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Abstract—Photon recoil upon light scattering by a Bose–Einstein condensate (BEC) of a dilute atomic gas is
analyzed theoretically accounting for a weak interatomic interaction. Our approach is based on the Gross–
Pitaevskii equation for the condensate, which is coupled to the Maxwell equation for the field. The dispersion
relations of recoil energy and momentum are calculated, and the effect of weak nonideality of the condensate
on the photon recoil is ubraveled. A good agreement between the theory and experiment [7] on the measure-
ment of the photon recoil momentum in a dispersive medium is demonstrated.

DOI: 10.1134/S1063776120010124

1. INTRODUCTION
High-precision measurements of the photon

momentum in a dispersive medium is not only of fun-
damental, but also of practical importance. Studies of
such kind are used, in particular, in quantum metrol-
ogy to refine the fundamental constants [1–6] and to
manipulate individual atoms.

The Ketterle’s group measured the photon recoil
momentum in the process of light scattering by a
Bose–Einstein condensate (BEC) of a dilute gas [7].
The scheme of experiment was as follows. A BEC of
rubidium atoms (87Rb) in the state |52S1/2, F = 1; mF =
–1, elongated in one direction and located in the
Ioffe–Pritchard magnetic trap [8, 9], was irradiated in
the perpendicular direction by two identical counter-
propagating laser pulses with a carrier frequency
quasi-resonant to two transitions between the compo-
nents of the hyperfine structure:

The laser radiation was linearly polarized in the
direction of elongation of the condensate, so that the
superradiant Rayleigh scattering of light in this direc-
tion was suppressed [10, 11]. As a result of multiple
scattering events, due to the photon recoil, two series
of coherent atomic clouds were excited in the conden-
sate. They moved with different velocities in opposite
directions (along the wave vectors of counterpropagat-

ing pump pulses). After some delay time, the system
was exposed to the second pair of counterpropagating
laser pulses. As a concequence, two new series of
atomic clouds appeared, which interfered with the
previously produced ones. The phase progression of
the wave functions of atoms in the primary clouds at
this moment led to the interference dependence of
their net density on the delay time. This, in turn,
caused a change in the density of atoms in the main
(static) cloud of the condensate, because the total
number of atoms in the BEC is conserved. Measuring
the atomic density in the main cloud as a function of
the delay time allowed one to estimate the phase pro-
gression of moving atomic clouds and, thus, to deter-
mine the recoil energy acquired by the atoms.

In the recent article [12], we performed a computer
simulation of the interference experiment [7], consid-
ering atoms as two-level systems and a BEC as an ideal
gas. In the present work, we propose a description of
the recoil effect for conditions that are more consistent
with the experimental ones, that is, we consider a
three-level model of the BEC atom and take into
account the weak nonideality of the BEC in the
Gross–Pitaevskii approximation [13–16]. Our
approach allows us to calculate the energy and recoil
momentum acquired by the atoms in the process of
light scattering, restricting the analysis to only a single
excitation of the BEC and without resorting to the
simulation of the interference experiment [7]. A com-
parison of the results obtained in two ways for the
same condensate model makes it possible to estimate
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the accuracy of the interference method in evaluating
the average values of the photon recoil energy and
momentum.

2. FORMALISM
In accordance with the geometry of the experiment

[7], we restrict ourselves to the one-dimensional
model of interaction of a BEC with an electromagnetic
field and describe the evolution of the BEC state by
means of the Gross–Pitaevskii equation [13–16]:

(1)

Here, the first two terms on the right-hand side
describe the motion of an atom with mass M in a trap
with potential U(x), the third term is the operator of
interaction of the atom with the electromagnetic field,
E(x, t) is the electric field strength, and  is the atomic
dipole moment operator. The nonlinear term
G|Ψ(x, t)|2 describes the interatomic interaction (the
weak nonideality of a dilute gas) in the mean field
approximation, where G is the interatomic interaction
constant. This approach is a generalization of the pre-
viously applied method for studying the superradiant
light scattering, which is based on solving the Max-
well–Schrödinger or Maxwell–Bloch system of equa-
tions [17–33].

According to the experimental conditions [7], we
will consider an atom as a three-level Bose particle
with the ground state |a and two excited states |b and
|c. The electromagnetic field which the atoms interact
with is a superposition of the exciting laser field

(2)

of frequency ω0 and the field produced by the polar-
ization P(x, t) of the atomic medium [17],

(3)

(4)

Here, c is the speed of light in vacuum, L is the BEC
size in the direction of propagation of the pump
pulses, and n0 is the number concentration of atoms in
the condensate. The averaging in (4), denoted by angle
brackets, is carried out only over the electronic degrees
of freedom of the atom.
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The wave function of the atom will be tried in the
form

(5)

where φr(x) = L–1/2exp(irk0x) is the wave function
describing the translational motion of the atom with
momentum r k0 (r = 0, ±1, ±2, ...), which is a multi-
ple of the photon momentum k0 = ω0/c of the laser
field.

In the approximation of the slowly varying ampli-
tudes of the field and atomic wave function, the system
of Maxwell–Gross–Pitaevskii equations has the form

(6)

(7)

(8)

where j = 0, ±2, ±4, … and the field amplitudes
E+(x, t) and E–(x, t) satisfy the equations

(9)

As units of length and time in Eqs. (6)–(9), we take the
transverse dimension L of the condensate and the
superradiant time τR = /(π|dba|2k0n0L) [17], where
dba = b| |a is the matrix element of the dipole
moment transition operator. The slowly varying
amplitudes of the waves of the induced field propagat-
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ing in the positive and negative directions, E+(x, t) and
E–(x, t), as well as the amplitudes  of the laser field,
are represented in the scale of i /dbaτR. The quantities

wj = j2 τR/2M and  = jk0τR/ML are the kinetic
energy (in frequency units) and the atomic velocity,
respectively. Further, we restrict ourselves to the anal-
ysis of BEC atoms in the ground electronic state with
indices “j” running over even values 0, ±2, ±4, …. The
quantities Δba = (ω0 – ωba)τR and Δca = (ω0 – ωca)τR are
the detunings of the frequency ω0 of the external field
from the atomic resonance frequencies ωba and ωca;
γ = ΓτR, where Γ is the radiation constant of the
excited states of the atom (which is the same for both
states); and η = dca/dba is the ratio of the dipole
moments of the transitions a ↔ c and a ↔ b. The
dimensionless interatomic interaction constant is g =
GτRn0/ ; moreover, in what follows, we restrict our-
selves to the interatomic interaction only between
atoms in the ground electronic state. We also do not
take into account the retardation in Eqs. (6)–(9),
because the transit time of a photon through the sys-
tem, L/c, is the smallest of all characteristic times of
the model. The only nonzero initial condition for solv-
ing the system of equations (6)–(9) is the amplitude of
the initial state of the atom, a0(x, t = 0) = 1.

When solving the system of equations (6)–(9), we
used conditions close to the experimental ones [7]: the
transverse size of the BEC was L = 16 μm; the concen-
tration of condensate atoms was n0 = 4.15 × 1013 cm–3;
the laser radiation frequency varied near the value
ω0 = 2.4 × 1015 s–1; the radiation constant of the tran-
sition a ↔ b (|52S1/2, F = 1; mF = –1 ↔ |52P3/2, F = 1;
mF = –1) was Γ = 0.37 × 108 s–1; the wavelength and
the dipole moment of this transition were, respec-
tively, λ = 780 nm and dba = 2.07 × 10–29 K m; and η =
dca/dba = (3/5)1/2 [34]. Under these conditions, the
superradiant time is estimated as τR ≈ 1.75 × 10–9 s.
Then, for the parameters in Eqs. (6)–(9), we obtain

The detuning from the resonance of the a ↔ b transi-
tion was varied within the interval –1.1 GHz ≤
Δba/2π ≤ 1.1 GHz (in dimensionless units, –12 ≤ Δba ≤
12). To excite the condensate, we used rectangular
pulses of duration δt ≈ 5 μs (in dimensionless units,
δt ≈ 3 × 103). The delay time between pulses, τ was
varied within the interval [δt, 50δt]. The amplitude E0
of the laser pulse was adjusted (depending on the
detuning from the resonance) so that the fraction of
atoms in the static cloud of the condensate would be at
a level of 0.9 during the excitation time.

±
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3. PHOTON RECOIL MOMENTUM
Before proceeding to the simulation of the interfer-

ence experiment [7], which is based on the double
excitation of the condensate, we address the case of a
single-pulse excitation. To this end, we consider the
Fourier transform (with respect to the coordinate) of
the amplitudes aj(x, t) of the atom’s ground electronic
state:

(10)

It should be specially noted that the Fourier variable k
in (10) represents the deviation of the atomic wave
vector from its vacuum value jk0 (in what follows, we
identify the wave vector with the momentum). Then
the normalized probability density distribution of the
deviation has the form

(11)

By calculating Wj(k, t), we can find the average devia-
tion  and its variance Dj:

(12)

(13)

Since | | ≪ k0, the average value of the recoil kinetic
energy (in units of frequency) can be represented as

(14)

Figure 1 shows examples of the probability density
functions of the deviation of the wave vector k from its
vacuum value ±2k0 in the clouds a±2 immediately after
the excitation (at t = δt). For the chosen initial condi-
tions, these distributions are mirror symmetric.

The average value  and its standard deviation
 as a function of detuning Δba from resonance for

an atom in the cloud a2 are shown in Fig. 2. Note that
the relatively large value of the standard deviation,
which is practically independent of the detuning Δba, is
due to the finite size of the trap and a spatial inhomo-
geneity of the atomic density of the condensate assoti-
ated with this finiteness. In view of relation (14), the
dispersion dependence of the deviation of the average
value of the recoil kinetic energy εj from the value

j2/2M is practically determined by the dispersion
curve for the average deviation of the recoil momen-
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Fig. 1. Probability density distributions of the deviation of the atomic wave vector from its vacuum value ±2k0 in the clouds a–2
and a2 (dotted and solid curves, respectively) immediately after the first laser pulse of duration δt has passed, calculated for two
values of the detuning from the resonance: (a) Δba = –0.5 and (b) Δba = 0.5. The difference in the relative position of the curves
when varying the sign of the detuning is due to the presence of the second level in the excited state. 

(a) (b)Δba = –0.5 Δba = 0.5

W–2 W–2W2 W2

0 0.1–0.1 0.2–0.2
k/k0

0 0.1–0.1 0.2–0.2
k/k0

Wj Wj
tum. If the quantity ±2k0 +  is interpreted as the
recoil momentum acquired by an atom during the
field scattering in a dispersive medium, we can set
±2k0 +  = ±2k0n, where n is the refractive index.

±2k

±2k
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Fig. 2. The mean deviation  of the recoil momentum

from its vacuum value 2k0 and its standard deviation 
in units of k0 as a function of the detuning Δba from the res-
onance. The points represent the results of calculations.
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1/2
2D
4. SIMULATION OF THE INTERFERENCE 
EXPERIMENT

Consider the double excitation scheme of the BEC
corresponding to the experiment [7]. We are primarily
interested in the fraction of atoms S0(t) in the static
cloud a0 at time instant t = τ + δt, i.e., immediately
after the action of the second pulse (recall that δt is the
duration of the laser pulse and τ is the delay time of the
second pulse, i.e., the difference between the switch-
ing times of the second and first pulses). This value is
defined as

(15)

It seems interesting to compare the value of S0(t)
with the fraction of atoms in the moving clouds aj ≠ 0:

(16)

Figure 3 demonstrates such a comparison for the
clouds a0 and a±2. One can see that S0 and S±2, as func-
tions of the delay time τ, exhibit oscillations similar to
those observed in the experiment [7]. Note that the
oscillations of the populations S0 and S±2 show a

τ = τ + δ
1

2
0 0
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Fig. 3. Results of modeling of the interference experiment:
the populations S0 and S±2 of atomic clouds as a function
of the delay time τ. The solid (dashed) curves are obtained
for the detuning Δba = 0.5 (Δba = –0.5).

0

0.25

0.50

0.75

1.00
Sj

S0

S±2

6 12 18 24 30
τ/δt
strong correlation in frequency, phase, and amplitude.
This reflects the fact that the total number of BEC
atoms is conserved.

Let us estimate the effect of interatomic interaction
on the magnitude of the recoil energy. Taking into
account in the Gross–Pitaevskii equation (1) only the
interatomic interaction, we obtain

(17)

As we assume that the depletion of a fixed cloud of the
condensate is weak, i.e., a0 ≈ 1, the equation for a0
reads

(18)

while, for j ≠ 0,

(19)

This implies that the adopted model of interatomic
interaction gives rise to the energy level shifts approx-
imately by amounts g and 2g for the states a0 and aj ≠ 0,
respectively.

Thus, in the interference experiment, the atomic
energy levels in clouds , arising after the action of
the first pulse, experience a shift by an amount of 2g.
Therefore, the wave functions after the delay time τ
acquire a phase factor exp[–i(εj + 2g)τ]. By the time
the second pulse acts on the condensate, the static
cloud a0 already acquired the phase factor exp(–igτ).
In order to get, after the secondary excitation, clouds

 with the same phase dependence, leading to posi-
tive (constructive) interference, it is necessary that the
delay time would be a multiple of the oscillation
period of the static cloud, 2π/g. Accordingly, the fre-
quency of interference fringes will be equal to wj + g, in
contrast to the eigenfrequency of the clouds, εj + 2g,
which determines the recoil energy.

Figure 4 demonstrates a comparison of the disper-
sion curves of the photon recoil energy computed after
single excitation (1, 3) and by the simulation of the
interference method (2). Curves 1 are obtained by cal-
culating the oscillation frequency of the real (or imag-
inary) part of the complex amplitude a2(x = L/2, t) at
the center of the trap, curves 2 are the result of simu-
lation of the interference experiment, and curves 3
describe the dispersion of the recoil kinetic energy ε2.
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5. CONCLUSIONS

Within the framework of a microscopic approach,
we have developed a theory that allows one to analyze
the photon recoil energy and momentum in a disper-
sive medium, in particular in a BEC of a dilute atomic
gas accounting for a weak interatomic interaction. The
theory is based on the system of coupled Maxwell–
Gross–Pitaevskii equations. These equations have
been elaborated by making use of the slowly varying
amplitude approximation. The calculations per-
formed for a single and a double excitation of the BEC
(the second one is the interference method for evalu-
ating the photon recoil [7]) have allowed us to unravel
the effect of the weak nonideality of the BEC on the
photon recoil in a dispersive medium, as well as to
obtain consistent dispersion relations for the average
values of the kinetic and total recoil energies in scatter-
ing events. The theory also correctly describes the
oscillation frequencies of the number of atoms in the
main (immobile) cloud of the condensate, which have
been observed in the experiment [7].
D THEORETICAL PHYSICS  Vol. 130  No. 3  2020
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Fig. 4. Dispersion curves of the recoil energy ε2 (in units of

10–4 ) for atoms in the cloud a2. The horizontal asymp-
totes correspond to the energy values 4w1, 4w1 + g, and
4w1 + 2g, while the vertical ones are compliant with the
frequencies of the transitions a ↔ b and a ↔ c. The points
are the results of calculations. The numbering of curves is
explained in the text.
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34w1
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4w1 + g
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ε2, 10–4 τR
–1
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R

In addition to the average values of the recoil
momentum and energy, we have also calculated the
variances Dj of these quantities. The values of the stan-

dard deviation  determine the error which the
average values can be considered with as the character-
istics of an individual atom. At the same time, the sim-
ulation of the interference method confirms the fun-
damental possibility of evaluating the average values of
the recoil momentum and energy, using this method,
with a sufficiently high degree of accuracy.
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