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• Urban blackbirds do not show higher
levels of physiological stress than forest
ones.

• Urban areas affect hormonal, immune
and cellular indicators differently.

• The effect of urbanization on blackbirds'
physiology differs among locations.

• Large scale and multilevel approaches
are crucial to study urban effects.
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Urbanization changes the landscape structure and ecological processes of natural habitats. While urban areas ex-
pose animal communities to novel challenges, they may also provide more stable environments in which envi-
ronmental fluctuations are buffered. Species´ ecology and physiology may determine their capacity to cope
with the city life. However, the physiological mechanisms underlying organismal responses to urbanization,
and whether different physiological systems are equally affected by urban environments remain poorly under-
stood. This severely limits our capacity to predict the impact of anthropogenic habitats on wild populations. In
this study, we measured indicators of physiological stress at the endocrine, immune and cellular level (feather
corticosterone levels, heterophil to lymphocyte ratio, and heat-shock proteins) in urban and non-urban
European blackbirds (Turdus merula) across 10 European populations. Among the three variables, we found con-
sistent differences in feather corticosterone, which was higher in non-urban habitats. This effect seems to be
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dependent on sex, being greater in males. In contrast, we found no significant differences between urban and
non-urban habitats in the two other physiological indicators. The discrepancy between these different measure-
ments of physiological stress highlights the importance of including multiple physiological variables to under-
stand the impact of urbanization on species' physiology. Overall, our findings suggest that adult European
blackbirds living in urban and non-urban habitats do not differ in terms of physiological stress at an organismal
level. Furthermore, we found large differences among populations on the strength and direction of the urbaniza-
tion effect, which illustrates the relevance of spatial replication when investigating urban-induced physiological
responses.

© 2020 Elsevier B.V. All rights reserved.
Heat-shock proteins
H/L ratio
Stress
Urbanization
1. Introduction

Urbanization dramatically changes the landscape structure and eco-
logical processes of natural habitats. Animals respond to these changes
in different ways; illustrated by differences in behavior, morphology
or physiology between urban and non-urban populations in a large
range of species (Bonier, 2012; Evans, 2010; Sol et al., 2013). While
urban areas expose individuals to novel challenges (e.g., resource avail-
ability, micro-climate, species interactions or pollution), they may also
providemore stable environments inwhich environmental fluctuations
are buffered (Grimm et al., 2008; Schlesinger et al., 2008; Shochat et al.,
2006). Organisms differ in their ecological requirements and in the de-
gree of ecological specialisation that has been selected for in the envi-
ronments in which they have evolved. As a result, environmental
modifications deriving from urbanization may have divergent conse-
quences on animals (Grimm et al., 2008; Marzluff et al., 2001), with
some species benefiting from the urban environment (“urban ex-
ploiters”) while others seem unable to survive in cities (“urban
avoiders”), or live in the urban environmentwithout relying exclusively
on it (“urban adapters”; Blair, 1996).

While the impact of urbanization on animal communities has been
well documented (e.g. Hamer and Mcdonnell, 2010; Ibáñez-Álamo
et al., 2017;McKinney, 2008), the physiologicalmechanisms underlying
organismal responses to urbanization remain poorly understood, as
does whether those mechanisms differ among species (reviewed in
Bonier, 2012; Sol et al., 2013). The observed responses are an integra-
tion of multiple physiological systems working together, and which
may not be equally affected by environmental fluctuations. Identifying
the effects of urban habitats on those physiological systems separately,
and how they interact at an organismal level is therefore fundamental
in order to understand the extent to which species can cope with
these anthropogenic habitats, as well as to help design future conserva-
tion plans. However, most of the studies investigating physiological re-
sponses to urban environments consider only one single variable as
indicator of physiological stress (e.g. Abolins-Abols et al., 2016;
Partecke et al., 2006). We therefore propose the use of multiple physio-
logical traits as away to obtain an integrative andmore reliablemeasure
of physiological stress of urban populations.

The endocrine system is a primary candidate for mediating organis-
mal responses to environmental challenge (Romero and Wingfield,
2016). Therefore, most of the urban ecology literature has focused on
glucocorticoid hormones (e.g. corticosterone –CORT–) to compare ex-
posure to physiological stress of urban and non-urban populations
(Bonier, 2012). Glucocorticoid concentrations in blood fluctuate dy-
namically with energetic needs, increasing in response to perceived
(e.g. “stress response”) or anticipated environmental changes and inte-
grating physiological responses and associated behaviours through
their multiple downstream effects (Buwalda et al., 2012; Jimeno et al.,
2018a; McEwen and Wingfield, 2003). CORT concentrations in
keratinized tissues, such as feathers (CORTf), are expected to reflect
these fluctuations because CORT is deposited continuously from the
blood into the tissue as it grows (Jenni-Eiermann et al., 2015). In con-
trast with plasma CORT, which can be used to infer changes in hormone
concentrations over short-time periods, CORTf reflects changes in
circulating CORT (i.e. stress response variation) during the time of
feather growth (i.e. weeks), providing an integratedmeasure of physio-
logical stress over this period (Beaugeard et al., 2019; Fairhurst et al.,
2013; Romero and Fairhurst, 2016).

Exposure to urban-associated environmental challenges may also
impact immune function (e.g. Audet et al., 2016; Bailly et al., 2016;
Capilla-Lasheras et al., 2017; Chávez-Zichinelli et al., 2013). Assessing
the differences in immune status between urban vs. non-urban popula-
tions is a relevant tool to evaluate potential detrimental consequences
of the city life. In birds, heterophils (H) and lymphocytes (L) are the
twomost abundant white cell types (Davis et al., 2008), and their circu-
lating levels (H/L– ratio) have been widely used to assess immune sta-
tus in a variety of organisms (e.g. Bókony et al., 2012; Fokidis et al.,
2008; French et al., 2008; Ibáñez-Álamo et al., 2016). The H/L ratio is ex-
pected to increase under immune challenges from parasites, infection,
inclement weather or social competition (Davis et al., 2008; Krams
et al., 2011; Minias et al., 2018). However, changes in leukocyte num-
bers take longer to initiate (i.e. hours or even days) and last longer
than changes in other biomarkers such as glucocorticoid levels (Davis
et al., 2008; reviewed in O'Dell et al., 2014), potentially offering comple-
mentary information on the nature and timing of the physiological chal-
lenges faced by the organism.

At the cellular level, one of themain responses to physiological chal-
lenges is mediated by heat-shock proteins (HSPs). This family of pro-
teins protect cells from degradation and damage by environmentally-
induced instability (Feder and Hofmann, 1999). HSP expression has
been found to increase when cells are exposed to challenges such as
parasites (del Cerro et al., 2010; Martínez-Padilla et al., 2004; Merino
et al., 1998), limited food availability (Herring et al., 2011), predation
risk (Thomson et al., 2010) or sibling competition (Martínez-Padilla
et al., 2004). Therefore, these molecules are considered reliable indica-
tors of long-lasting challenge (Herring et al., 2011; Martínez-Padilla
et al., 2004) and are an excellent complement to hormonal and immune
biomarkers.

Overall, the urban ecology literature offers contrasting results re-
garding the associations between indicators of physiological stress and
urbanization. Whereas many studies anticipate a positive association
between CORT levels and urbanization assuming that cities represent
detrimental environments for animals, this association is not the pre-
dominant finding (reviewed in Bonier, 2012), and may only hold true
if cities ubiquitously represent energetically challenging environments.
Similar predictions have beenmade for the immune system, as elevated
H/L ratios have been previously related to urbanization (H. B. Fokidis
et al., 2008) or environmental challenges associated with urban areas
such as chemical pollution (Eeva et al., 2005) or habitat fragmentation
(Hinam and Clair, 2008). However, these results are not always consis-
tent across studies or species (Bókony et al., 2012; H. B. Fokidis et al.,
2008; Ruiz et al., 2002). As for the HSPs, their potential association
with urbanization remain unexplored even though many of the factors
known to influence HSPs (e.g. parasites, predators or food availability)
are modified in urban environments (Gil and Brumm, 2014). Besides
potential differences existing between physiological variables and spe-
cies (see above), these inconsistencies may be explained by the lack of
replication (i.e. comparison of multiple cities). In fact, the majority of
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the studies assessing the effects of urbanization on vertebrate physiol-
ogy are typically carried out in a single population (e.g. Chávez-
Zichinelli et al., 2010; Fokidis et al., 2008; reviewed in Bonier, 2012),
with very few including within-species comparisons or meta-
replication at multiple urban and non-urban populations (Bonier et al.,
2007b).

In this study,wemeasuredmultiple indicators of physiological stress
at the endocrine, immune and cellular level (CORTf, H/L ratio and
HSP70, respectively) in five urban and five non-urban European black-
bird (Turdus merula) populations. Birds are ideal for our approach be-
cause their physiology is relatively well studied and similar to that of
other vertebrates (Hill et al., 2016). Furthermore, they have beenwidely
studied within the urban ecology context (Gil and Brumm, 2014;
Lepczyk and Warren, 2012; J. Marzluff et al., 2001; Murgui and
Hedblom, 2017), and the blackbird has been proposed as an emerging
model species for the study of urban-associated effects (Evans, 2010),
thus offering key information to interpret physiological changes associ-
ated with urbanization. The specific research questions we wanted to
testwere: (1)whether urban blackbirds showhigher levels of our target
Fig. 1.Geographical distribution of the paired populations (dyads) included in the study: Granad
an urban and a forest area separated by an average distance of 29.8 ± 3.8 km (mean ± s.e.).
physiological traits (i.e. indicating poorer physiological condition) com-
pared to conspecifics fromnatural habitats; (2)whether the effect of ur-
banization differs between physiological traits representing different
levels of response (i.e. endocrine, immune or cellular); and (3) whether
the patterns found are consistent among cities. We expect this study to
shed new light on our understanding of the potential physiological im-
pacts of urbanization on organisms.

2. Material and methods

2.1. Study design and sampling

We sampled adult blackbirds from ten different populations across
Europe using a paired study design (Fig. 1). Each pair of locations
(dyad) included an urban and a forest blackbird population separated
on average (±s.e.) by 29.8± 3.8 km. This distance is an order ofmagni-
tude greater than the mean adult and natal dispersal distance of black-
birds (Paradis et al., 1998). We selected forest habitats as non-urban
areas because forests are the ancestral habitat for this species (Luniak
a (1), Seville (2),Madrid (3), Dijon (4), Turku (5). At each dyadwe collected samples from
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et al., 1990). Urban capture sites were parks and gardens located in the
core area of the cities, while forest sites were in forested protected areas
with minimum human activity, in accordance with the definition of
urban and wildland area proposed by Marzluff (2001). This habitat dif-
ferentiation is also supported by a commonly used urbanization index
(Liker et al., 2008) as shown in Ibáñez-Álamo et al. (2018).

Blackbirds, an urban adaptor species (Kark et al., 2007), were cap-
tured usingmist nets in March–July 2015 (their main breeding season).
Using plumage criteria (Jenni and Winkler, 1994), all captured birds
were sexed and were classified as either yearlings (i.e. one year old in-
dividuals), or as ≥2 years old birds. Immediately after capture, black-
birds were bled from the brachial vein (350–450 μl). Blood samples
were kept at 4 °C in a portable fridge for up to 5 h until centrifugation
in the lab (5000 g for 15 min). We separated red blood cells from the
plasma and froze them at−80 °C until analyses of heat-shock proteins
were performed. We used a drop of blood to make blood smears that
were air-dried in the field and later (within 5 h) fixed in methanol for
5 min. Just after blood extraction, we also collected the 6th secondary
wing feather of the left wing of each captured blackbird and stored it
in an individual envelop until lab analyses. Secondary feathers are
molted in the breeding area during the post-breeding molt in black-
birds, and rarely during the post-juvenile molt (Jenni and Winkler,
1994). Thus, the CORT data obtained from these samples provided us
with information on the period of feather growth during the previous
year.

2.2. Lab analyses

2.2.1. Corticosterone
Hormone assays were carried out in the Spanish National Museum

of Natural Sciences (Madrid, Spain).We quantified corticosterone levels
in feathers (CORTf hereafter) following Bortolotti et al. (2008) with
slight modifications. We removed the calamus from each feather and
the rachis and feather vanes were minced into small pieces (b5 mm).
Weweighed each sample to the nearest 0.0001 g in a FX+40 analytical
balance (A&D Company Limited). After adding 6 ml of HPLC-grade
methanol to the samples, we placed them into a sonicating water bath
at room temperature for 30 min, followed by overnight incubation in
a shaking water bath at 50 °C. We then used a nylon syringe filter
(0.45 μ) to separate the methanol from the feather remains, which
were washed twice with 2 ml of methanol to recover residual extracts.
We placed the methanol solution into a water bath at 50 °C where the
methanol was evaporated under a stream of nitrogen. Dry extracts
were re-suspended in 150 μl of steroid-free serum (DRG, Germany)
and vortexed for 10 min. CORTf levels were quantified with a commer-
cial ELISA kit (DRG EIA-4164, Germany), following manufacturer in-
structions. We randomly include samples from multiple populations
(mean = 3.5) in every plate to minimize the influence of the inter-
assay variability in our findings. The inter-assay variability of our analy-
ses was 12.76% while the intra-assay variability was 9.35%.

2.2.2. Heat-shock proteins
Among this group of proteins, we quantified levels of HSP70 because

it is themost conserved protein in evolution and is very affected bymul-
tiple stressors (Daugaard et al., 2007; Kregel, 2002). Analyses of HSP70
were carried out at the Ecophysiology Laboratory at Estación Biológica
de Doñana (Seville, Spain). HSP70 levels in red blood cells were quanti-
fied with a commercial ELISA kit (ADI-EKS-700B, ENZO Biochem Inc.,
Farmengdale, New York) following manufacturer instructions. Total
proteins were measured using the Bradford method (Kruger, 1994)
and HSP70 values were corrected according to total protein concentra-
tion in the samples.

2.2.3. Heterophils/lymphocytes ratio
Blood smears were stained using the Wright-Giemsa method

(Brown, 1993) and sections with a monolayer of blood cells were
scanned using a light microscope. The same observer (J.C.C.) randomly
selected 100 leukocytes from each blood smear and classified each of
them into heterophils, lymphocytes or others (e.g. monocytes, eosino-
phils or basophils). We calculated the H/L ratio dividing the number of
heterophils by the number of lymphocytes.

2.3. Statistics

We tested the effect of urbanization on the three physiological vari-
ables analyzed: CORTf, H/L ratio and HSP70, by fitting general linear
mixed models with individual blackbirds as the sampling unit. None
of the three response variables were significantly correlated with each
other (all r b 0.08 and p-values N0.25) suggesting they reflect different
characteristics of the individuals´ physiology. The full initial models in-
cluded the following predictor variables: habitat (forest vs. urban), sex
and age (yearlings vs. older birds, see methods). The two-way interac-
tions including “habitat” (i.e. habitat x sex and habitat x age) were
also included to test for a potential sex or age dependence of the effect
of urbanization. Population nestedwithin dyadwas included as random
factor, and for the CORTf model, we also included plate identity as ran-
dom factor (N = 9). We used a backward selection process in which
we sequentially removed the least significant terms until only signifi-
cant terms (P b 0.05) remained in the model. After model selection,
the Akaike information criterion (AICc; Burnham and Anderson, 2002)
was also considered to confirm that the final models had the lowest
AIC values. Logarithmic transformations (ln) were performed to nor-
malize the three dependent variables, and residuals of the final models
showed normal distributions.

One of the aims of this studywas to investigate general effects of ur-
banization, and to what extent such effects were uniform across popu-
lations. Therefore, we further investigated the variability of our results
across our 5 study dyads. We ran additional general linear mixed
models inwhich dyadwas included asfixed factor, and tested for the ef-
fect of its interaction with habitat as a predictor of CORTf, H/L ratio and
HSP70. Thesemodels included population as a random factor and, in the
case of CORTf, also plate ID, aswell as the fixed factors of the final model
for each response variable.

All statistical analyses were performed using R version 3.5.0 (R Core
Team, 2018) and the R packages ‘lme4’ (Bates et al., 2014) and
‘lmerTest’ (Kuznetsova et al., 2016). We used the function r.
squaredGLMM from the R package ‘MuMIn’ (Barton, 2018) to calculate
the variance explained (R2) by the random terms of our models. Tukey
posthoc tests for pairwise comparisonswere calculatedwith the R pack-
age ‘emmeans’ (Lenth et al., 2018).

3. Results

A total of 259 blackbirds were captured for this study with an aver-
age of 26.3 birds (SD = 6.4) per locality. The final sample size for each
measurement differed slightly due to small sample volumes or logistical
problems during the analyses in the laboratory: CORTf = 245, HSP70=
249, and H/L ratio = 235.

The backward and AICc selection procedures offered comparable re-
sults. The best model for CORTf using both methods included Habitat,
Sex and the interaction between these two terms (Tables 1 and S3).
More specifically, CORTf levels were significantly lower in urban black-
birds compared to non-urban conspecifics (Table 1). However, this ef-
fect of urban habitat on CORTf was marginally affected by sex (Habitat
x Sex: F1,233.0 = 3.82; p = 0.052), with only male blackbirds showing
differences between habitats (Fig. 2). In contrast, we did not find a sig-
nificant effect of habitat on HSP70 levels or H/L ratio nor of any of the
other terms included in the models (all p-values N0.18; Tables S1, S2),
which was confirmed by the AICc results as the null model was also
the best model (Tables S4 and S5).

When testing for the geographic variation in the effect of urbaniza-
tion (i.e. interaction between habitat and dyad), we found a significant



Table 1
General Linear Mixed Model exploring habitat differences (urban vs forest) in blackbird
feather corticosterone (pg/mg; ln transformed). P-values lower than 0.05 are shown in
italics. Sample size: 245 individuals. Final model R2 = 0.59.

Estimate SE Df F P

Intercept 2.24 0.18
Habitat (Urban) −0.46 0.12 1, 5.4 10.53 0.021
Sex (Female) −0.02 0.08 1, 234.0 2.50 0.116
Sex (Female) × Habitat (Urban) 0.22 0.11 1, 233.0 3.82 0.052

Rejected terms
Age (Old) −0.07 0.06 1, 232.4 1.31 0.254
Age (Old) x Habitat (Urban) −0.10 0.12 1, 233.8 0.69 0.407
Random factors Variance
Plate ID 0.214
Dyad 0.009
Population:Dyad 0.015
Residual 0.189
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effect for CORTf (F4,222.9 = 2.86, p= 0.02; Fig. 3A) and HSP70 (F4,259 =
4.78, p b 0.0001; Fig. 3B) but not for H/L ratio (F4,235 = 1.41, p = 0.23;
Fig. 3C). Thus, the effect of urbanization significantly differed between
paired populations for two of our three physiological indicators. These
differences between dyads, however, were not consistent among the
three variables, which overall showed dissimilar patterns (Fig. 3). Fur-
thermore, in the models including population nested within dyad as
random factor, the proportion of explained variance by this random fac-
tor differed greatly for each physiological indicator (CORTf = 38%;
HSP70 = 13%; H/L ratio = 9%).

4. Discussion

Our results suggest that living in urban environments has varying ef-
fects on the stress physiology of an urban-adaptor species, the European
blackbird. We found consistent differences between urban and non-
urban habitats only in CORTf, and this effect was only observable in
males, with urban males showing lower CORTf values. The disparity of
Fig. 2. Blackbird feather corticosterone levels in relation to sex for urban (purple) and
forest (green) habitats. The boxplots show the mean (rhombus), median (bar inside the
rectangles), upper and lower quartiles and extreme values. Different letters above
boxplots indicate significant differences according to Tukey posthoc tests.
patterns among variables indicates that there are a variety of mecha-
nisms of physiological response to potential stressors that do not
show correlated responses (Romero and Wingfield, 2016). Thus sim-
plistic approaches may fail to hit the correct parameter and will require
looking at a variety of physiological variables to understand how organ-
isms respond to urbanization pressures. Including multiple physiologi-
cal variables is important to form an overall picture of the effect of
different environmental factors on the physiological state of animals
(Matson et al., 2006; Müller et al., 2011). Furthermore, for two of our
physiological stress markers (CORTf and HSP70), the strength and
even the direction of the effect of urbanization significantly differed
among paired populations, indicating that local effects mediate urban-
induced physiological changes. This complex physiological response to
urbanization found in several populations of the same species could
also partly explain the contrasting results of previous studies investigat-
ing physiological stress in relation to urbanization in birds (Bonier,
2012).

Overall, our results suggest that urban habitats are not detrimental
for this bird species in terms of physiological stress. This finding might
seem surprising given that urban adult blackbirds have shorter telo-
meres than forest ones (Ibáñez-Álamo et al., 2018), and telomeres are
considered as biomarkers of cumulative physiological damage in
many organisms, including the blackbird (Hau et al., 2015). However,
it is possible that these differences in telomeres arise before adulthood
(see Ibáñez-Álamo et al., 2018), which would be supported by data
showing that nestling blackbirds raised in the city suffer a higher starva-
tion risk than in the forest (Ibáñez-Álamo and Soler, 2010). This nutri-
tional challenge during development has also been suggested as a
crucial factor underlying the reduced stress responses of urban-born
blackbirds (Partecke et al., 2006). Taken together, these results suggest
that the urban-induced effects on blackbird physiology depend on the
life history stage, which may explain the apparent inconsistency be-
tween the results on telomeres and those on physiological stress. Alter-
natively, it is also possible that telomere shortening is due to stressors
not reflected by the three physiological parameters studied.

We found significant differences in CORTf between urban and non-
urban blackbirds, as stated above. These results showed lower CORTf
values in urban individuals compared with forest dwellers. To our
knowledge, there are only two previous studies testing for differences
in CORTf between urban and non-urban habitats (Beaugeard et al.,
2019; Meillère et al., 2016). Both studies found higher CORTf in urban
birds, but the only one including multiple geographical locations
(Beaugeard et al., 2019) was done on house sparrows (Passer
domesticus) and included juveniles only. Several local studies on plasma
CORT support our finding, showing lower baseline (Wright and Fokidis,
2016) and stress-induced (Partecke et al., 2006; Wright and Fokidis,
2016) plasma CORT concentrations in urban birds. In contrast, other
studies reported no overall differences in baseline plasma concentra-
tions between urban and non-urban birds (H. Bobby Fokidis et al.,
2009; Foltz et al., 2015; Grunst et al., 2014; Hudin et al., 2018; Injaian
et al., 2020; Meillère et al., 2015), including captive blackbirds
(Partecke et al., 2006). There are several potential explanations for
these differences between our findings and those of previous studies.
On the one hand, several studies concluded that the relationship be-
tween urbanization and CORT varies across species and contexts (i.e.
cities) (Bonier, 2012; H. Bobby Fokidis et al., 2009; Injaian et al., 2020;
this study). On the other hand, CORTf seems to better reflect variation
in the acute stress response rather than variation in baseline CORT
(Beaugeard et al., 2019),whichwould explainwhy our results generally
match better those on stress-induced levels (Partecke et al., 2006). In
addition to this variation in response to urban environments, CORT is
known to mobilize body reserves (i.e. glucose, fatty acids and proteins;
Jimeno et al., 2018a, 2018b; Remage-Healey and Romero, 2001;
Sapolsky et al., 2000) to provide the resources needed to copewith cur-
rent or anticipated energetic needs (Jimeno et al., 2018a; McEwen and
Wingfield, 2003). Therefore, CORT concentrations are expected to



Fig. 3. Blackbird feather corticosterone (A), heat-shock protein 70 levels (B) and heterophils to lymphocytes (H/L) ratio (C) by paired population (dyad) for urban (purple) and forest
(green) habitats. The boxplots show the mean (rhombus), median (bar inside the rectangles), upper and lower quartiles and extreme values.
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increase in energetically demanding circumstances, such as high forag-
ing costs (Jimeno et al., 2018b). Urban environments may be an easy
foraging environment for adult blackbirds, with lower energy expendi-
ture needed to access resources compared to non-urban areas. In addi-
tion, diet composition can also play a role in the concentrations of
circulating CORT (Cano et al., 2008). Urban and non-urban bird popula-
tions differ in their diet composition (e.g. fatty acids; Isaksson et al.,
2017; Meillère et al., 2015), and these differences may drive changes
in the composition and availability of energy reserves, and eventually
in circulating CORT levels. Alternatively, urban blackbirds may show
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lower CORT values as a consequence of chronic stress, as unlike with
acute stressors (where CORT levels are assumed to increase), chronic
stress can lead to both hypo- or hyper-regulation of CORT (reviewed
inDickens andRomero, 2013). However,we consider this latter hypoth-
esis unlikely because we did not find overall differences between urban
and forest individuals in any of the other variables that we measured.

Interestingly, the effect of urbanization on CORTf seems to be mar-
ginally dependent on sex, being only significant in males. The majority
of studies on the topic have not identified sex differences in CORT levels
associated to urbanization (Injaian et al., 2020). Only two studies have
found sex-specific changes in (baseline) CORT between urban and
non-urban individuals, but offering contrasting results. One of them,
on white-crowned sparrows (Zonotrichia leucophrys), found higher
levels of baseline CORT in urban compared with non-urban males,
while no differences were observed in females (Bonier et al., 2007a).
In contrast, American kestrels (Falco sparverius) females, but not
males, showed higher baseline CORT levels while breeding in urban
habitats compared with those reproducing in less disturbed areas
(Strasser and Heath, 2013). This suggests that there could be species-
specific traits behind these sex-specific relationships betweenurbaniza-
tion and CORT. These studies (including ours) were carried out during
the breeding season, and therefore it is likely that these sex differences
arise because of habitat-associated differences in female vs male physi-
ology during reproduction (e.g. related to activities like incubation,
chick feeding or territory defence).In the specific case of blackbirds, it
seems that urban and non-urban males differ in the timing of gonadal
growth andmigratory disposition, while females do not show such pat-
tern (Partecke and Gwinner, 2007; Partecke et al., 2004). This would be
consistentwith our findings, indicating that male and female blackbirds
regulate part of their physiology differently in urban and non-urban
environments.

In contrast to CORTf, we did not find evidence of an overall effect of
urbanization on blackbird H/L ratios or HSP70 plasma levels. This find-
ing is consistent with other urban exploiter and adaptor bird species
also showing no significant variation between urban and non-urban
areas in H/L ratio (Bókony et al., 2012; Carbó-Ramírez and Zuria,
2017; H. B. Fokidis et al., 2008). Taken together, our findings suggest a
general trend among those species benefiting from these human-
induced habitats. In contrast, urban-avoider or less-urban adaptable
species show increased H/L ratios in urban habitats (H. B. Fokidis
et al., 2008), although additional studies using different species and
sites will be needed to confirm this pattern. H/L ratio has been
interpreted as an indicator of immune challenge (Cirule et al., 2012;
Davis et al., 2004; Krams et al., 2012), and therefore our results suggest
that urban blackbirds are not more immunologically challenged than
forest blackbirds. However, two recent studies using transcriptome
analysis found an elevated expression of some immune genes in
urban populations of two tit (Paridae) species (Capilla-Lasheras et al.,
2017; Watson et al., 2017) which points at more complex urban-
induced immune effects, the need to obtain a broader view of the im-
mune systemusing additional variables, and to consider species ranging
from adaptors to avoiders. Our results for HSP70 would also be in line
with those of CORTf and H/L ratio, also indicating that urban habitats
are not physiologically challenging environments for this species.
Given the negative association betweenHSP70 levels and food availabil-
ity (Herring et al., 2011), the lack of differences in urban and non-urban
European blackbirds could suggest that cities do not represent habitats
with limited food resources for adult blackbirds. This would also match
with the previous interpretation on CORTf levels and its associationwith
foraging costs (see above).

The absolute values of CORTf, HSP70 and H/L ratio, as well as the
strength and direction of urbanization effects on these variables showed
wide variation among European cities. This broad geographical varia-
tion could partly explain contradicting results reported by previous
studies investigating the effects of urban vs. non-urban habitat on
avian physiology (Bonier, 2012), as most of them were focused in one
single city (e.g. Chávez-Zichinelli et al., 2010; Partecke et al., 2006;
Ruiz et al., 2002). We do not know the causes of such variation but it
is possible that differences among cities in a variety of environmental
(e.g. number or type of green areas, proximity to the sea, humidity or
precipitation) and human factors (e.g. population density, pollution)
may explain these differences (e.g. Bauerová et al., 2017; Treen et al.,
2015). Despite the origin of such geographical variation, our results
stress the importance of including spatial replicates in multiple cities
to infer widespread patterns when studying the ecological conse-
quences of urbanization (Ibáñez-Álamo et al., 2018).

To our knowledge, this is the first study investigating multiple indi-
cators of physiological stress (hormonal, immunological and cellular)
among multiple locations in an urbanization context. Our findings sug-
gest that living in cities is not physiologically detrimental for European
blackbirds, but species differing in ecology and life history strategies
(i.e. urban avoiders) may likely differ in their physiological capacity to
cope with urban-associated changes (see Bonier, 2012; Fokidis et al.,
2008). Given the variation in results offered by the different physiolog-
ical variables and different geographical locations, our work also high-
lights the importance of relying on multiple physiological variables
and spatial replicates to assess the impact of urbanization on animal
physiology. Large scale and multilevel approaches will also be crucial
to infer general patters in the study of urbanization consequences, pro-
viding key information to implement effectivemanagement and city- or
species-specific conservation plans.
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