

 University of Groningen

Deep learning multidimensional projections
Espadoto, Mateus; Tomita Hirata, Nina Sumiko; Telea, Alexandru C.

Published in:
Information visualization

DOI:
10.1177/1473871620909485

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Espadoto, M., Tomita Hirata, N. S., & Telea, A. C. (2020). Deep learning multidimensional projections.
Information visualization, 19(3), 247-269. https://doi.org/10.1177/1473871620909485

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://doi.org/10.1177/1473871620909485
https://research.rug.nl/en/publications/17006bc3-98cf-4c08-94d9-c38f37634e47
https://doi.org/10.1177/1473871620909485

Review

Information Visualization
2020, Vol. 19(3) 247–269
� The Author(s) 2020
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1473871620909485
journals.sagepub.com/home/ivi

Deep learning multidimensional
projections

Mateus Espadoto1 , Nina Sumiko Tomita Hirata1 and
Alexandru C Telea2

Abstract
Dimensionality reduction methods, also known as projections, are often used to explore multidimensional
data in machine learning, data science, and information visualization. However, several such methods, such
as the well-known t-distributed stochastic neighbor embedding and its variants, are computationally expen-
sive for large datasets, suffer from stability problems, and cannot directly handle out-of-sample data. We
propose a learning approach to construct any such projections. We train a deep neural network based on
sample set drawn from a given data universe, and their corresponding two-dimensional projections, compute
with any user-chosen technique. Next, we use the network to infer projections of any dataset from the same
universe. Our approach generates projections with similar characteristics as the learned ones, is computa-
tionally two to four orders of magnitude faster than existing projection methods, has no complex-to-set user
parameters, handles out-of-sample data in a stable manner, and can be used to learn any projection tech-
nique. We demonstrate our proposal on several real-world high-dimensional datasets from machine
learning.

Keywords
Dimensionality reduction, machine learning, multidimensional projections

Introduction

Exploring high-dimensional datasets is a key task in

many application domains such as statistics, data sci-

ence, machine learning, and information visualization.

The main difficulty encountered by this task is a large

size of such datasets, seen both in the number of obser-

vations (also called samples) and in the number of

measurements recorded per observation (also called

dimensions, features, or variables). As such, high-

dimensional data visualization has become an impor-

tant separate field in information visualization (info-

vis).1–3

Several techniques have been proposed for high-

dimensional data visualization, including glyphs, paral-

lel coordinate plots, table lenses, scatterplot matrices,

dimensionality reduction (DR) methods, and multiple

views linking the above visualization types. In this fam-

ily of techniques, DR methods, also called projections,

have a particular place: compared to all other tech-

niques, they scale much better in both the number of

samples and the number of dimensions they can

accommodate (show) on a given screen space area. As

such, projections have become the tool of choice for

exploring data which has a high number of dimensions

(tens up to hundreds) and/or in applications where the

individual identity of dimensions is less important, as

frequently met in data science and machine learning

1Institute of Mathematics and Statistics, University of São Paulo,
São Paulo, Brazil

2University of Groningen, Groningen, The Netherlands

Corresponding author:
Mateus Espadoto, Institute of Mathematics and Statistics,
University of São Paulo, Rua do Matao, 1010, São Paulo 05508-090,
Brazil.
Email: mespadot@ime.usp.br

uk.sagepub.com/en-gb/journals-permissions
https://doi.dox.org/10.1177/1473871617751245
journals.sagepub.com/home/ivi
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1473871620909485&domain=pdf&date_stamp=2020-05-18

applications. In the last decade, many projection tech-

niques have been proposed3–5 Among these, t-

distributed stochastic neighbor embedding (t-SNE)6 is

arguably one of the best known and most adopted in

applications, given that it creates projections with good

visual segregation of similar sample clusters. Yet, t-

SNE comes with some downsides: it is very slow for

large datasets (thousands of observations or more),

due to its quadratic nature; its parameters can be

tricky to get right, which can lead to unpredictable

results;7 and it lacks the capability of projecting out-of-

sample data, which is useful when comparing several

(time-dependent) datasets.3,8,9

Work has been performed to address the perfor-

mance issue, such as tree-accelerated stochastic neigh-

bor embedding (SNE),10H-SNE,11 A-SNE,12 and

uniform manifold approximation and projection

(UMAP),13 which is a completely different algorithm

but with the stated goal of having t-SNE quality at a

higher speed. However, in general, there is no tech-

nique in the t-SNE class that jointly addresses scalabil-

ity, stability, and out-of-sample handling. Moreover, t-

SNE refinements are algorithmically not simple to

understand and/or implement, which may limit their

attractiveness. Such limitations are, to a large extent,

shared by many other projection techniques;3 there-

fore, our discussion next should be seen in this larger

context rather than focusing on t-SNE class methods

only. A way to handle these limitations jointly and inde-

pendently on the projection technique of choice is of

considerable interest.

To address the above goal, we propose a learning-

based approach to DR: We take any projection tech-

nique (deemed suitable for an application at hand),

run it on a small subset of the available data, train a

deep neural network to learn the mapping from high-

to low-dimensional space produced by the respective

projection, and use the trained network to project the

entire dataset or similar datasets. Our method has the

following contributions:

Quality (C1). We provide similar results to the learned

projection, as measured by several well-known metrics

in DR literature; briefly put, such metrics quantify

how close the two-dimensional (2D) projection

reflects the structure (inter-point distances and nearest

neighbors) of the high-dimensional dataset.

Scalability (C2). We compute the projection in linear

time in the number of dimensions and observations.

Practically, we project datasets of up to a million

observations and hundreds of dimensions in a few sec-

onds using commodity hardware, no matter which

projection technique we are emulating.

Ease of use (C3). Our method works without the need

to set any complex parameters, except for the number

of training epochs, which is minimized by the use of

early stopping (see section ‘‘Training effort’’). Our

method is implemented using only open-source infra-

structure, so it is easily replicable.

Genericity (C4). We can handle any kind of high-

dimensional data that can be represented as high-

dimensional vectors and can mimic the behavior of

different types of projection techniques.

Stability and out-of-sample support (C5). Our method

allows one to project new observations for a learned

projection without recomputing it, as is needed with

standard t-SNE and any other non-parametric

methods.

This article is structured as follows. Section

‘‘Related work’’ discusses related work on multidimen-

sional projections. Section ‘‘Method’’ details our

method. Section ‘‘Results’’ presents our results that

support our contributions outlined above. Section

‘‘Discussion’’ discusses our proposal. Section

‘‘Conclusion’’ concludes the paper.

Related work

We first introduce a few notations. Let

x=(x1, . . . , xn), xi 2 R, 14i4n be a n-dimensional

(nD) real-valued observation or sample, and let

D= fxig, 14i4N be a dataset of N samples. Let

xj =(xj
1, . . . , xj

N), 14j4n be the jth sample of D.

Thus, D can be seen as a table with N rows (samples)

and n columns (features or dimensions). A projection

technique is a function

P : Rn ! R
q ð1Þ

where q� n, and typically q=2. The projection P(x)
of a sample x 2 D is a 2D point. Projecting a set D

yields thus a 2D scatterplot, which we denote next as

P(D).

DR

Over the years, tens of DR methods have been devel-

oped. These propose quite different trade-offs between

the desirable features listed in section ‘‘Introduction,’’

as follows. For more extensive reviews of DR methods,

and their quality features, we refer to the litera-

ture.2,4,5,14–17

Probably, the best known DR method is principal

component analysis18 (PCA), which has been used in

several areas for many decades. It is a very simple algo-

rithm with theoretical grounding in linear algebra.

PCA is commonly used as pre-processing step for

automatic DR on high-dimensional datasets prior to

selecting a more specific DR method for visual

248 Information Visualization 19(3)

exploration.3 PCA scores high on scalability (C2), ease

of use (C3), predictability, and out-of-sample capabil-

ity (C5). However, due to its linear and global nature,

PCA lacks quality (C1), especially for data of high

intrinsic dimensionality, which is less than ideal for

data visualization purposes.

Methods based on manifold learning, such as mul-

tidimensional scaling (MDS),19 Isomap,20 and locally

linear embedding (LLE)21 with its variations,22–24 try

to reproduce in 2D the high-dimensional manifold on

which data are embedded and are designed to capture

nonlinear structure in the data. These methods are

commonly used in visualization since they generally

yield better results than PCA (or similar global/linear

methods) in terms of quality (medium-high C1).

Unfortunately, those methods are harder to tune (low

C3), do not have out-of-sample capability (C5), do

not work well for data which is not spread over a mani-

fold (C4), and generally scale poorly for large datasets

(low C2).

Methods based on force-directed techniques, also

known as spring embedders, such as local affine multi-

dimensional projection (LAMP)25 and least squares

projection (LSP),26 are popular in the visualization lit-

erature and have a long history, with uses other than

DR, such as graph drawing. Such methods can have a

reasonably good visual quality (medium C1), good

scalability (medium-high C2) and are simple to use

(high C3). However, most of them lack out-of-sample

capability (C5).

In the mid-2000s, the stochastic neighborhood

embedding (SNE) family of methods appeared, of

which t-SNE6 is arguably the most popular member.

A key praised feature of t-SNE is the ability to visually

segregate similar samples in D (C1). Despite its high

scoring on the quality criterion (high C1), t-SNE can

be very slow (low C2), since it has a complexity of

O(N2) in sample count, is very sensitive to small

changes in the data (low C5), can be very hard to tune

(low C3)7 in order to get good visualizations, and does

not have out-of-sample capability. There are attempts

to improve t-SNE’s performance, such as tree-

accelerated t-SNE,10 hierarchical SNE,11 and approxi-

mated t-SNE.12 However, these methods require quite

complex algorithms and still largely suffer from the

aforementioned sensitivity, tuning, and out-of-sample

problems. As of 2018, uniform manifold approxima-

tion and projection (UMAP)13 appeared, advertised as

a method which can generate projections with compa-

rable quality to t-SNE (high C1) but much faster

(high C2), and with out-of-sample capability. Despite

its advantages, UMAP shares some disadvantages with

t-SNE, namely, its sensitivity to small data changes

(low C5) and parameter tuning difficulty (low C3).

Deep learning

Neural network approaches have been proposed for

DR, such as autoencoders,27,28 which aim to generate

a compressed, low-dimensional representation on their

bottleneck layers by training the network to reproduce

its inputs on its outputs. Typically, autoencoders pro-

duce results comparable to PCA on the quality criter-

ion (low C1). Also, for different types of datasets, one

typically needs to design different autoencoder archi-

tectures, which is time-consuming (low C3). Yet,

autoencoders are easily parallelizable (high C2), pre-

dictable, and have out-of-sample capability (C5).

The ReNDA algorithm29 is a very recent neural-

based approach that uses two networks, improving on

earlier work from the same authors. One network is

used to implement a nonlinear generalization of

Fisher’s linear discriminant analysis, using a method

called GerDA; the other network is an Autoencoder

used as a regularizer. According to the results of the

original paper, the method scores well on predictabil-

ity and has out-of-sample capability (C5). However, it

requires labeled data, which none of the other algo-

rithms discussed in this study do. Also, the authors do

not present results that show how scalable the method

is (unknown C2).

Parametric t-SNE (pt-SNE)9 was proposed to

address some of the limitations outlined in section

‘‘Introduction.’’ pt-SNE uses a deep learning architec-

ture consisting of restricted Boltzmann machines

(RBMs)30 to pre-train a neural network to reduce

dimensionality, followed by a fine-tuning stage that

refines this network to minimize a cost function based

on t-SNE’s Kullback–Leibler (KL) divergence. The

key advantage of pt-SNE is its parametric nature

(mapping the entire nD input space to the lower-

dimensional qD space), which allows out-of-sample

behavior by construction. Only few DR methods in

existence are parametric and thus have this ability (e.g.

PCA,18 neighborhood component analysis (NCA),31

autoencoders27). From these methods, PCA and NCA

do not work well when the intrinsic dimensionality of

the input data is higher than the one of the output

space, due to their linear nature. More interestingly, a

detailed discussion on why pt-SNE is superior to auto-

encoders in terms of quality (criterion C1) is provided:

pt-SNE aims to capture the local data structure in nD,

using Gaussian distributions, and to transfer this

structure to the low-dimensional qD space using the

KL divergence cost. In contrast, the cost function of

autoencoders aims to maximize data variance in qD.

This does not create well-separated clusters in qD,

even when these exist in nD, as this would decrease

variance and thus increase the reconstruction error.

Similar to pt-SNE, our method is also parametric

Espadoto et al. 249

(thus satisfying C5), uses a deep learning approach,

and has the same advantages versus autoencoders. In

contrast to pt-SNE, however, we have a much simpler

neural network architecture, and thus a simpler train-

ing process, and a single hyperparameter (number of

training epochs or, alternatively, training loss); we use

supervised learning (with a given 2D scatterplot pro-

duced by a user-chosen projection method as ground

truth), and thus have a completely different cost func-

tion (distance to 2D ground-truth projection rather

than KL divergence); and, finally, our method can

learn any projection technique, not just t-SNE.

Method

Our proposal is very simple: consider a data universe

D, that is, the union of all datasets created by a given

application area, for example, all fashion images, all

handwritten digit images, or all astronomical images

related to a certain type of measurement. If we admit

that there exists some specific structure of the data in

such a universe, that is, the data samples are not uni-

formly distributed along all dimensions, then a good

projection should capture well this data structure

(which is, for example, reflected in terms of segregat-

ing different data clusters in the visual space). We

hypothesize that the way in which a given projection

technique P captures this data structure can be learned

using a limited number of small training datasets

D � D and their respective projections P(D) � R
2.

Our proposal follows precisely this: let Ds be a ran-

domly selected subset of one or several datasets

D � D, and let P(Ds) be the corresponding projection

of Ds. Let Pnn be a neural network trained on Ds

aiming to mimic the behavior of P(Ds). Let Dp =
DnDs be the remaining data in D to be projected by Pnn.

Figure 1 presents our idea, which consists of three

main steps—creating the training projection, training,

and inference. To create the training projection, we

project Ds using any user-chosen projection technique

P. We next use the projected subset P(Ds) alongside

the original high-dimensional Ds to train a feed-for-

ward, fully connected neural network Pnn to learn how

to project high-dimensional data. Once Pnn is trained,

we use it to project the remaining points Dp of D. By

extension, we use Pnn to also project different datasets

from the same universe D as D.

After empirical testing, varying the number of layers

and the number of units in each layer, we defined the

architecture for Pnn as having three fully connected hid-

den layers, with 256, 512, and 256 units, respectively,

using ReLU activation functions, followed by a two-

element layer which uses the sigmoid activation function

to encode the 2D projection, scaled to the interval ½0, 1�2
for implementation simplicity (Figure 2). The number

of units in the input layer matches the dimensionality of

the input data (n in equation (1)). We stress that this

particular network architecture has nothing special

about it. Other similar architectures may work as well.

The central goal of this article is to propose a novel way

to achieve DR by learning projections. Whether other,

more specific, network architectures can provide better

projections is a question for future research.

We initialize weights with the He et al.32 uniform

variance scaling initializer, and bias elements using a

constant value of 0.0001, which showed good results

during testing. We use the Adam33 optimizer, a variant

of the well-known stochastic gradient descent, to train

Pnn for at least 10 epochs and up to 200 epochs on an

Figure 1. Pipeline for learning projections (see section ‘‘Method’’).

250 Information Visualization 19(3)

‘‘early stopping’’ setup. That is, training automatically

stops on convergence, defined as the epoch where the

validation loss stops decreasing. In practice, not more

than 60 epochs are needed to achieve convergence,

the average being 30 epochs (see section ‘‘Training

effort’’). The cost function used is mean squared error

(MSE, equation (2))

MSE =
1

N

XN
i = 1

k yi � ŷik2 ð2Þ

where yi are the ground truth 2D coordinates provided

by the training projection and ŷi are the 2D coordi-

nates predicted by the network, respectively. MSE

showed higher convergence speed during testing than

other common cost functions such as mean absolute

error and log hyperbolic cosine (logcosh).

We test Pnn by comparing the projections it delivers

on Dp (unseen data during training) with the ground

truth P(Dp) obtained by running the projection P we

desire to mimic on Dp. For this, we use two classes of

metrics, as follows. General metrics capture desirable

properties of a projection P(D) in a technique-agnostic

manner, that is, without considering the specific objec-

tive (cost) function that P tries to optimize. Such

metrics are often used in projection literature to com-

pare different techniques that do not share implemen-

tation similarities.3,34 Technique-specific metrics consider

the cost functions used by specific techniques, and

thus allow comparing these techniques to our method,

that is, show how well our method manages to learn

the ‘‘style’’ of a projection by exposing how well it opti-

mizes the underlying cost function. Table 1 shows the

definitions of all these metrics, which are described

below. For technique-specific metrics, we list next the

Table 1. Quality metrics.

Metric Definition Range

Trustworthiness (T)
1� 2

NK(2n� 3K � 1)

XN

i = 1

X
j2U(K)

i

(r(i, j)� K)
½0, 1�

Continuity (C)
1� 2

NK(2n� 3K � 1)

XN

i = 1

X
j2V (K)

i

(r̂(i, j)� K)
½0, 1�

Neighborhood hit (NH) 1

N

X
y2P(D)

yl
k

yk

½0, 1�

Shepard diagram correlation (R) Spearman rank correlation of Scatterplot
(k xi � xj k , k P(xi)� P(xj) k), 14i4N, i 6¼ j

½0, 1�

Kullback–Leibler divergence P
P(D)log

P(D)

Q(P(D))

� �
, where P and Q denote probability distributions

Unbounded

Cross-entropy
P
P(D)logQ(P(D)), where P and Q denote probability distributions Unbounded

Normalized stress
P

ij (Dij � dij)P
ij D2

ij

Unbounded

LLE reconstruction error
P

i

k P(D)i �
P

j

WijP(D)jk2 Unbounded

Isomap cost function k K(D)� K(d) k
n

, where K(D) = � 0:5 I� 1
n

� �
D2 I� 1

n

� �
and n is the number of observations

Unbounded

Right column gives the metric ranges; optimal value is marked in bold, and for unbounded metrics, smaller values are always better.

Figure 2. Feed-forward network architecture used.

Espadoto et al. 251

names of the projection techniques to which a metric

applies in brackets after the metric name.

Trustworthiness. T measures the proportion of points

in D that are also close in P(D). T tells how much one

can trust that local patterns in a projection, for exam-

ple, clusters, represent actual patterns in the data.35 In

the definition (Table 1), U
(K)
i is the set of points that

are among the K nearest neighbors of point i in the 2D

space but not among the K nearest neighbors of point

i in R
n, and r(i, j) is the rank of the 2D point j in the

ordered set of nearest neighbors of i in 2D. We chose

K = 7 for this study, in line with the study by van der

Maaten and Postma4 and Martins et al.36

Continuity. C measures the proportion of points in

P(D) that are also close together in D.35 In the defini-

tion (Table 1), V
(K)
i is the set of points that are among

the K nearest neighbors of point i in R
n but not among

the K nearest neighbors in 2D, and r̂(i, j) is the rank of

the R
n point j in the ordered set of nearest neighbors

of i in R
n. As for Mt, we chose K = 7.

Neighborhood hit. NH measures how well-separable

labeled data are in a projection P(D), in a rotation-

invariant fashion, from perfect separation (NH = 1) to

no separation (NH = 0).26 NH is defined as the num-

ber yl
k of the k nearest neighbors of a point y 2 P(D),

denoted by yk, that have the same label as y, averaged

over P(D). In this article, we used k= 7.

Shepard diagram correlation R. The Shepard diagram

is a scatterplot of the pairwise (Euclidean) distances

between all points in P(D) versus the corresponding

distances in D.25 The closer the plot is to the main

diagonal, the better overall distance preservation is.

Plot areas below, respectively above, the diagonal indi-

cate distance ranges for which false neighbors, respec-

tively missing neighbors, occur. We quantitatively

assess a Shepard diagram by computing its Spearman

rank correlation R. A value of R= 1 indicates a perfect

(positive) correlation of distances.

KL divergence (t-SNE). Measures the difference

between two probability distributions created from D

and P(D), which can be viewed as the relative entropy

between two distributions.6

Cross-entropy (UMAP, autoencoder). Similar to the

KL divergence, cross-entropy also measures the differ-

ence between two probability distributions created

from D and P(D), but as the total entropy between

two distributions.13

Normalized stress (MDS, LAMP, LSP). Measures the

difference between the distance matrices D and d of

points in D and P(D), respectively.25

MSE (PCA). Measures the MSE between D and the

inverse of the transformation computed by PCA, that

is, P�1(P(D)), as defined in equation (2).

Reconstruction error (LLE). Measures the reconstruc-

tion error of P(D) based on LLE’s computed weights

and cost function.21

Isomap cost function (Isomap). Measures the Isomap

cost function based on the distance matrices D and d

of points in D and P(D), respectively.20 Although we

use class labels for computing NH, note that we do not

use class labels anywhere else during training or com-

puting the ground-truth projection.

Results

We next show how our proposal covers the require-

ments listed in section ‘‘Introduction.’’ For this, we

structure our evaluation into several tasks. We com-

pare our results with those produced by several well-

known projection techniques (t-SNE, UMAP, PCA,

Isomap, MDS, LAMP, LSP, pt-SNE, and LLE). We

use a range of publicly available real-world benchmark

datasets that have many observations and dimensions,

exhibit a non-trivial data structure, and come from dif-

ferent application domains, as follows (Figure 3 shows

samples from these datasets).

MNIST. 70K observations of handwritten digits from 0

to 9, rendered as 28 3 28-pixel grayscale images, flat-

tened to 784-element vectors.37

Fashion MNIST. 70K observations of 10 types of

pieces of clothing, rendered as 28 3 28-pixel grayscale

images, flattened to 784-element vectors.38

Dogs versus Cats. 25K images of varying sizes divided

into two classes (Cats, Dogs).39 We used the Inception

V340 convolutional neural network (CNN) pre-trained

on the ImageNet dataset41 to extract features of those

images, yielding 2048-element vectors for each image.

IMDB Movie Review. 25K movie reviews42 from which

500 features were extracted using term-frequency and

inverse document frequency (TF-IDF),43 a standard

method in text processing.

252 Information Visualization 19(3)

Wisconsin breast cancer—diagnostic. 569 observa-

tions of a fine needle aspirate (FNA) of a breast mass,

described with 32 dimensions.44

Human activity recognition. 10,299 observations from

30 subjects performing activities of daily living used for

human activity recognition (HAR), described with 561

dimensions.45

Spambase. 4601 observations of email classified as

spam or not spam, with 57 dimensions.46

Seismic bumps. 2584 observations and 24 dimen-

sions, used to forecast seismic bumps in a coal mine.47

CIFAR-10 and CIFAR-100. 60K 32 3 32-pixel color

images in 10 and 100 classes, respectively.48 We used

the DenseNet49 CNN pre-trained on the ImageNet

dataset to extract features of those images, yielding

1920-element vectors for each image. For each data-

set, the split between training and test sets varies for

each experiment and is explained in detail next in each

task-specific section.

Training effort

It is important to assess what our method needs (train-

ing-data-wise and training-effort-wise) to reach the

quality of the training projection, or close to that.

Figure 4 shows t-SNE, UMAP, MDS, and LAMP

projections of subsets of the MNIST dataset with 2

and 10 classes, respectively, alongside our method’s

results. We used training sets Ds of varying sizes, all

randomly and independently sampled from the

MNIST dataset. We included the two-class selection

(digits 0 and 1) since we know that images for these

digits are quite different. Hence, the obtained projec-

tions should clearly visually separate samples from

these two classes. For the two-class case, we see that

our method yields practically the same results as the

ground truth methods (t-SNE, UMAP, LAMP, and

MDS, respectively), already when using only 1K train-

ing samples. For the 10-class case, we obtain very sim-

ilar results starting from roughly 5K training samples.

Figure 3. Illustrative examples from the used datasets. (a) MNIST (70K samples, 10 classes), (b) FashionMNIST (70K
samples, 10 classes), (c) Cats and Dogs (25 K images, 2 classes), and (d) CIFAR-10 (60K samples, 10 classes).

Espadoto et al. 253

Figure 4 also shows how our learned projections get

close to the neighborhood hit value (NH) of the

ground-truth projection as we increase the training-set

size. It is important to note that our method cannot

formally exceed this ground-truth value, as we learn to

mimic this ground truth, not surpass it. Hence, when

learning from good-quality projections, we will achieve

high quality; when learning from less good projections,

we will not surpass that quality. Section ‘‘Capturing

the structure of different datasets’’ revisits this point

with additional examples.

Figure 5 also shows how the quality improves for a

fixed training set (3K samples) as we increase the num-

ber of training epochs. As visible, we obtain projections

already very close to the ground truth from roughly

25.50 epochs for the more complex 10-class MNIST

dataset, and from roughly 10 epochs for the simpler 2-

class MNIST dataset, respectively.

Figure 6 provides more insight into the training

process by showing how the loss (cost) decreases

during training as we increase the number of epochs

(blue and green curves for t-SNE and UMAP, respec-

tively), for both the MNIST and FashionMNIST

datasets, when considering only 2 classes (easier prob-

lem) or all 10 classes (harder problem). The orange

and red curves (for t-SNE and UMAP, respectively)

show what the loss is for the validation set for the net-

work trained for a given number of epochs. Note that

we did not include curves for LAMP and MDS in

Figure 6 to avoid overplotting, since these curves are

practically identical to the ones already shown for t-

SNE and UMAP. As visible, all curves converge quite

quickly and similarly for all datasets, all projections.

Of course, the validation loss is a bit larger than the

training loss. Separately, we see that convergence is

rapid for all four considered datasets. We can use these

curves in practice to find how many training epochs

we need for a desired maximal loss. Conversely, we

can fix a preset maximal loss (in practice, 0.005) and

compute the number of training iterations required

Figure 4. Top row: MNIST dataset, 10K sample projections of 2 and 10 classes created by t-SNE, UMAP, LAMP, and
MDS. Next rows: projections done by our method for varying training set sizes jDsj.

254 Information Visualization 19(3)

for it. Table 2 shows the resulting numbers of training

epochs required which we can select this way. This

justifies the maximal preset of 200 training epochs

(and its average of 30 epochs) mentioned in section

‘‘Method.’’

Capturing the structure of different datasets

In DR, the quality of a projection, measured by any of

the metrics discussed in section ‘‘Method’’ (or any

other desirable quality metric), highly depends on the

kind of input data and kind of projection technique

used.3 We first assess this quality by visually compar-

ing the results of eight different projection techniques

with those created by our learning technique, trained

on the respective projections. The considered tech-

niques are t-SNE, UMAP, Isomap, PCA, LAMP,

LLE, and two autoencoders using one layer and three

layers, respectively (AEC1 and AEC3). We included

the autoencoder-based techniques as they are related

to our approach as they also use deep learning.

However, autoencoders work differently, since they do

not use an actual 2D ground truth to learn from, as

we do. Figure 7 illustrates this for four datasets

(MNIST, Fashion MNIST, Dogs vs Cats, and

IMDB). Figure 8 adds four extra datasets to the eva-

luation (Spambase, Seismic, Har, and Wisconsin

breast cancer (WBC)). The training set sizes were 5K

samples in all cases. Several observations follow.

Learning quality. We see that our method can generate

projections which are visually almost identical to the

ground-truth ones. However, we also see that the

learned projections appear sometimes to be slightly

more ‘‘fuzzy’’ than the ground truth ones. This hap-

pens more for certain (dataset, technique) combinations,

Figure 5. Ground truth: MNIST dataset, 3K sample projections of 2 and 10 classes created by t-SNE, UMAP, LAMP, and
MDS. Rows above: projections done by our method using varying numbers of epochs.

Espadoto et al. 255

see for example, MNIST with t-SNE (Figure 7) or

Har with t-SNE and UMAP (Figure 8) and far less

for other combinations. The similarity of our results

with ground-truth is also reflected in the neighbor-

hood hit (NH) values: for all datasets, our method

yields NH values which are very close to those of the

ground-truth projection.

Projection quality. Figures 7 and 8 show quite clearly

that different ground-truth projection techniques yield

very different results in terms of visual structures for

the same dataset. For example, for the Seismic dataset,

PCA identifies six clearly separated compact clusters;

AEC1 and AEC3 only find three clusters here; and

LLE finds numerous small-size clusters (Figure 8). We

also see that the identified clusters correlate sometimes

well with class labels—for instance, all projections

achieve a quite good visual separation of the Cats from

the Dogs class in the Cats and Dogs dataset (reflected

by the high NH values of all images in the respective

panel in Figure 7). At the other extreme, separating

the two classes of IMDB is very hard for all projec-

tions. MNIST and Fashion MNIST fall in the middle,

with t-SNE and UMAP achieving good class separa-

tion, and Isomap and PCA faring worse. Hence, dif-

ferent projection techniques will fare very differently in

uncovering structures in the data for different datasets.

However, in all cases, our learned projection mimics

very closely this ground truth. In other words, if one

can find a projection technique that works well for a

given dataset and task, for example, showing the corre-

lation of data clusters with class labels, our method

can learn to do the same. Conversely, if a projection

technique scores poorly on a dataset, for example, can-

not identify interesting structures in the data, our tech-

nique will not be able to do better.

Since we learn from the ground-truth projections by

considering them as ‘‘black boxes,’’ we claim, although

we cannot (of course) formally prove that we can learn

any projection in the same way, apart from the eight

techniques demonstrated in Figures 7 and 8. This is in

contrast to the only other parametric projection tech-

nique based on deep-learning that we are aware of,9

which can only learn t-SNE.

Dataset difficulty. Figure 9 shows additional results

that illustrate how our method behaves when the ‘‘dif-

ficulty’’ of the dataset to be projected increases. For

this, we considered two datasets (MNIST and Fashion

MNIST) which all have 10 classes of samples. The

dimensions of these samples are known to be predic-

tive of the class labels. That is, a good projection

should be able to create 10 well-separated clusters of

Figure 6. Loss as function of number of training epochs, during both training and validation, for MNIST and
FashionMNIST datasets, 2-class and 10-class.

Table 2. Number of training samples versus number of
epochs needed to obtain convergence, MNIST dataset.

Projection Classes Samples Epochs

t-SNE 2 1000 57
t-SNE 2 2000 30
t-SNE 2 3000 50
t-SNE 2 5000 32
t-SNE 2 9000 24
t-SNE 10 1000 49
t-SNE 10 2000 33
t-SNE 10 3000 31
t-SNE 10 5000 21
t-SNE 10 9000 13
UMAP 2 1000 44
UMAP 2 2000 21
UMAP 2 3000 31
UMAP 2 5000 28
UMAP 2 9000 42
UMAP 10 1000 31
UMAP 10 2000 30
UMAP 10 3000 33
UMAP 10 5000 23
UMAP 10 9000 21

t-SNE: t-distributed stochastic neighbor embedding; UMAP:
uniform manifold approximation and projection.

256 Information Visualization 19(3)

same-label samples. The difficulty of separation is also

known to be higher for Fashion MNIST than MNIST.

We first only consider an easy separation problem, by

taking only samples of two classes of each of these

datasets. In all cases, we used 5K training samples and

projected a different set of 5K samples from each of

these four datasets. Figure 9, top two panels, shows

ground-truth projections computed by PCA, Isomap,

MDS, and LLE for these two-class datasets. We see

that all projections can separate the two classes very

Figure 7. Projections (15K samples) learned from eight techniques (t-SNE, UMAP, Isomap, PCA, LAMP, 1-layer and 3-
layer autoencoders (AEC1, AEC3), and LLE) for the MNIST, Fashion MNIST, Cats versus Dogs, and IMDB datasets. Below
each projection, the results of our technique are shown. See section ‘‘Capturing the structure of different datasets.’’

Espadoto et al. 257

well (also indicated by the high NH values), and so do

also our learned projections. The bottom two panels

in Figure 9 show the projections of the full 10-class

datasets. For these more complicated datasets, we see

that all the considered ground-truth techniques have

considerable difficulty in separating the 10 classes

well, and so do also our learned projections. Hence,

we can conclude that our learned projections mimic

very closely the behavior of the ground truth ones,

whether this means good or poor class separation.

Figure 8. Projections (15K samples) learned from eight techniques (t-SNE, UMAP, Isomap, PCA, LAMP, one-layer and
three-layer autoencoders (AEC1, AEC3), and LLE) for the Seismic, Spambase, Har, and WBC datasets. Below each
projection, the results of our technique are shown. See section ‘‘Capturing the structure of different datasets.’’.

258 Information Visualization 19(3)

Supplemental Table 5 shows the values of the qual-

ity metrics introduced in section ‘‘Method’’ (trust-

worthiness T, continuity C, neighborhood hit NH,

Shepard diagram correlation R, and the technique-

specific metric S) for the 10 projection techniques used

to project the 10 datasets in Figures 7–9. For each

(dataset, projection) pair, we evaluate the five metrics

both on the ground-truth projection and on our

learned projection and next study the signed difference

between the former and the latter. Figure 10 visualizes

these signed differences for all the 100 (dataset, projec-

tion) combinations. Care was taken to compute the

differences in the correct direction: For the general

metrics T, C, NH, and R, higher difference values are

better, since these indicate that our method yields

higher quality than the original learned methods. For

the technique-specific metrics S, lower is better, as this

indicates that our technique minimizes the underlying

cost function better than the ground-truth projections.

Overall, Figure 10 shows that the metric values of our

projection are very close to the corresponding ground-

truth values, the differences being maximally 4% and

on average under 2%, respectively. This strengthens

the insight obtained earlier by visually comparing our

learned projections with the ground-truth ones that

our method learns very well the characteristics of the

projections it was trained to mimic. Apart from that,

Figure 10 shows that there is no clear correlation

between high (or low) difference values and specific

projection techniques or specific datasets, with the

exception of the (Har, LSP) combination where our

technique yields poorer T, C, and NH values than the

ground-truth, but identical S values. In other words,

our learned projections perform equally well for all

techniques over all datasets.

Stability and out-of-sample data

We define stability of a projection as the relation

between the visual changes in P(D) related to data

changes in D. Ideally, a stable projection technique

should not change P(D) if D does not change at all,

regardless of changes in parameters of the algorithm

P; and conversely, when D changes, for example, as

new samples are added, then the old samples should

stay in P(D) as close as possible to their original loca-

tions. This way, the user can relate changes in P(D) to

actual data changes. For a similar reasoning applied to

different infovis algorithms, that is, treemaps, see

Vernier et al.,50 or even closer to the context of DR,

graph drawing.51 Hence, stability and out-of-sample

capabilities are closely related. Stability in the context

of projecting high-dimensional data is argued for,

independently, by several authors: Joia et al.25 argue

for stability for preserving the user’s mental map for

LAMP and use Procrustes analysis to align projections

Figure 9. Learning different projections for four datasets (MNIST and FashionMNIST, 2 and 10 classes). In each
subfigure, top row: projections of 5K samples made with PCA, Isomap, MDS, and LLE; bottom row: projections of
different 5K samples, same datasets, created by our method trained on the data and projections from the top row.

Espadoto et al. 259

of different datasets to ensure consistency. Rauber

et al.8 analyze deeper the trade-off stability versus

accuracy for t-SNE and adapt the method to this end

to handle time-dependent datasets. Even closer to our

focus, Van der Maaten9 argues in detail about why

out-of-sample capability for DR is essential for classifi-

cation and regression, and why this is not optimally

achieved by standard techniques such as autoenco-

ders. Nonato and Aupetit3 argue for stability as being

a key feature of DR algorithms in a comprehensive

recent survey of such methods. Also, one of the key

criteria was that UMAP was developed to satisfy its

stability.13 An additional strong argument for out-of-

sample capability, and how add this to techniques such

as LLE, Isomap, MDS, Eigenmaps, and Spectral

Clustering, is made by Bengio et al.52

The joint added-value of stability and out-of-sam-

ple capability can actually be explained intuitively, as

follows:

Dynamic data. A dataset D may not be a singular item,

but part of a collection fDig, as in the case of sam-

pling a time-dependent some phenomenon. If project-

ing every single element Di of this collection yields

fundamentally different projections P(Di), even

though the frames Di do not change much with

respect to each other, then the projection method P

may optimally represent the individual frames Di taken

separately, but not the entire collection fDig. When anal-

ysis tasks target the collection, we need the latter, not

the former, optimization.3,8

Usability. A projection P(D) is the result of a given

dataset D, plus any parameter settings of the projection

Figure 10. Signed difference between quality metrics computed on ground-truth projections versus our projection
(trained with 5K samples), for 10 techniques and 10 datasets. Green indicates cases when our technique exceeded the
ground truth quality; red indicates the opposite case.

260 Information Visualization 19(3)

algorithm P itself. From a practical viewpoint, users

do not want to get massively different results P(D)
when only minute details change in either the dataset

or the parameters, otherwise the algorithm P is subop-

timal: Users see significantly different results for such

minute changes, and next wonder whether these

reflect indeed significant changes in the data D, or just

noise artifacts in D or issues with parameter settings of

P. An unstable DR method P does not give an answer

to this, leaving the user doubting how to interpret

changes in the visualization P(D).

As outlined above, obtaining stability and out-of-

sample capability is not trivial. Many projection tech-

niques use a random initialization, which means they

create quite different results for the same dataset D for

different runs. Moreover, small parameter changes, for

example, perplexity for t-SNE, or choice of control

points for LAMP, to mention just a few, can yield large

changes in P(D).7 Dynamic t-SNE corrects such

effects up to a certain level, but comes with additional

complexity and significant computational costs.8

Figure 11 shows projections of increasingly large,

randomly selected, point subsets of the MNIST data-

set, using five projection techniques (t-SNE, UMAP,

pt-SNE, LAMP, and LSP). We compare these with

our method, trained on 5K samples from each of the

above projections. Several observations follow. First,

by scanning rows in Figure 11, left to right, we see that

in all ground-truth projections, except pt-SNE, the

same-label clusters move in the projection as the sam-

ple count changes. This confirms that these methods

are not suitable for out-of-sample applications, as

users would have difficulties in maintaining the mental

map of the data. In contrast, our method (trained with

any of the ground-truth projections), and pt-SNE,

show stable clusters that stay in the same places in the

projection, and only grow denser as more samples are

projected—thus, they have the desired out-of-sample

capability. The price to pay for this is the increased

fuzziness of our out-of-sample projections. This is

especially visible when we learn from t-SNE and

UMAP: for those rows, our learned projections show

clusters where points having different labels (colors)

mix more than in the ground-truth projections and

have lower NH values than these. However, for LAMP

and LSP, our learned projections achieve similar visual

quality, and sometimes even marginally higher NH

values as compared to the ground truth. This is

explained due to the poorer separation (quality) of the

original LAMP and LSP ground-truth, which is thus

easier to learn than in the case of t-SNE and UMAP.

Separately, compared to pt-SNE, the only ground-

truth projection discussed here that has out-of-sample

capability, we achieve only marginally lower NH values

(when trained with t-SNE) and actually higher NH val-

ues (when trained with UMAP). Summarizing all

above, we conclude that our method proposes a good

trade-off between stability (and out-of-sample capabil-

ity) versus projection accuracy.

Computational scalability

One of our main goals is to create a projection tech-

nique which scales to large datasets (C2, section

‘‘Introduction’’). To analyze this, Figure 12 shows a

time comparison between t-SNE, UMAP, pt-SNE,

MDS, LAMP, LSP, and our method trained to mimic

these projections, for increasingly large subsets of the

MNIST dataset, up to 1 million samples. We trained

our method with (only) 5K samples, in line with

training-set sizes found to be sufficient in our earlier

experiments (section ‘‘Training effort’’).

We first compare the performance of our end-to-end

method, that is, computing the training projection

(called seeding in Figure 12), training itself, and infer-

ence. The thin-dotted lines in Figure 12 show the sum

of these three times for our method. As visible, these

lines are almost horizontal, which indicates that our

timings are dominated by the constant seeding plus

training time, and not inference.

As comparison baselines, the continuous (undotted)

lines show the timings of the original ground-truth

algorithms. We see that our method already runs much

faster than the ground-truth algorithms, even when con-

sidering the training cost: for the maximum sample

count (1 million), we are roughly three orders of mag-

nitude faster than t-SNE and two orders of magnitude

faster than LAMP. The LSP, MDS, and UMAP

implementations we used in the test were not able to

handle this large number of samples, shown by their

respective curves that stop in Figure 12 at roughly

20K, 30K, respectively, 500K samples. From the

slopes of these curves, we see that our method is sev-

eral orders of magnitude faster than these algorithms

for the respective sample counts.

The above comparison of our end-to-end method,

including seeding, training, and inference, to the origi-

nal algorithms, is a worst-case scenario: In practice,

one would train only once on a given data universe D
and project many times on the same D. Hence, we next

analyze only the inference (projection) time for our

method (blue long-dash curve). This time is identical

for learning any projection. We see that our method is

faster than all other ground-truth methods for all sam-

ple counts. For the maximal sample count, we are

about two orders of magnitude faster than LAMP, and

three-and-a-half orders of magnitude faster than t-

SNE. We also see that we are one order of magnitude

faster than pt-SNE. This is an important result, since,

Espadoto et al. 261

Figure 11. Out-of-sample capability: projecting increasing number of samples from the MNIST dataset with different
techniques. Empty spaces indicate tests that did not complete (the ground-truth projection algorithm could not handle
too many samples).

262 Information Visualization 19(3)

as already discussed, pt-SNE is the only other para-

metric projection technique using deep learning that

we are aware of. This, together with the quality results

discussed in Figure 11, show that our method is a

competing alternative, concerning both quality and

speed, to pt-SNE.

Finally, we consider UMAP’s out-of-sample capa-

bility (see section ‘‘Related work’’ for details): we run

UMAP on our training set, which makes it learn a

function to transform the high-dimensional data to

2D. Note that this is completely different from our

deep learning—it is a particular feature of UMAP’s

implementation, not shared by any other projection

techniques we know of. Next, we let UMAP use this

learned function to project the test set. In this

inference-only scenario, our method (again, the blue

long-dash curve) is about one-and-a-half orders of

magnitude faster than UMAP (orange dashed curve).

All experiments were run on a 4-core Intel E3-1240

v6 running at 3.7 GHz with 64 GB RAM and an

NVidia GeForce GTX 1070 GPU with 8 GB VRAM.

Supplemental Table 3 lists all hyperparameters used,

and Supplemental Table 4 lists all open-source software

libraries used in all our experiments. Our neural network

implementation leverages the GPU power using the

Keras framework. The t-SNE implementation used is a

parallel version of Barnes-Hut t-SNE,53 run on all four

available CPU cores for all tests. The UMAP reference

implementation is not parallel, but is quite fast (com-

pared to t-SNE) and well-optimized. Our implementa-

tion, plus all code used in this experiment, are publicly

available at https://github.com/mespadoto/dlmp.

Projecting unrelated data

So far, we showed that our method can learn from a

subset of a given dataset D to project unseen samples

from the same D. This serves the concrete purpose of

accelerating projections of large datasets (see, for exam-

ple, Figure 12 and related text), by training our

method on the projection of a small subset thereof,

followed by inference on the entire dataset. The same

approach can be used when one wants to project very

similar datasets, drawn from the same distribution,

that is, sampling the same phenomenon.

A different question arises in this context: can we use

our method to project (infer) data which is quite differ-

ent from the training data? In other words: can we reuse

the training done on a given type of data from some

universe D (for which we have, for instance, sufficient

training samples) to generate a network able to project

data from a related, but still different, universe D9?

Figure 12. Time to project varying number of samples, MNIST dataset, oversampled to 1 million observations (log time
scale).

Espadoto et al. 263

https://github.com/mespadoto/dlmp

To answer this question, we conducted the follow-

ing experiment. We trained our method using UMAP

and t-SNE projections of 2K observations from

CIFAR-10 (classes Airplane, Frog and Truck), which

can be seen as a sampling of D, the universe of natural

images of vehicle-and-animal shapes. Next, we used

the trained network to project 4K observations from

CIFAR-100 (classes Trees, Large Carnivores and

Vehicles 2), which constitutes a sampling of D9—a uni-

verse related, but not identical to, D. We selected these

classes because they contain images that are similar

perceptually between the two universes D and D9, with

the goal of checking the capability of generalization of

our method. Note however that D and D9 are quite

different: while both contain images, these are of dif-

ferent kinds, and acquired by different procedures.

Figure 13 shows the obtained results. First, we show

the projections obtained by directly reusing the net-

work trained on D. As visible, the results, shown in

Figure 13(b), are quite far from the ground truth (clas-

sical t-SNE and UMAP projections, Figure 13(a)).

This confirms that D and D9 are, indeed, quite differ-

ent, so directly reusing the training from D to D9 is not

possible.

We next consider training the network from scratch,

using a small number s of 100–1000 samples from

D9, mimicking the situation when the user has only

few available data from D9 to train on. The results are

shown in Figure 13(c). As visible, when we increase s,

the from-scratch training results get closer to the

ground-truth (Figure 13(a)). Next, we consider a net-

work pre-trained on D (the original universe), which

we further train (fine-tune) with s samples for an

increasing number of epochs e (from 100 to 700). The

procedure is very similar to transfer learning.54 Figure

13(d) shows the results of this fine tuning for different

combinations of s and e. If we look at the rows of

Figure 13(d), we see that the respective images are

more similar to Figure 13(a) than the image (c) corre-

sponding to the same row. As we increase s and e,

these images become increasingly more similar to the

ground truth. For instance, we see that the fine-tuned

network can already capture the green spike detail

marked in blue in Figure 13(a) from s = 500,

e= 500, as shown by the red circles in image (d).

When training from scratch, this detail requires

s= 1000 samples to become visible for UMAP and

cannot be captured even for this sample count for the

t-SNE projection. Hence, we conclude that we can

mimic the ground-truth projection of D9 better by

fine-tuning a network pre-trained on a different uni-

verse D than training from scratch on D9 with the

same number of samples.

We can draw the following conclusions from this

experiment:

� Directly extrapolating training from a universe D
to a different universe D9 will not give good projec-

tion results.
� Fine-tuning an existing training on D with a small

number of samples drawn from D9 is possible and

can lead to results close to the ground-truth projec-

tion of data from D9.

We should stress that the above experiment only

hints the possibility of transfer-learning-like training of

projections. We do not have enough evidence to assess

how much additional training data (from D9) and

training time is needed, in general, when extrapolating

between two different universes. Moreover, the rela-

tionship between the additional training data and

training effort required to reach a certain similarity to

the ground-truth projection and the similarity of the

universes D and D9 is yet unknown. We consider this

to be an interesting topic for future work.

Discussion

We next discuss how our proposal meets the require-

ments introduced in section ‘‘Introduction.’’

Quality (C1)

We showed that our method achieves very similar

quality (measured by five established metrics in DR)

to projections well known to perform well in this area

on six challenging multidimensional datasets having

up to thousands of dimensions, which are often used

as benchmarks in machine learning. Visual compari-

son also shows that our projections are very close to

those computed by existing methods, which, as dis-

cussed already, are slower and harder to configure.

Scalability (C2)

Even when considering training, our method is roughly

one order of magnitude faster than t-SNE and roughly

five times faster than UMAP for more than roughly

30K samples. As explained in section ‘‘Computational

scalability,’’ this is a worst case, since one typically

trains once and infers many times on a given data uni-

verse. For such cases, our method is more than three

to four orders of magnitude faster than t-SNE and

UMAP and allows projecting data of millions of sam-

ples in a few seconds. The complexity of our method is

linear in the number of observations and dimensions.

Besides t-SNE and UMAP, our method is actually also

faster than other projection methods such as Isomap,

LAMP, and MDS.

264 Information Visualization 19(3)

Figure 13. Projecting data (4K samples) by fine tuning pre-trained networks mimicking UMAP and t-SNE. (a) Test
projection. (b) Inference by pre-trained network without any fine tuning. Training uses 2K samples from universe D. (c)
Projections made by our method trained from scratch from s samples from the new universe D9. (d) Projections made
by with fine-tuning the pre-trained network with varying numbers of training epochs e and using different numbers s of
samples from D9. Red markers show how the fine-tuned network can already capture a ground-truth detail (shown
separately in blue) with fewer training samples s than when training from scratch with the same s.

Espadoto et al. 265

Ease of use (C3)

During inference, our method simply executes a

trained neural network, which requires no parameter

setting. There is no need for guessing the ‘‘right’’ val-

ues of parameters such as t-SNE’s perplexity.7 During

training, the only free parameter to be set is the maxi-

mal loss or, alternatively, number of training epochs.

The two are related, see section ‘‘Training effort.’’ As

also explained there, a preset of 200 training epochs

yielded a loss of 0.005, that is, practical convergence,

for all examples we considered.

Genericity (C4)

Our method can learn the behavior of any type of pro-

jection technique. We provided examples in section

‘‘Results’’ showing this for t-SNE, LAMP, UMAP,

MDS, Isomap, LLE, PCA, and pt-SNE. All that is

needed to learn is a number of samples from the data

universe of interest, represented as n-dimensional fea-

ture vectors, and their 2D coordinates computed by

the desired projection technique. No other aspects or

parameters of the training or inference process are

projection-technique specific—that is, projections to

be learned can be seen as black boxes. Moreover, no

restrictions exist in terms of the dimensionality n of

the input feature space in which the data are repre-

sented and/or the dimensionality q of the projected

data. While we demonstrated our approach only for

q= 2 (2D projections), which are the most commonly

used in infovis, producing higher-dimensional, for

example, three-dimensional (3D) projections,55 is

equally easy. Such projections are preferred in certain

cases as they can preserve the original data structure

better than 2D projections.55,56 Of course, for our

method to be usable, data should come as n-dimen-

sional feature vectors. This is direct, for example, in

the case of tabular data or images, as discussed in the

examples in the paper; for other data types, such as

text or videos, suitable feature extraction methods

should be used. This is however not a limitation of our

method as opposed to other DR methods. Separately,

we note that we have only considered projecting quan-

titative data so far. However, extending our approach

to handle categorical data is straightforward using, for

example, one-hot encoding or similar techniques.57

Stability and out-of-sample support (C5)

These two issues are strongly interconnected, and

actually also connected with the question of how far

our networks can generalize what they learn. Let us

detail. As outlined in section ‘‘Method,’’ we take a

training set Ds which is supposed to represent well the

overall data distribution in a given so-called data uni-

verse D, that is, datasets related to a particular applica-

tion, such as all handwritten digits, all human face

images, all patients in a given population, all street

views, and similar. Our approach learns how to project

data in D based on training projections of data in Ds.

Hence, the better Ds represents the variability of data

in D, the better will our projections mimic actual pro-

jections of the same data. Given that neural network

inference works deterministically, out-of-sample sup-

port is stable in the sense that the same data items (in a

dataset D � D) are projected to the same locations,

which is not the case for many projection methods

such as t-SNE, UMAP, and LAMP, to mention just a

few. Separately, given the dense structure of the fully

connected network we use (which averages activations

from multiple units in an earlier layer to determine

those of the current layer), our approach is stable in

the sense that small changes in an input dataset yield

only small changes in the resulting projection (see

example in section ‘‘Stability and out-of-sample data’’).

Again, this result is far from evident for many existing

projection techniques.

Limitations

Our results show that there is a trade-off between the

inherent stability and out-of-sample support of our

method (discussed above) and the quality (in terms of

cluster separation) of the resulting projections.

Compared to t-SNE and UMAP, our projections show

fuzzier, or less sharply separated clusters. Compared

to the other tested projections (MDS, Isomap, LLE,

LAMP, autoencoders, PCA), however, our results are

almost identical both visually and in terms of the eval-

uated quality metrics. This trade-off is needed to pro-

vide stability: our method cannot project samples as

‘‘freely’’ as for example, t-SNE, since it needs to

behave deterministically, like any parametric DR tech-

nique; however, this ensures that the same location in

nD space projects to the same place in qD space,

which is not the case for t-SNE or any other non-

parametric DR technique. A similar trade-off between

stability and quality exists actually also for dynamic (t-

SNE) projections8 and also for parametric t-SNE.9

Note that, if desired, we can reduce fuzziness (or,

more formally, achieve a higher fit of the learned rep-

resentation with the training data) by increasing the

number of training epochs, decreasing the training

loss, or similar well-known techniques in machine

learning. However, this is undesired as it can quickly

lead to overfitting, that is, it will create suboptimal pro-

jections from data which is very different from the

training set.

266 Information Visualization 19(3)

Relation to autoencoders

Both our method and autoencoders use deep learning

to perform DR and are parametric techniques.

However, the similarities end here: our method learns

from a 2D projection (scatterplot) provided by a user-

chosen projection technique; in contrast, autoencoders

train with the n-dimensional data itself. Autoencoders

propose an own embedding of the high-dimensional

data into 2D. In contrast, we learn whichever embed-

ding was provided to us by the training projection.

Generalization

Related to the last point above, the question arises of

how far can our approach generalize, or, how densely

do we need to sample an universe D by the training set

Ds to create good projections. This is an open question

in machine (and deep) learning in general. Yet, we can

make the following practical points. First, for the types

of (non-trivial) data universes, we consider in our eva-

luations, a few thousands of samples yield already

high-accuracy results. Second, the larger D is, the

larger (and better spread) the training set Ds needs to

be. Section ‘‘Projecting unrelated data’’ outlines the

limits of this extrapolation: the farthest away is D
spread from the training set Ds, the more will our pro-

jections differ from the actual ground-truth projections

obtained using classical projection methods. Again,

this is not a surprise, but a well-known fact in machine

learning. We argue that this is not a problem in practice

when using projections. Indeed, in all cases, we are

aware of, researchers typically work for a reasonable

amount of time on a given, and fixed, data universe D.

Hence, they can once train a network from a compre-

hensive Ds � D, after which they can use the network

with no changes for data in the same D. Moreover, for

cases where one targets a new data universe D9, for

which obtaining a comprehensive training set Ds is

expensive, the transfer-learning-like approach in sec-

tion ‘‘Projecting unrelated data’’ can be used. As

shown in that section, one can fine-tune a pre-trained

network (on widely available data from a related uni-

verse D) with as few as hundreds of samples from D9.

Conclusion

We have presented a new method for creating projec-

tions of high-dimensional data using a machine learn-

ing approach. Based on a small number of 2D

projections of a subset of samples from a given data

universe, obtained using any user-chosen projection

technique, we train a neural network to mimic the 2D

projection output and next use the network to infer

projections of unseen data from the same universe.

Our method can mimic the quality and visual style of

a wide range of established projection techniques,

including the well-known visual cluster separation pro-

vided by SNE-class methods; is orders of magnitude

faster than such methods; has a single parameter for

training (with documented preset), and no parameters

for inference; can handle datasets of any (quantitative)

kind and dimensionality; and delivers inherent stability

and out-of-sample support. Our method is simple to

implement, requiring only generic (and easily avail-

able) software for neural networks, and we provide its

source code for replication and actual usage. We show

how our approach yields good trade-offs between

quality (on one side) and speed, ease of use, genericity,

generalizability, and stability (on the other side).

Many future work directions are next possible.

First, we consider generalizing our approach to com-

pute stable projections of dynamic (time-dependent)

high-dimensional data and also mixed quantitative-

and-qualitative data. Second, we consider using differ-

ent network architectures, cost functions, and training

procedures for more accurate handling of more com-

plex data universes. Last but not least, we consider

more refined approaches to tackle the transfer learning

problem for generalizing learning from a given number

of jointly considered data universes and projection

techniques.

Funding

The author(s) disclosed receipt of the following finan-

cial support for the research, authorship, and/or publi-

cation of this article: This study was financed in part

by FAPESP (201522308-2, 201725835-8 and 2018

25671-9) and the Coordenacxão de Aperfeicxoamento

de Pessoal de Nı́vel Superior - Brasil (CAPES) -

Finance Code 001.

ORCID iD

Mateus Espadoto https://orcid.org/0000-0002-

1922-4309

Supplemental material

Supplemental material for this article is available

online.

References

1. Kehrer J and Hauser H. Visualization and visual analysis

of multifaceted scientific data: a survey. IEEE TVCG

2013; 19(3): 495–513.

2. Liu S, Maljovec D, Wang B, et al. Visualizing high-

dimensional data: advances in the past decade. IEEE

TVCG 2015; 23(3): 1249–1268.

3. Nonato L and Aupetit M. Multidimensional projection

for visual analytics: linking techniques with distortions,

tasks, and layout enrichment. IEEE TVCG 2019; 25(8):

2650–2673.

Espadoto et al. 267

https://orcid.org/0000-0002-1922-4309
https://orcid.org/0000-0002-1922-4309

4. van der Maaten L and Postma E. Dimensionality reduction:

a comparative review. Technical report, TiCC TR 2009–

005, 26 October 2009. Tilburg: Tilburg University.

5. Sorzano C, Vargas J and Pascual-Montano A. A survey

of dimensionality reduction techniques. arXiv preprint

arXiv:14032877, 2014.

6. van der Maaten L and Hinton GE. Visualizing data

using t-SNE. JMLR 2008; 9: 2579–2605.

7. Wattenberg M. How to use t-SNE effectively, 2016,

https://distill.pub/2016/misread-tsne

8. Rauber P, Falcão AX and Telea A. Visualizing time-

dependent data using dynamic t-SNE. In: Proceedings of

Eurographics conference on Visualization (EuroVis): short

papers, Groningen, 6–10 June 2016, pp. 73–77. Geneva:

Eurographics Association.

9. van der Maaten L. Learning a parametric embedding by

preserving local structure. In: Proceedings of the twelth

international conference on artificial intelligence and statis-

tics, Clearwater, FL, 16–19 April 2009.

10. van der Maaten L. Accelerating t-SNE using tree-based

algorithms. JMLR 2014; 15: 3221–3245.

11. Pezzotti N, Höllt T, Lelieveldt B, et al. Hierarchical sto-

chastic neighbor embedding. Comput Graph Forum 2016;

35(3): 21–30.

12. Pezzotti N, Lelieveldt B, van der Maaten L, et al.

Approximated and user steerable t-SNE for

progressive visual analytics. IEEE TVCG 2017; 23:

1739–1752.

13. McInnes L and Healy J. UMAP: uniform manifold

approximation and projection for dimension reduction.

arXiv preprint arXiv:180203426, 2018.

14. Hoffman P and Grinstein G. A survey of visualizations

for high-dimensional data mining. In: Fayyad U, Grin-

stein GG and Wierse A (eds) Information visualization in

data mining and knowledge discovery. Burlington, MA:

Morgan Kaufmann, 2001, pp. 47–82.

15. Engel D, Hüttenberger L and Hamann B. A survey of

dimension reduction methods for high-dimensional data

analysis and visualization. In: Proceedings of IRTG work-

shop, vol. 27, Kaiserslautern, 10–11 June 2011, pp. 135–

149. Wadern: Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik.

16. Cunningham J and Ghahramani Z. Linear dimensional-

ity reduction: survey, insights, and generalizations.

JMLR 2015; 16: 2859–2900.

17. Xie H, Li J and Xue H. A survey of dimensionality

reduction techniques based on random projection. arXiv

preprint arXiv:170604371, 2017.

18. Jolliffe IT. Principal component analysis and factor anal-

ysis. In: Jolliffe IT (ed.) Principal component analysis. Ber-

lin: Springer, 1986. pp. 115–128.

19. Torgerson WS. Theory and methods of scaling. Hoboken,

NJ: Wiley, 1958.

20. Tenenbaum JB, De Silva V and Langford JC. A global

geometric framework for nonlinear dimensionality

reduction. Science 2000; 290(5500): 2319–2323.

21. Roweis ST and Saul LK. Nonlinear dimensionality

reduction by locally linear embedding. Science 2000;

290(5500): 2323–2326.

22. Donoho DL and Grimes C. Hessian eigenmaps: locally

linear embedding techniques for high-dimensional data.

Proc Natl Acad Sci 2003; 100(10): 5591–5596.

23. Zhang Z and Zha H. Principal manifolds and nonlinear

dimensionality reduction via tangent space alignment.

SIAM J Sci Comput 2004; 26(1): 313–338.

24. Zhang Z and Wang J. MLLE: modified locally linear

embedding using multiple weights. In: proceedings of

NIPS, Vancouver, BC, Canada, 4–9 December 2006,

pp.1593–1600. Cambridge, MA: MIT Press.

25. Joia P, Coimbra D, Cuminato J, et al. Local affine multi-

dimensional projection. IEEE TVCG 2011; 17(12):

2563–2571.

26. Paulovich F, Nonato L, Minghim R, et al. Least square

projection: a fast high-precision multidimensional pro-

jection technique and its application to document map-

ping. IEEE TVCG 2008; 14(3): 564–575.

27. Hinton GE and Salakhutdinov RR. Reducing the dimen-

sionality of data with neural networks. Science 2006;

313(5786): 504–507.

28. Kingma DP and Welling M. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114, 2013.

29. Becker M, Lippel J and Stuhlsatz A. Regularized non-

linear discriminant analysis—an approach to robust

dimensionality reduction for data visualization. In: Pro-

ceedings of VISIGRAPP, Porto, 27 February–1 March

2017, pp. 116–127. SciTePress.

30. Hinton GE. Training products of experts by minimizing

contrastive divergence. Neural Comput 2002; 14(8):

1771–1800.

31. Goldberger J, Roweis S, Hinton GE, et al. Neighbour-

hood components analysis. NIPS 2005; 17: 513–520.

32. He K, Zhang X, Ren S, et al. Delving deep into recti-

fiers: surpassing human-level performance on imagenet

classification. In: Proceedings of IEEE international confer-

ence on computer vision (ICCV), Santiago, Chile, 7–13

December, pp. 1026–1034. New York: IEEE.

33. Kingma D and Ba J. Adam: a method for stochastic opti-

mization. arXiv preprint arXiv:14126980, 2014.

34. Espadoto M, Martins R, Kerren A, et al. Towards a

quantitative survey of dimension reduction techniques.

IEEE TVCG 2019.

35. Venna J and Kaski S. Visualizing gene interaction graphs

with local multidimensional scaling. In: Proceedings of

ESANN, Bruges, 26–28 April 2006, pp. 557–562. Brus-

sels: D-Side Group.

36. Martins R, Minghim R and Telea A. Explaining neigh-

borhood preservation for multidimensional projections.

In: Proceedings of CGVC, London, 16–17 September

2015, pp. 121–128. Geneva: Eurographics Association.

37. LeCun Y, Cortes C and Burges C. MNIST handwritten

digit database. Florham Park, NJ: AT&T Labs, 2010,

http://yann.lecun.com/exdb/mnist/

38. Xiao H, Rasul K and Vollgraf R. Fashion-MNIST: a

novel image dataset for benchmarking machine learning

algorithms. arXiv preprint arXiv:170807747, 2017.

39. Elson J, Douceur JJ, Howell J, et al. Asirra: a CAPTCHA

that exploits interest-aligned manual image categoriza-

tion. In: Proceedings of the 14th ACM conference on

268 Information Visualization 19(3)

https://distill.pub/2016/misread-tsne
http://yann.lecun.com/exdb/mnist/

computer and communications security, Alexandria, VA, 29

October–2 November 2007, pp. 366–374. New York:

Association for Computing Machinery.

40. Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the

inception architecture for computer vision. In: Proceed-

ings of IEEE conference on computer vision and pattern rec-

ognition, Las Vegas, NV, 27–30 June 2016, pp. 2818–

2826. New York: IEEE.

41. Deng J, Dong W, Socher R, et al. ImageNet: a large-scale

hierarchical image database. In: Proceedings of IEEE con-

ference on computer vision and pattern recognition, Miami,

FL, 20–25 June 2009, pp. 248–255. New York: IEEE.

42. Maas AL, Daly RE, Pham PT, et al. Learning word vec-

tors for sentiment analysis. In: Proceedings of the 49th

annual meeting of the association for computational linguis-

tics: human language technologies, Portland, OR, 19–24

June 2011, pp. 142–150. Stroudsburg, PA: Association

for Computational Linguistics.

43. Salton G and McGill MJ. Introduction to modern informa-

tion retrieval. New York: McGraw-Hill, 1986.

44. Mangasarian OL, Setiono R and Wolberg WH. Pattern

recognition via linear programming: theory and applica-

tion to medical diagnosis. In: Coleman TF and Li Y

(eds) Large-scale numerical optimization. Philadelphia,

PA: SIAM, 1990, pp. 22–31.

45. Anguita D, Ghio A, Oneto L, et al. Human activity rec-

ognition on smartphones using a multiclass hardware-

friendly support vector machine. In: Proceedings of inter-

national workshop on ambient assisted living, Vitoria-Gas-

teiz, 3–5 December 2012, pp. 216–223. Berlin: Springer.

46. Hopkins M, Reeber E, Forman G, et al. Spambase data

set. Palo Alto, CA: Hewlett-Packard Labs, 1999.

47. Sikora M and Wróbel L. Application of rule induction

algorithms for analysis of data collected by seismic

hazard monitoring systems in coal mines. Arch Min Sci

2010; 55(1): 91–114.

48. Krizhevsky A. Learning multiple layers of features from

tiny images. Technical report, Department of Computer Sci-

ence, University of Toronto, Toronto, ON, Canada, 2009.

https://www.cs.toronto.edu/~kriz/learning-features-2009-

TR.pdf

49. Huang G, Liu Z, van der Maaten L, et al. Densely con-

nected convolutional networks. arXiv preprint

arXiv:1608.06993, 2016.

50. Vernier EF, Comba J and Telea A. Quantitative compari-

son of dynamic treemaps for software evolution visualiza-

tion. In: Proceedings of IEEE working conference on software

visualization (VISSOFT), Madrid, 24–25 September

2018.

51. Beck F, Burch M, Diehl S, et al. Taxonomy and survey

of dynamic graph visualization. CGF 2017; 36(1): 133–

159.

52. Bengio Y, Paiement J-F, Vincent P, et al. Out-of-sample

extensions for LLE, Isomap, MDS, eigenmaps, and

spectral clustering. In: Proceedings of NIPS, Vancouver,

BC, Canada, 13–18 December 2003, pp. 177–184. NIPS.

53. van der Maaten L. Barnes-Hut-SNE. arXiv preprint

arXiv:13013342, 2013.

54. Pan SJ and Yang Q. A survey on transfer learning. IEEE

TKDE 2010; 22(10): 1345–1359.

55. Coimbra D, Martins R, Neves T, et al. Explaining three-

dimensional dimensionality reduction plots. Inf Vis

2016; 15(2): 154–172.

56. Sanftmann H and Weiskopf D. 3D scatterplot naviga-

tion. IEEE TVCG 2012; 18(11): 1969–1978.

57. Potdar K, Pardawala P and Pai C. A comparative study

of categorical variable encoding techniques for neural

network classifiers. Int J Comput Appl 2017; 175(4): 7–9.

Espadoto et al. 269

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

