing pcgen output with genetic variance estimates: for every trait521

Yj having positive genetic variance, there should be either a direct genetic effect522

G → Yj or a partially directed path from G to Yj (with possibly undirected edges,523

but all directed edges pointing towards Yj). However, because of statistical errors it524

may happen that neither of the two exist in the CPDAG obtained from pcgen, while525

at the same time the genetic variance (considered in the independence test Yj ⊥⊥ G)526

is significant. In the pcgen-package, such conflicts can be detected using the checkG527

function. If conflicts occur, we conclude that there was insufficient evidence to528

remove the direct genetic effect from the graph, and re-run pcgen, skipping all tests529

Yj ⊥⊥ G|YS for all Yj that produced conflicts in the first run. This forces the530

algorithm to keep the edge G→ Yj.531
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3 Results532

3.1 Simulations, with randomly drawn graphs533

3.1.1 Simulation scheme534

To compare the different algorithms we simulated random GSEMs, by combining a ran-535

domly drawn DAG over the traits (GY) with random path coefficients, closely following536

the simulation scheme of [32]. Traits were simulated for 200 genotypes which (for each537

simulated dataset) were randomly drawn from an existing population of 254 maize hy-538

brids [33]. Two replicates of each genotype were simulated. For each simulated dataset we539

randomly sampled the set D (defining the edges G→ Yj) and the covariance matrix ΣG.540

Given an additive relatedness matrix A based on 50k SNPs, genetic effects were simulated541

as in (15), i.e. such that vec(G) ∼ ΣG ⊗ (ZAZt). Appendix B.1 provides further details,542

such as the magnitude of genetic (co)variances. We focus here on the comparison of543

• pcgen-RC: pcgen with the RC-test, using replicates544

• pcgen-RG-uni: pcgen with the RG-test, based on univariate GBLUP, and using545

replicates546

• pcRes-uni-R: pcRes based on univariate GBLUP, using replicates547

• pcRes-multi-K: pcRes based on multivariate GBLUP, using genotypic means and548

the relatedness matrix A that was used to simulate the data549

• pcgen-screening: pcgen with the RC-test, starting with the skeleton obtained from550

pcRes-uni-R (see section 2.6)551

Results for the other algorithms are given in Appendix B.3. In all simulations the signifi-552

cance threshold was α = 0.01. The effect of sample size and the trade-off between power553

and false positives as function of α was already investigated by [32] for the standard554

PC-algorithm, and is likely to be similar for pcgen.555

We separately evaluated the reconstruction of GY and the edges G→ Yj, as the latter556

is only possible with pcgen. To assess the difference between estimated and true skeleton557

of GY , we considered the true positive rate (TPR), the true discovery rate (TDR) and558

the false positive rate (FPR). Additionally we used the Structural Hamming Distance559

(SHD), which also takes into account the orientation of the edges. Appendix B.2 provides560

definitions of these criteria. Reconstruction of G→ Yj is only assessed in terms of TPR,561

TDR and FPR, as these edges can have only one orientation.562

3.1.2 Results563

We first performed simulations with p = 4 traits (scenario 1), with each potential edge564

between traits occurring in the true graph with probability pt = 1/3. Hence, for any565
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given trait, the expected number of adjacent traits was (p− 1)pt = 1. The edges G→ Yj566

were included in the true graph with probability pg = 1/2. In a related set of simulations567

(scenario 2), pt was increased to 0.5, giving denser graphs. In both scenarios, pcgen568

reconstructed the edges G→ Yj with little error, the average TPR being above 0.95 and569

the TDR above 0.99. The FPR for these type of edges remained below 0.05. For the570

trait-to-trait relations (i.e. reconstruction of GY), the TPR, FPR and TDR all increased571

in scenario 2. Hence, for denser graphs, more of the true edges were found, at the expense572

of a somewhat higher number of false edges.573

pcRes with univariate residuals from replicates (pcRes-uni-R) outperformed pcRes-574

multi-K, despite the fact that only the latter used the actual relatedness matrix (from575

which the genetic effects were simulated). Consequently, the information contained in576

the replicates appears much more important than the precise form of the relatedness ma-577

trix, or unbiased estimation of genetic correlations. The performance of pcRes strongly578

depends on the prediction error of the GBLUP (see sections 2.2.2 and 2.2.4), and, in579

line with the results of [18], this error appeared lowest when using the replicates. pcRes-580

uni-R performed almost as well as the 3 pcgen approaches; motivated by the additional581

computational advantage, this is the only variant of pcRes that we consider in the re-582

mainder. For the same reasons, we only considered the RG-test in pcgen in the univarate583

version, based on replicates (pcgen-RG-uni). The latter appeared to give more false pos-584

itives than pcgen with the RC-test (pcgen-RC), although differences were small. A good585

compromise between computational speed and performance appears to be achieved with586

pcgen-screening, starting pcgen-RC with the skeleton found by pcgen-RG-uni. This will587

therefore be our default choice for analyzing real data below.588

pcRes-uni-R and pcgen-RG-uni had identical performance in terms of TPR, TDR and589

FPR, as they use exactly the same tests for the trait-trait relations. However, pcgen-RG-590

uni (as other pcgen approaches) had the advantages that (i) also the edges G→ Yj could591

be inferred and (ii) due to these genetic effects, the orientation of the edges between traits592

was improved, as shown by a strongly reduced SHD.593

To assess performance in higher dimensions, we simulated data sets with p = 20 traits,594

pg = 0.3 and pt = 0.1 (scenario 3) and with p = 100, pg = 0.1 and pt = 0.01 (scenario 4).595

Both scenarios consider sparse graphs; denser graphs can be analyzed as well, but, for p596

larger than 20-30, require several hours or even days, unless the size of the conditioning597

sets is restricted or pcgen would be parallelized. Here we limited the size of conditioning598

sets to 3 (scenario 3) and 2 (scenario 4). As in the first two scenarios, pcgen led to a599

strong reduction in SHD, and reliable reconstruction of the direct genetic effects.600
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GY G→ Yj
TPR FPR TDR SHD TPR FPR TDR

Scenario 1 (p = 4) (pt = 1/3) (pg = 0.5)
pcgen-RC 0.607 0.012 0.960 0.568 0.986 0.020 0.994
pcgen-RG-uni 0.607 0.036 0.906 0.670 0.984 0.022 0.994
pcgen-screening 0.603 0.008 0.982 0.548 0.986 0.020 0.994
pcRes-uni-R 0.607 0.036 0.906 1.362
pcRes-multi-K 0.465 0.432 0.388 3.212
Scenario 2 (p = 4) (pt = 0.5) (pg = 0.5)
pcgen-RC 0.814 0.042 0.980 1.236 0.966 0.041 0.993
pcgen-RG-uni 0.820 0.074 0.951 1.320 0.965 0.043 0.992
pcgen-screening 0.805 0.034 0.990 1.238 0.966 0.042 0.992
pcRes-uni-R 0.820 0.074 0.951 2.274
pcRes-multi-K 0.666 0.466 0.603 3.778
Scenario 3 (p = 20) (pt = 0.1) (pg = 0.3)
pcgen-RG-uni 0.911 0.004 0.961 7.020 0.968 0.018 0.991
pcgen-screening 0.895 0.002 0.985 6.800 0.969 0.018 0.991
pcRes-uni-R 0.912 0.004 0.961 9.866
Scenario 4 (p = 100) (pt = 0.01) (pg = 0.1)
pcgen-RG-uni 0.959 0.001 0.942 27.298 0.976 0.022 0.943
pcRes-uni-R 0.962 0.001 0.940 38.404

Table 1. Performance of pcgen and residuals-based approaches, averaged over 500
simulated data-sets per scenario. For scenarios 1 and 2, performance of additional
residual approaches is given in Appendix B.3.

3.2 Simulations, using a crop-growth model601

We also simulated data using the popular crop growth model APSIM [34,35]. Compared602

to the preceding simulations this represents a more challenging (and probably more real-603

istic) scenario, as several of the underlying assumptions are violated. In particular, the604

data-generating process introduces nonlinearities and latent variables. We simulated 12605

traits for an existing wheat population of 199 genotypes, with 3 replicates each. The606

traits include 7 primary traits, 4 secondary traits and yield. Appendix B.4 provides trait607

acronyms (Table 3) and further details. Traits were simulated by running a discrete608

dynamic model from the beginning (t = 0) to the end of the growing season (t = T ).609

Motivated by the fact that some trait measurements are destructive, observations are610

only taken at t = T . Figure 3a shows the summary graph, defining the causal effects611

from one time-step to the next ( [24]). It does not directly describe the joint distribution612

of the traits at t = T (obtained by marginalizing over t = 0, . . . , T − 1, and typically613

represented by an ancestral graph [36]), but for simplicity we nevertheless investigate to614
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what extent we can reconstruct the summary graph. There are direct genetic effects on615

all of the primary traits, which have heritability 0.9. The genetic effects originate from616

a large number of trait-specific QTLs, with randomly drawn effect sizes. There are no617

direct genetic effects on the secondary traits and yield.618

Figure 3b shows the pcgen estimate for a single simulated data-set, with pcgen-RC619

and prior screening (pcgen-screening), and α = 0.01. Similar results (not shown) were620

obtained for other data-sets, smaller α or without screening. Compared to the simulations621

above, it turned out to be much harder to detect the absence of direct genetic effects:622

in the pcgen reconstruction, all 12 traits had such effects (highest p-value: 1.7 · 10−4).623

Because of the large degrees of freedom for genotype and generally small residual variances,624

most of the F-statistics for genotype are highly significant, but often orders of magnitude625

smaller than the F-ratios for the conditioning traits. For example, in the test for a direct626

genetic effect on flowering time (FT) conditional on SV and TFI, F-ratios for SV, TFI627

and genotype were respectively 3469.95, 68744.14 and 5.71. As in our example in section628

2.2.3, another reason for the significant genetic effects may be the nonlinearity of the629

underlying model.630

The reconstructed trait-to-trait relations were mostly correct, except for the missing631

edge GN → Y , and one incorrect orientation (Y → GW ). pcRes made the same errors632

(Figure 3c), with an additional false arrow (MGS − SP ). The standard PC-stable algo-633

rithm applied to all traits and QTLs lead to many more errors (Figure 3d), for example634

the false edge between GW and RUE, the missing edge TFI → FT and the incorrect635

orientations BM → RUE and Y → BM . These errors appeared to be the consequence636

of small effect QTLs not being detected; consequently part of the genetic variance was637

not taken into account.638
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Figure 3. Networks of 12 APSIM traits in the dry environment Emerald 1993,
including 7 primary traits (grey), 4 secondary traits (green) and yield (red). Trait
acronoyms are given in supplementary Table 3 (Appendix B.4)
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3.3 Real data639

3.3.1 Maize640

We now use pcgen-screening to analyze the field trials reported by [33], involving 254641

hybrids of maize (Zea mays). We consider a subset of 6 trials, conducted in 2013 under642

two different watering regimes (rain-fed (-R) and irrigated (-I)) and at three locations:643

Karlsruhe (Germany), Nérac (France) and Graneros (Chile). Most of the trials included 3644

height related traits (tassel height (TH), ear height (EH) and (total) plant height (PH)),645

2 flowering time related traits (silking (S) and anthesis (A)), and 3 yield related traits646

(grain number (GN), grain weight (GW ) and yield itself (Y )). All traits were measured647

independently, i.e. no trait measurement was derived from other traits.648

Each trial was laid out as an alpha-lattice design, with two replicates for the irrigated649

trials and three for the rain-fed trials. Spatial trends and (in)complete block effects were650

estimated using the mixed model of [37] (R-package SpATS), and subtracted from the651

original data; pcgen was then applied to the detrended data, assuming a completely652

randomized design. Residuals from SpATS appeared approximately Gaussian, and no653

further transformation was applied. For the yield related traits, prior biological knowledge654

(Y being the product of GS and GN) might suggest a log-transform, but we assume that655

such biologiocal knowledge is not available to the algorithm.656

Figure 4 shows the estimated networks for α = 0.01. Networks obtained with α =657

0.001 (Appendix H) were mostly identical, except for 1 or 2 edges missing in the Karlsruhe-658

I, Nérac-R and Graneros-I trials. In all 6 trials there was a clear clustering of traits659

according to their biological nature (heigth, flowering and yield related). Edges across660

these groups were only found for the 3 rain-fed trials (comment on the S − PH and661

S−TH edges in Karlsruhe and Nérac, and the PH−Y edge in Graneros). Except for the662

Graneros trials, direct genetic effects were present for all traits, which might again be the663

consequence of nonlinear relationships. As in the APSIM simulations, the test for direct664

genetic effects typically produced highly significant results, but often with small genetic665

effects. In the Karlsruhe-I trial for example, the ANCOVA for yield (Y ) conditional666

on GN and GS gave an F-ratio for genotype of only 2.71, compared to 55364.24 and667

8036.53 for respectively GN and GS. In two of the six trials pcgen correctly identified668

GN → Y ← GS, i.e. the expected relations between yield and its components. In669

two other ones the edges GN − Y −GS could not be oriented because of the additional670

(and unexpected) edge GN −GS. In the remaining two trials (Graneros-R and Nérac-I)671

we found GS → GN ← Y . While biologically improbable, this simply represents the672

outcomes of the tests for the given data. In particular, the test for Yj ⊥⊥ Yk|(G,YS) is673

highly significant when Yj, Yk and YS are respectively yield, grain size and grain number,674

but not significant when dropping grain number from the conditioning set (p = 0.056, for675

Nérac-I).676

The trials also illustrate the distinction made in section 2.1.4, between the total genetic677

covariance and the covariance among direct genetic effects (as defined by ΣG). For most678
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pairs of traits, the former was highly significant, with a typical (total) genetic correlation679

of ρg = 0.3 − 0.8 (for better interpretability we report correlations, although we test for680

zero genetic covariance, see Appendix A.4). Only for pairs involving GS, values were681

often negative, and not always significant. In the Karlsruhe-I trial for example, we found682

ρg = −0.11 for GS and EH, and ρg = −0.41 for GS and S. In both cases, the two683

traits are d-separated in the graph, but only for S (silking) the genetic covariance is684

significant (p = 4.89 ·10−9). While this may provide information about ΣG, we recall that685

usually the latter is not entirely identifiable. For example, GN and Y always had a high686

genetic correlation, but without restrictions on the path coefficients one cannot estimate687

the corresponding element of ΣG.688
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Figure 4. Estimated networks for six of the DROPS field trials in 2013, with α = 0.01.
Rows correspond to locations (Karlsruhe, Nérac, Graneros), columns to treatments
(rain-fed, irrigated).
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3.3.2 Rice689

Using again pcgen-screening, we analyzed 34 traits measured on 274 indica genotypes690

of rice (Oryza sativa) under water-deficit, reported by [38]. Trait acronyms are given in691

Supplementary Table 4 in Appendix C. 3 replicates of each genotype were phenotyped in a692

randomized complete block design, and block was included as a covariate in all conditional693

independence tests, which were performed at significance level α = 0.01. A first run of694

pcgen produced many inconsistencies in the genetic effects, i.e. traits with significantly695

positive heritability but without a partially directed path coming from the genotype node.696

We therefore applied the correction described at the end of section 2.6, adding edges G→697

Yj for all traits Yj with this inconsistency, and then re-ran pcgen. The final reconstruction698

is given in Figure 5, where traits are grouped into 4 shoot morphological traits (blue), 2699

physiological traits (rose), 16 root morphological traits (green), 6 root anatomical traits700

(gray) and 6 dry matter traits (orange).701

Even after correcting the inconsistencies, there were 10 traits without a direct genetic702

effect; for 7 of these there was a partially directed path starting from genotype, and703

first passing through RL1015 (root length, per plant, restricted to roots with diameter704

between 10 and 15 mm). Relations among traits mostly clustered according to their705

biological categories, except for the effect of TW (total weight) on CWT (cumulative706

water transpiration), and RW and RS (root and stem weight) appearing in a cluster of707

root morphology traits. In particular, there are no links from root morphological traits to708

biomass-related (physiological?) traits, which might be expected under water-deficit (cite709

...?). Apart from errors in the test, this may be a consequence of the experimental setup,710

where the use of pots might have restricted root growth. For the anatomical traits, the711

lack of connections with trait categories could be the result of high measurement error,712

violating our assumption that residual errors are driven by biological variation.713
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Figure 5. pcgen-reconstruction for the rice-data from [38], with α = 0.01.

3.4 Statistical properties of pcgen714

We now investigate a number of statistical issues: the assumptions required for asymptotic715

consistency of pcgen (section 3.4.1), the assumptions required for faithfulness (section716

3.4.2), and properties of the conditional independence tests (section 3.4.3). Proofs of717

Theorems 1-6 are given in Appendix E.718
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3.4.1 Consistency719

Asymptotic consistency holds if, for increasing sample size, the probability of finding the720

correct network converges to 1. Correct in this context means that we recover the class of721

partially directed graphs (CPDAG) that contains the underlying DAG. Consistency of the722

PC-algorithm was shown by [5] (for low dimensions) and [32] (for high dimensions). These723

authors distinguished consistency of the oracle version of PC, where conditional indepen-724

dence information is available without error, and the sample version, where conditional725

independence is obtained from statistical tests. For pcgen we will focus on the oracle726

version and consistency of the skeleton, leaving the sample version and the correctness of727

the orientations for future work.728

As for the standard PC-algorithm, consistency of pcgen requires the equivalence be-729

tween conditional independence and d-separation in the graph. Part of this is the Markov730

property, which states that d-separation of two nodes in the graph given a set of other731

nodes implies conditional independence of the corresponding random variables. The con-732

verse (conditional independence implying d-separation) is known as faithfulness. The733

following result provides the Markov property for SEM with genetic effects. The proof734

(Appendix E.8) is a straightforward adaptation of Pearl’s proof for general SEM ( [4]).735

Theorem 1 Suppose we have a GSEM as defined by equation (5), with a graph G as736

defined in section 2.1.3, and satisfying assumptions 1-4 given in section 2.1.2. Then737

the global Markov condition holds for G and the joint distribution of G,Y1, . . . ,Yp. In738

particular, d-separation of Yj and G given YS implies Yj ⊥⊥ G|{YS}, and d-separation of739

Yj and Yk given {YS, G} implies Yj ⊥⊥ Yk|{YS,G}, for all traits Yj and Yk and subsets740

YS.741

If we now assume faithfulness, the preceding result directly gives the equivalence be-742

tween conditional independence and d-separation. This in turn implies that pcgen will743

recover the correct skeleton, at least if conditional independence can be tested without744

error:745

Theorem 2 Let dsep(G) denote d-separation in the graph G. Suppose we have a GSEM746

as in Theorem 1, and we make the additional assumptions of faithfulness:747

Yj ⊥⊥ Yk|{YS,G} =⇒ Yj dsep(G) Yk|{YS, G} (18)

748

Yj ⊥⊥ G|{YS} =⇒ Yj dsep(G)G|{YS}, (19)

for all traits Yj and Yk and subsets YS. Then the oracle version of pcgen gives the correct749

skeleton.750
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3.4.2 Faithfulness751

For our first faithfulness condition (equation (18)), it suffices to have faithfulness for the752

network without genetic effects. A necessary (but not sufficient) condition for this is that753

contributions from different paths do not cancel out (Appendix E.4).754

Theorem 3 Let PY |GΓ denote the joint distribution of Y1, . . . ,Yp conditional on U =755

GΓ, the matrix of total genetic effects. Then Yj ⊥⊥ G|{YS} is equivalent with Yj ⊥⊥PY |GΓ
756

Yk, and Yj dsep(G)G|{YS} is equivalent with Yj dsep(GY)Yk|YS. Consequently, (18) holds757

if758

Yj ⊥⊥PY |GΓ
Yk|{YS} =⇒ Yj dsep(GY) Yk|YS. (20)

The second faithfulness statement (equation (19)) involves d-separation of Yj and G,759

and requries that the genetic effects are not collinear. If for example we have Y3 =760

Y1 + Y2 + E3, with Y1 = G1 + E1, Y2 = G2 + E2, and G2 = −G1 = G, it follows761

that Y3 = E1 + E2 + E3. Consequently, because G3 = (0, . . . , 0)t, we find that Y3 and762

G = [G1 G2 G3] are marginally independent, but in the graph G, the nodes Yj and G763

are not d-separated by the empty set, as there are directed paths G → Y2 → Y3 and764

G → Y1 → Y3. Conversely, if G1 and G2 are not perfectly correlated this violation765

of faithfulness cannot occur. The following theorem shows that marginal independence766

always implies d-separation. We conjecture (but could not prove) that (19) also holds for767

non-empty conditioning sets.768

Theorem 4 Suppose we have a GSEM sastifying Assumptions 1-5, and faithfulness for769

the network without genetic effects, given by (20). Then (19) holds for S = ∅, i.e.,770

marginal independence implies d-separation of Yj and Gj.771

3.4.3 Properties of the tests772

Theorem 2 provides consistency of the oracle version of pcgen, where conditional indepen-773

dence information is available without error. Proving consistency of the sample version774

is challenging for two reasons. First, the conditional independence tests often rely on775

approximations (as described in section 2.2.2). In those cases, the tests are based on776

misspecified models, and instead of Yj ⊥⊥ Yk|{YS,G} or Yj ⊥⊥ G|{YS}, we test a some-777

what different statement. Consequently, a necessary condition for consistency is that the778

approximation error converges to zero. Second, even without approximation errors, the779

probability on type-I and type-II errors still needs to converges to zero, with increasing780

sample size. This is well known for the PC-algorithm with independent Gaussian data781

( [32]), but more difficult to establish in the presence of genetic effects.782

Here we address the first issue, leaving the second for future work. We will focus on783
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the RC-test 5 for Yj ⊥⊥ Yk|{YS,G} and the test for Yj ⊥⊥ G|{YS}, assuming K = ZZt.784

These tests rely on the conditional distributions Yj|YS and (Yj,Yk)|YS, for which we785

made several assumptions regarding their means and covariances. It turns out that the786

covariances assumptions seem to hold, at least for K = ZZt. However, the assumption on787

the conditional means is often violated, also for K = ZZt. We will now first summarize788

our results for the covariance, then compute the conditional mean in two examples, and789

conclude with a discussion on how a better approximation of the conditional mean may790

be obtained.791

Conditional covariance792

Theorem 5 When K = ZZt, the distribution of (Yj,Yk)|YS has covariance of the form793

given by (13), i.e., that of a bivariate MTM. Moreover, under faithfulness condition (18),794

the residual covariance in the MTM is zero if and only if Yj ⊥⊥ Yk|{YS,G}.795

The idea behind our test for Yj ⊥⊥ G|YS was that the conditional distribution of796

Yj given YS is of the form σ2
G(j|S)K + σ2

E(j|S)In, and that σ2
G(j|S) = 0 if and only if797

Yj ⊥⊥ G|{YS}. While the former statement always holds, we could prove the latter only798

for the empty conditioning set. This is because faithfulness is required, which we also799

established only for S = ∅ (see Theorem 4)800

Theorem 6 Suppose we have a GSEM as described in Theorem 1, with K = ZZt and801

ΣG[D,D] of full rank (Assumption 5). Then the distribution of Yj|YS is of the form802

σ2
G(j|S)K+σ2

E(j|S)In, for any conditioning set S. Moreover, under faithfulness condition803

(19), σ2
G(j) = σ2

G(j|∅) is zero if and only if Yj ⊥⊥ G.804

Conditional mean805

In addition to the covariance assumptions, our tests for Yj ⊥⊥ Yk|{YS,G} and Yj ⊥⊥806

G|{YS} relied on the assumption that the conditional mean for the jth trait was XBγj +807

ỹSβ
(j)
S , i.e., the sum of the fixed effects on Yj and a linear regression on the traits in808

the conditioning set (see equation (12)). This seems correct in case YS contains only 1809

trait, which, in the true graph, is the only parent of Yj. In other situations however, the810

regression is only an approximation, as shown in the following example.811

Suppose that Y1 = G1 + E1 and Y2 = λY1 + E2, with independent vectors G1 ∼812

N(0, σ2
G,1K), E1 ∼ N(σ2

E,1In) and E2 ∼ N(σ2
E,2In). Then the graph G is given by813

5The RG-test for Yj ⊥⊥ Yk|{YS,G} requires that the GBLUP U∗ is close to the true matrix of genetic
effects (U). Apart from the difficulty of obtaining good estimates of genetic and residual covariances, the
quality of this approximation can be easily assessed using expressions for the prediction error variance
(see e.g. [39]).
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G → Y1 → Y2. There is no edge G → Y2, although this is not essential for the example.814

The distributions are given by815

Y1 ∼ N(0,Σ1) = N
(
0, σ2

G,1K + σ2
E,1In

)
,

Y2 ∼ N(0,Σ2) = N
(
0, λ2σ2

G,1K + (λ2σ2
E,1 + σ2

E,2)In
)
,

Cov(Y1,Y2) = Σ12 = λ(σ2
G,1K + σ2

E,1In) = λΣ1.

The conditional mean of Y2 given Y1 = y1 is µ2|1 = Σ12Σ−1
1 y1 = λy1. As expected816

given the graph, the conditional mean is a simple linear regression on Y1. However, the817

conditional mean of Y1 given Y2 = y2 equals818

µ1|2 = λΣ1

(
λ2Σ1 + σ2

E(2)In
)−1

y2,

which is a linear transformation, but not a multiple of y2. Consequently, our models819

for Yj|YS and (Yj,Yk)|YS are sometimes misspecified in terms of the mean, although820

still correct in terms of covariance, provided K = ZZt (Theorems 5 and 6). In these821

cases, (RE)ML estimates will minimize the Kullback-Leibler divergence with the true822

distribution, giving the right estimates of genetic variance (or residual covariance), but823

not necessarily the correct p-values in hypotheses testing.824

The conditional mean: improving the approximation825

More generally, the conditional mean is a function of the genetic and residual covari-826

ances among Yj and YS. In Appendix E.6 (equation (28)) we derive that Yj|YS = ỹS has827

mean µj|S = XBγj + Σj,SΣ−1
S vec(ỹS −XBΓS). Defining ηj|S = 0 for S = ∅, we can write828

µj|S = XBγj + ηj|S. Consequently, our approximation of the conditional mean effectively829

models ηj|S as a linear regression on ỹS.830

This approximation could probably be improved if instead we could obtain good esti-831

mates of Σ̂j,S and Σ̂−1
S , and set η̂j|S = Σ̂j,SΣ̂−1

S vec(ỹS −XB̂ΓS). Such estimates however832

require fitting a MTM for |S| + 1 traits, which for large S is statistically and compu-833

tationally challenging, unless pairwise or other approximations are applied ( [40], [41]).834

Moreover, it seems unclear how this η̂j|S should be incorporated in the tests.835

4 Discussion836

Causal inference for data with random genetic effects is challenging because of the covari-837

ance between these effects, and because the usual assumption of independent observations838

is violated. To address these problems we proposed a model where random genetic effects839

are part of the causal graph, rather than a nuisance factor that first needs to be elimi-840

nated. The resulting distributions and graphs were shown to satisfy the Markov property.841

This lead us to develop the pcgen algorithm, which tests conditional independence be-842

tween traits in the presence of genetic effects, and also conditional independence between843
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a trait and the genetic effects. We showed that the presence of a direct genetic effect844

can in principle be tested, just like the direct effect of a QTL can be tested. This is of845

course relative to the observed traits, i.e. for any effect G → Yj there may always be an846

unmeasured trait Z such that G→ Z → Yj.847

In our simulations pcgen outperformed existing approaches. Part of this improvement848

is due to phenotypic information on replicates, reducing the number of errors in the tests.849

Another part is due to the improved orientation, which is a consequence of the additional850

edges G → Yj. Compared to previous algorithms, pcgen also appeared computationally851

more efficient: depending on the choice of independence tests and the sparseness of the852

network, it can analyze around 20-100 traits on a single core, and many more if we limit the853

maximum size of the conditioning sets, or would parallelize the conditional independence854

tests.855

To a considerable extent this efficiency is due to the use of univariate GBLUP, in856

the RG-test or the RC-test with prior screening. However, even without using univariate857

GBLUP, and with direct genetic effects on all traits, the RC-test still has an advantage858

over existing approaches: by incorporating the genetic effects in the PC-algorithm, we859

do not need to fit a MTM for all traits simultaneously, but only bivariate models. Our860

approach also makes genetic network reconstruction feasible with just two traits, and in861

absence of QTLs, or even no genotypic data at all.862

As any causal inference method, pcgen only suggests causal models that are in some863

sense compatible with the data, and cannot validate the existence of a functional rela-864

tionship, which is only possible through additional experiments. Because of the required865

assumptions, the identifiability issues and the uncertainty in the estimated networks, it866

may be better to speak of algorithms for causal exploration than causal discovery. At867

the same time, analysis of one trait given another (e.g. yield given flowering time) is868

a common and natural thing to do ( [15]). From that perspective, pcgen could be seen869

simply as a tool that performs such analyses systematically, compares them and visualizes870

the results. pcgen results for different significance levels could then be reported alongside871

other ’descriptive’ statistics like heritability estimates and genetic correlations, suggesting872

functional hypotheses interesting for future research.873

4.1 Data from different experiments874

We assumed traits to be measured on the same individuals in the same experiment,875

with residuals errors arising from biological variation (Assumption 1 in section 2.1.2).876

In certain applications this assumption can indeed be restrictive, but it seems necessary877

for any constraint-based causal inference approach. Suppose traits were measured in878

different experiments, or residual errors would mostly come from measurement errors.879

Then our model (5) would be replaced by Y = XB + YGΛ + G + E, where YG =880

XB+YΛ+G are the trait values without errors. At first sight this may appear attractive,881

as appropriate design of the experiments will ensure independent errors, and assumption882
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3 will be guarantueed. However, the residual covariance of the observed traits will be883

diagonal as well, instead of the matrix ΓtΣEΓ obtained under assumption 1 (see equations884

(3), (6) and (8)). However, the residual covariances contained in the latter matrix turned885

out to be essential for network reconstruction (e.g. Theorem 5). Without assumption 1886

we would therefore need to rely completely on the genetic effects. This in turn would887

require ΣG to be diagonal, which seems even more restrictive. A relevant alternative888

approach here is that of invariance causal prediction [42], which infers causal effects that889

are consistent across several experiments, but still requires all traits to be measured in890

each experiment.891

4.2 Genetically identical replicates and marker-based related-892

ness matrices893

In principle pcgen allows for any type of genetic relatedness. We have however focused894

on the case of independent genetic effects, for the following reasons:895

• Higher power: estimates of (total) genetic variance based on replicates are typically896

more accurate than marker-based estimates based on genotypic means ( [18], [43]).897

Similary, our simulations suggest that replicates give better tests for (zero) genetic898

variance and residual covariance.899

• Theoretical: when K = ZZt, the conditional independence statement considered in900

the RC-test is completely equivalent with Yj ⊥⊥ Yk|{YS,G} (Theorem 5), while901

for other K it is only an approximation. Another argument is the robustness under902

misspecification: (univariate) broad-sense heritability estimates capture any type of903

genetic effect, while a model assuming only additive effects can produce strongly904

biased heritability estimates, if the actual genetic effects are for example partly905

epistatic. This can be formally shown by computing the Kullback-Leibler divergence906

between the true distribution and the model under consideration [44]. It seems907

plausible that this robustness extends to the multivariate models considered here,908

in particular when direct genetic effects are driven by different sets of QTLs, leading909

to trait-specific relatedness matrices.910

• Computational: the test for Yj ⊥⊥ G|YS can be based on standard ANOVA, which911

is many times faster than the LRT for a mixed model. Also the tests for Yj ⊥⊥912

Yk|{YS,G} are faster when K = ZZt.913

The contributions of different types of genetic effects could in theory be incorporated914

in the network by introducing multiple genetic nodes, and conditional independence tests915

based on models that can distinguish these effects. This seems however difficult in practice916

due to the computational requirements and lack of statistical power.917
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Finally, we have not investigated the performance of pcgen for unbalanced designs, but918

it seems likely that small unbalancedness has only a minor effect. A more fundamental919

challenge seems to be the presence of incomplete blocks or spatial trends ( [37], [45]).920

4.3 Assessing uncertainty921

If one mistakenly rejects the null-hypothesis of conditional independence (type-I error),922

pcgen leaves the corresponding edge, although it may still be removed at a later stage, with923

a different conditioning set. If the null-hypothesis is mistakenly accepted (type-II error),924

a true edge is removed, and will not be recovered. Moreover, it may affect the remaining925

tests, since d-separation of Yj and Yk is only tested given conditioning sets contained in926

adj(Yj) or adj(Yk), where the adjacency sets are defined relative to the current skeleton.927

This is correct in the oracle version, where some tests may indeed be skipped, but in the928

sample version pc(gen) may mistakenly skip an essential independence test. See [30] for929

examples.930

Consequently, assessing uncertainty for constraint-based algorithms is difficult, and931

cannot be achieved by just applying some multiple testing correction to the p-values. To932

obtain bounds on the expected number of false edges in the skeleton, several authors933

have used stability selection [46], [47] or other sample-splitting techniques [13], but these934

are typically over- conservative and require an additional exchangeability assumption935

( [48], [49]). Alternatively, uncertainty may be assessed using Bayesian methods, which are936

however computationally very demanding and outside the scope of this work. Moreover,937

despite the recent progress in Bayesian asymptotics (...), there do not seem to be results938

yet regarding the correct coverage of posteriors in these models.939

4.4 Scope for improving genomic prediction940

pcgen can select traits with direct genetic effects, which are the most relevant in genomic941

selection. More generally, the usefulness of structural models for genomic selection de-942

pends on whether there are particular interventions of interest ( [16], [17]). Informally943

speaking, an intervention is an external manipulation that forces some of the traits to944

have a particular distribution. For example, with a so-called hard intervention on the jth945

trait, Yj is forced to a constant level c, e.g. c = 0, when Yj is the expression of a gene946

that is knocked out. The manipulation or truncated factorization theorem [4], [5] can947

then predict the joint distribution of the system after the intervention:948

pYj:=c(G,Y−j) = p(G)
∏
j′ 6=j

p(Yj′ |pa(Yj′),Gj′). (21)

This is generally different from the distribution949

p(G,Y−j|Yj = c), (22)
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obtained from conditioning on Yj = c, prior to the intervention (see e.g. [24]). In other950

words, conditioning is not the same as doing (intervening). An exception occurs however951

when we intervene on a root node, in which case (21) and (22) are the same.952

In absence of interventions on the traits, we can think of genomic prediction in terms953

of an intervention on the node genotype. Because the latter is a root node by definition,954

standard genomic prediction methods can in principle have optimal performance ( [16]).955

More specifically, genomic prediction usually involves a regression of a target trait on a956

number of markers, having either fixed or random effects. In either case, it is only the957

total effect of genotype on the target trait that matters, not through which other traits958

this effect passes.959

(Near) optimal prediction accuracy however requires that the regression model con-960

tains the true distribution (or a good approximation), and a sufficiently accurate estimate961

of this distribution. We therefore believe that structural models may sometimes be an962

appealing alternative, especially if the underlying model is highly nonlinear, or when prior963

physiological knowledge can be incorporated. The extent to which this can really improve964

accuracy remains to be investigated.965

4.5 Open questions and extensions966

Although we have shown the Markov property for our model and studied consistency of967

pcgen, there are a number of open questions left for future work. First, the behavior of968

our conditional independence tests is not completely understood, and it may be possible969

to construct better tests, especially for nonlinear structural models. The recent work970

of [50] seems particularly relevant here. The RC-test proposed here for the conditional971

independence (A) is exact for K = ZZt and certain conditioning sets, but in other cases972

is misspecified.973

A second issue is the consistency of the orientations: while we have shown pcgen’s974

consistency in reconstructing the skeleton, we did not address this for the final CPDAG.975

This is well known for the PC-algorithm without genetic effects ( [5], [32]), but more976

difficult to establish here, as the class of CPDAGs needs to be restricted to those without977

errors pointing to G. More generally, orientation constraints seem to be of interest for978

trait-to-trait relationships as well, e.g. one may require that, if there is an edge, the979

expression of a gene can only affect a metabolite and not the other way round. To the980

best of our knowledge, current methodology and theory has only considered the forced981

absence/presence of an edge, leaving the orientation to the algorithm6. A final question982

for future work is whether Theorems 4 and 6 hold for general conditioning sets.983

Apart from these open questions, we believe that the idea of explicitly modeling direct984

genetic effects can be applied more generally. A first generalization would be to replace985

6The pcalg-package [28] has the addBgKnowledge option to add orientations (’background knowledge’)
in the estimated CPDAG. This is however only done after running PC or a related algorithm, and is only
allowed if compatible with the CPDAG.
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the PC-algorithm with other constraint-based algorithms, in particular FCI and RFCI986

( [5], [51]). These have the advantage that the causal sufficiency assumption (no latent987

variables) can be dropped or considerably weakened. Finally, the presence or absence of988

direct genetic effects may also be incorporated in invariant causal prediction ( [42]), or in989

Bayesian approaches for genetic network reconstruction.990
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A pcgen: implementation details1003

A.1 The PC-stable algorithm1004

We first state the PC-stable algorithm of [30], which forms the basis of pcgen. As the orig-1005

inal PC-algorithm, PC-stable has a skeleton and orientation stage; the former is described1006

separately as Algorithm 2 below.1007

Instead of updating the skeleton directly after each conditional independence test,1008

PC-stable only updates the skeleton list-wise, after doing all tests with YS of a given size1009

|S| = s. More specifically, lines 7-9 in Algorithm 2 make an inventory of the current1010

adjacency sets, which determines which tests of a given size s are to be conducted. In the1011

original PC-algorithm, the skeleton (and hence the adjacency sets) were updated after1012

each individual test, introducing an undesirable order-dependence. Since edges are not1013

directly removed after finding conditional independence, multiple separation sets may1014

be found for a given pair of variables. These may lead to conflicts in the orientation,1015

for example when there are conflicting v-structures Yj → Yk ← Yl and Yk → Yl ← Ym.1016

Whenever possible these conflicts are resolved using the majority rule (line 6 of Algorithm1017

1). Unresolved conflicts are represented with an undirected edge7. In some cases this may1018

lead to partially directed graphs that are not a CPDAG, but a considerable advantage1019

of PC-stable is that it can be parallelized. Finally, also the orientation rules R1-R3 in1020

Algorithm 1 are applied listwise.1021

7Alternatively, conflicts can be represented with a bi-directed edge (↔), but the arrowheads do not
have a causal interpretation
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Algorithm 1 The PC-stable algorithm (taken from [30], and adapted to our notation)

1: INPUT: A set of variables V , and an ordering order(V ). Conditional independence
information among all variables in V (perfect information in the oracle version of the
algorithm; estimated from data in the sample version)

2: OUTPUT: a graph G (in the oracle version G is always a CPDAG; in the sample
version it may be only a PDAG, due to conflicts)

3: For all Yj, Yk, find the skeleton C and collections Sep(Yj, Yk) of separating sets. To
this end, we use PC-skeleton ( Algorithm 2 given below).

4: Determine which unshielded triples in the skeleton C are unambiguous, and orient
them using the separating sets:

5: for all pairs of nonadjacent variables Yj, Yk with common neighbour Yl (such that
(Yj, Yl, Yk) is unambiguous) do

6: if Yl is contained in less than half of the separating sets in Sep(Yj, Yk) then
7: Replace Yj − Yl − Yk in C by Yj → Yl ← Yk
8: end if
9: end for

10: In the resulting PDAG, try to orient as many undirected edges as possible by repeated
application of the following rules:

11: R1 Orient Yk−Yl into Yk → Yl whenever there is an arrow Yj → Yk such that Yj and
Yl are nonadjacent (otherwise a new v-structure is created).

12: R2 Orient Yj − Yk into Yj → Yk whenever there is a chain Yj → Yl → Yk (otherwise
a directed cycle is created).

13: R3 Orient Yj − Yk into Yj → Yk whenever there are two chains Yj − Yl → Yk and
Yj − Yl → Yk such that Yl and Yl are nonadjacent (otherwise a new v-structure or a
directed cycle is created).
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Algorithm 2 PC-skeleton (taken from [30], and adapted to our notation)

1: INPUT: A set of variables (nodes) V , and an ordering order(V ). Conditional in-
dependence information among all variables in V (perfect information in the oracle
version of the algorithm; estimated from data in the sample version)

2: OUTPUT: Estimated skeleton C, collections Sep(Yj, Yk) of separating sets (only
needed when directing the skeleton afterwards)

3: Form the complete undirected graph C̃ on the set of variables V .
4: Let s = −1; C = C̃
5: repeat
6: Let s = s+ 1
7: for all variables Yj in C do
8: Let a(Yj) = adj(C, Yj)
9: end for

10: repeat
11: Select a (new) ordered pair of variables (Yj, Yk) that are adjacent in C and satisfy

|a(Yj) \ {Yk}| ≥ s, using order(V )
12: repeat
13: Choose a (new) set S ⊆ a(Yj) \ {Yk} with |S| = s, using order(V );
14: if Yj and Yk are conditionally independent given S then
15: Delete the edge Yj − Yk from C
16: Save S in Sep(Yj, Yk) and Sep(Yk, Yj)
17: end if
18: until edge Yj − Yk is deleted from C, or all S ⊆ a(Yj) \ {Yk} with |S| = s have

been considered
19: until all ordered pairs of adjacent variables (Yj, Yk) in C with |a(Yj) \ {Yk}| ≥ s

have been tested for conditional independence
20: until all pairs of adjacent variables (Yj, Yk) in C satisfy |a(Yj) \ {Yk}| < s.

A.2 Modified orientation rules1022

pcgen follows the usual orientation rules of the PC-stable algorithm (lines 11-13 in Algo-1023

rithm 1), except for the following modifications, which are required to avoid arrows point-1024

ing into G. Note that Algorithm 1 is written in generic notation with nodes Y1, . . . , Yp;1025

in pcgen we have Y1, . . . , Yp+1, corresponding to G, Y1, . . . , Yp.1026

• in line 5 in Algorithm 1, we skip those triples where Yk turns out to be G1027

• after line 9, we orient all remaining undirected edges G− Yj as G→ Yj.1028

These changes appear to be necessary, as edges G ← Yj cannot be avoided with the1029

fixedEdges argument in the pc-function of the pcalg-package ( [28]), where one can only1030



39

enforce the presence of an edge in the skeleton, but not its orientation. pcalg also has the1031

addBgKnowledge option to add orientations (’background knowledge’) in the estimated1032

CPDAG, but this is only done after running the PC-algorithm, and is only allowed if1033

compatible with the CPDAG. Here we intend to always enforce the orientation G → Yj,1034

and include it in the causal inference algorithm.1035

A.3 The RC-test for Yj ⊥⊥ Yk|G,YS1036

In the RC-test for Yj ⊥⊥ Yk|G,YS, the null-hypothesis is that the residual covariance is1037

zero, where the residual covariance is the off-diagonal element of VG(jk|S), in equations1038

(11) and (13) in the main text (section 2.2.2). The residual likelihood ratio test (RLRT)1039

statistic for this hypothesis is defined as twice the difference in residual log-likelihood1040

between the full and reduced model. As the null-hypothesis is not on the boundary of1041

the parameter space, the distribution of the RLRT is approximately chi-square with 11042

degree of freedom. REML-estimates for the full and reduced model are obtained using an1043

EM-algorithm [52]. To improve efficiency, we use the following computational shortcuts:1044

1. For the reduced model, we compute starting values for the genetic (co) variances and1045

residual variances, using multivariate analysis of variance (MANOVA), and then fit1046

the model using the EM-algorithm described before.1047

2. For the full model, we take as starting values the estimates found for the reduced1048

model. At each iteration of the EM-algorithm, we compute a preliminary RLRT1049

p-value on the basis of the current restricted log-likelihood and the restricted log-1050

likelihood of the reduced model, and stop the EM-algorithm if the p-value is below1051

the significance threshold. This is possible because the EM-algorithm always in-1052

creases the likelihood at every iteration, while pcgen only requires an accept/reject1053

decision. Of course, if one wants to know the exact p-value (e.g. to obtain a rough1054

indication of the strength of the causal relationships), the EM-algorithm needs to1055

be run until convergence.1056

3. We set a maximum number of 50 EM-iterations for the full model and 5 for the re-1057

duced model. Given the good starting values this is often sufficient, but occasionally1058

EM would otherwise take very many iterations until convergence. Usually, in these1059

cases, the RLRT statistic obtained with an unrestricted number of EM-iterations is1060

not significant, meaning that stopping EM earlier rarely affects the outcome of the1061

RLRT.1062

A.4 Testing the genetic covariance1063

Assuming that the joint distribution of vec([YjYk]) has covariance VG(jk)⊗K+VE(jk)⊗1064

In (i.e. (13) in the main text, with empty conditioning set), it is sometimes of interest1065
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to test for absence of genetic covariance, i.e., whether the off-diagonal element of VG(jk)1066

is zero. Although not part of pcgen, this can be tested similar to the RC-test described1067

above.1068

Again we define a LRT statistic as twice the difference in residual log-likelihood be-1069

tween the full and reduced model, where the latter is restricted to have diagonal VG(jk).1070

As before the distribution of this LRT is approximately chi-square with 1 degree of free-1071

dom, and REML-estimates for the full and reduced model are obtained with the same1072

EM-algorithm used earlier. In the pcgen-package this is implemented in the gencorTest1073

function.1074
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B Simulations1075

B.1 Simulation setup1076

We simulate data from model (5) using the following steps, closely resembling the simu-1077

lations of [32]:1078

• Given the required number of traits (p) and sparseness of the graph (defined by1079

the parameter pt below), we first generate the p × p matrix Λ (see equation (5)),1080

which determines the structural relations among the traits. Λ is simulated using1081

the randomDAG function from the R-package pcalg ( [28]), where edges (i.e. the1082

nonzero elements of Λ) occur with probability pt ∈ (0, 1) (for details see the pcalg-1083

documentation and [32], p. 621). The expected number of neighbors of each node1084

is then pt(p − 1). The values of the nonzero coefficients are drawn independently1085

from the uniform distribution on [0.5, 1] and then given a random sign.1086

• The DAG defined by Λ is now extended with a genetic node G. For a proportion of1087

pg ∈ (0, 1) of the traits, we add an edge G → Yj. The subset of traits D for which1088

there is a direct genetic effect then contains p · pg traits. These are always chosen1089

to be the traits of highest topological order (in the initial DAG defined by Λ). For1090

example, if p = 4 and pg = 0.5, and the initial DAG is Y1 → Y2 → Y3 → Y4, D will1091

consist of Y1 and Y2.1092

• Next, the corresponding genetic variances and covariances in ΣG are simulated as fol-1093

lows. The genetic variances are drawn independently from a uniform distribution on1094

[1, 2] and random covariances are introduced through random eigenvectors as in [53],1095

using the genPositiveDefMat function from the R-package clusterGeneration.1096

• Given the relatedness matrix (K) and the required numbers of genotypes (n) and1097

replicates (r), the direct genetic effects (G) are drawn from the matrix-variate nor-1098

mal distribution with column covariance ZKZt and row-covariance ΣG.1099

• Similarly, the residual effects (E) are drawn from the matrix-variate normal distri-1100

bution with column covariance Inr and row-covariance Ip. Although the residual1101

variance is 1 for all traits, the heritability of the traits still varies, as the variances1102

of the direct genetic effects are between 1 and 2. Traits without a direct genetic1103

effect typically have heritability below 0.5.1104

• Given the matrices G, E and Λ obtained in the previous steps, Y is computed using1105

(5). This is done recursively, following the topological ordering of the DAG ( [32],1106

p. 621).1107
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B.2 Performance criteria1108

Following again [32] we compare the true (simulated) CPDAGs and the estimated CPDAGs.1109

Instead of considering the complete CPDAG, we evaluate separately the subgraph defined1110

by Λ (relations among traits) and the direct genetic effects (the subgraph with edges1111

Gj → Yj, whenever j ∈ D). For both subgraphs we consider the following criteria, again1112

following [32]:1113

• True Positive Rate (TPR): the number of correct edges (in the estimated skeleton)1114

divided by the total number of true edges (in the true skeleton).1115

• False Positive Rate (FPR): the number of incorrect edges (in the estimated skeleton)1116

divided by the total number of true gaps (in the true skeleton).1117

• True Discovery Rate (TDR): the number of edges in the estimated graph that are1118

correct (i.e. exist in the true skeleton) divided by the total number of edges in the1119

estimated graph.1120

• Structural Hamming Distance (SHD): the number of edge deletions, additions and1121

flips required to transform the estimated CPDAG into the true (simulated) CPDAG.1122

See also [54].1123

All criteria were computed using functions from the pcalg-package (TPR and FPR using1124

the compareGraphs function, and the SHD using the function shd).1125

B.3 Simulation results for alternative methods1126

B.4 Simulation with APSIM1127

We used the crop-growth model APSIM to simulate 12 traits (Y1, . . . ,Y12) for an exist-1128

ing population of 199 wheat genotypes, characterized with 3,035 SNPs with minor allele1129

frequency larger than 0.05 (details in [55]). APSIM simulations were carried out in Emer-1130

ald, during 1993, which corresponds to a severe drought environment. Simulation settings1131

were the same as in [56] and genotype-specific parameters had the ranges specified in [55].1132

The wheat panel was assumed to segregate for 7 of the APSIM parameters, which we refer1133

to as the primary traits. These are the only ones for which there are direct genetic effects.1134

The 7 primary traits (Y1, . . . ,Y7) are a subset of those used in [55], and were chosen1135

because they have an important impact on grain yield, as shown by global sensitivity1136

analysis [56]. Apart from the primary traits there are 4 intermediate traits, each of them1137

depending on some of the primary traits, and sometimes some of the other intermediate1138

traits. The final trait is yield, which depends on 3 of the intermediate traits. Acronyms1139

for all 12 traits are given in Table 3. For each genotype three replicates were simulated.1140

The direct genetic effects on the 7 primary traits were simulated as the sum of 3001141

additive QTL-effects. Different samples of 300 SNPs were used for each trait, and each1142
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GY G→ Yj
TPR FPR TDR SHD TPR FPR TDR

Scenario 1 (p = 4) (pt = 1/3) (pg = 0.5)
pcgen-RC 0.607 0.012 0.960 0.568 0.986 0.020 0.994
pcgen-RG-uni 0.607 0.036 0.906 0.670 0.984 0.022 0.994
pcgen-screening 0.603 0.008 0.982 0.548 0.986 0.020 0.994
pcRes-multi-R 0.605 0.161 0.626 2.052
pcRes-uni-R 0.607 0.036 0.906 1.362
pcRes-multi-RK 0.570 0.192 0.624 2.060
pcRes-uni-RK 0.608 0.029 0.920 1.330
pcRes-multi-K 0.465 0.432 0.388 3.212
pcRes-uni-K 0.595 0.088 0.747 1.668
pc-GBLUP 0.536 0.490 0.375 3.472
Scenario 2 (p = 4) (pt = 0.5) (pg = 0.5)
pcgen-RC 0.814 0.042 0.980 1.236 0.966 0.041 0.993
pcgen-RG-uni 0.820 0.074 0.951 1.320 0.965 0.043 0.992
pcgen-screening 0.805 0.034 0.990 1.238 0.966 0.042 0.992
pcRes-multi-R 0.824 0.149 0.835 2.640
pcRes-uni-R 0.820 0.074 0.951 2.274
pcRes-multi-RK 0.786 0.242 0.787 2.892
pcRes-uni-RK 0.821 0.063 0.957 2.230
pcRes-multi-K 0.666 0.466 0.603 3.778
pcRes-uni-K 0.786 0.098 0.893 2.522
pc-GBLUP 0.752 0.560 0.586 4.124

Table 2. Performance of pcgen and residuals-based approaches, averaged over 500
simulated data-sets, for scenarios 1 and 2.

effect was sampled from a trait-specific Gamma distribution. The shape and rate of this1143

distribution were obtained by fitting a Gamma distribution to empirical additive effects1144

estimated in a GWAS analysis of real phenotypes observed for this population in the1145

Australian wheat belt. For the phenology-related traits SV and SP we set k = 0.7 and1146

b = 13.6, and k = 1.3 and b = 13.6 for the other primary traits. We then added Gaussian1147

noise, to get a heritability of 0.9 for all primary traits.1148

The secondary traits (Y8, . . . ,Y11) and yield (Y12) were simulated by running a1149

dynamic model from time zero to time T , the time-point at which all traits are observed:1150

Yj(T ) =

∫ T

0

fz(pa(Yj(t))dt, (23)

where pa(Yj)(t) are the values of the ’parent traits’ at time-point t, and z represents a1151

set of fixed parameters, specific for the environment under consideration. The form of fz1152
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trait name / category acronym
Primary traits
Radiation use efficiency RUE
Number of grains per gram of stem at flowering NGF
Maximum grain size MGS
Lower limit for water uptake LL
Sensitivity to photoperiod SP
Sensitivity to vernalization SV
Thermal time required to reach floral initiation TFI
Secondary traits and yield
flowering time FT
grain weight GW
grain number GN
biomass BM
yield Y

Table 3. Acronyms for 12 traits simulated using APSIM.

is detailed in .... The sets of parental traits stay the same over time, and therefore define1153

the summary graph given in Figure 3 (main text).1154
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C Rice trait acronyms and networks for different sig-1155

nificance thresholds1156
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Traits Trait acronym Unit
(A) Shoot morphological traits

Plant height PHT cm
Tiller number TN plant−1

Total leaf area TLA m2 plant−1

Specific leaf area SLA m2 g−1

(B) Physiological traits
Cumulative water transpiration CWT kg plant−1

Water use efficiency WUE g kg−1

(C) Root anatomical traits
Total root length TRL m plant−1

Root length (RL) with diameter class
RL 0-0.5 RL005 m plant−1

RL 0.5-1.0 RL0510 m plant−1

RL 1.0-1.5 RL1015 m plant−1

RL 1.5-2.0 RL1520 m plant−1

RL 2.0-2.5 RL2025 m plant−1

RL 2.5-3.0 RL2530 m plant−1

RL 3.0-3.5 RL3035 m plant−1

RL 3.5 RL35 m plant−1

Maximum root length MRL cm
Surface area SA cm2 plant−1

Root volume RV cm3 plant−1

Average root thickness ART mm
Specific root length SRL m g−1

Total root weight density TRWD g cm−3

Root length per unit leaf area RLLA m m−2

(D) Root anatomical traits
Root diameter RD µm
Cortex diameter CD µm
Stele diameter SD µm
Late metaxylem LMXD µm
Late metaxylem LMXN µm
Stele diameter in proportion of root diameter SD:RD %

(E) Dry matter traits
Leaf weight LW g plant−1

Stem weight SW g plant−1

Root weight RW g plant−1

Total weight TW g plant−1

Root:shoot ratio RS −
Leaf weight ratio LWR −
Stem weight ratio SWR −

Table 4. Trait acronyms used in Figure 5; table taken from [38]. Leaf weight (LW) was
removed prior to our analysis, as it appeared to be an exact linear combination of 3 of
the other traits (TW - RW - SW, i.e. total weight minus root weight minus shoot
weight).
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D Overview of notation, acronyms and commands in1157

pcgen1158

Symbol Meaning / Category Introduced in section
Other (exgenous) fixed effects in SEM

B
X

Path coefficients in linear (G)SEM
Λ
Γ
γj

Graphs
G
G
Yj
GY

d-separation
dsep(G

Genetic effects
G
gi

Gj

U
ui

Uj

Residual effects
E
ei

Ej

Traits
Genetic relatedness

1159

ΣG, σ2
G,j, ΣE, n, m, r, p, q, µj|S1160

GBLUP, RC-test, MTM, SEM, GSEM, DAG, CPDAG1161
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Abbreviation Description Target
pcgen-RC pcgen with the RC-test G
pcgen-RG-uni pcgen with the RG-test, based on univariate GBLUP G
pcgen-RG-multi pcgen with the RG-test, based on multivariate GBLUP G
pcgen-screening pcgen with the RC-test, starting with the skeleton

obtained from pcRes-uni-R (see section 2.6) G
pcRes-uni-R pcRes based on univariate GBLUP, using replicates GY
pcRes-uni-RK pcRes based on univariate GBLUP, using replicates + GRM GY
pcRes-uni-K pcRes based on univariate GBLUP, using GRM GY
pcRes-multi-R pcRes based on multivariate GBLUP, using replicates GY
pcRes-multi-RK pcRes based on multivariate GBLUP, using replicates + GRM GY
pcRes-multi-K pcRes based on multivariate GBLUP, using GRM GY
pc-GBLUP pc(stable) applied to multivariate GBLUP, similar to [13] GY

Table 5. Overview of the algorithms available in the pcgen package, for reconstructing
either G (the complete graph) or GY (the subgraph of trait-to-trait relations). The
required commands in the pcgen-package are given in Table 6 in Appendix D.

E Faithfulness, conditional distributions and proofs1162

of Theorems 1-61163

E.1 Overview of graph theoretic definitions1164

The following definitions can be found in a large number of books and articles on graph1165

theory, graphical models and causal inference; see for example [57], [4], [5] and [32].1166

• Given different nodes Yj and Yk, a path from Yj to Yk is a sequence of edges con-1167

necting Yj and Yk. When all edges are directed and pointing towards Yk, we have a1168

directed path. An undirected path or non-directed path is a path that is not directed.1169

• A cycle is a path from Yj to Yk with an additional edge between Yj and Yk. A1170

directed cycle is a directed path from Yj to Yk together with a directed edge k → j.1171

• A directed acyclic graph (DAG) is a directed graph without cycles. When a graph1172

underlying a SEM is a DAG, the SEM is said to be recursive.1173

• pa(j) is the set of nodes Yk for which is a directed edge k → j; in this case Yj is a1174

child of Yk and Yk is a parent of Yj. The nodes Yj and Yk are adjacent if there is an1175

edge between them.1176

• If in a DAG G there is a directed path from Yj to Yk, Yj is an ancestor of Yk, and1177

Yk is a descendant of Yj.1178
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Abbreviation Commands in pcgen-package
pcgen-RC pcgen(d,..., use.res=F)
pcgen-RG-uni C ← cor(getResiduals(d,..., cov.method=’uni’))

pcgen(d,..., use.res=T, res.cor = C)
equivalently: pcgenFast(..., use.res=T)

pcgen-RG-multi C ← cor(getResiduals(d,..., cov.method=’us’))
pcgen(d,..., use.res=T, res.cor = C)

pcgen-screening pcgenFast(d,..., use.res=F)
pcRes-uni-R pcRes(d,..., cov.method=’uni’, use.GBLUP=F)
pcRes-uni-RK pcRes(d,..., cov.method=’uni’, use.GBLUP=F, K=A)
pcRes-uni-K pcRes(m,..., cov.method=’uni’, use.GBLUP=F, K=A)
pcRes-multi-R pcRes(d,..., cov.method=’us’, use.GBLUP=F)
pcRes-multi-RK pcRes(d,..., cov.method=’us’, use.GBLUP=F, K=A)
pcRes-multi-K pcRes(m,..., cov.method=’us’, use.GBLUP=F, K=A)
pc-GBLUP pcRes(m,..., cov.method=’us’, use.GBLUP=T, K=A)

Table 6. R-commands needed to run the different algorithms, with the package pcgen.
T stands for TRUE, F for FALSE. The first argument is the required phenotypic
data-frame (suffStat = d (replicates) or suffStat = m (genotypic means)). The dots
represent generic arguments (e.g. alpha and m.max, which define the significance
threshold and the maximum size of the conditioning sets). cov.method determines
whether univariate (uni) or multivariate (us) GBLUP is to be used (’us’ stands for
unstructured, as opposed to e.g. factor analytic models, which have not yet been
implemented). All algorithms involving GBLUP use the residuals (use.GBLUP = F),
except the genomic network similar to [13] (pc-GBLUP, with use.GBLUP = T). Finally,
A is a genetic relatedness matrix, which can be included by putting K=A; otherwise the
default is used (K = NULL, in which case replicates are required).
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• If, for a given path, two directed edges point into the same node, the latter is a1179

collider. For example, given the DAG A → C ← B, C is a collider on the (only)1180

path between A and B. In all other cases (A ← C → B, A → C → B and1181

A← C ← B), C is a non-collider. Several different paths can pass through a node,1182

and being a (non-)collider is always relative to the path.1183

• In a DAG, a v-structure or immorality is a collection of three nodes (say A, B and1184

C), such that there are directed edges A→ B and C → B but no edge between A1185

and C. In this case B is an unshielded collider; otherwise it is a shielded collider.1186

Similarly, in an undirected graph, A, B and C form an unshielded triple if there are1187

edges A−B and C −B but no edge A− C.1188

• The skeleton of a (partially) directed graph is the undirected graph obtained after1189

removing all arrowheads.1190

• Given a directed graph G, two nodes A and B, and a (possibly empty) subset of1191

nodes S not containing A and B, a path between A and B is blocked by S if at1192

least one of the following two conditions holds: (i) there exists a collider on the1193

path which is not in S, and also none of its descendants are in S. (ii) there exists a1194

non-collider on the path that is in S.1195

• Nodes A and B are d-separated by a set S if S blocks all paths from A to B.1196

• Given disjoint sets U , V and S (U and V should be non-empty), U and V are1197

d-separated by S if S blocks all paths from Yj to Yk, for all nodes j ∈ U and k ∈ V .1198

• Two DAGs are equivalent if they have the same skeleton and the same v-structures.1199

• An equivalence class of DAGs is a set containing all DAGs that are equivalent to1200

one another. Any DAG in the class can be used to represent the class; however an1201

equivalence class can also be represented by a completed partially directed acyclic1202

graph (CPDAG). Following the formulation of [32], a partially directed acyclic graph1203

(PDAG) is ’a graph where some edges are directed and some are undirected and one1204

cannot trace a cycle by following the direction of directed edges and any direction1205

for undirected edges’. A PDAG is a CPDAG if (a) every directed edge in the PDAG1206

exists in all DAGs in the equivalence class it represents (b) for every undirected edge1207

j − k in the PDAG, the equivalence class contains at least one DAG with j → k1208

and at least one with with k → j. Chickering [58] showed that CPDAGs represent1209

equivalence classes uniquely. For example, given a skeleton A − B − C, there is1210

one equivalence class containing the three DAGs A → B → C, C → B → A and1211

A← B → C, and one equivalence class with only one DAG (A→ B ← C).1212
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E.2 The matrix Γ expressed as a function of path coefficients1213

Let GY denote the DAG over the nodes Y1, . . . , Yp, with edges defined by Λ. For each1214

j ∈ {1, . . . , p}, let Uj denote the union of the set {Yj} and the set of root traits (i.e.1215

those without parents in GY) for which there is a directed path towards Yj. For all1216

j, k ∈ {1, . . . , p}, let Πjk denote the set of all directed paths from Yj to Yk. For k = j,1217

Πjj contains only the empty path from Yj to itself. For any directed path π from Yj to1218

Yk, let L(π) denote the product of the corresponding path coefficients as given by Λ; for1219

the empty path we define L(π) = 1.1220

Using these definitions, we can decompose the variance of a trait into contributions1221

from different ancestors, as well as its own error variance. To this end, we follow [5] and1222

define the p× 1 column vector γj with elements (l = 1, . . . , p)1223

γj,l =
∑
π∈Πlj

L(π) if Yl ∈ Uj

= 0 otherwise.

(24)

E.3 The covariance between Yj and Yk as function of path co-1224

efficients1225

Since Yj = XBγj + Gγj + Eγj (equation (10) in the main text), the covariance between1226

the n× 1 vectors Yj and Yk can be written in terms of γj and γk:1227

Cov(Yj,Yk
t) = E[(Yj −XBγj)(Yk −XBγk)

t] = (γtjΣGγk)K + (γtjΣEγk)In, (25)

for all j, k ∈ {1, . . . , p}. Consequently, we can express the genetic and residual covariance1228

between traits in terms of quadratic forms, involving ΣG, ΣE and the path coefficients.1229

As a special case of (25), it follows that without random genetic effects,

Cov(Y[i, j],Y[i, k]) = γtjΣEγk

is the covariance between the jth and kth trait, for each individual i. See also [5] (Lemma1230

3.1.6), or [59] (Appendix 2). Using standard expressions for multivariate Gaussian distri-1231

butions, this implies that1232

Cov(Y[i, j],Y[i, k] | Y[i, S]) = γtjΣEγk − (γtjΣEΓS)(ΓtSΣEΓS)−1(ΓtSΣEγk). (26)

E.4 The path coefficients condition1233

It is well known that faithfulness is violated when contributions from different paths cancel1234

out. For example, in the SEM defined by Y1 → Y2, Y1 → Y3 and Y2 → Y3, with respective1235

path coefficients 1, 1 and −1, Y1 and Y3 are marginally independent but not d-separated.1236

Conversely, when faithfulness holds, we know that such cancellations cannot occur, and1237

that the sum in (24) is never zero, i.e. γj,l = 0 only for Yl /∈ Uj. We will refer to this as1238

the path coefficients condition.1239
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Y1

Y3

Y4

Y2

1

1

1

-1

Figure 6. An example of a SEM where faithfulness does not hold, because the
contributions to the covariance from the treks Y3 ← Y1 → Y4 and Y3 ← Y2 → Y4 cancel
out. If Y1 and Y2 are Gaussian with equal (error) variances, it follows that
Cov(Y3, Y4) = Cov(Y1 + Y2 + E3, Y1 − Y2 + E4) = Cov(Y1 + Y2, Y1 − Y2) = 0.
Consequently, Y3 and Y4 are marginally independent, but not d-separated by the empty
set.

E.5 The path coefficients condition and faithfulness1240

The path coefficients condition is a necessary but not a sufficient condition for faithfulness.1241

First, faithfulness can also be violated when contributions from different paths cancel out1242

when summing over a subset of all directed paths; see Example 2.10 in [60]. Second, it1243

is not only the contributions of directed paths that should not cancel out, but also those1244

of treks. A trek between Yj and Yk is any path between these nodes without a collider1245

( [5]). Every trek consists of 2 directed paths, starting at the source of the trek, and going1246

towards Yk and Yk. One of these can be the empty path; hence each directed path is also1247

a trek. Figure 6 provides an example where contributions from different treks cancel out,1248

leading to non-faithfulness.1249

Another necessary condition for faithfulness is that all error variances are strictly1250

positive. Figure 7 provides an example of non-faithfulness due to a zero error variance.1251

An extended version of the path coefficients condition (involving sums over subset of1252

treks) together with strictly positive error variances may be sufficient for faithfulness, but1253

we could not find such a result in the literature. However, from (26) it follows that for1254

Gaussian linear SEM, faithfulness is equivalent with1255

γtjΣEγk − (γtjΣEΓS)(ΓtSΣEΓS)−1(ΓtSΣEγk) = 0 =⇒ Yj and Yk d-separated by YS. (27)

E.6 Conditional means and covariances1256

Using the notation [, S] to select the columns corresponding to S, and [S1, S2] to select1257

both rows and columns, it follows from (8) that Yj|YS = ỹS is multivariate normal with1258
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Y1

Y3 := Y2

Y2 Y4

1

Figure 7. An example of a SEM where faithfulness does not hold, because the variance
of the error E2 is zero. The random variables Y4 and Y1 are conditionally independent
given Y3, but in the graph, the nodes Y4 and Y1 are not d-separated by Y3.

mean and covariance1259

µj|S = (XBΓ)[, j] + Σj,SΣ−1
S vec(ỹS − (XBΓ)[, S])

= XBγj + Σj,SΣ−1
S vec(ỹS −XBΓS),

(28)

1260

Σj|S = Σj − Σj,SΣ−1
S Σt

j,S, (29)

where1261

Σj,S = (ΓtΣGΓ)[j, S]⊗K + (ΓtΣEΓ)[j, S]⊗ In (30)

= (γtjΣGΓS)⊗K + (γtjΣEΓS)⊗ In, (31)

ΣS = (ΓtSΣGΓS)⊗K + (ΓtSΣEΓS)⊗ In, (32)

Σj = (ΓtΣGΓ)[j, j]K + (ΓtΣEΓ)[j, j]In = (γtjΣGγj)K + (γtjΣEγj)In. (33)

The matrices Σj, ΣS and Σj,S are the variance-covariance matrix of respectively vec(Yj) =1262

Yj and vec(YS), and the covariance between Yj and vec(YS).1263

From equation (8) we also obtain the conditional distribution1264

vec([Yj Yk]) | YS = ỹS ∼ N

((
µj|S
µk|S

)
,Σjk|S

)
= N

((
µj|S
µk|S

)
,Σjk − Σjk,SΣ−1

S Σt
jk,S

)
,

(34)

where µj|S and µk|S are as in equation (28), and Σjk is the 2n × 2n block matrix with1265

diagonal blocks Σj and Σk (defined as in (33)), and off-diagonal blocks (γtjΣGγk)K +1266

(γtjΣEγk)In. Similarly, given the p× 2 matrix Γjk with columns γj and γk, it follows that1267

Σjk,S = (ΓtjkΣGΓS)⊗K + (ΓtjkΣEΓS)⊗ In

is the 2n× |S|n covariance between vec([Yj Yk]) and vec(YS).1268
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E.7 Covariance structure of the conditional distributions1269

When K = ZZt is block-diagonal, with r× r blocks of ones on the diagonal, then for any1270

nonnegative constants c and d,1271

(cIn + dK)−1 = c−1In −
1

c2(1/d+ r/c)
K.

Hence, the inverse of (cIn + dK) is again a linear combination of In and K. This follows1272

from the Woodbury identity ( [61] and [62])1273

(A+ CBCt)−1 = A−1 − A−1C(B−1 + CtA−1C)−1CtA−1, (35)

with A = cIn, B = dIm and C = Z. In addition we have ZtZ = rIm, and therefore1274

K2 = rK. Consequently, any product of matrices of the form (cIn + dK) or their inverse1275

is a linear combination of In and K.1276

From this it follows that when K = ZZt, Σj|S in (29) is of the form σ2
G(j|S)K +

σ2
E(j|S)In. Similarly, it follows that Σjk|S in (11) is of the form

VG(jk|S)⊗K + VE(jk|S)⊗ In,

for some 2× 2 matrices VG(jk|S) and VE(jk|S).1277

E.8 Proof of Theorem 11278

Pearl ( [4], p. 51) showed that under quite general assumptions, structural equation1279

models satisfy the global Markov property, which means that d-separation in the graph1280

implies conditional independence. It turns out that in our case, the required assumption1281

of independent errors applies to the p error variables and not to G. The intuition behind1282

this is that G is not just an additional error node, but part of the causal graph, and we1283

can always distinguish between residual (co)variance and genetic (co)variance. We now1284

give the proof of Theorem 1, which only requires minor modifications of the proof given1285

by Pearl for the case without the genetic effects.1286

Let GE denote the extended graph, obtained by adding the error variables, i.e. for1287

traits j = 1, . . . , p we add the node Ej and an edge Ej → Yj. We first show that the local1288

Markov property holds for GE, i.e. for any variable Z ∈ {G, Y1, . . . , Yp, E1, . . . , Ep}, Z is1289

conditionally independent of its non-descendants given its parents. This is obvious for Z ∈1290

{G,E1, . . . , Ep}; we now consider Yj. In GE, the set of parents of Yj is pa(Yj)∪{Ej}, where1291

pa(Yj) contains G if j ∈ D. By construction, Yj is entirely determined by pa(Yj) ∪ {Ej},1292

and constant conditional on these variables. Consequently, given pa(Yj) ∪ {Ej}, it is1293

independent of any Ek (k 6= j), and of any Yk that it is a non-descendant of Yj (Note1294

that if G /∈ pa(Yj), Yj is indeed conditionally independent of any non-descendant; if1295

G ∈ pa(Yj), G cannot be the non-descendant because it is already in the conditioning1296
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set). Therefore the local Markov property holds for GE. By Lemma E.1 below, we find1297

that also the Markov factorization property holds for GE, since for any distribution having1298

a density it is equivalent with the local and global Markov properties. Given the Markov1299

factorization property for GE and the fact that f(e1, . . . , ep) =
∏p

j=1 fj(ej), we can just1300

integrate out the ej, and obtain the Markov factorization property for G.1301

Markov properties1302

The following lemma is taken from [57] (p. 51), and reformulated with somewhat less1303

general conditions, which however suffice for our purpose.1304

Lemma E.1 Let P be the joint distribution of random variables (Y1, . . . , Yp), having a1305

density f , and let G be a DAG on these variables. The following properties are equivalent:1306

• The Markov factorization property: given the parents paj of each xj, the joint density1307

(f) can be decomposed as1308

f(y1, . . . , yp) =

p∏
j=1

fj(yj|paj),

where the fj are the conditional densities.1309

• The local Markov property: any variable is conditionally independent of its non-1310

descendants, given its parents.1311

• The global Markov property: for all disjoint sets U, V, S ⊂ {Y1, . . . , Yp}, d-separation1312

of U and V by S in the graph G implies conditional independence of U and V given1313

S. In contrast to U and V , the conditioning set S may be empty here. A definition1314

of d-separation is given in S1.1315

E.9 Proof of Theorems 3 and 51316

We first prove Theorem 3, by showing the equivalence of the left- and right hand sides of1317

(18) and (20). The d-separation statements on the right hand sides are equivalent, as G1318

can never be a (descendant of a) collider. Also the left hand sides (Yj ⊥⊥ Yk|{YS,G}1319

and Yj ⊥⊥PY |GΓ
Yk|{YS}) are equivalent, since1320

pY |GΓ(yj, yk|yS) = p(yj, yk|yS, GΓ) = p(yj|yS, GΓ)p(yk|yS, GΓ) = pY |GΓ(yj|yS)pY |G(yk|yS).

For Theorem 5 we make the additional assumption that K = ZZt, Z = Im⊗(1, . . . , 1)t1321

being the mr × m design matrix for r replicates of m genotypes in a balanced design1322

(with mr = n). The first part of Theorem 5 then follows from the results in Appendix1323

E.7. For the second part, first recall the equivalence of Yj ⊥⊥ Yk|{YS,G} and Yj ⊥⊥PY |GΓ
1324
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Yk|{YS}. Because of the Gaussianity and the assumed faithfulness, the latter conditional1325

independence is equivalent with1326

γtjΣEγk − (γtjΣEΓS)(ΓtSΣEΓS)−1(ΓtSΣEγk) = 0, (36)

where we used (26).1327

Next we consider the conditional distribution of vec([Yj Yk])|YS = ỹS given in (11),1328

whose covariance is the 2n× 2n block matrix Σjk −Σjk,SΣ−1
S Σt

jk,S. All n× n blocks are a1329

linear combinations of K and In, and it suffices to show that the coefficient of In in the1330

off-diagonal blocks is zero if and only if (36) holds. We recall from (32) that1331

ΣS = (ΓtΣGΓ)[S, S]⊗K + (ΓtΣEΓ)[S, S]⊗ In = (ΓtSΣGΓS)⊗K + (ΓtSΣEΓS)⊗ In.

Using the Woodbury identity (equation (35)) with A = VE ⊗ In, B = VG ⊗ Im and1332

C = Ip ⊗ Z, it follows that for any positive (semi) definite p× p matrices VG and VE, we1333

have1334

(VG ⊗K + VE ⊗ In)−1 = (V −1
E ⊗ In)−

(
V −1
E (V −1

G rV −1
E )−1V −1

E

)
⊗K. (37)

Setting VG = ΓtSΣGΓS, VE = ΓtSΣEΓS and A = V −1
E (V −1

G rV −1
E )−1V −1

E , it follows that1335

Σ−1
S = (ΓtSΣEΓS)−1 ⊗ In − A⊗K, (38)

Combining this with the expressions for Σjk and Σjk,S given in section E.6, we find that
Σjk − Σjk,SΣ−1

S Σt
jk,S has off-diagonal blocks

(γtjΣGγk)⊗K + (γtjΣEγk)⊗ In
− ((γtjΣEΓS)⊗ In +Bj ⊗K)((ΓtSΣEΓS)−1 ⊗ In − A⊗K)(ΓtSΣEγk ⊗ In +Bt

k ⊗K),

for Bj = γjΣGΓS and Bk = γkΣGΓS.1336

Finally, working out the products in the last display (using that K2 = rK), we find1337

that all terms involving a kronecker product with In correspond exactly to the left-hand-1338

side of (36). Consequently, the residual covariance in the distribution (Yj,Yk)|YS = ỹS1339

is zero if and only if Yj ⊥⊥ Yk|{YS,G}.1340

E.10 Proof of Theorem 41341

To obtain faithfulness for S = ∅, we need to prove that Yj ⊥⊥ G implies d-separation of Yj1342

and G in the graph G. Because the conditioning set is empty, it suffices to show that there1343

are no directed paths from G to Yj, where we can assume that j /∈ D (otherwise Gj would1344

be nonzero, and because of the non-collinearity, Yj and G would not be independent).1345

Because of the assumed Gaussianity, the independence of Yj and G implies that1346

Cov(Yj
t,G) = Cov(γtjG

t,G) = trace(K) γtjΣG = (0, . . . , 0), (39)
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where we used that vec(G) ∼ N(0,ΣG⊗K), and thereforeE(G[i, j]G[i, k]) = ΣG[j, k]K[i, i],1347

for all i ∈ {1, . . . , n} and j, k ∈ {1, . . . , p}. Since trace(K) is strictly positive and the sub-1348

matrix ΣG[D,D] has full rank, equation (39) implies that γj,l = 0 for all l ∈ D.1349

Finally, we use that the assumed faithfulness implies the path coefficients condition1350

(see sections E.2-E.5). Consequently, it follows from γj,l = 0 that there is no directed1351

path from Yl to Yj. Since this is the case for all l ∈ D, there can neither be a directed1352

path from G to Yj.1353

E.11 Proof of Theorem 61354

Assuming K = ZZt, the first part of theorem follows from the results in Appendix E.7.1355

For the second part, we use that Yj has genetic variance σ2
j (G) = γtjΣGγj (see equation1356

(25)). Because for traits without a direct genetic effect, rows and columns in ΣG are zero,1357

we can rewrite this as γtj[D]ΣG[D,D]γj[D]. Hence, σ2
j (G) = 0 is equivalent with γj,l = 01358

for all l ∈ D, where we used that ΣG[D,D] is of full rank. Using the arguments from the1359

proof of Theorem 4 and the assumed faithfulness, it follows that this is equivalent with1360

independence of Yj and G.1361
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G Y1

Y2

Y3

Y4

Figure 8. A genetic DAG with independent genetic effects on Y1 and Y2, and a direct
effect Y1 → Y2

G Y1

Y2

Y3

Y4

Figure 9. A typical output of PC-gen (without the modifications in section F.1), based
on observations of Y1, Y2, Y3, Y4 generated by the genetic DAG of Figure 8, for 400
genotypes and 2 replicates. The edge between Y1 and Y2 is missing because the test for
conditional independence between Y1 and Y2 given Y4 has too little power.

F Skipping independence tests that do not involve G1362

F.1 Motivation for skipping the test for Yj ⊥⊥ Yk|{YS}1363

Although PC-gen can be shown to be consistent, its finite sample performance can be1364

improved if we skip some of the tests in the skeleton-stage. Differences between the1365

population and sample version of PC-skeleton can occur everywhere in the graph, but are1366

most likely for conditioning sets not containing G. This is illustrated in the example in1367

Figure 8, in which there are genetic effects on traits Yj and Yk, as well as a direct effect1368

of Yj on Yk.1369

Then given a large number of observations of Y1, Y2, Y3, Y4 and assuming faithfulness,1370

we will recover the true skeleton. However, with a small or moderate sample size, the test1371
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for conditional independence of Y1 and Y2 given Y4 has very little power. The test for1372

conditional independence of Y1 and Y2 given {Y4, G} is a lot more powerful here; however1373

the standard PC-skeleton algorithm (and neither PC-stable) does not perform this test1374

anymore after the null-hypothesis of conditional independence of Y1 and Y2 given Y4 alone1375

has been accepted. Therefore, a typical output of PC-gen looks like Figure 9.1376

In order to make PC-gen more powerful we therefore propose to perform only those1377

conditional independence tests where G is contained in the conditioning set, at least when1378

both variables whose conditional independence is tested have positive genetic variance8.1379

Leaving out all conditional independence tests where G is not in the conditioning set still1380

gives a valid algorithm, in the sense that in the population version of PC-skeleton, no false1381

positives are obtained. Intuitively this is obvious, as G is a root node, and everything can1382

be done conditionally on G. We formally show this in appendix F.1383

F.2 A characterization of the skeleton1384

If a distribution P is faithful with respect to a DAG G, we have the following result for1385

the skeleton of G:1386

there is an edge between nodes A and B in the skeleton of a DAG G
⇐⇒ ∀S ⊆ V \ {A,B}, A and B are conditionally dependent given S.

(40)

This was shown in [5] (Theorem 3.4); here we adopt the formulation of [32] (p.616). It1387

is important to note that in general the skeleton is not equal to the so-called conditional1388

independence graph (CIG), which is the undirected graph associated with the inverse1389

covariance or precision matrix. The latter is characterized by an equivalence statement1390

similar to (40), but with on the right-hand side only S = V \ {A,B}. Hence, if data1391

are generated by a DAG G and we assume faithfulness, the skeleton of G is typically a1392

subgraph of the CIG. In case A → B ← C for example, the CIG also contains an edge1393

A − C (because S = ∅ d-separates A and C, but S = B does not, B being a collider on1394

the path A→ B ← C).1395

F.3 Skipping the test for Yj ⊥⊥ Yk|{YS} does not affect pcgen1396

(oracle)1397

In view of (40), our modification is correct in the sense that the population version of1398

PC-skeleton still recovers the true skeleton. This correctness follows from the facts that1399

8In the true graph, we can partition V = {Y1, . . . , Yp} in a set V G containing all variables having
positive genetic variance and a set (V G)c with variables without genetic variance. A variable Yk is in V G

when there exists at least one directed path G→ ...→ Yk. Any edge between Yj ∈ V G and Yk ∈ (V G)c

must be directed Yk → Yj . When estimating the true graph (CPDAG) from data, we start PC-skeleton
by testing marginal independence between each trait and G, i.e. testing genetic variance. Based on these
tests we obtain estimates V G and (V G)c, used in the remainder.
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1. the PC-skeleton algorithm starts with the complete undirected graph, and then1400

tests conditional independencies, removing edges when a conditionally independence1401

relation is found. When in fact there is an edge Yj − Yk in the true genetic DAG,1402

then removing some of these tests clearly still produces the correct result (and in1403

the sample version even with higher probability, which is the motivation of doing1404

this...)1405

2. if there is no edge Yj − Yk and a set S not containing G is blocking a path between1406

Yj and Yk, then {G} ∪ S is also blocking it (since G can never be a collider, and1407

neither be a descendant of any node). In other words, it can not happen that a set1408

S not containing G is blocking all paths between Yj and Yk, and that the addition1409

of G would ’unblock’ one of these paths. Consequently, it can not happen that1410

such a set S is the only set separating Yj and Yk, and that we would miss the only1411

opportunity to remove the edge between Yj and Yk.1412
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G Miscelleneous1413

G.1 Representing G by a single node: a motivating example1414

The main reason for representing G1, . . . ,Gp with a single node (instead of G1, . . . , Gp,1415

sometimes used in the literature) is that the relatedness matrix K is the same for all1416

traits. If for example G1 → Y1 → Y2 ← Y3 ← G3 (as in Figure 2), it follows from (8) that1417

the marginal distribution of Y2 has covariance c1K+c2In, for some nonnegative constants1418

c1, c2. However, based on this distribution alone, we cannot distinguish the contributions1419

of G1 and G3. This differs from the scenario QTLA → Y1 → Y2 ← Y3 ← QTLB, where1420

the total (fixed) effects of QTLs A and B on Y2 can be estimated from the marginal1421

distribution of Y2. If we condition on Y1 and Y3, Y2 becomes independent of G1 and G3.1422

In fact it is also independent of G2, since the latter is zero. Consequently, given G3, Y21423

is independent of G = [G1G2G3], which illustrates that the conditional independencies1424

correspond to a property of the graph G, with [G1 G2 G3] represented by a single node1425

G.1426

G.2 The limitations of genomic networks1427

[13] recently proposed to estimate a directed network based on the predicted genetic1428

effects themselves, rather than the residuals. Compared to residual-based estimation or1429

pcgen, this however seems to require stronger assumptions.1430

As an example, consider the graph Y1 → Y3 ← Y2, with direct genetic effects on all1431

3 traits, i.e. rank(ΣG) = 3. For the sake of the argument, assume also that the total1432

genetic effects can be predicted without error, i.e. we can observe the matrix U := GΓ1433

(see equation (7); because Y1 and Y2 are root nodes in GY , it turns out that U1 := G11434

and U2 := G2).1435

In order not to get an incorrect edge between Y1 and Y2 the PC-algorithm must1436

find that these traits are marginally independent. Using residuals, we indeed find that1437

Y1 −U1 and Y2 −U2 are independent. However, U1 and U2 are only independent if1438

ΣG is diagonal, which is a rather strong and restrictive additional assumption.1439

The only advantage of genomic networks over the residual-based ones is that they1440

may infer some of the edges G→ Yj. This is however only indirectly, through comparison1441

with the trait-to-trait network estimated by the residuals-based network, and requires1442

additional testing if the Uj are zero (i.e. the tests for Yj ⊥⊥ G|∅ in pcgen, which were not1443

considered in [13]). Even then, the edges G → Yj can be inferred only partially. In the1444

above example, if we conclude that Uj = 0 for some j, this clearly excludes G→ Yj. But1445

if U1,U2,U3 are all nonzero, we can only conclude (by comparing with the already known1446

trait-to-trait network Y1 → Y3 ← Y2) that G → Y1 and G → Y2. But it is impossible to1447

make any inference about G→ Y2, which pcgen can in principle do.1448
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H Maize data: reconstructions with α = 0.0011449
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(f) Graneros, irrigated
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Figure 10. Estimated networks for six of the DROPS field trials in 2013, with
α = 0.001. Rows correspond to locations (Karlsruhe, Nérac, Graneros), columns to
treatments (rain-fed, irrigated).
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